Canopy base height estimation using airborne laser scanning (LiDAR) data

Authors

  • Marcos Giongo Universidade Federal do Tocantins
  • Henrique Soares Koehler
  • Marcelo Ribeiro Viola
  • Patrick dos Santos Bastos
  • André Ferreira dos Santos
  • Giovanni Santopuoli
  • Marcos Giongo Universidade Federal do Tocantins / CeMAF https://orcid.org/0000-0003-1613-6167
  • Henrique Soares Koehler Universidade Federal do Paraná
  • Marcelo Ribeiro Viola Universidade Federal do Tocantins
  • Patrick dos Santos Bastos Universidade Federal do Tocantins
  • André Ferreira dos Santos Universidade Federal do Tocantins
  • Giovanni Santopuoli Università degli Studi del Molise

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v3n3.giongo

Keywords:

LIDAR, precision forest inventory, forest fire

Abstract

Lately, data acquisition using Airborne Laser Scanning (ALS) with LiDAR technology (Light Detection and Ranging) is becoming promising in the forest field, especially for estimation of dendrometric variables and to evaluate vertical and horizontal structure of the forest. Topographic and forest coverage information are extremely important to forest and natural resources managers. Accurate information on trees height and density are fundamental for planning, but also hard to obtain by conventional methods. The use of modeling associated with LIDAR data allows the researcher to obtain estimates of several other forest variables, such as basal area, diameter, volume, biomass and combustible material. The estimation of the trees base heights with plots of different sizes (10, 15 and 20 meters) showed an standard error of 1.42, 0.95 and 0.82 m, which correspond to 23.62, 15.70 and 13.84%, respectively. 

References

Andersen, H.-E.; McGaughey, R.; Reutebuch, S.; Schreuder, G.; Agee, J.; Mercer, B. (2004), Estimating canopy fuel parameters in a pacific northwest conifer forest using multifrequency polarimetric IFSAR. Paper presented at the International Archives of Photogrammetry and Remote Sensing, Istanbul, Turkey.

Andersen, H.-E.; McGaughey, R. J.; Reutebuch, S. E. (2005), Estimating forest canopy fuel parameters using LIDAR data Remote Sensing of Environment, 94 (4, 28), 441-449.

Andrews, P. L. (2009), BehavePlus fire modeling system, version 5.0: Variables: Department of Agriculture, Forest Service, Rocky Mountain Research Station.

Finney, M. A. (1998), FARSITE: Fire Area Simulator-model development and evaluation. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

McAlpine, R. S. and Hobbs, M. W. (1994), Predicting the height to live crown base in plantation of four boreal forest species. Journal of International Wildlife, 103-106.

Mitsopoulos, I. D. and Dimitrakopoulos, A. P. (2007), Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) Annals of Forest Science, 64, 287-299.

Morsdorf, F.; Meiera, E.; Kotza, B.; Ittena, K. I.; Dobbertinc, M.; Allgowerb, B. (2004), LIDAR- based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment, 92, 353-362.

Næsset, E., and Økland, T. (2002), Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment, 79, 105-115.

Peel, M. C.; Finlayson, B. L.; McMahon, T. A. (2007), Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences - HESSD, 11, 1633-1644.

Riaño, D.; Meier, E.; Allgöwer, B.; Chuvieco, E.; Ustin, S. L. (2003). Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment, 86, 177-186.

Roff, A.; Goodwin, N.; Merton, R. (2005), Assessing Fuel Loads using Remote Sensing New South Wales Rural Fire Service Technical Report (pp. 11). Sydney, Autralia: University of New South Wales.

Scott, J. H., and Reinhardt, E. D. (2001), Assessing crown fire potential by linking models of surface and crown fire behavior (Vol. RMRS- RP-29, pp. 59). Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

Van Wagner, C. E. (1993), Prediction of crown fire behavior in two stands of jack pine. Canadian Journal of Research, 23, 442-449.

Zimble, D. A.; Evans, D. L.; Carlson, G. C.; Parker, R. C.; Grado, S. C.; Gerard, P. D. (2003), Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment, 87, 171-182.

Published

2012-08-01

How to Cite

Giongo, M., Koehler, H. S., Viola, M. R., Bastos, P. dos S., dos Santos, A. F., Santopuoli, G., … Santopuoli, G. (2012). Canopy base height estimation using airborne laser scanning (LiDAR) data. Journal of Biotechnology and Biodiversity, 3(3), 48–57. https://doi.org/10.20873/jbb.uft.cemaf.v3n3.giongo

Most read articles by the same author(s)

1 2 > >>