Evaluation of biomass produced from fermentation by Yarrowia lipolytica of cassava agroindustrial residue (Manihot esculenta) in different glucose concentrations.

Authors

  • Thiago Bergler Bitencourt Universidade Federal da Fronteira Sul https://orcid.org/0000-0002-6420-186X
  • Danieli Natali Konopka Universidade Federal da Fronteira Sul
  • Fernanda Arpini Souza Universidade Federal da Fronteira Sul
  • Vanessa Gomes da Silva Universidade Federal da Fronteira Sul
  • Luisa Helena Cazarolli Universidade Federal da Fronteira Sul

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v9n2.bitencourt

Keywords:

yeasts, bioprocesses, reuse, protein, lipids

Abstract

Considering the high potential of Brazil for agricultural production, as well as the growing demand for research in the microbial area, yeasts such as Yarrowia lipolytica (YL) have been used in bioconversion processes that can bring nutritional value to the production of several products with greater value aggregate in the animal food supplement industry. In this work, three different strains of yeast YL (QU31, QU69 and QU123) were used to evaluate the production of proteins and lipids under different concentrations of glucose (0, 4, 8 and 12%) using cassava peel (Manihot esculenta) as a source of carbon and urea as a source of nitrogen. The use of cassava peel as a carbon source for fermentation with YL proved to be advantageous, since initially the residue had 1.66% of lipids and after the process it showed a gain of up to 1839.5%, while for protein it presented increments that varied from 234.04 to 1674.46%. In the vast majority of cases, the increase in the glucose content in the culture medium promoted a decrease in the levels of lipids and proteins.

References

Association Of Official Analitical Chemists– AOAC. Official Methods of Analysis. 15.ed. Arlington, Virginia: 1117p.1990.

Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud, J, Chardot T, Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics, [s.l.], v.6, n.5, p.1450-1459, mar. 2006. Wiley. http://dx.doi.org/10.1002/pmic.200500339

Beopoulos A, Cescut J, Haddouche R, Uribelarrea J, Molina-Jouve C, Nicaud J, Yarrowia lipolytica as a model for bio-oil production. Progress In Lipid Research, [s.l.], v.48, n.6, p.375-387, nov. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.plipres.2009.08.005

Beopoulos A, Chardot T, Nicaud J. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, v91, n6, p692-696, jun. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.biochi.2009.02.004

Bligh, EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian Journal Biochemistry Physiolog-ical, Ottawa, v.27, n.8, p.911-917, 1959.

Carsanba E, Papanikolaou S, Fickers P, Erten H. Lipids by Yarrowia lipolytica strains cultivated on glucose in batch cultures. Microorganisms. v.8, n.7, p.1054, 2020. https://doi.org/10.3390/microorganisms8071054

Christen S, Sauer U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. Fems Yeast Research, v.11, n.3, p.263-272, 14 jan. 2011. Oxford University Press (OUP). http://dx.doi.org/10.1111/j.1567-1364.2010.00713.x

Chubukov V, Gerosa L, Kochanowski K, Sauer U, Coordina-tion of microbial metabolism. Nature Reviews Microbiolo-gy, v.12, n.5, p.327-340, 24 mar. 2014. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nrmicro3238

CONAB, Companhia Nacional de abastecimento, 2020, dis-ponível em http://www.conab.gov.br. Acesso em 10 de março de 2021.

Csutak O, Corbu V, Stoica I, Ionescu R, Vassu T, Biotechno-logical applications of Yarrowia lipolytica CMGB32. Agriculture And Agricultural Science Procedia, v.6, p.545-553, 2015. http://doi: 10.1016/j.aaspro.2015.08.083

Empresa Brasileira de Pesquisa Agropecuária – Embrapa Mandioca E Fruticultura. 2006. Disponível em: <http://www.cnpmf.embrapa.br/index.php?p=pesquisa-culturas_pesquisadas mandioca.php&menu=2 > Acesso em: 10 de março de 2021.

FAO - Organização das Nações Unidas para Alimentação e Agricultura. Corporate Document Repository. Crop Pro-spects and Food Situation – nº.4, 2008.

Gálvez-López D, Chávez-Melendez B, Vázques-Ovando A, Rosas-Quijano R, The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica. Brazilian Journal of Microbiology, v.50, n.1, p.23-31, 29 nov. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s42770-018-0004-7

Gancedo JM. The early steps of glucose signaling in yeast. FEMS Microbiolical Reviews, v.32, p.673-704, Ma-drid, Spain, 2008. http://doi:10.1111/j.1574-6976.2008.00117.x

Hohmann S, Osmotic stress signaling and osmo adaptation in yeasts. Microbiology And Molecular Biology Reviews, Gö-teborg, Sweden, p.300-372, June. 2002. http:// doi: 10.1128/mmbr.66.2.300-372.2002

Kampen, WH. Nutritional requirements in fermentation pro-cesses, Cap. 4, In: VOGEL, C, Todaro, CM. Fermentation and Biochemical Engineering Handbook: Principles, Pro-cess Design and Equipment 2nd Edition, 2007.

Kayikci Ö, Nielsen J. Glucose repression in Saccharomyces cerevisiae. Ferms Yeast Research, v.15, n.6, p.16-36, 22 jul. 2015. Oxford University Press (OUP). http://dx.doi.org/10.1093/femsyr/fov068

Magasanik B. Catabolite Repression. Cold Spring Harb Symp Quant Biolboris, Massachusetts, v.26, p.249-256, 1961.

Meijer, MMC. et al. Glucose Repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. Journal Of Biological Chemistry, [s.l.], v. 273, n. 37, p.24102-24107, 11 set. 1998. American Society for Biochemistry & Molecular Biology (ASBMB). http://dx.doi.org/10.1074/jbc.273.37.24102

Miller K, Alper HS. Yarrowia lipolytica: more than an oleagi-nous workhorse. Applied Microbiology and Biotechnolo-gy, v.103, p.9251–9262 (2019). https://doi.org/10.1007/s00253-019-10200-x

Oliveira PHS. Análise fisiológica e cinética do crescimento da levedura oleaginosa Yarrowia lipolytica IMUFRJ 50682 em diferentes fontes de carbono, São Paulo, 2014. http:// 10.11606/D.3.2014.tde-26082015-114653

Parrou J, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J, Dynamic responses of reserve carbohydrate me-tabolism under carbon and nitrogen limitations in Saccha-romyces cerevisiae. Yeast, Toulouse Cedex, v.15, p.191-203, 1999. http:// https://doi.org/10.1002/(SICI)1097-0061(199902)15:3<191::AID-YEA358>3.0.CO;2-O

Piłkur J, Compagno C, Molecular mechanisms in yeast carbon metabolism. molecular mechanisms in yeast carbon metabo-lism, p.1-328, 2014. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-55013-3

Santos Cordeiro CC, Lima, JMM, Lima BF, Correia M A B, Andrade Silva NR, Sá Muniz MC, Souza DG, Rocha Mou-ra, CM, Lima JMM, Alves Da Silva CA. Detecção de lipase por cepa de Rhizopus arrhizus var. arrhizus. In: CO-NICBIO / CONBIO / SIMCBIO, 2013, Recife - PE. Re-sumos Expandidos. Recife, v.2, p.1-11, 2013.

Santos EFS, Schautz LCA, Cardoso CAL, Ernandes JR, Batistote M. The effect of the structural complexity of the carbon and nitrogen source in the fermentative performance of industrial. Ciência e Natura, Santa Maria, v.35 n.2, p.009-014, dez. 2013.

Spagnuolo M, Hussain MS, Gambill L, Blenner M. Alternati-ve substrate metabolism in Yarrowia lipolytica. Frontiers In Microbiology, v.9, p.9-1077, 25 maio 2018. Frontiers Me-dia SA. http://dx.doi.org/10.3389/fmicb.2018.01077.

Suwannarat J, Ritchie RJ. Anaerobic digestion of food waste using yeast. Waste Management, v.42 p.61-66, 2015. https://doi.org/10.1016/j.wasman.2015.04.028

Thomulka KW, Moat, AG. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with chang-es in cultural conditions and growth phase. Journal Of Bac-teriology, U.S.A, v.109, n.1, p.25-33, Jan. 1972.

Varela, JCS, Mager WH. Response of Saccharomyces cere-visiae to changes in internal osmolarity. Microbiology, Am-sterdan, v.142, p.721-731, 1996.

Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnology And Bioen-gineering, v.96, n.1, p.134-145, 1 jan. 2007. Wiley. http://dx.doi.org/10.1002/bit.21135

Workman M, Holt P, Thykaer Jette. Comparing cellular performance of Yarrowia lipolytica during growth on glu-cose and glycerol in submerged cultivations. AMB Express, v.3, n.58, p.1-9, 2013. http:// DOI: 10.1186/2191-0855-3-58

Zhang H, Wu C, Wu Q, Dai J, Song Y. Metabolic flux analy-sis of lipid biosynthesis in the yeast Yarrowia lipolytica Us-ing 13C-Labled Glucose and Gas Chromatography-Mass Spectrometry. PLoS ONE 11(7): e0159187, 2016. https://doi.org/10.1371/journal.pone.0159187

Zieniuk B, Fabiszewska A. Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal patho-gen: a minireview. World J Microbiol Biotechnol. 2019; v.35, n.1, 2019. http://doi: 10.1007/s11274-018-2583-8

Published

2021-06-11

How to Cite

Bitencourt, T. B., Konopka, D. N., Souza, F. A., Silva, V. G. da, & Cazarolli, L. H. (2021). Evaluation of biomass produced from fermentation by Yarrowia lipolytica of cassava agroindustrial residue (Manihot esculenta) in different glucose concentrations. Journal of Biotechnology and Biodiversity, 9(2), 142–148. https://doi.org/10.20873/jbb.uft.cemaf.v9n2.bitencourt