Application of artificial neural networks in the mahogany culture (Khaya spp. e Swietenia spp.)
DOI:
https://doi.org/10.20873/jbb.uft.cemaf.v8n1.csilvaKeywords:
artificial intelligence, biometrics, measurementAbstract
Due to their high commercial value and acceptance in the international market, mahogany species have been exploited indiscriminately, even in protected areas, resulting in threat of extinction. Mahogany species are desirable both in terms of color and grain patterns and in their properties. physical and mechanical. Both species have similar characteristics and are considered resistant to the attack of fungi and termites. Mahogany (Khaya spp. and Swietenia spp.) Has great productive potential in Brazil, being a good alternative to the most expressive crops in the country, for example. Since they are noble woods, and like Mahogany, Artificial Neural Networks (RNAs) are also good alternatives to estimate different dendrometric variables in different cultures, and studies show that this technique has been producing excellent adjustments, especially when compared to regression models. Traditional Thus, this review aimed to provide information on the different applications of RNAs in mahogany crops in Brazil.
References
Almeida TG de. Comparação entre redes neurais artificiais e modelos tradicionais de regressão para estimar altura e vo-lume em povoamentos de Araucaria angustifolia (Bertol.) O. Kuntze. 2015. Trabalho de conclusão de curso (Bacharel em Engenharia Florestal) - Universidade Federal do Paraná, Curitiba, 2015.
Associação Brasileira dos Produtores de Mogno Africano, Apresentação. ABPMA, 2015. Disponível em:
http://abpma.org.br/apresentacao/.
Ashraf M., Irfan et al. A novel modelling approach for predict-ing forest growth and yield under climate change. PloS one, v.10, n.7, 2015.
Binoti DHB et al. Redução dos custos em inventário de povo-amentos equiâneos utilizando redes neurais artificiais. Agrá-ria, v.8, p.125-129, 2012a
Binoti DHB et al. Modelagem da distribuição diamétrica em povoamentos de eucalipto submetidos a desbaste utilizando autômatos celulares. Revista Árvore, v.36, n.5, p.931-939, 2012b.
Binoti MLMS et al. Prognose em nível de povoamento de clones de eucalipto empregando redes neurais artificiais. Cerne, Lavras, v.21, n.1, p.97-105, 2015.
Blundell AG. A review of the CITES listing of big-leaf ma-hogany. Oryx, v.38, n.1, p.84-90, 2004.
Caldeira, MVW et al. Relação hipsométrica para Araucaria angustifolia (Bert.) O. Ktze na região oeste do estado do Pa-raná. Revista Acadêmica: Ciência Animal, v.1, n.2, p.79-88, 2017.
Campos JCC, LEITE HG. Mensuração florestal: perguntas e respostas, Universidade Federal de Viçosa, Viçosa, Brasil, 2009.
Castro RVO et al. Crescimento e produção de plantios comer-cias de eucalipto estimados por duas categorias de modelo. Pesq. Agropec. Bras., Brasília, v.48, n.3, p.287-295, 2013.
Casaroli D. et al. Aptidão edafoclimática para o mogno africa-no no Brasil. Ciênc. Florestal., Santa Maria, v.28, n.1, p.357-368, 2018 .
Garber SM, Maguire DA. Modeling stem taper of three central oregon species using nonlinear mixed effects models and autoregressive error structures. Forest Ecology and Man-agement, v.179, n.1, p.507-522, 2003.
Castro RVO et al. Artificial neural networks effectiveness to estimate mortality in a Semi-deciduous Seasonal Forest. Australian Journal of Basic and Applied Sciences, v.9, n.5, p.435-444, 2015.
Castro RVO et al. Individual growth model for eucalyptus stands in Brazil using artificial neural network. ISRN Fores-try, v. 2013. 2013.
Castro, Renato Vinícius Oliveira et al. Crescimento e produção de plantios comerciais de eucalipto estimados por duas cate-gorias de modelos. Pesquisa Agropecuária Brasileira, v. 48, n. 3, p. 287-295, 2013.
Crescente-Campo F, Soares P, Tomé M, Diéguez-Aranda U. Modeling noncatastrophic individual tree mortality for Pinus radiate plantations in northwestern Spain. Forest Ecology and Management, v.257, n.6, p.1542–1550, 2010.
Diamantopoulou MJ. Artificial neural networks as an alterna-tive tool in pine bark volume estimation. Computers and Electronics in Agriculture, v.48, n.3, p.235-244, 2005.
Goergens EB et al. Estimação do volume de árvores utilizando redes neurais artificiais. Revista Árvore, v.33, n.6, p.1141-1147, 2009.
Grogan J et al. What loggers leave behind: impacts on big-leaf mahogany (Swietenia macrophylla) commercial populations and potential for post-logging recovery in the Brazilian Am-azon. Forest Ecology and Management, v.255, n.2, p.269-281, 2008.
Grogan J, Barreto P. Big-leaf mahogany on CITES Appendix II: big challenge, big opportunity. Conservation Biology, v.19, n.3, p.973-976, 2005.
Grogan J et al. Over‐harvesting driven by consumer demand leads to population decline: Big‐leaf mahogany in South America. Conservation Letters, v.3, n.1, p.12-20, 2010.
Hammond D. et al. Hardwood programmes in Fiji, Solomon Islands, and Papua New Guinea. 2002.
Jesus CM et al. (2017), Funções de densidade de probabilida-de para estimativa das distribuições de variáveis dendromé-tricas em um povoamento clonal de eucalipto. Revista Es-pacios. v.38, n.16. 30p.
Krisnawati H, Kallio MH, Kanninen M. Swietenia macrophyl-la King: Ecology, silviculture and productivity. CIFOR, 2011.
Lafetá BO et al. Eficiência de utilização de macronutrientes em eucalipto por método não destrutivo estimados por redes neurais artificiais. Ciência Florestal, v.28, n.2, p.613-623, jun. 2018.
Langbour P et al. Comparison of wood properties of planted big-leaf mahogany (Swietenia macrophylla) in martinique island with naturally grown mahogany from Brazil, Mexico and Peru. Journal of Tropical Forest Science, p.252-259, 2011.
Leite HG et al. Estimation of inside-bark diameter and heart-wood diameter for Tectona grandis Linn. trees using artifi-cial neural networks. European Journal of Forest Research, v.130, n.2, p.263-269, 2010.
Leite HG, da Silva MLM, Binoti DHB, Fardin L, Takizawa FH. Estimation of inside-bark diameter and heartwood di-ameter for Tectona grandis Linn. trees using artificial neural networks. European Journal of Forest Research, v.130, n.2, p.263–269, 2011.
Lugo AE, Alayón M. Big-leaf mahogany: Genetics, ecology and management. Springer Science & Business Media, 2003.
Mead DJ, Odoom FK. Promotion of valuable hardwood plan-tations in the tropics. A global overview. Forest Plantations Thematic Papers. Working Paper (FAO), 2001.
Merkl D, Hasenauer H. Using neural networks to predict individual tree mortality. em Proceedings of the Int’l Con-ference on Engineering Applications of Neural Networks, p.10–12, Gibraltar, Reino Unido, 1998.
Miehle P, Battaglia M, Sands PJ et al. A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecologi-cal Modelling, v.220, n.5, p.734-746, 2009.
Morandi PS et al. Influência da disponibilidade de luz na qualidade de mudas e nutrição mineral de Calophyllum bra-siliense Cambess. (Calophyllaceae). Revista Árvore, Viçosa, v.41, n.2, p.1-10, abr. 2017.
Newnham RM. The development of a standmodel for Doug-lasfir [Ph.D. thesis], University of British Columbia, Cana-da, 1964.
Paula Filho P, Tusset A. Análise de cor para o reconhecimento de espécies florestais. Ágora : revista de divulgação científi-ca, v.16, n.2esp., p.330-341, 11 abr. 2012.
Pinheiro AL. et al. Ecologia, silvicultura e tecnologia de utili-zação dos mognos africanos (Khaya spp.). Viçosa: 2011, p.102. SEPLAN. Atlas do Tocantins: subsídios ao planeja-mento da gestão territorial. 6. ed. Palmas: Secretaria do Pla-nejamento e da Modernização da Gestão Pública, 80 p. 2012.
Reais LP et al. Prognosis on the diameter of individual trees on the eastern region of the amazon using artificial neural net-works. Forest Ecology and Management, Amsterdam, v.382, p.161-167, 2016.
Richards M, McDonald AJS, Aitkenhead MJ. Optimisation of competition indices using simulated annealing and artificial neural networks. Ecological Modelling, v.214, n.2-4, p.375-384, 2008.
Ribeiro A et al. O cultivo do mogno africano (Khaya spp.) e o crescimento da atividade no Brasil. Floresta Ambiente. Se-ropédica, v.24, e00076814, 2017.
Santos Neto JC. Redes neurais artificiais na estimação de volume de Mogno Aricano (Khaya ivorensis). 2018. Traba-lho de conclusão de curso (Bacharel em Engenharia Flores-tal) - Universidade Federal do Recôncavo Bahiano, Cruz das Almas, 2018.
Silva IN da, Spatti DH, Flauzino RA. Redes neurais artificiais para engenharia e ciências aplicadas. São Paulo: Artliber, v.23, n.5, p.33-111, 2010.
Silva MLM, Binoti DHB, Gleriani JM, Leite HG. Ajuste do modelo de Schumacher e Hall e aplicações de redes neurais artificiais para estimar volumes de árvores de eucalipto. Ár-vore, v.33, n.6, p.1133–1139, 2009.
Silva MVC, RamosYA, Limeira MMC, Coelho, MCB, San-tos AF, Giongo M, Erpen ML. Uso de redes neurais artifi-ciais e modelos de regressão para estimar volume de espé-cies nativas em Portel, Pará - Brasil. Revista Forestal Meso-americana Kurú, v.17, n.40, 20 dez. 2019.
Wiemann MC. Characteristics and availability of commercially important woods. Wood handbook: wood as an engineering material: chapter 2. Centennial ed. General technical report FPL; GTR-190. Madison, WI: US Dept. of Agriculture, Forest Service, Forest Products Laboratory, 2010: v.190, p.2.1-2.45, 2010.
Zbonak A et al. Wood properties and processing outcomes for plantation grown African mahogany (Khaya senegalensis) trees from Clare, Queensland (18 and 20 year-old trees) and Katherine, Northern Territory (14 year-old trees). 2010.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 - Journal of Biotechnology and Biodiversity
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0 at http://creativecommons.org/licenses/by/4.0/) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Available at The Effect of Open Access, at http://opcit.eprints.org/oacitation-biblio.html).