Suplementación de aminoácidos en la fermentación alcohólica de melaza de caña de azúcar y mostos de jarabe utilizando cepa industrial CAT-1

Autores/as

  • Camila de Souza Varize Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Renata Maria Christofoleti-Furlan Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Mariane Soares Raposo Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Carolina Tieppo Camarozano Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Lucas Dantas Lopes Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Elisangela de Souza Miranda Muynarsk Escola Superior de Agricultura Luiz de Queiroz(USP) https://orcid.org/0000-0001-8245-1750
  • Thalita Peixoto Basso Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Luiz Carlos Basso Escola Superior de Agricultura Luiz de Queiroz(USP)

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v7n2.varize

Palabras clave:

S. cerevisiae, fermentação alcoólica, suplementação de aminoácidos, histidina

Resumen

La suplementación con nitrógeno puede contribuir a una mayor tolerancia de las cepas de S. cerevisiae frente a varias condiciones perjudiciales, como las que se encuentran en el proceso de producción de etanol brasileño. El presente estudio evaluó la influencia de la suplementación de aminoácidos en el crecimiento y la viabilidad celular de la cepa industrial CAT-1 en condiciones de estrés etanólico y osmótico (medio YNB con 10 y 12% v / v de etanol y mosto de melaza con 15, 20, 25 y 30% de ART). La suplementación con aminoácidos también se evaluó en melaza de caña de azúcar y fermentaciones de jarabe, empleando reciclaje celular. Los resultados revelaron que la suplementación con aminoácidos tenía efectos distintos sobre el comportamiento fisiológico de la levadura de acuerdo con el medio / mosto suministrado. La suplementación con histidina favoreció la cepa CAT-1 para un mayor crecimiento y viabilidad en los mostos de melaza y jarabe. Los resultados revelaron que la suplementación de 200 mg.L-1 de aminoácidos a partir de aminoácidos, agregados a los diferentes mostos, puede favorecer o depreciar el crecimiento y la viabilidad de la cepa CAT-1 en fermentaciones que simulan condiciones industriales brasileñas. La suplementación con histidina demostró ser la más prometedora para aumentar la tolerancia de la cepa industrial.

Citas

ALBERS, E.; LARSSON, C.; LIDÉN, G.; NIKLASSON, C.; GUSTAFSSON, L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Applied and Environmental Microbiology, v. 62, n. 9, p. 3187-3195, 1996.

AMORIM, H.V.; BASSO, L.C.; ALVES, D.M.G. Processos de produção de álcool: controle e monitoramento. Piracicaba, FERMENTEC, 1996. 103p.

AMORIM, H.V.; LEÃO, R.M. Fermentação alcoólica: ciência e tecnologia. Piracicaba, FERMENTEC, 2005. 448p.

BADOTTI, F.; DÁRIO, M.G.; ALVES, S.L.JR.; CORDIOLI, M.L.; MILETTI, L.C.; DE ARAUJO, P.S.; STAMBUK, B.U. Switching the mode of sucrose utilization by Saccharomyces cerevisiae. Microbial Cell Factories, v. 7, n. 4, p. 1-11, 2008.

BARTON-WRIGHT, E.C.; THORNE, R.S.W. Utilization of amino acids during yeast growth in wort. Journal of The institute of Brewing, v. 55, n. 6, p. 383-386, 1949.

BASSO, L.C.; AMORIM, H.V. Produção de etanol. In: Lima, U.A. (Ed.). Biotecnologia industrial: processos fermentativos e enzimáticos. Edgard Blucher, 2001, cap. 1, p. 1-43.

BASSO, L.C.; AMORIM, H.V.; OLIVEIRA, A.J.; LOPES, M.L. Yeast selection for fuel ethanol in Brazil. FEMS Yeast Research, v. 8, n. 7, p. 1155-1163, 2008.

BASSO, L.C.; BASSO, T.O.; ROCHA, S.N. Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: SANTOS BERNARDES, M.A. (Ed.). Biofuel Production - Recent Developments and Prospects. InTech, 2011, chap. 5, p. 85-100.

BLOMQVIST, J.; NOGUÉ, V.S.; GORWA-GRAUSLUND, M.; PASSOTH, V. Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or anaerobic conditions. Yeast, v. 29, n. 7, p. 265-274, 2012.

BRAUS, G.H. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiological Reviews, v. 55, n. 3, p. 349-370, 1991.

CHEN, J.C.P. Analysis of juice. In: Chen, J.C.P.; Chou, C.C. (Eds.). Cane Sugar Handbook - A Manual for Cane Sugar Manufacturers and Their Chemists. John Wiley & Sons Inc, 1993, cap. 42, p. 931-940.

CLEMENT, T.; PEREZ, M.; MOURET, J.R.; SANCHEZ, I.; SABLAYROLLES, J.M.; CAMARASA, C. Metabolic responses of Saccharomyces cerevisiae to valine and ammonium pulses during four-stage continuous wine fermentations. Applied Environmental Microbiology, v. 79, n. 8, p. 2749-2758, 2013.

CRÉPIN, L.; NIDELET, T.; SANCHEZ, I.; DEQUIN, S.; CAMARASA, C. Sequential use of nitrogen compounds by saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases. Applied and Environmental Microbiology, v. 78, n. 22, p. 8102-8111, 2012.

DAWSON, P.S.S. The Intracellular amino acid pool of Candida utilis during growth in batch and continuous flow cultures. Biochimica et Biophysica Acta, v. 3, p. 51-66, 1965.

DERRICK, S.; LARGE, P.J. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. Journal of General Microbiology, v. 139, n. 11, p. 2783-2792, 1993.

FILIPE-RIBEIRO, L.; MENDES-FAIA, A. Validation and comparison of analytical methods used to evaluate the nitrogen status of grape juice. Food Chemistry, v. 100, n. 3, p. 1272-1277, 2007.

GARCÍA-CAMPUSANO, F.; ANAYA, V.H.; ROBLEDO-ARRATIA, L.; QUEZADA, H.; HERNÁNDEZ, H.; RIEGO, L.; GONZÁLEZ, A. ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae. Canadian Journal of Microbiology, v. 55, n. 4, p. 368-374, 2009.

GODIN, S.K.; LEE, A.G.;, BAIRD J.M.; HERKEN, B.W.; BERNSTEIN, K.A. Tryptophan biosynthesis is important for resistance to replicative stress in Saccharomyces cerevisiae. Yeast, v. 35, n. 5, p. 183-189, 2016.

GÜVENÇ, A.; KAPUCU, N.; KAPUCU,H.; AYDOĞAN, Ö; MEHMETOĞLU, Ü. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme and Microbial Technology, v. 40, n. 4, p. 778-785, 2007.

HANSCHO, M.; RUCKERBAUER, D.E.; CHAUHAN, N.; HOFBAUER, H.F.; KRAHULEC, S.; NIDETZKY, B.; KOHLWEIN, S.D.; ZANGHELLINI J.; NATTER, K. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Research, v. 12, n. 7, p. 796-808, 2012.

HIRASAWA, T; YOSHIKAWA, K.; NAKAKURA, Y.; NAGAHISA, K.; FURUSAWA, C.; KATAKURA, Y.; SHIMIZU, H.; SHIOYA, S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology, v. 131, n. 1, p. 34-44, 2007.

HU, C.K.; BAI, F.W.; AN, L.J. Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao, v. 21, n. 5, p. 809-813, 2005.

JERONIMO, E.M.; SOUZA, E.L.R.; SILVA, M.A.; CRUZ, J.C.S.; GAVA, G.J.C.; SERRA, G.E. Isolado protéico de soja como fonte de nitrogênio na fermentação alcóolica. Boletim Ceppa, v.26, n.1, p. 21-28, 2008.

JONES, E.W.; FINK G.R. Regulation of amino acid and nucleotide biosynthesis in yeast. In: Strathern, J.N.; Jones, E.W.; Broach, J.R. (Eds.). The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor Laboratory Press, 1982, cap. 5, p. 181-299.

KALMOKOFF, M.L; INGLEDEW, W.M. Evaluation of ethanol tolerance in selected Saccharomyces strains. Journal of the American Society of Brewing Chemists, v. 43, p. 190-196, 1985.

LJUNGDAHL, P.O. Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochemical Society Transactions, v. 37, p. 242-247, 2009.

LJUNGDAHL, P.O.; DAIGNAN-FORNIER, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics, v. 190, n. 3, p. 885-929, 2012.

LOPES, M.L.; PAULILLO, S.C.L.; GODOY, A.; CHERUBIN, R.A.; LORENZI, M.S.; GIOMETTI, F.H.C.; BERNARDINO, C.D.; AMORIM-NETO, H.B.; AMORIM, H.V. Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, v. 47S, p. 64-76, 2016.

MAGASANIK, B.; KAISER, C.A. Nitrogen regulation in Saccharomyces cerevisiae. Gene, v. 290, n. 1-2, p. 1-18, 2002.

MORITA, Y.; NAKAMORI, S.; TAKAGI, H. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, v. 94, n. 5, p. 390-394, 2002.

OLIVEIRA, A.J.; GALLO, C.R.; ALCARDE, V.E.; GODOY, A.; AMORIM, H.V. Métodos para o controle microbiológico na produção de álcool e açúcar. Piracicaba: FERMENTEC/FEALQ/ESALQ-USP, 1996. 89p.

ONO, B.I.; HAZU, T.; YOSHIDA, S.; KAWATO, T.; SHINODA, S.; BRZVWCZY, J.; PASZEWSKI, A. Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast, v. 15, n. 13, p. 1365-1375, 1999.

PETERS, D. Carbohydrates for fermentation. Biotechnology Journal, v. 1, n. 7-8, p. 806-814, 2006.

PHAM, T.K.; WRIGHT, T.K. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. Journal of Proteome Research, n. 7, p. 4766-4774, 2008.

PIPER, M.; HONG, S.; BALL, G.; DAWES, I. Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae. The Journal of Biological Chemistry, v. 275, n. 40, p. 30987–30995, 2000.

SCHLÖSSER, T.; GÄTGENS, C.; WEBER, U.; STAHMANN, K.P. Alanine: glyoxylate aminotransferase of Saccharomyces cerevisiae-encoding gene AGX1 and metabolic significance. Yeast, v. 21, n. 1, p. 63-73, 2004.

SINCLAIR, D.; DAWES, I. Genetics of the synthesis of serine from glycine and the utilization of glycine as sole nitrogen source by Saccharomyces cerevisiae. Genetics, v. 140, n. 4, p. 1213–1222, 1995.

TAKAGI, H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Applied Microbiology and Biotechnology, v. 81, n. 2, p. 211-223, 2008.

TAKAGI, H.; IWAMOTO, F.; NAKAMORI, S. Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Applied Microbiology and Biotechnology, v. 47, n. 4, p. 405-411, 1997.

TER-SCHURE, E.G.; SILLJÉ, H.H.; VERMEULEN, E.E.; KALHORN, J.W.; VERKLEIJ, A.J.; BOONSTRA, J.; VERRIPS, C.T. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae. Microbiology, v. 144, n. 5, p. 1451-1462, 1998.

THOMAS, K.C.; INGLEDEW, W.M. Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Applied and Environmental Microbiology, v. 57, n. 7, p. 2046-2050, 1990.

TROPEA, A.; WILSON, D.; CICERO, N.; POTORTÌ, A.G.; LA TORRE, G.L.; DUGO, G.; RICHARDSON, D.; WALDRON, K.W. Development of minimal fermentation media supplementation for ethanol production using two Saccharomyces cerevisiae strains. Natural Product Research, v. 30, n. 9, p. 1009-1016, 2016.

WATSON, T.G. Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source. Journal of General Microbiology, v. 96, n. 2, p. 263-268, 1976.

WOICIECHOWSKI, A.L.; CARVALHO, J.C.; SPIER, M.R.; SOCCOL, C. Emprego de resíduos agroindustriais em bioprocessos alimentares. In: Bicas, J.L.; Maróstica, M.R.; Pastore, G.M. (Eds.). Biotecnologia de alimentos. Atheneu Editora, 2013, cap. 6, p. 143-171.

WU, G. Amino acids: metabolism, functions, and nutrition. Amino Acids, v. 37, n. 1, p. 1–17, 2009.

WU, Z.; SONG, L.; LIU, S.Q.; HUANG, D. Independent and additive effects of glutamic acid and methionine on yeast longevity. PLoS One, v. 8, n. 11, p. 1-13, 2013.

YOSHIKAWA, K.; TANAKA, T.; FURUSAWA, C.; NAGAHISA, K.; HIRASAWA, T.; SHIMIZU, H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Research, v. 9, n. 1, p. 32-44, 2009.

Publicado

2019-07-01

Cómo citar

Varize, C. de S., Christofoleti-Furlan, R. M., Raposo, M. S., Camarozano, C. T., Lopes, L. D., Muynarsk, E. de S. M., … Basso, L. C. (2019). Suplementación de aminoácidos en la fermentación alcohólica de melaza de caña de azúcar y mostos de jarabe utilizando cepa industrial CAT-1. Journal of Biotechnology and Biodiversity, 7(2), 265–280. https://doi.org/10.20873/jbb.uft.cemaf.v7n2.varize