Suplementação lignocelulósica do meio de cultura para desenvolvimento micelial e produção de enzi-mas fenoloxidase de cepas amazônicas de fungos gasteroides (Basidiomycota)

Autores

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v12n1.16237

Palavras-chave:

Culturas miceliais, farelos lignocelulósicos, fungos estrela-da-terra , fungos ninho-de-pássaros, produção enzimática

Resumo

Cepas de fungos gasteroides são capazes de oxidar componentes fenólicos e produzir enzimas de grande valor comercial. Porém, a dificuldade na produção de biomassa e consequentemente os baixos níveis de expressão das enzimas produzidas por esses fungos, impedem o avanço dos estudos biotecnológicos. Uma auternativa possível pode ser o uso da suplementação do meio de cultura com substratos lignocelulógicos, como como observado no cultivo de cogumelos cultiváveis, por exemplo. Assim, o objetivo desse estudo foi analisar o efeito da suplementação do meio de cultura a base de batata com diferentes concentrações de farelo de trigo e arroz no desenvolvimento micelial e na produção de enzimas fenoloxidases de cepas amazônicas de Cyathus e Geastrum. Os basidiomas foram coletados na Amazônia paraense e as cepas obtidas a partir do isolamento micelial em meio Batata Dextrose Ágar (BDA). As cepas foram inoculadas em meio semisólido e líquido a base de batata contendo 10 e 20% de farelo de arroz e 10 e 20% de farelo de trigo. Por um período de 20 dias observou-se o crescimento micelial emisólido e por 40 dias o desenvolvimento das cepas em meio líquido, todos incubados 25°C no escuro. O crescimento e a produção de biomassa fresca e seca foram mensuradas, assim como a produção de fenoloxidase, oriunda do crescimento em meio líquido. A suplementação usando farelo de trigo a 10% foi a mais promissora para o crescimento radial de quatro, das seis espécies testadas (C. limbatus, G. hirsutum, G. echinulatum e G. schweinitzii), além de ter sido o melhor tratamento para a produção de biomassa e enzimas fenoloxidases para todas as espécies. Considerando que o farelo de trigo é de fácil acesso, este estudo estimula a ciência de base, principalmente na Amazônica, onde a Funga ainda é subestimada em diversidade e potencial biotecnológico.

Referências

Badshah H, Ullah F, Khan MU, Mumtaz AS, Malik RN. Pharmacological activities of selected wild mushrooms in South Waziristan (FATA), Pakistan. South African Journal of Botany, v. 97, p. 107-110, 2015. https://doi.org/10.1016/j.sajb.2014.12.002

Banerjee UC, Vohra RM. Production of lacase by Curvularia sp. Folia Microbiol, v. 36, p. 343-346, 1991. https://doi.org/10.1007/BF02814506

Benassi VM, Lucas RC, Michelin M, Jorge JA, Terenzi HF, Polizeli MLTM. Production and action of an Aspergillus phoenicis enzymatic pool using different carbono sources. Brazilian Journal of Food Technology, v. 15, p. 253-260, 2012.

https://doi.org/10.1590/S1981-67232012005000019

Bernardi E, Donini LP, Minotto E, do Nascimento JS. Dife-rentes meios de cultivo e condições de luz no crescimento e massa miceliana de Agaricus brasiliensis S. Wasser et al. Arquivos do Instituto Biológico, v. 75, p. 375-378, 2008.

https://doi.org/10.1590/1808-1657v75p3752008

Braga-Neto R, Luizão RCC, Magnusson WE, Zuquim G, Castilho CV. Leaf litter fungi in a Central Amazonian forest: The influence of rainfall, soil and topography on the distri-bution of fruiting bodies. Biodiversity and Conservation, v. 17, p. 2701-2712, 2008. https://doi.org/10.1007/s10531-007-9247-6

Cai Y, Ma X, Zhang Q, Yu F, Zhao Q, Huang W, Song J, Liu W. Physiological characteristics and comparative secretome analysis of Morchella importuna grown on glucose, rice straw, sawdust, wheat grain, and MIX substrates. Frontiers in Microbiology, v. 12, p. 636344, 2021.

https://doi.org/10.3389/fmicb.2021.636344

Calonge FD, Mata M, Carranza J. Contribución al catálogo de los Gasteromycetes (Basidiomycotina, Fungi) de Costa Ri-ca. Anales del Jardín Botánico de Madrid, v. 62, p. 23-45, 2005.

https://doi.org/10.3989/ajbm.2005.v62.i1.26

Dore CMG, Azevedo TC, de Souza MC, Rego LA, de Dantas JC, Silva F, Rocha HAO, Baseia IG, Leite EL. Antiinflam-matory, antioxidant and cytotoxic actions of β-glucan-rich extract from Geastrum saccatum mushroom. International Immunopharmacology, v. 7, p. 1160-1169, 2007. https://doi.org/10.1016/j.intimp.2007.04.010

Dhawan S, Kuhad RC. Effect of amino acids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri. Bioresource Technology, v. 84, p. 35-38, 2002. https://doi.org/10.1016/s0960-8524(02)00026-3

Dhawan S, Lal R, Kuhad RC. Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri. Letters in Applied Microbiology, v. 36, p. 64-67, 2003.

https://doi.org/10.1046/j.1472-765x.2003.01267.x

Donini LP, Bernardi E, Minotto E, Nascimento JSdo. Efeito da suplementação com farelos no crescimento in vitro de Pleurotus ostreatus em meios à base de capim-elefante (Pen-nisetum spp.). Arquivos do Instituto Biológico, v. 73, p. 303-309, 2006.

D'Souza TM, Merrit CS, Reddy C. A. Lignin-modifying enzymes of the white rot basidiomycetes Ganoderma luci-dum. Applied and environmental Microbiology, v. 65, p. 5307-5313, 1999. https://doi.org/10.1128/AEM.65.12.5307-5313.1999

Góis JdosS, Cruz RHSFda, Baseia IG. Taxonomic review and updates of the genus Cyathus (Agaricales, Basidiomycota) from Brazil. Journal of the Torrey Botanical Society, v. 148, p. 155-196, 2021.

https://doi.org/10.3159/TORREY-D-21-00013.1

Kuhar F, Castiglia VC, Zamora JC. Detection of manganese peroxidase and other exoenzymes in four isolates of Geastrum (Geastrales) in pure culture. Revista Argentina de Microbiología, v. 48, p. 274-278, 2016. https://doi.org/10.1016/j.ram.2016.09.002

Liu YJ, Zhang KQ. Antimicrobial activities of selected Cy-athus species. Mycopathologia, v. 157, p. 185-189, 2004. https://doi.org/10.1023/b:myco.0000020598.91469.d1

Lodge DJ, Ammirati J, O’Dell TE, Mueller GM. Collecting and describing macrofungi: Inventory and Monitoring Methods. In: Mueller, G.M.; Bills, G.; Foster, M.S. (Eds.). Biodiversity of Fungi: Inventory and Monitoring Methods. Elsevier Academic Press, San Diego: C.A., 2004.

Locci E, Laconi S, Pompei R, Scano P, Lai A, Marincola FC. Wheat bran biodegradation by Pleurotus ostreatus: A solid-state Carbon-13 NMR study. Bioresource Technology, v. 99, p. 4279-4284, 2008.

https://doi.org/10.1016/j.biortech.2007.08.048

Mata, G, Delpech P, Savoie, JM. Selection of strains of Len-tinula edodes and Lentinula boryana adapted for efficient mycelial growth on wheat straw. Revista Iberoamericana de Micología, v. 18, p. 118-122, 2001.

Mikiashvili N, Wasser S, Nevo E, Chichua D, Elisashvili V. Lignocellulolytic enzyme activities of medicinally important basidiomycetes from different ecological niches. Internation-al Journal of Medicinal Mushrooms, v. 6, p. 63-71, 2004.

https://doi.org/110.1615/IntJMedMushr.v6.i1.70

Mikiashvili N, Elisashvili V, Wasser, S, Nevo E. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnology Letters, v. 27, p. 955-959, 2005.

https://doi.org/10.1007/s10529-005-7662-x

Minotto E, Bernardi E, Donini LP, Nascimento JS. Cresci-mento miceliano in vitro de Pleurotus ostreatoroseus e colo-nização do substrato capim-elefante (Pennisetum purpureu-mSchum.) suplementado com diferentes farelos. Arquivos do Instituto Biológico, v. 75, p. 379-383, 2008.

Mishra SS, Bisaria VS. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Applied Microbiology and Bio-technology, v. 71, p. 646-653, 2006. https://doi.org/10.1007/s00253-005-0206-4

Naraian R, Sahu RK, Kumar S, Garg SK, Singh CS, Kanaujia RS. Influence of different nitrogen rich supplements during cultivation of Pleurotus florida on corn cob substrate. Envi-ronmentalist, v. 29, p. 1-7, 2009. https://doi.org/10.1007/s10669-008-9174-4

Olguin-Maciel E, Larqué-Saavedra A, Pérez-Brito D, Baraho-na-Pérez LF, Alzate-Gaviria L, Toledano-Thompson T, Lappe-Oliveras PE, Huchin-Poot EG, Tapia-Tussell R. Brosimum alicastrum as a novel starch source for bioethanol production. Energies, v. 10, p. 1574, 2017. https://doi.org/10.3390/en10101574

Osma JF, Saravia V, Herrera JLT, Couto SR. Mandarin peel-ings: the best carbon source to produce laccase by static cul-tures of Trametes pubescens. Chemosphere, v. 67, p. 1677-1680, 2007.

https://doi.org/10.1016/j.chemosphere.2006.11.051

Papinutti L, Lechner B. Influence of the carbon source on the growth and lignocellulolytic enzyme production by Morchella esculenta strains. Journal of Industrial Micro-biology and Biotechnology, v. 35, p. 1715-1721, 2008. https://doi.org/10.1007/s10295-008-0464-0

Parra LA. Agaricus L. Allopsalliota Nauta & Bas. I. Fungi Europaei, 2008. https://doi.org/10.1016/j.fldmyc.2010.01.011

Pérez-Pacheco E, Moo-Huchin VM, Estrada-León RJ, Ortiz-Fernández A, May-Hernández LH, Ríos-Soberanis CR, Betancur-Ancona D. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbo-hydrate Polymers, v. 101, p. 920-927, 2014. https://doi.org/10.1016/j.carbpol.2013.10.012

Prescott LM, Harley JP, Klein DA. Microbiology, 5th edn. pp. 105–106. London: McGraw Hill Publishers. ISBN 0-07-232041-9, 2002.

Rehman AU, Thurston CF. Purification of laccase I from Armillaria mellea. Journal of General Microbiology, v. 138, p. 1251-1257, 1992.

https://doi.org/10.1099/13500872-140-1-19

Rossi IH, Onteiro ACM, Machado JO. Desenvolvimento micelial de Lentinula edodes como efeito da profundidade e suplementação do substrato. Pesquisa Agropecuária Brasi-leira, v. 36, p. 887-891, 2001.

Rossi IH, Monteiro AC, Machado JO, Andrioli JL, Barbosa JC. Shiitake (Lentinula edodes) production on a sterilized bagasse substrate enriched with rice bran and sugarcane mo-lasses. Brazilian Journal of Microbiology, v. 34, p. 66-71, 2003.

https://doi.org/10.1590/S1517-83822003000100014

Santana MDF, Rodrigues LDSI, Amaral TS, Pinheiro YG. Fenoloxidase e biodegradação do corante têxtil Azul Bri-lhante de Remazol R (RBBR) para três espécies de macro-fungos coletadas na Amazônia. SaBios-Revista de Saúde e Biologia, v. 11, p. 53-60, 2016.

Santana MDF, Vargas-Isla R, Nogueira JdaC, Accioly T, Silva BDBda, Couceiro SRM, Baseia IG, Ishikawa NK. Obtaining monokaryotic and dikaryotic mycelial cultures of two Amazonian strains of Geastrum (Geastraceae, Basidio-mycota). Acta Amazonica, v. 50, p. 61-67, 2020.

https://doi.org/10.1590/1809-4392201901341

Sen SK, Raut S, Bandyopadhyay P, Raut S. Fungal decolour-ation and degradation of azo dyes: A review. Fungal Biolo-gy Reviews, v. 30, p. 112-133, 2016. https://doi.org/10.1016/j.fbr.2016.06.003

Sethuraman A, Akin DE, Eriksson KEL. Production of lig-ninolytic enzymes and synthetic lignin mineralization by the bird´s nest fungus Cyathus stercoreus. Applied Microbiolo-gy and Biotechnology, v. 52, p. 689-697, 1999. https://doi.org/10.1007/s002530051580

Silva SM. Formulação de meios de crescimento para o cultivo sólido de Pleurotus sajor-caju, à base de serragem de Pinus sp. Dissertation. Universidade de Caxias do Sul, 95 p. (Un-published).

Sharvit L, Bar-Shalom R, Azzam N, Yechiel Y, Wasser S, Fares F. Cyathus striatus extract induces apoptosis in human pancreatic cancer cells and inhibits xenograft tumor growth in vivo. Cancers, v. 13, p. 1-16, 2021. https://doi.org/10.3390/cancers13092017

Songulashvili G, Elisashvili V, Wasser SP, Nevo E, Hadar Y. Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme and Microbial Technology, v. 41, p. 57-61, 2007. https://doi.org/10.1016/j.enzmictec.2006.11.02

Songulashvili G, Elisashvili V, Wasser S, Nevo E, Hadar Y. Laccase and manganese peroxidases activities of Phellinus robustus and Ganoderma adspersum grown on food indus-try wastes in submerged fermentation. Biotechnology Let-ters, v. 28, p. 1425-1429, 2006. https://doi.org/10.1007/s10529-006-9109-4

Sousa JO, Silva BDB, Alfredo DS, Baseia IG. New records of Geastraceae (Basidiomycota: Phallomycetidae) from At-lantic rainforest remnants and relicts of Northeastern Brazil. Darwiniana, new series, v. 2, p. 207-221, 2014.

Souza DF, Tychanowicz GK, Souza CGM, Peralta RM. Coproduction of ligninolytic enzymes by Pleurotus pul-monarius on wheat bran solid state cultures. Journal of Basic Microbiology, v. 46, p. 126-134, 2006. https://doi.org/10.1002/jobm.200510014

Srisurichan S, Piapukiew J, Puthong S, Pornpakakul S. Lanostane triterpenoids, spiro-astraodoric acid, and astraodoric acids E and F, from the edible mushroom Astraeus odoratus. Phytochemistry Letters, v. 21, p. 78-83, 2017.

https://doi.org/10.1016/j.phytol.2017.05.020

Stoytchev I, Homolka L, Nerud F. Geastrum pouzarii Staněk in agar culture. Antonie van Leeuwenhoek, v. 79, p. 363-364, 2001.

Sunhede S. Geastraceae (Basidiomycotina). Morphology, ecology and systematics with special emphasis on the North European species. Synopsis Fungorum, v. 1, p. 1-534, 1989.

Sharvit L, Bar-Shalom R, Azzam N, Yechiel Y, Wasser S, Fares F. Cyathus striatus extract induces apoptosis in human pancreatic cancer cells and inhibits xenograft tumor growth in vivo. Cancers, v. 13, p. 2017, 2021. https://doi.org/10.3390/cancers13092017

Szambelan K, Nowak J, Szwengiel A, Jelén H, Łukaszewski G. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods in bioethanol production and formation of volatile by-products from se-lected corn cultivars. Industrial Crops and Products, v. 118, p. 355-361, 2018. https://doi.org/10.1016/j.indcrop.2018.03.059

Taylor JW, Jacobson DJ, Kroken S, Kasuya T, Geiser DM, Hibbett DS, Fisher MC. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology, v. 31, p. 21-32, 2000. https://doi.org/10.1006/fgbi.2000.1228

Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philo-sophical Transactions of the Royal Society B, v. 361, p. 1947-196, 2006. https://doi.org/10.1098/rstb.2006.1923

Troiano D, Orsat V, Dumont MJ. Status of filamentous fungi in integrated biorefineries. Renewable and Sustainable Ener-gy Reviews, v. 117, p. 109472, 2020. https://doi.org/10.1016/j.rser.2019.109472

Valmaseda M, Almendros G, Martínez AT. Substrate-dependent degradation patterns in the decay of wheat straw and beech wood by ligninolytic fungi. Applied Microbiolo-gy and Biotechnology, v. 33, p. 481-484, 1990. https://doi.org/10.1007/BF00176671

Vargas-Isla R, Ishikawa NK. Optimal conditions of in vitro mycelial growth of Lentinus strigosus an edible mushroom isolated in the Brazilian Amazon. Mycoscience, v. 49, p. 215-219, 2008.

https://doi.org/10.1007/s10267-007-0404-2

Vasdev K, Kuhad RC. Induction of laccase production in Cyathus bulleri under shaking and static culture conditions. Folia Microbiologica, v. 39, p. 326-330, 1994.

Vasdev K, Kuhad RC, Saxena RK. Decolorization of triphe-nylmethane dyes by the bird’s nest fungus Cyathus bulleri. Current Microbiology, v. 30, p. 269-272, 1995. https://doi.org/10.1007/BF00295500

Wang B, Han J, Xu W, Chen Y, Liu H. Production of bioac-tive cyathanediterpenes by a bird’s nest fungus Cyathus gansuensis growing on cooked rice. Food Chemistry, v. 152, p. 169-176, 2014.

https://doi.org/10.1016/j.foodchem.2013.11.137

Wang Y, Sun X, Han Q, James TD, Wang X. Highly sensi-tive and selective water-soluble fluorescent probe for the al-ternative detections of formaldehyde in Leather Products. Dyes and Pigments, v. 188, p. 109175, 2021. https://doi.org/10.1016/j.dyepig.2021.109175.

Wesenberg D, Kyriakides I, Agathos SN. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, v. 47, p. 161-187, 2003. https://doi.org/10.1016/j.biotechadv.2003.08.011

Wicklow DT, Langie R, Crabtree S, Detroy RW. Degradation of lignocellulose in wheat straw versus hardwood by Cy-athus and related species (Nidulariaceae). Canadian Journal of Microbiology, v. 30, p. 632-636, 1984. https://doi.org/10.1139/m84-093

Wood DA. Production, purification and properties of extracel-lular laccase of Agariczis bisporzds. Journal of General Mi-crobiology, v. 117, p. 327-338, 1980. https://doi.org/10.1099/00221287-117-2-327

Zamora JC, Calonge FD, Hosaka K, Martin MP. Systematics of the genus Geastrum (Fungi: Basidiomycota) revisited. Taxon, v. 63, p. 477-497, 2014. https://doi.org/10.12705/633.36

Zamora JC, Calonge FD, Martín MP. New sources of taxo-nomic information for earthstars (Geastrum, Geastraceae, Basidiomycota): phenoloxidases and rhizomorph crystals. Phytotaxa, v. 132, p. 1-20, 2013. https://doi.org/10.11646/phytotaxa.132.1.1

Zhang Q, Miao R, Liu T, Huang Z, Peng W, Gan B, Zhang Z, Tan H. Biochemical characterization of a key laccase-like multicopper oxidase of artificially cultivable Morchella im-portuna provides insights into plant-litter decomposition. 3 Biotech, v. 9, p. 171, 2019. https://doi.org/10.1007/s13205-019-1688-6

Journal of Biotechnology and Biodiversity

Downloads

Publicado

14-02-2024

Como Citar

Ferreira Santana, M. D., Couceiro, S. R. M., & Campos, C. S. (2024). Suplementação lignocelulósica do meio de cultura para desenvolvimento micelial e produção de enzi-mas fenoloxidase de cepas amazônicas de fungos gasteroides (Basidiomycota). Journal of Biotechnology and Biodiversity, 12(1), 024–034. https://doi.org/10.20873/jbb.uft.cemaf.v12n1.16237