EXPRESSION ANALYSIS OF THE COFFE (Coffea arabica L.) FRIGIDA4-like GENE (CaFRL4)

Authors

  • Matheus Martins Daude 1Laboratory of Molecular Analyzes, Graduate Program Master in Health Sciences, Federal University of Tocantins, Palmas, Brazil
  • André Almeida Lima 2Laboratory of Molecular Plant Physiology, Department of Biology, Federal University of Lavras, Lavras, Brazil.
  • Antonio Chalfun Junior 2Laboratory of Molecular Plant Physiology, Department of Biology, Federal University of Lavras, Lavras, Brazil.
  • Horllys Gomes Barreto Universidade Federal do Tocantins

DOI:

https://doi.org/10.20873/uft.2359-3652.2018v5nEspecialp204

Abstract

ABSTRACT

Coffee is one of the most economically important commodities. In Brazil, this crop is responsible for generating more than eight million jobs. In the foreign market, Brazil is the largest producer and exporter of coffee. Due to its economic importance, several studies aiming the improvement of coffee are conducted, but there are still problems related to its productivity and quality of the beverage, such as sequential flowering, which causes production losses and a low quality drink. Thus, understanding the molecular mechanisms involved in the flowering process is essential to elucidate how flowering occurs in the coffee crop. The FRI gene is one of the main genes involved in flowering, as it positively regulates the FLC gene at expression levels that inhibit flowering. Thus, the objective of this work was to identify and analyze the expression of the FRIGIDA4-like gene (FRL4) through Bioinformatics and real-time PCR (RT-qPCR). The CaFRL4 gene was identified and showed high expression levels in leaf during flowering, which corroborates with the literature. The results obtained provide the basis for future studies involving genetic transformation in model plants and coffee, permitting the functional characterization of this gene.

References

ALTSCHUL, S. F., MADDEN, T. L., SCHÄFFER, A. A., ZHANG, J., ZHANG, Z., MILLER, W., LIPMAN, D. J. Gapped BLAST and PSI BLAST: A new generation of protein database search programs. Nucleic Acids Research, v.25, n.17, p.3389-3402, 1997.

BARRETO, H. G. LAZZARI, F., SÁGIO, S. A., CHALFUN-JUNIOR, A., PAIVA, L. V., BENEDITO, V. A. In silico and quantitative analyses of the putative FLC-like homologue in Coffee (Coffea arabica L.). Plant Molecular Biology Reporter, v. 30, p. 29-35, 2012.


BLUEMEL, M., DALLY, N., JUNG, C. Flowering time regulation in crops – what did we learn from Arabidopsis? Current Opinion in Biotechnology, v. 32, p. 121- 129, 2015.

CHALFOUN, S. M. Controle biológico e metabólitos microbianos bioativos: uma perspectiva da qualidade do café. Ciência e Agrotecnologia, Lavras, v. 34, n. 5, p. 1071-1085, 2010.

CHAO, Y., YANG, Q., KANG, L., ZHANG, T., SUN, Y. Expression of the alfalfa FRIGIDA-Like gene, MsFRI-L delays flowering time in transgenic Arabidopsis thaliana. Molecular Biology Reports, v. 40, p. 2083-2090, 2013.

CHOI, K., KIM, J., HWANG, H. J., KIM, S., PARK, C., KIM, S. Y., LEE, I. The FRIGIDA complex activates transcriptional of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. The Plant Cell, v. 23, p. 289-303, 2011.

CONAB: COMPANHIA NACIONAL DE ABASTECIMENTO. Quarto Levantamento Café 2016. Disponível em: <conab.gov.br/>. Acesso em: 13 de Março de 2017.

EISEN, M. B., SPELLMAN, P. T., BROWN, P. O., BOTSTEIN, D. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, v. 95, n. 25, p. 14863-14868, 1998.

FERNANDES-BRUM, C. N., DE OLIVEIRA GARCIA, B., MOREIRA, R. O., SÁGIO, S. A., BARRETO, H. G., LIMA, A. A., CHALFUN-JÚNIOR, A. A panel of the most suitable reference genes for RT-qPCR expression studies of coffee: screening their stability under different conditions. Tree Genetics & Genomes, v. 13, n. 6, p. 131, 2017.

GERALDO, N., BÄURLE, I., KIDOU, S. I., HU, X., DEAN, C. FRIGIDA delas flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-biding complex. Plant Physiology, v. 150, p. 1611-1618, 2009.

HUANG, Xiaoqiu; MADAN, Anup. CAP3: A DNA sequence assembly program. Genome research, v. 9, n. 9, p. 868-877, 1999.

HYUN, K. G., OH, J. E., PARK, J., NOH, Y. S., SONG, J. J. Structural analysis of FRIGIDA flowering-time regulator. Molecular Plant, v. 9, p. 618-620, 2016.

ICO: INTERNATIONAL COFFEE ORGANIZATION. State of the global coffee trade. Disponível em: <ico.org/>. Acesso em: 13 de março de 2017.

LIU, S. N., ZHU, L. F., LIN, X. C., MA, L. Y. Overexpression of the repressor gene PvFRI-L from Phyllostachys violascens delays flowering time in transgenic Arabidopsis thaliana. Biologia plantarum, v. 60, n. 3, p. 401-409, 2016.

MORAIS, H., CARAMORI, P. H., KOGUISHI, M. S., RIBEIRO, A. M. A. Escala fenológica detalhada da fase reprodutiva de coffea arabica. Bragantia, Campinas, v.67, n.1, p.257-260, jan. 2008.

PFAFFL, Michael W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, v. 29, n. 9, p. e45-e45, 2001.

RISK, J. M., LAURIE, R. E., MACKNIGHT, R. C., DAY, C. L. FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important. Plant Molecular Biology, v. 73, p. 493-505, 2010.

SAITOU, N., NEI, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, Lawrence, v. 4, n.4, p.406–425, July 1987.

SANCHEZ‐BERMEJO, E., BALASUBRAMANIAN, S. Natural variation involving deletion alleles of FRIGIDA modulate temperature‐sensitive flowering responses in Arabidopsis thaliana. Plant, cell & environment, v. 39, n. 6, p. 1353-1365, 2016.

SITNIKOVA, T., RZHETSKY, A., NEI, M. Interior-branch and bootstrap tests of phylogenetics trees. Molecular Biology and Evolution, Lawrence, v.12, p.319-33, 1995.

TAMURA, K., DUDLEY, J., NEI, M., KUMAR, S. H. MEGA4: molecular evolutionary genetics analysis: software: version 4.0. Molecular Biology and Evoltion, Oxford, v. 24, n. 8, p. 1596-1599, Aug. 2007.

THOMPSON, J. D., HIGGINS, D. G., GIBSON, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, v. 22, n. 22, p. 4673-4680, 1994.

VIEIRA, L. G. E., ANDRADE, A. C., COLOMBO, C. A., MORAES, A. H. D. A., METHA, Â., OLIVEIRA, A. C. D., GIGLIOTI, É. Brazilian coffee genome project: an EST-based genomic resource. Brazilian Journal of Plant Physiology, v. 18, n. 1, p. 95-108, 2006.

WANG, N., QIAN, W., SUPPANZ, I., WEI, L., MAO, B., LONG, Y., JUNG, C. Flowering time variation in oil see1d rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA. FRI.a. Journal of Experimental Botany, v. 62, n. 15, p. 5641-5658, 2011.

YI, L., CHEN, C., YIN, S., LI, H., LI, Z., WANG, B., LIU, K. Sequence variation and functional analysis of a FRIGIDA orthologue (BnaA3. FRI) in Brassica napus. BMC plant biology, v. 18, n. 1, p. 32, 2018.

Published

2018-10-31

How to Cite

Daude, M. M., Lima, A. A., Chalfun Junior, A., & Barreto, H. G. (2018). EXPRESSION ANALYSIS OF THE COFFE (Coffea arabica L.) FRIGIDA4-like GENE (CaFRL4). DESAFIOS - Revista Interdisciplinar Da Universidade Federal Do Tocantins, 5(Especial), 204–213. https://doi.org/10.20873/uft.2359-3652.2018v5nEspecialp204