Amino acid supplementation in alcoholic fermentation of molasses must and sugarcane syrup using CAT-1 industrial lineage

Authors

  • Camila de Souza Varize Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Renata Maria Christofoleti-Furlan Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Mariane Soares Raposo Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Carolina Tieppo Camarozano Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Lucas Dantas Lopes Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Elisangela de Souza Miranda Muynarsk Escola Superior de Agricultura Luiz de Queiroz(USP) https://orcid.org/0000-0001-8245-1750
  • Thalita Peixoto Basso Escola Superior de Agricultura Luiz de Queiroz(USP)
  • Luiz Carlos Basso Escola Superior de Agricultura Luiz de Queiroz(USP)

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v7n2.varize

Keywords:

S. cerevisiae, histidine, amino acid supplementation, alcoholic fermentation

Abstract

Nitrogen supplementation may contribute to higher tolerance of S. cerevisiae strains to the different deleterious conditions, such as those that are faced in the Brazilian ethanol production. The present study evaluated the influence of amino acid supplementation under the growth and cell viability of CAT-1 industrial strain under conditions of ethanolic and osmotic stress (YNB medium with 10 and 12% v/v ethanol and molasses must with 15, 20, 25 and 30% ART). Amino acid supplementation was also evaluated in fermentations of sugarcane molasses and syrup, using cell recycle. The results revealed that amino acid supplementation caused distinct effects on the physiological behavior of the yeast according to the medium/musts provided. Histidine supplementation favored the CAT-1 for higher growth and cell viability in molasses and syrup musts. The results showed that the supplementation of 200 mg.L-1 of amino acid can favor or degrade the growth and viability of the CAT-1 in fermentations simulating Brazilian industrial conditions. Supplementation with histidine proved to be the most promising for increasing the tolerance of the industrial strain.

References

ALBERS, E.; LARSSON, C.; LIDÉN, G.; NIKLASSON, C.; GUSTAFSSON, L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Applied and Environmental Microbiology, v. 62, n. 9, p. 3187-3195, 1996.

AMORIM, H.V.; BASSO, L.C.; ALVES, D.M.G. Processos de produção de álcool: controle e monitoramento. Piracicaba, FERMENTEC, 1996. 103p.

AMORIM, H.V.; LEÃO, R.M. Fermentação alcoólica: ciência e tecnologia. Piracicaba, FERMENTEC, 2005. 448p.

BADOTTI, F.; DÁRIO, M.G.; ALVES, S.L.JR.; CORDIOLI, M.L.; MILETTI, L.C.; DE ARAUJO, P.S.; STAMBUK, B.U. Switching the mode of sucrose utilization by Saccharomyces cerevisiae. Microbial Cell Factories, v. 7, n. 4, p. 1-11, 2008.

BARTON-WRIGHT, E.C.; THORNE, R.S.W. Utilization of amino acids during yeast growth in wort. Journal of The institute of Brewing, v. 55, n. 6, p. 383-386, 1949.

BASSO, L.C.; AMORIM, H.V. Produção de etanol. In: Lima, U.A. (Ed.). Biotecnologia industrial: processos fermentativos e enzimáticos. Edgard Blucher, 2001, cap. 1, p. 1-43.

BASSO, L.C.; AMORIM, H.V.; OLIVEIRA, A.J.; LOPES, M.L. Yeast selection for fuel ethanol in Brazil. FEMS Yeast Research, v. 8, n. 7, p. 1155-1163, 2008.

BASSO, L.C.; BASSO, T.O.; ROCHA, S.N. Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: SANTOS BERNARDES, M.A. (Ed.). Biofuel Production - Recent Developments and Prospects. InTech, 2011, chap. 5, p. 85-100.

BLOMQVIST, J.; NOGUÉ, V.S.; GORWA-GRAUSLUND, M.; PASSOTH, V. Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or anaerobic conditions. Yeast, v. 29, n. 7, p. 265-274, 2012.

BRAUS, G.H. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiological Reviews, v. 55, n. 3, p. 349-370, 1991.

CHEN, J.C.P. Analysis of juice. In: Chen, J.C.P.; Chou, C.C. (Eds.). Cane Sugar Handbook - A Manual for Cane Sugar Manufacturers and Their Chemists. John Wiley & Sons Inc, 1993, cap. 42, p. 931-940.

CLEMENT, T.; PEREZ, M.; MOURET, J.R.; SANCHEZ, I.; SABLAYROLLES, J.M.; CAMARASA, C. Metabolic responses of Saccharomyces cerevisiae to valine and ammonium pulses during four-stage continuous wine fermentations. Applied Environmental Microbiology, v. 79, n. 8, p. 2749-2758, 2013.

CRÉPIN, L.; NIDELET, T.; SANCHEZ, I.; DEQUIN, S.; CAMARASA, C. Sequential use of nitrogen compounds by saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases. Applied and Environmental Microbiology, v. 78, n. 22, p. 8102-8111, 2012.

DAWSON, P.S.S. The Intracellular amino acid pool of Candida utilis during growth in batch and continuous flow cultures. Biochimica et Biophysica Acta, v. 3, p. 51-66, 1965.

DERRICK, S.; LARGE, P.J. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. Journal of General Microbiology, v. 139, n. 11, p. 2783-2792, 1993.

FILIPE-RIBEIRO, L.; MENDES-FAIA, A. Validation and comparison of analytical methods used to evaluate the nitrogen status of grape juice. Food Chemistry, v. 100, n. 3, p. 1272-1277, 2007.

GARCÍA-CAMPUSANO, F.; ANAYA, V.H.; ROBLEDO-ARRATIA, L.; QUEZADA, H.; HERNÁNDEZ, H.; RIEGO, L.; GONZÁLEZ, A. ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae. Canadian Journal of Microbiology, v. 55, n. 4, p. 368-374, 2009.

GODIN, S.K.; LEE, A.G.;, BAIRD J.M.; HERKEN, B.W.; BERNSTEIN, K.A. Tryptophan biosynthesis is important for resistance to replicative stress in Saccharomyces cerevisiae. Yeast, v. 35, n. 5, p. 183-189, 2016.

GÜVENÇ, A.; KAPUCU, N.; KAPUCU,H.; AYDOĞAN, Ö; MEHMETOĞLU, Ü. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme and Microbial Technology, v. 40, n. 4, p. 778-785, 2007.

HANSCHO, M.; RUCKERBAUER, D.E.; CHAUHAN, N.; HOFBAUER, H.F.; KRAHULEC, S.; NIDETZKY, B.; KOHLWEIN, S.D.; ZANGHELLINI J.; NATTER, K. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Research, v. 12, n. 7, p. 796-808, 2012.

HIRASAWA, T; YOSHIKAWA, K.; NAKAKURA, Y.; NAGAHISA, K.; FURUSAWA, C.; KATAKURA, Y.; SHIMIZU, H.; SHIOYA, S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology, v. 131, n. 1, p. 34-44, 2007.

HU, C.K.; BAI, F.W.; AN, L.J. Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao, v. 21, n. 5, p. 809-813, 2005.

JERONIMO, E.M.; SOUZA, E.L.R.; SILVA, M.A.; CRUZ, J.C.S.; GAVA, G.J.C.; SERRA, G.E. Isolado protéico de soja como fonte de nitrogênio na fermentação alcóolica. Boletim Ceppa, v.26, n.1, p. 21-28, 2008.

JONES, E.W.; FINK G.R. Regulation of amino acid and nucleotide biosynthesis in yeast. In: Strathern, J.N.; Jones, E.W.; Broach, J.R. (Eds.). The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor Laboratory Press, 1982, cap. 5, p. 181-299.

KALMOKOFF, M.L; INGLEDEW, W.M. Evaluation of ethanol tolerance in selected Saccharomyces strains. Journal of the American Society of Brewing Chemists, v. 43, p. 190-196, 1985.

LJUNGDAHL, P.O. Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochemical Society Transactions, v. 37, p. 242-247, 2009.

LJUNGDAHL, P.O.; DAIGNAN-FORNIER, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics, v. 190, n. 3, p. 885-929, 2012.

LOPES, M.L.; PAULILLO, S.C.L.; GODOY, A.; CHERUBIN, R.A.; LORENZI, M.S.; GIOMETTI, F.H.C.; BERNARDINO, C.D.; AMORIM-NETO, H.B.; AMORIM, H.V. Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, v. 47S, p. 64-76, 2016.

MAGASANIK, B.; KAISER, C.A. Nitrogen regulation in Saccharomyces cerevisiae. Gene, v. 290, n. 1-2, p. 1-18, 2002.

MORITA, Y.; NAKAMORI, S.; TAKAGI, H. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, v. 94, n. 5, p. 390-394, 2002.

OLIVEIRA, A.J.; GALLO, C.R.; ALCARDE, V.E.; GODOY, A.; AMORIM, H.V. Métodos para o controle microbiológico na produção de álcool e açúcar. Piracicaba: FERMENTEC/FEALQ/ESALQ-USP, 1996. 89p.

ONO, B.I.; HAZU, T.; YOSHIDA, S.; KAWATO, T.; SHINODA, S.; BRZVWCZY, J.; PASZEWSKI, A. Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast, v. 15, n. 13, p. 1365-1375, 1999.

PETERS, D. Carbohydrates for fermentation. Biotechnology Journal, v. 1, n. 7-8, p. 806-814, 2006.

PHAM, T.K.; WRIGHT, T.K. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. Journal of Proteome Research, n. 7, p. 4766-4774, 2008.

PIPER, M.; HONG, S.; BALL, G.; DAWES, I. Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae. The Journal of Biological Chemistry, v. 275, n. 40, p. 30987–30995, 2000.

SCHLÖSSER, T.; GÄTGENS, C.; WEBER, U.; STAHMANN, K.P. Alanine: glyoxylate aminotransferase of Saccharomyces cerevisiae-encoding gene AGX1 and metabolic significance. Yeast, v. 21, n. 1, p. 63-73, 2004.

SINCLAIR, D.; DAWES, I. Genetics of the synthesis of serine from glycine and the utilization of glycine as sole nitrogen source by Saccharomyces cerevisiae. Genetics, v. 140, n. 4, p. 1213–1222, 1995.

TAKAGI, H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Applied Microbiology and Biotechnology, v. 81, n. 2, p. 211-223, 2008.

TAKAGI, H.; IWAMOTO, F.; NAKAMORI, S. Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Applied Microbiology and Biotechnology, v. 47, n. 4, p. 405-411, 1997.

TER-SCHURE, E.G.; SILLJÉ, H.H.; VERMEULEN, E.E.; KALHORN, J.W.; VERKLEIJ, A.J.; BOONSTRA, J.; VERRIPS, C.T. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae. Microbiology, v. 144, n. 5, p. 1451-1462, 1998.

THOMAS, K.C.; INGLEDEW, W.M. Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Applied and Environmental Microbiology, v. 57, n. 7, p. 2046-2050, 1990.

TROPEA, A.; WILSON, D.; CICERO, N.; POTORTÌ, A.G.; LA TORRE, G.L.; DUGO, G.; RICHARDSON, D.; WALDRON, K.W. Development of minimal fermentation media supplementation for ethanol production using two Saccharomyces cerevisiae strains. Natural Product Research, v. 30, n. 9, p. 1009-1016, 2016.

WATSON, T.G. Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source. Journal of General Microbiology, v. 96, n. 2, p. 263-268, 1976.

WOICIECHOWSKI, A.L.; CARVALHO, J.C.; SPIER, M.R.; SOCCOL, C. Emprego de resíduos agroindustriais em bioprocessos alimentares. In: Bicas, J.L.; Maróstica, M.R.; Pastore, G.M. (Eds.). Biotecnologia de alimentos. Atheneu Editora, 2013, cap. 6, p. 143-171.

WU, G. Amino acids: metabolism, functions, and nutrition. Amino Acids, v. 37, n. 1, p. 1–17, 2009.

WU, Z.; SONG, L.; LIU, S.Q.; HUANG, D. Independent and additive effects of glutamic acid and methionine on yeast longevity. PLoS One, v. 8, n. 11, p. 1-13, 2013.

YOSHIKAWA, K.; TANAKA, T.; FURUSAWA, C.; NAGAHISA, K.; HIRASAWA, T.; SHIMIZU, H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Research, v. 9, n. 1, p. 32-44, 2009.

Published

2019-07-01

How to Cite

Varize, C. de S., Christofoleti-Furlan, R. M., Raposo, M. S., Camarozano, C. T., Lopes, L. D., Muynarsk, E. de S. M., … Basso, L. C. (2019). Amino acid supplementation in alcoholic fermentation of molasses must and sugarcane syrup using CAT-1 industrial lineage. Journal of Biotechnology and Biodiversity, 7(2), 265–280. https://doi.org/10.20873/jbb.uft.cemaf.v7n2.varize