SET PACKING

Pedagogical Contributions for Learning within the Scope of the Theory of Computation

Authors

DOI:

https://doi.org/10.20873/uft.2675-3588.2026.v7n2.p13-20

Keywords:

Theory of Computation, Computational Complexity, NP-Completeness, Set Packing Problem, Polynomial Reduction

Abstract

This work proposes a methodological and didactic approach for the reproduction and elucidation of the concepts of NP-Completeness and the inherent intractability of combinatorial problems, using the Set Packing Problem (SP) as a case study. The methodology consists of a detailed exposition of the problem, followed by the reproduction of the formal demonstration of SP's membership in the NP-Complete class, including the construction and analysis of its polynomial verifier and the step-by-step presentation of the polynomial reduction technique from CLIQUE to SP. The main result and contribution of this article is the development of pedagogical material that aims to enhance the integral understanding of Theory of Computation concepts, assisting the public in effectively assimilating the meaning of computational complexity.

Author Biography

Tanilson Dias dos Santos, Universidade Federal do Tocantins

Professor do Curso de Ciência da Computação - UFT. Doutor em Engenharia de Sistemas e Computação pelo PESC/COPPE-UFRJ. Possui Mestrado em Sistemas e Computação pelo Instituto Militar de Engenharia (IME,2014). É também pesquisador da área de Teoria dos Grafos e Teoria da Computação. Possuo graduação em Ciência da Computação e tem interesse de estudo nas áreas de Inteligência Artificial, Grafos, Otimização e Autômatos. Participou, anteriormente, do projeto de futebol de robôs na liga de simulação 2D. Possuo Certificação Internacional em Teste de Qualidade de Software, em exame realizado pela BSTQB, no nível CTFL (Foudation Level).

Published

2026-02-10

How to Cite

[1]
Badaró Fonseca, E. et al. 2026. SET PACKING: Pedagogical Contributions for Learning within the Scope of the Theory of Computation. Academic Journal on Computing, Engineering and Applied Mathematics. 7, 2 (Feb. 2026), 13–20. DOI:https://doi.org/10.20873/uft.2675-3588.2026.v7n2.p13-20.

Issue

Section

Special Issue

Categories

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.