VALORIZAÇÃO DA CASCA DA SACHA-INCHI EM CARVÃO ATIVADO PARA REMOÇÃO DE CORANTE AZO ANIÔNICO

Authors

DOI:

https://doi.org/10.20873/vol13n120262

Keywords:

Plukenetia Volubilis, Activated carbon, Methyl orange dye, Adsorption

Abstract

Adsorption has emerged as an effective process for synthetic dyes removal from industrial effluents, and the use of sustainable precursors has been investigated for obtaining activated carbon. The objective of this study was evaluate the potential of activated carbon produced from sacha-inchi shell (CSI) as an adsorbent for the removal of anionic methyl orange (ALM). CSI was synthesized by chemical activation with H3PO4 and carbonization of sacha-inchi biomass at 500 °C for 1h. The materials were characterized in terms of chemical and textural properties. Batch kinetic tests were performed, and experimental data were fitted to pseudo-first order and pseudo-second order models. The adsorption equilibrium characteristics were determined by Langmuir, Freundlich and Temkin isotherms. The results showed the production of high-quality activated carbon with a high specific surface area (1255 m2 g-1), with ALM removal of 96.5% and adsorption kinetics described by pseudo-second-order model. The Langmuir isotherm provided the best fit, revealing that adsorption occurs in monolayer, with a maximum capacity of 250 mg g-1. The valorization of sacha-inchi residues into activated carbon favors greater environmental sustainability and has led to development of an effective adsorbent for ALM removal.

References

AKBAR ALI, A. M.; KARTHIKEYAN, R. K.; SENTAMIL SELVAN, M.; RAI, M. K.; PRIYADHARSHINI, M.; MAHESWARI, N.; MITHILESH, R.; PADMANABAN, V. C. Removal of reactive orange 16 by adsorption onto activated carbon prepared from rice husk ash: statistical modelling and adsorption kinetics. Sep. Sci. Technol., v. 55, n. 1, p. 26-34, 2018.

AL-KAZRAGI, M. A. U. R.; AL-HEETIMI, D. T. A.; WILSON, L. D. Adsorption of methyl orange on low-cost adsorbent natural materials and modified natural materials: a review. Int. J. Phytoremediat., v. 26, n. 5, p. 639-668, 2023.

ARPIA, A. A.; CHEN, W. H.; LAM, S. S.; ROUSSET, P.; DE LUNA, M. D. G. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review. Chem. Eng. J., v. 403, p. 126233, 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14929. Madeira: Determinação do teor de umidade. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 8112. Análise imediata. Rio de Janeiro (RJ): ABNT; 1986.

CRINI, G.; LICHTFOUSE, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett., v. 17, p. 145-155, 2019.

GUPTA, V. K.; CARROTT, P. J. M.; RIBEIRO CARROTT, M. M. L.; SUHAS. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment - a Review. Crit. Rev. Environ. Sci. Technol.,v. 39, n. 10, p. 783-842, 2009.

DAWOOD, S.; SEN, T. K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res., v. 46, n. 6, p. 1933-1946, 2012.

FENG, P.; LI, J.; HUANG, H.; XU, Z. Biomass-Based Activated Carbon and Activators: Preparation of Activated Carbon from Corncob by Chemical Activation with Biomass Pyrolysis Liquids. ACS Omega, v. 5, p. 24064-24072, 2020.

GHAFFARI, H. R.; PASALARI, H.; TAJVAR, A.; DINDARLOO, K.; GOUDARZI1, B.; ALIPOUR, V.; GHANBARNEAJD, A. Linear and Nonlinear Two-Parameter Adsorption Isotherm Modeling: A Case-Study. Int. J. Eng. Sci., v. 6, n. 9, p. 01-11, 2017.

HAN, Q.; WANG, J.; GOODMAN, B. A.; XIE, J.; LIU, Z. High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue. Powder Technol., v. 366, p. 239-248, 2020.

KORD MOSTAFAPOUR, F.; ZOLGHADR, R.; KHODADADI SALOOT, M.; MAHVI, A. H.; BALARAK, D.; SAFARI, E. Removal of Acid blue 113 from aqueous medium using a novel magnetic adsorbent derived from activated carbon fiber. Int. J. Environ. Anal. Chem., v. 104, n. 17, p. 5732-5747, 2022.

KOSHELEVA, R. I.; MITROPOULOS, A. C.; KYZAS, G. Z. Synthesis of activated carbon from food waste. Environ. Chem. Lett., v. 17, p. 429-438, 2019.

KUMAR, B.; SMITA, K.; CUMBAL, L.; DEBUT, A. Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. J. Saudi Chem. Soc., v. 21, p. S293-S298, 2017.

LAKKHANA, C.; ATONG, D.; SRICHAROENCHAIKUL, V. Fuel Gas Generation from Gasification of Sacha Inchi Shell using a Drop Tube Reactor. Energy Procedia, v. 138, p. 870-876, 2017.

LI, Y.; ZHANG, X.; YANG, R.; LI, G.; HU, C. The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue. RSC Adv., v. 5, p. 32626-32636, 2015.

MONTFORT, G. R. C.; AZAMAR-BARRIOS, J. A.; QUINTANA-OWEN, P.; REJÓN-MOO, V.; GONZÁLEZ-GÓMEZ, W. S.; MADERA-SANTANA, T. J. Production and Physicochemical Characterization of Activated Carbon from the Mesocarp of the Coconut (Cocos nucifera L.) Variety Alto del Pacifico. Chemistry, v. 7, n. 3, p. 88, 2025.

MOULEFERA, I.; GARCÍA-MATEOS, F.; BENYOUCEF, A.; ROSAS, J.; RODRÍGUEZ-MIRASOL, J.; CORDERO, T. Effect of Co-solution of Carbon Precursor and Activating Agent on the Textural Properties of Highly Porous Activated Carbon Obtained by Chemical Activation of Lignin With H3PO4. Frontiers in Materials, v. 7, p.153, 2020.

OBAID, A. A.; AL-MASRI, M.; DEGHLES, A.; TAHA, N.; JODEH, S.; SMAIL, R. Functionalized C,N-Bipyrazole Receptor Grafted onto Silica Surface for Arsenic Adsorption and Its Antibacterial Activity. Am. J. Anal. Chem., v. 10, p. 38-53, 2019.

PARIKH, J.; CHANNIWALA, A. S.; GHOSAL, G. K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, v. 84, n. 5, p. 487-494, 2005.

RAMUTSHATSHA-MAKHWEDZHA, D.; MAVHUNGU, A.; MOROPENG, M. L.; MBAYA, R. Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon, v. 8, p. e09930, 2022.

RUEDA-ORDÓÑEZ, Y. J.; MARIÑO-BOHÓRQUEZ, M. A.; RUEDA-ORDÓÑEZ, D. A. Thermal upgrading of sacha inchi shell: Kinetics and combustion characteristics. Bioresour. Technol. Rep., v. 15, p. 100807, 2021.

SÁ, M. L.; NOBRE, F. X.; MATOS, J. M. E.; SANTOS, M. R. M. C. Remoção do alaranjado de metila em meio aquoso por microcristais de h-MoO3 obtidos pelo método micro-ondas hidrotérmico. Cerâmica, v. 66, n. 378, p. 197-207, 2020.

SAKR, F.; ALAHIANE, S.; SENNAOUI, A.; DINNE, M.; BAKAS, I.; ASSABBANE, A. Removal of cationic dye (Methylene Blue) from aqueous solution by adsorption on two type of biomaterial of South Morocco. Mater. Today Proc., v. 22, n. 1, p. 93-96, 2020.

SCHETTINO JR, M. A.; FREITAS, J. C. C.; CUNHA, A. G.; EMMERICH, F. G.; SOARES, A. B.; SILVA, P. R. N. Preparação e caracterização de carvão ativado quimicamente a partir da casca de arroz. Quím. Nova, v. 30, n. 7, p. 1663-1668, 2007.

SHEN, J.; ZHU, S.; LIU, X.; ZHANG, H.; TAN J. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers. Manag., v. 51, p. 983-987, 2010.

SOONGPRASIT, C.; AHTONG, D.; SRICHAROENCHAIKUL, V.; VICHAPHUND, S.; ATONG D. Hydrocarbon Production from Catalytic Pyrolysis-GC/MS of Sacha Inchi Residues Using SBA-15 Derived from Coal Fly Ash. Catalysts, v. 10, p. 1031, 2020.

SOUZA, C. D. R.; NASCIMENTO, L. O. N.; SOUSA, M. P. S.; OLIVEIRA, M. S. Adsorção do corante alaranjado de metila em carvão ativado obtido da casca do cupuaçu. Res. Soc. Dev., v. 12, p. e17121444394, 2023.

TEMESGEN, F.; GABBIYE, N.; SAHU, O. Biosorption of Reactive Red Dye (RRD) on activated surface of banana and orange peels: Economical alternative for textile effluent. Surf. Interfaces, v. 12, p. 151-159, 2018.

THOMMES, M.; KANEKO, K.; NEIMARK, A. V.; OLIVIER, J. P.; RODRIGUEZ-REINOSO, F.; ROUQUEROL, J.; SING, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, v. 87, n. 9-10, p. 1051-1069, 2015.

UDDIN, M. K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J., v. 308, p. 438-462, 2017.

WANG, S.; DOU, J.; ZHANG, T.; LI, S.; CHEN, X. Selective Adsorption of Methyl Orange and Methylene Blue by Porous Carbon Material Prepared From Potassium Citrate. ACS Omega, v. 8, n. 38, p. 35024-35033, 2023.

WANG, S.; ZHU, F.; KAKUDA, Y. Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chem., v. 265, n. 1, p. 316-328, 2018.

WANG, X.; LI, D.; LI, W.; PENG, J.; XIA, H.; ZHANG, L.; GUO, S.; CHEN, G. Optimization of mesoporous activated carbon from coconut shells by chemical activation with phosphoric acid, BioResources., v. 8, n. 4, p. 6184-6195, 2013.

ZAYED, A. M.; ABDEL WAHED, M. S. M.; MOHAMED, E.A.; SILLANPÄÄ, M. Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: Isotherm and kinetic studies. Appl. Clay Sci., v. 166, p. 49-60, 2018.

ZHANG, Z.; XU, L.; LIU, Y.; FENG, R.; ZOU, T.; ZHANG, Y.; KANG, Y.; ZHOU, P. Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, and thermodynamic studies. Microporous Mesoporous Mater., v. 315, p. 110904, 2021.

Published

2026-02-12 — Updated on 2026-02-13

Versions

How to Cite

Daliassi Ramos De Souza, C., de Souza e Sousa, M. P., Katiussy Pereira Gurgel, Y., & Aline Soares Maia, D. (2026). VALORIZAÇÃO DA CASCA DA SACHA-INCHI EM CARVÃO ATIVADO PARA REMOÇÃO DE CORANTE AZO ANIÔNICO. DESAFIOS - Revista Interdisciplinar Da Universidade Federal Do Tocantins, 13(1), 23–42. https://doi.org/10.20873/vol13n120262 (Original work published February 12, 2026)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.