Trichoderma as a growth promoter for eucalyptus seedlings

Authors

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v9n1.chagasjunior

Keywords:

biostimulant, seedling production, forestry

Abstract

The study was carried out with the objective of evaluating the effect of Trichoderma isolates on the initial growth of Eucalyptus brassiana and Eucalyptus urophylla under greenhouse conditions. Five isolates of Trichoderma were used in the approximate concentration of 1x109 of conidia per gram of colonized rice, mixed with the substrate, using tubes with a capacity of 50 cm3. E. brassiana and E. urophylla species were evaluated for height (H), root length (RL), diameter (DC), dry shoot (DS), root (DR) and total (DT) . Relative efficiency (RE) and Dickson's Quality Index (DQI) were also evaluated. All isolates were superior (p <0.01) to the control in H and DS for E. urophylla, with a variation from 9.4 to 56.2% of increase in relation to the control at 100 days after sowing (DAS). In the E. brassiana species, the UFT 203 and UFT 205 isolates were statistically superior to the control and to the other isolates in DS, DT and RE at 100 DAS. For the species E. urophylla, the UFT 204 isolate promoted growth in H, DC, DS, DR and DT, with 56.5; 13.2; 25; 26.5 and 25.3%, higher than the witness, respectively. The inoculation of Trichoderma promoted the initial growth of seedlings of E. urophylla and E. brassiana. There was specificity for the different species of Trichoderma in relation to the two plant species, with a better relationship between E. urophylla with T. longibrachiatum (UFT 204) and E. brassiana with T. harzianum (UFT 203).

References

Azevedo GB, Novaes QS, Azevedo GTOS, Silva HF, Sobri-nho GGR, Novaes AB. Efeito de Trichoderma spp. no crescimento de mudas clonais de Eucalyptus camaldulensis. Scientia Forestalis, v. 45, n. 114, p. 343-352, 2017. https://doi.org/10.18671/scifor.v45n114.10

Battaglia D, Bossi S, Cascone P, Digilio MC, Prieto JD, Guerrieri PFE, Iodice L, Lingua G, Lorito M, Maffei E, Massa N, Ruocco M, Sasso R, Trotta V. Tomato Below Ground–Above Ground Interactions: Trichoderma longi-brachiatum Affects the Performance of Macrosiphum euphorbiae and Its Natural Antagonists. The American Phy-topathological Society. v. 26, n. 10, p. 1.249-1.256, 2013. https://doi.org/10.1094/MPMI-02-13-0059-R

Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS. Phosphorus-solubilizing Trichoderma spp. from Ama-zon soils improve soybean plant growth. Scientific Reports, v. 10, n. 2858, p. 1-13, 2020. https://doi.org/10.1038/s41598-020-59793-8

Brotman Y, Landau U, Inostroza AC, Takayuki T, Fernie AR, Chet I, Virtebo A, Willmitzer L. Trichoderma-Plant root colonization: escaping early plant defense responses and ac-tivation of the antioxidant machinery for saline stress toler-ance. PLOS Pathog. v. 9, n. 3, p. 1-15, 2013. https://doi.org/10.1371/journal.ppat.1003221

Caldeira MV, Delarmelina WM, Peroni L, Gonçalves EO, Silva AG. Lodo de esgoto e vermiculita na produção de mu-das de eucalipto. Pesq. Agropec. Trop., v. 43, n. 2, p. 155-163, abr./jun., 2013. https://doi.org/10.1590/S1983-40632013000200002

Carvalho Filho MRC, Mello SCM, Santos RP, Menêzes JE. Avaliação de isolados de Trichoderma na promoção de crescimento, produção de ácido indolacético in vitro e colo-nização endofítica de mudas de eucalipto. Boletim de pes-quisa e desenvolvimento, 226. Brasília, Embrapa Recursos Genéticos e Biotecnologia, 2008.

Castro AMG, Lima SMV, Vieira LF, Sarmento EPM. Elabo-ração do Plano Estadual de Agronergia, Eficiência Energéti-ca e Marco Regulatório de Biocombustivel no Estado do Tocantins. Inova Prospectiva e Estratégia, Palmas 2017.

Castro, AMG, Tonani FL, Lima SMV. Desafios para o de-senvolvimento do complexo agroindustrial do eucalipto para agroenergia na região norte do Brasil. Brazilian Journal of Development, v. 5, n. 9, p. 14292-14320, 2019.

Chagas LFB, Castro HG, Colonia BSO, Carvalho Filho MR, Miller LO, Chagas Junior AF. Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany, v. 38, n. 4, p. 1-11, 2015. https://doi.org/10.1007/s40415-015-0247-6

Chagas LFB, Chagas Junior AF, Castro HG. Phosphate solu-bilization capacity and indole acetic acid production by Trichoderma strains for biomass increase on basil and mint plants. Brazilian Journal of Agriculture, v. 92, n. 2, p. 176-185, 2017a. https://doi.org/10.37856/bja.v92i2.3221

Chagas LFB, Colonia BSO, Santos GR, Scheidt GN, Portella ACF, Soares LP, Chagas Junior AF. Rice growth influence by Trichoderma spp. with natural phosphate fertilization under greenhouse conditions. International Journal of De-velopment Research, v.07, n. 06, p.13147-13152, 2017b.

Chagas Junior AF, Oliveira AG, Santos GR, Reis HB, Cha-gas LFB, Miller LO. Combined inoculation of rhizobia and Trichoderma spp. on cowpea in the savanna, Gurupi-TO, Brazil. Revista Brasileira de Ciências Agrárias, v. 10, n. 1, p. 27-33, 2015. https://doi.org/10.5039/agraria.v10i1a4334

Chagas Junior AF, Chagas LFB, Miller LO, Oliveira JC. Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultur-al Research, v. 14, n. 5, p. 263-271, 2019. https://doi.org/10.5897/AJAR2018.13556

Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bicio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Ara-bidopsis. Plant Physiology, v. 149, n. 3, p. 1579–1592, 2009.

Contreras-Cornejo HA, Macías-Rodríquez L, Del-Val E, Larsen J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, Oxford, v.92, p.1-17, 2016. https://doi.org/10.1093/femsec/fiw036

Dianese AC, Blum LEB, Mello SCM. Uso de Trichoderma spp. para o manejo da podridão-do-pé-do-mamoeiro causada por Phytophthora palmivora Butler. Planaltina-DF: Em-brapa Cerrados, 18 p. 2012.

Dickson A, Leaf AL, Hosner JF. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron., v. 36, p. 10-13, 1960.

Domínguez S, Rubio MB, Cardoza RE, Gutiérrez S, Nicolás C, Bettiol W, Hermosa R, Monte E. Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidu-lans acetamidase amdS gene. Frontiers in Microbiology, v. 7, p. 1182, 2016. https://doi.org/10.3389/fmicb.2016.01182

Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang D, Miao Y, Rahimi MJ, Grujic M, Cai F, Pourmehdi S, Sal-im KA, Pretzer C, Kopchinskly AG, Henrissat B, Kuo A, Hundley H, Wang M, Aerts A, Salamov A, Lipzen A, Labutti K, Barry K, Grigoriev IV, Sheng Q, Kubicek CP. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoder-ma from its plant-associated hosts. PLoS Genetics, v. 14, n. 4, p. 1-33, 2018. https://doi.org/10.1371/journal.pgen.1007322

Embrapa. Curso: Avaliação de qualidade de produtos à base de Trichoderma. Embrapa Meio Ambiente, Jaguariúna –SP, 2012. <http://www.cnpma.embrapa.br/down_site /forum/2012/trichoderma/Apostila_Trichoderma_2012.pdf> Acesso em: 15/02/2020.

Gupta KJ, Mur AJ, Brotman Y. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium ox-ysporum in Arabidopsis roots. Molecular Plant-Microbe Interactions. v. 27, n. 4, p. 307-314, 2014. https://doi.org/10.1094/MPMI-06-13-0160-R

Hermosa R, Belén RM, Cardoza RE, Nicolás C, Monte E, Gutiérrez S. The contribution of Trichoderma to balancing the costs of plant growth and defense. International Micro-biology, v. 16, n. 2, p. 69-80, 2013. https://doi.org/10.2436/20.1501.01.181

Hohmann P, Jones EE, Hill RA, Stewart A. Understanding Trichoderma in the root system of Pinus radiata: associa-tions between rhizosphere colonization and growth promo-tion for commercially grown seedlings. Micobiol Ecol, v. 115, n. 8, p. 759-67, 2011. https://doi.org/10.1016/j.funbio.2011.05.010

Hoyos-Carvajal L, Orduz S, Bissett J. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology, v. 46, n. 9, p. 615-631, 2009. https://doi.org/10.1016/j.fgb.2009.04.006

Ibá. Indústria Brasileira de Árvores. Relatório 2019. Brasília. 80p. 2019. <https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf> Acesso em 29/12/2020.

Junges E, Muniz MF, Mezzomo R, Bastos B, Machado RT. Trichoderma spp. na Produção de Mudas de Espécies Flo-restais. Floresta e Ambiente, v. 23, n. 2, p. 237-244, 2016. http://dx.doi.org/10.1590/2179-8087.107614

Li R-X CF, Pang G, Shen QR, Li R, Chen W. Solubilisation of phosphate and micronutrients by Trichoderma harzi-anum and its relationship with the promotion of tomato plant growth. PLOS ONE, v. 10, n. 6, p. 1-15, 2015. https://doi.org/10.1371/journal.pone.0130081

Machado DFM, Parzianello FR, Silva ACF, Antoniolli ZI. Trichoderma no Brasil: O fungo e o bioagente. Revista de Ciências Agrárias, v. 35, n. 1, p. 274-288, 2012.

Martínez B, Infante D, Reyes, Y. Trichoderma spp. y su función em el control de plagas em los cultivos. Revista de Protección Vegetal, v. 28, n. 1, p. 1-11, 2013.

Medeiros FHV, Guimarães RA, Silva JCP, Cruz-Magalhães V, Souza JT. Trichoderma: interações e estratégias. In: Me-yer MC, Mazaro SM, Silva JC. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa. p. 219-234, 2019.

Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz BA, Mukherjee PK. Molecular dialogues be-tween Trichoderma and roots: role of the fungal secretome. Fungal Biology Reviews, v. 32, n. 2, p. 62-85, 2018. https://doi.org/10.1016/j.fbr.2017.12.001

Mertz LM, Henning FA, Zimmer PD. Bioprotetores e fungici-das químicos no tratamento de sementes de soja. Ciência Rural, v. 39, p. 13-18, 2009. http://dx.doi.org/10.1590/S0103-84782009000100003

Meyer MC, Campos HD, Lobo Junior M. Avaliação à campo de Trichoderma em mofo-branco. In: Meyer MC, Mazaro SM, Silva JC. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa. p. 339-346, 2019.

Milanesi PM, Blume E, Muniz MFB, Reiniger LRS, Antoni-olli ZI, Junges E, Lupatini M. Detecção de Fusarium spp. e Trichoderma spp. e antagonismo de Trichoderma sp. em soja sob plantio direto. Semina: Ciências Agrárias, v. 34, n. 6, p. 3219-3234, 2013. https://doi.org/10.5433/1679-0359.2013v34n6Supl1p3219

Monte BH, Bettiol E, Hermosa R. Trichoderma e seus meca-nismos de ação para o controle de doenças de plantas. In: Meyer MC, Mazaro SM, Silva JC. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa. p. 181-199, 2019.

Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metab-olism in Trichoderma – a genomic perspective. Microbio-logy, v. 158, n. 1, p. 35-45, 2012. https://doi.org/10.1099/mic.0.053629-0

Oliveira Junior AO, Cairo PAR, Novaes AB. Características morfofisiológicas associadas à qualidade de mudas de Eu-calyptus urophylla produzidas em diferentes substratos. Re-vista Árvore, v. 35, n. 6, p. 1173-1180, 2011. https://doi.org/10.1590/S0100-67622011000700003

Patil AS, Patil SR, Paikrao HM. Trichoderma secondary metabolites: their biochemistry and possible role in disease manage¬ment. In: Choudhary DK, Varma, A. (Eds.). Micro-bial-mediated induced systemic resistance in plants. Singa-pore: Springer, 2016. p. 69-102.

Peel MC, Finlayson BL, McMahon TA. Update world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science, v. 11, p. 1633-1644. 2007.

Petter FA, Andrade FR, Marimon Junior BH, Gonçalves LG, Schossler TR. Biochar como condicionador de substrato pa-ra a produção de mudas de eucalipto. Revista Caatinga, v. 25, n. 4, p. 44-51, out-dez., 2012.

Pomella AWV, Ribeiro RTS. Controle biológico com Tricho-derma em grandes culturas – uma visão empresarial. In: Bettiol W, Morandi MAB. (Eds.). Biocontrole de doenças de plantas: uso e perspectivas. Jaguariúna: Embrapa Meio Ambiente, 2009. p. 239-244.

Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R. Identifying beneficial qualities of Trichoderma parareesei for plants. Applied and Environmental Microbi-ology, v. 80, n. 6, p. 1864-1873, 2014. https://doi.org/10.1128/AEM.03375-13

Saito LR, Sales LLSR, Martinckoski L, Royer R, Ramos MS, Reffatti T. Aspectos dos efeitos do fungo Trichoderma spp. no biocontrole de patógenos de culturas agrícolas. Pesquisa Aplicada & Agrotecnologia, v. 2, n. 3. 2009.

Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology, v. 158, n. 1, p. 129-138, 2012. https://doi.org/10.1099/mic.0.053140-0

Samuels GJ, Ismaiel A, Bon MC, De Respinis S, Petrini O. Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia, v. 102, n. 4, p. 944-966, 2010. https://doi.org/10.3852/09-243

Santos RP, Carvalho Filho MR, Martins I. Avaliação de Iso-lado de Trichoderma ssp. e Gliocladium Virens na Promo-ção do Crescimento em mudas de Eucalipto e na Produção de Ácido Idolacético In Vitro. Embrapa, Recursos Genéticos e Biotecnológicos, Boletim de Pesquisa e Desenvolvimento 232, Brasília, DF, p. 07, 2008.

Santos FEV, Araújo JM, Andrade WC, Costa CC, Silva AG. Formação de mudas de Eucalyptus urophylla s.t. blake com utilização de resíduo sólido orgânico urbano. Enciclopédia Biosfera, v. 9, n.16, p. 1203-1214, 2013.

Shoresh M, Harman GE, Mastouri F. Induced systemic re-sistance and plant responses to fungal biocontrol agents. Annual Review Phytopathology, v. 48, p. 21-43, 2010. https://doi.org/10.1146/annurev-phyto-073009-114450

Souza MOA, Silva JC, Lucia RMD, Viana W. Avaliação da madeira de Eucalyptus camaldulensis Dehnh e Eucalyptus urophylla S.T. Blake em ensaios de usinagem, visando à produção moveleira. Revista Árvore, v. 33, n. 4, p. 751-758, 2009. https://doi.org/10.1590/S0100-67622009000400018

Stefanini MB, Rodrigues SD, Ming LC. Ação de fitorregula-dores no crescimento da erva-cidreira-brasileira. Horticultura Brasileira, v. 20, n. 1, p. 18-23, 2002.

Steffen GPK, Antoniolli ZI, Steffen RB, Schiedeck G. Utiliza-ção de vermicomposto como substrato na produção de mu-das de Eucalyptus grandis e Corymbia citriodora. Pesquisa Florestal Brasileira, v. 31, n. 66, p. 75-82, 2011. https://doi.org/10.4336/2011.pfb.31.66.75

Suassuna ND, Silva JC, Bettiol W. Uso do Trichoderma na cultura do algodão. In: Meyer MC, Mazaro SM, Silva JC. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa. p. 361-379, 2019.

Taiz, L.; Zeiger, E. Fisiologia vegetal. Porto Alegre: Artmed, 819p. 2009.

Vargas WA, Mandawe JC, Kenerley CM. Plant-derived su-crose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology, v. 151, n. 2, p. 792-808, 2009. https://doi.org/10.1104/pp.109.141291

Vidal LHI, Souza JRP, Fonseca EP, Bordin I. Qualidade de mudas de guaco produzidas por estaquia em casca de arroz carbonizada com vermicomposto. Horticultura Brasileira, v. 24, n. 1, p. 26-30, 2006.

Woo SL, Pepe O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science, v. 9, n. 1801, p. 1-6, 2018. https://doi.org/10.3389/fpls.2018.01801

Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, v. 8, p. 71-126, 2014. https://doi.org/10.2174/1874437001408010071

Zhao LEI, Zhang Y. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. Journal of Integrative Agriculture, v. 14, n. 8, p. 1-15, 2015. https://doi.org/10.1016/S2095-3119(14)60966-7

Trichoderma como promotor de crescimento de mudas de eucaliptos

Published

2021-03-24

How to Cite

Chagas Jr, A. F., Gomes, F. L., Souza, M. C. ., Martins, A. L. L. ., Oliveira, R. S. de ., Giongo, M. ., & Chagas, L. F. B. . (2021). Trichoderma as a growth promoter for eucalyptus seedlings. Journal of Biotechnology and Biodiversity, 9(1), 060–072. https://doi.org/10.20873/jbb.uft.cemaf.v9n1.chagasjunior

Most read articles by the same author(s)

<< < 1 2 3