Avaliação da biomassa produzida a partir de fermentação por Yarrowia lipolytica de resíduo agroindustrial de mandioca (Manihot esculenta) em distintas concentrações de glicose
DOI:
https://doi.org/10.20873/jbb.uft.cemaf.v9n2.bitencourtPalavras-chave:
leveduras, bioprocessos, reaproveitamento, protepina, lipídiosResumo
A cultura da mandioca apresenta alta relevância socioeconômica para o Brasil. Entretanto, na região Oeste Considerando o elevado potencial do Brasil para a produção agrícola, bem como a crescente demanda por pesquisas na área microbiana, tem se utilizado leveduras como a Yarrowia lipolytica (YL) em processos de bioconversão que possam trazer valorização nutricional para produção de diversos produtos com maior valor agregado na indústria de suplementos alimentares de uso animal. Neste trabalho foram utilizadas três cepas diferentes da levedura YL (QU31, QU69 e QU123) para avaliar a produção de proteínas e lipídeos sob diferentes concentrações de glicose (0, 4, 8 e 12%) utilizando casca de mandioca (Manihot esculenta) como fonte de carbono e ureia como fonte de nitrogênio. O uso da casca de mandioca como fonte de carbono para fermentação com YL se mostrou vantajoso, visto que inicialmente o resíduo possuía 1,66% de lipídios e após o processo apresentou ganho de até 1839,5%, enquanto para proteína apresentou incrementos que variaram de 234,04 até 1674,46%. Na ampla maioria dos casos o aumento do teor de glicose no meio de cultura promoveu diminuição nos teores de lipídeos e proteínas.
Referências
Association Of Official Analitical Chemists– AOAC. Official Methods of Analysis. 15.ed. Arlington, Virginia: 1117p.1990.
Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud, J, Chardot T, Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics, [s.l.], v.6, n.5, p.1450-1459, mar. 2006. Wiley. http://dx.doi.org/10.1002/pmic.200500339
Beopoulos A, Cescut J, Haddouche R, Uribelarrea J, Molina-Jouve C, Nicaud J, Yarrowia lipolytica as a model for bio-oil production. Progress In Lipid Research, [s.l.], v.48, n.6, p.375-387, nov. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.plipres.2009.08.005
Beopoulos A, Chardot T, Nicaud J. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, v91, n6, p692-696, jun. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.biochi.2009.02.004
Bligh, EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian Journal Biochemistry Physiolog-ical, Ottawa, v.27, n.8, p.911-917, 1959.
Carsanba E, Papanikolaou S, Fickers P, Erten H. Lipids by Yarrowia lipolytica strains cultivated on glucose in batch cultures. Microorganisms. v.8, n.7, p.1054, 2020. https://doi.org/10.3390/microorganisms8071054
Christen S, Sauer U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. Fems Yeast Research, v.11, n.3, p.263-272, 14 jan. 2011. Oxford University Press (OUP). http://dx.doi.org/10.1111/j.1567-1364.2010.00713.x
Chubukov V, Gerosa L, Kochanowski K, Sauer U, Coordina-tion of microbial metabolism. Nature Reviews Microbiolo-gy, v.12, n.5, p.327-340, 24 mar. 2014. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nrmicro3238
CONAB, Companhia Nacional de abastecimento, 2020, dis-ponível em http://www.conab.gov.br. Acesso em 10 de março de 2021.
Csutak O, Corbu V, Stoica I, Ionescu R, Vassu T, Biotechno-logical applications of Yarrowia lipolytica CMGB32. Agriculture And Agricultural Science Procedia, v.6, p.545-553, 2015. http://doi: 10.1016/j.aaspro.2015.08.083
Empresa Brasileira de Pesquisa Agropecuária – Embrapa Mandioca E Fruticultura. 2006. Disponível em: <http://www.cnpmf.embrapa.br/index.php?p=pesquisa-culturas_pesquisadas mandioca.php&menu=2 > Acesso em: 10 de março de 2021.
FAO - Organização das Nações Unidas para Alimentação e Agricultura. Corporate Document Repository. Crop Pro-spects and Food Situation – nº.4, 2008.
Gálvez-López D, Chávez-Melendez B, Vázques-Ovando A, Rosas-Quijano R, The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica. Brazilian Journal of Microbiology, v.50, n.1, p.23-31, 29 nov. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s42770-018-0004-7
Gancedo JM. The early steps of glucose signaling in yeast. FEMS Microbiolical Reviews, v.32, p.673-704, Ma-drid, Spain, 2008. http://doi:10.1111/j.1574-6976.2008.00117.x
Hohmann S, Osmotic stress signaling and osmo adaptation in yeasts. Microbiology And Molecular Biology Reviews, Gö-teborg, Sweden, p.300-372, June. 2002. http:// doi: 10.1128/mmbr.66.2.300-372.2002
Kampen, WH. Nutritional requirements in fermentation pro-cesses, Cap. 4, In: VOGEL, C, Todaro, CM. Fermentation and Biochemical Engineering Handbook: Principles, Pro-cess Design and Equipment 2nd Edition, 2007.
Kayikci Ö, Nielsen J. Glucose repression in Saccharomyces cerevisiae. Ferms Yeast Research, v.15, n.6, p.16-36, 22 jul. 2015. Oxford University Press (OUP). http://dx.doi.org/10.1093/femsyr/fov068
Magasanik B. Catabolite Repression. Cold Spring Harb Symp Quant Biolboris, Massachusetts, v.26, p.249-256, 1961.
Meijer, MMC. et al. Glucose Repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. Journal Of Biological Chemistry, [s.l.], v. 273, n. 37, p.24102-24107, 11 set. 1998. American Society for Biochemistry & Molecular Biology (ASBMB). http://dx.doi.org/10.1074/jbc.273.37.24102
Miller K, Alper HS. Yarrowia lipolytica: more than an oleagi-nous workhorse. Applied Microbiology and Biotechnolo-gy, v.103, p.9251–9262 (2019). https://doi.org/10.1007/s00253-019-10200-x
Oliveira PHS. Análise fisiológica e cinética do crescimento da levedura oleaginosa Yarrowia lipolytica IMUFRJ 50682 em diferentes fontes de carbono, São Paulo, 2014. http:// 10.11606/D.3.2014.tde-26082015-114653
Parrou J, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J, Dynamic responses of reserve carbohydrate me-tabolism under carbon and nitrogen limitations in Saccha-romyces cerevisiae. Yeast, Toulouse Cedex, v.15, p.191-203, 1999. http:// https://doi.org/10.1002/(SICI)1097-0061(199902)15:3<191::AID-YEA358>3.0.CO;2-O
Piłkur J, Compagno C, Molecular mechanisms in yeast carbon metabolism. molecular mechanisms in yeast carbon metabo-lism, p.1-328, 2014. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-55013-3
Santos Cordeiro CC, Lima, JMM, Lima BF, Correia M A B, Andrade Silva NR, Sá Muniz MC, Souza DG, Rocha Mou-ra, CM, Lima JMM, Alves Da Silva CA. Detecção de lipase por cepa de Rhizopus arrhizus var. arrhizus. In: CO-NICBIO / CONBIO / SIMCBIO, 2013, Recife - PE. Re-sumos Expandidos. Recife, v.2, p.1-11, 2013.
Santos EFS, Schautz LCA, Cardoso CAL, Ernandes JR, Batistote M. The effect of the structural complexity of the carbon and nitrogen source in the fermentative performance of industrial. Ciência e Natura, Santa Maria, v.35 n.2, p.009-014, dez. 2013.
Spagnuolo M, Hussain MS, Gambill L, Blenner M. Alternati-ve substrate metabolism in Yarrowia lipolytica. Frontiers In Microbiology, v.9, p.9-1077, 25 maio 2018. Frontiers Me-dia SA. http://dx.doi.org/10.3389/fmicb.2018.01077.
Suwannarat J, Ritchie RJ. Anaerobic digestion of food waste using yeast. Waste Management, v.42 p.61-66, 2015. https://doi.org/10.1016/j.wasman.2015.04.028
Thomulka KW, Moat, AG. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with chang-es in cultural conditions and growth phase. Journal Of Bac-teriology, U.S.A, v.109, n.1, p.25-33, Jan. 1972.
Varela, JCS, Mager WH. Response of Saccharomyces cere-visiae to changes in internal osmolarity. Microbiology, Am-sterdan, v.142, p.721-731, 1996.
Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnology And Bioen-gineering, v.96, n.1, p.134-145, 1 jan. 2007. Wiley. http://dx.doi.org/10.1002/bit.21135
Workman M, Holt P, Thykaer Jette. Comparing cellular performance of Yarrowia lipolytica during growth on glu-cose and glycerol in submerged cultivations. AMB Express, v.3, n.58, p.1-9, 2013. http:// DOI: 10.1186/2191-0855-3-58
Zhang H, Wu C, Wu Q, Dai J, Song Y. Metabolic flux analy-sis of lipid biosynthesis in the yeast Yarrowia lipolytica Us-ing 13C-Labled Glucose and Gas Chromatography-Mass Spectrometry. PLoS ONE 11(7): e0159187, 2016. https://doi.org/10.1371/journal.pone.0159187
Zieniuk B, Fabiszewska A. Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal patho-gen: a minireview. World J Microbiol Biotechnol. 2019; v.35, n.1, 2019. http://doi: 10.1007/s11274-018-2583-8
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 - Journal of Biotechnology and Biodiversity
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution (CC BY 4.0 no link http://creativecommons.org/licenses/by/4.0/) que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer momento antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (disponibilizado em O Efeito do Acesso Livre no link http://opcit.eprints.org/oacitation-biblio.html).