Soil carbon and nitrogen under different land-use and landscape loca-tions in central Brazil

Authors

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v9n2.santos

Keywords:

Brazilian savannas, stable isotopes, soil organic matter, carbon stock, geomorphology

Abstract

In Central Brazil, plateaus, the most common geomorphologic form, have been undergoing intense conversion from native vegetation to pasture and agriculture in recent decades. We used carbon stable isotope ratios (δ13C) and nitrogen stable isotope ratios (δ15N) to assess possible changes in soil organic matter dynamics under such land use modifications. This study aimed to evaluate the differences in soil δ13C and δ15N and C and N stocks between native vegetation and agricultural or pasture areas in different locations of a plateau in the savannas of Central Brazil. We sampled soil up to 100 cm depth in pasture areas in the summit of the plateau and no-tillage and conventional tillage on the border of a plateau, as well as soils under native vegetation in both landscape locations. Both soil δ13C and δ15N, and C and N stocks showed no differences between land uses. The different relationships between δ15N and C/N ratio at different locations indicated distinct behavior of the soil organic matter between the summit and border of the plateau. Therefore, in addition to land-use, landscape location contributes to both δ13C and δ15N, and C and N stocks in the soil of the plateau.

References

Alves RP, Couto Júnior AF, Martins ES, Nardoto GB. Role of soil carbon in the landscape functioning of the Alto São Bartolomeu watershed in the Cerrado region, Brazil. Pesqui-sa Agropecuária Brasileira, 51 (9): 1241-1251, 2016. https://doi.org/10.1590/s0100-204x2016000900024

Arruda DM, Schaefer CEGR, Corrêa GR, Rodrigues PMS, Duque-Brasil R, Ferreira Jr WG, Oliveira-Filho AT. Land-forms and soil attributes determine the vegetation structure in the Brazilian semiarid. Folia Geobot, 50:175–184, 2015. https://doi.org/10.1007/s12224-015-9221-0

Assad ED, Pinto HS, Martins SC, Groppo JD, Salgado PR, Evangelista B, Vasconcellos E, Sano EE, Pavão E, Luna R, Camargo PB, Martinelli LA. Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a re-gional pasture soil survey, Biogeosciences, 10: 6141– 6160, 2013. https://doi:10.5194/bg-10-6141-2013

Babu S, Mohapatraa KP, Yadav GS, Lal R, Singh R, Avasthe RK, Das A, Chandra P, Gudadee BA, Kumard A. Soil car-bon dynamics in diverse organic land use systems in North Eastern Himalayan ecosystem of India. Catena, 194, 104785, 2020. https://doi.org/10.1016/j.catena.2020.104785

Batlle-Bayer L, Batjes NH, Bindraban PS. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture, Ecosystems and Environ-ment, v. 137, p. 47-58, 2010. https://doi:10.1016/j.agee.2010.02.003

Brum FT, Pressey RL, Bini LM, Loyola R. Forecasting con-servation impact to pinpoint spatial priorities in the Brazilian Cerrado. Biological Conservation, 240: 108283, 2019.

Bustamante MMC, Medina E, Asner GP, Nardoto GB, Garci-amontiel DC. Nitrogen cycling in tropical and temperate sa-vannas. Biogeochemistry, 79: 209-237, 2006. https://doi.10.1007/s10533-006-9006-x

Cecagno D, Gomes MV, Costa SE, Martins AP, Denardin LGO, Bayer C, Anghinoni I, Carvalho PC. Soil organic carbon in an integrated crop-livestock system under different grazing intensities. Revista Brasileira de Ciências Agrárias, v.13, n.3, e5553, 7p, 2018. https://doi.10.5039/agraria.v13i3a5553

Craine JM, Elmore AJ, Wang L, Augusto L, Baisden WT, Brookshire ENJ, Cramer MD, Hasselquist NJ, Hobbie EA, Kahmen A; Koba11 K, Kranabetter JM, Mack MC, Marin-Spiotta E, Mayor JR, Mclauchlan KK, Michelsen A, Nar-doto GB, Oliveira RS, Perakis SS, Peri PL, Quesada CA, Richter A,; Schipper LA, Stevenson BA, Turner BL, Viani RAG, Wanek W, Zelle B. Convergence of soil nitrogen iso-topes across global climate gradients. Scientific Reports, 5:8280. 8p, 2015. https://doi.10.1038/srep08280

D’Andrea AF, Silva MLN, Curi LN, Guilherme LRG. Esto-que de carbono e nitrogênio e formas de nitrogênio mineral em um solo submetido a diferentes sistemas de manejo. Pesquisa Agropecuária Brasileira, 39 (2): 179-186, 2004.

Doetterl S, Berhe AA, Nadeu E, Wang Z, Sommer M, Fiener P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth Science Review, 154:102–122, 2016. http://dx.doi.org/10.1016/j.earscirev.2015.12.005

EMBRAPA – Empresa brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solos. 2ª edição revisada e atualizada. Rio de Janeiro, 212p, 1997.

Gama-Rodrigues EF, Araújo SP, Faustino LL, Moreira RV, Paulucio VO, Gama-Rodrigues AC. Atributos físicos, quí-micos e microbiológicos dos solos sob diferentes usos em topossequências no Noroeste Fluminense. Revista Brasileira de Ciências Agrárias, v.13, n.3, e5543, 9p, 2018. https://doi.10.5039/agraria.v13i3a5543

Gmach MR, Dias BO, Silva CA, Nóbrega JCA, Lustosa-Filho JF, Siqueira-Neto M. Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Ge-oderma Regional 14, e00178, 2018. https://doi.org/10.1016/j.geodrs.2018.e00178

Guareschi RF, Pereira MG, Perin A. Carbono, nitrogênio e abundância natural de δ13C e δ15N em uma cronossequência de agricultura sob plantio direto no Cerrado goiano. Revista Brasileira de Ciências do Solo, 38:1135-1142, 2014.

Högberg P. 15N natural abundance in soil-plant systems. New Phytol, 137:179-203, 1997.

Lima LA, Reatto A, Roig HL. Soil Mapping of a Small Water-shed in a Brazilian Savanna Biome: A Semi-Automatic Ap-proach. Journal of Geographic Information System, 6: 79-87, 2014. https://doi.10.4236/jgis.2014.62009

Marinho Junior JL, Lima DS, Dias JLA, Araujo Filho RN. Análise dos estoques de carbono no solo sob diferentes co-berturas vegetais no Brasil (revisão). Journal of Biotechnol-ogy and Biodiversity, v.8 n.1 2020. https://doi.org/10.20873/jbb.uft.cemaf.v8n1.marinhojr

Mudge PL, Schipper LA, Baisden WT, Ghani A, Lewis RW. Changes in soil C, N and δ15N along three forest–pasture chronosequences in New Zealand. Soil Research, 52: 27-37, 2014. http://dx.doi.org/10.1071/SR13183

Oliveira DMS, Paustian K, Davies CA, Cherubin MR, Franco ALC, Cerri CC, Cerri CEP. Soil carbon changes in areas undergoing expansion of sugarcane into pastures in south-central Brazil. Agriculture, Ecosystems and Environment, 228, 38–48, 2016. http://dx.doi.org/10.1016/j.agee.2016.05.005

Reatto A, Bruand A, Martins ES, Muller F, Silva E, Carvalho Junior O, Brossard M. Variation of the kaolinite and gibbs-ite content at regional and local scale in Latosols of the Bra-zilian Central Plateau. Comptes Rendus. Géoscience, 340:741-748, 2008. https://doi.10.1016/j.crte.2008.07.006

Sano EE, Rodrigues AA, Martins ES, Bettiol GM, Bustaman-te MMC, Bezerra AS, Couto Junior AF, Vasconcelos V, Schüler J, Bolfe EL. Cerrado ecoregions: A spatial frame-work to assess and prioritize Brazilian savannas environ-mental diversity for conservation. Journal of Environmental Management, 232:818–828, 2019. https://doi.org/10.1016/j.jenvman.2018.11.108

Santos IL, Caixeta CF, Sousa AA, Figueiredo CC, Ramos MLG, Carvalho AM. Cover plants and mineral nitrogen: Effects on organic matter fractions in an Oxisol under no-tillage in the Cerrado. Revista. Brasileira de Ciências do So-lo, 38:1874-1881, 2014.

Singh M, Sarkar B, Biswas B, Bolan NS, Churchman GJ. Relationship between soil clay mineralogy and carbon pro-tection capacity as influenced by temperature and moisture. Soil Biology and Biochemistry, 109:95–106, 2017. https://doi.org/10.1016/bs.agron.2017.11.001

Sena-Souza JP, Neves G, Reis AM, Alves RP, Santos FL, Kisaka TB, Martins ES, Couto Junior AF. Mapeamento ge-omorfológico da bacia hidrográfica do ribeirão Mestre d’Armas, Distrito Federal. Espaço & Geografia, 17, n.1, 71-95, 2014.

Soares DS, Ramos MLG, Marchão RL, Maciel GA, Oliveira AD, Malaquias JV, Carvalho AM. How diversity of crop residues in long-term no-tillage systems affect chemical and microbiological soil properties. Soil & Tillage Research, 194. 104316, 2019. https://doi.org/10.1016/j.still.2019.104316

Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S. Planetary boundaries: guiding. Science, 347: 736-747, 2015. https://doi.org/10.1126/science.1259855

Veldkamp E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58:175-180, 1994.

Weintraub SR, Taylor PG, Porder S, Cleveland CC, Asner GP, Townsend AR. Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology, 96 (6):1561–1574, 2015. http://dx.doi.org/10.1890/14-0834.1

Downloads

Published

2021-06-12

How to Cite

Santos, F. L. de S., Couto Júnior, A. F. ., Reatto, A. ., Martins, Éder de S. ., Carvalho, A. M. de ., & Nardoto, G. B. . (2021). Soil carbon and nitrogen under different land-use and landscape loca-tions in central Brazil. Journal of Biotechnology and Biodiversity, 9(2), 178–186. https://doi.org/10.20873/jbb.uft.cemaf.v9n2.santos

Most read articles by the same author(s)