Galileo’s law of free fall and modern science

historical and philosophical views

Authors

  • Isabel Serra CFCUL

DOI:

https://doi.org/10.20873/rpv8n1-66

Abstract

The clearly recognized innovation in Galileo’s work on free fall has been a stimulus and a challenge for the history and philosophy of science. This article will analyze the experimental and theoretical aspects of Galileo’s work on free fall. It draws on several authors’ results to justify the claim that the research model established by Galileo remains valid today (Sections 2 and 3). The article draws this parallel with current science by focusing on Galileo’s method, way of considering scientific instruments, and practice of confrontation between theory and experiments. The Galilean mode of investigation can be interpreted from a variety of possible philosophical perspectives: Section 3 examines how relevant the so-called constructivist and conventionalist perspectives are to analysis of Galileo’s innovations. Section 4 discusses Galileo’s contribution to the mathematization of science and the Platonic character of his thought. Finally, the article attempts to show that Galileo’s Platonism also involves experiments, as he conceives them.

Keywords: Inclined Plane. Mathematics. Platonism

References

Bachelard, G., (1967), La Formation de l'esprit scientifique : Contribution à une psychanalyse de la connaissance

objective, Paris : J. VRIN, (1st ed. 1934).

Chareix, F., (2007), Weight and powers: Galileo's statics read by Ernst Mach, Europe. Revue littéraire mensuelle, Europe. Revue, 2007, p.229- 250. ⟨halshs-00422711⟩ (Accessed 10 April 2022).

Dahan-Dalmedico, A. & Peiffer, J. (1986) Une histoire des mathématiques, Routes et dédales. Paris: Seuil,

PERSPECTIVAS | VOL. 8, Nº 1, 2023, P. 246-262

Galileo’s law of free fall and modern science: historical and philosophical views

DOI: 10.20873/rpv8n1-66

DeCaro, M. (2017), On Galileo’s Platonism, Again in R. Pisano, J. Agassi and D. Drozdova (eds.), Hypotheses

and Perspectives within History and Philosophy of Science. Homage to Alexandre Koyré 1964–2014,

Springer 2017, pp. 84-104. https://doi.org/10.1007/978-3-319-61712-1_5 (Accessed 2 Mai, 2022).

Drake, S. (1974), Mathematics and discovery in Galileo's physics, Historia Mathematica Volume 1, Issue 2,

, p. 129-150, May, 1974, https://doi.org/10.1016/0315-0860(74)90002-0.p (Accessed 13 February, 2022).

Driver, R., Asoko, H., Leach, J., Scott, P., Mortimer, E. (1994), Constructing Scientific Knowledge in the Classroom, Educational Researcher, 23,7, 5-12, https://doi.org/10.3102/0013189X023007005 (Accessed, 12 April, 2022).

Franklin, A. and Slobodan, P. (2021), Experiment in Physics, The Stanford Encyclopedia of Philosophy (Summer 2021 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/sum2021/entries/physics-experiment/>. (Accessed, 21 April 2022).

Friedman, M., Ernst Cassirer, (2022), The Stanford Encyclopedia of Philosophy (Spring 2022 Edition), Edward

N. Zalta (ed.), URL = https://plato.stanford.edu/archives/spr2022/entries/cassirer/ (Accessed 6

Mai, 2022).

Galilei, G. (1953) Dialogue Concerning the Two Chief World Systems, Translator: Drake, S., Berkeley, CA: University of California Press, 1953, ISBN 0-520-00449-3.

Hacking, I. (1999), The social construction of what? Cambridge (Massachusetts) London (England): Harvard

University Press, 1999.

Heilbron, J., (1979), Electricity in the 17th & 18th Centuries. Los Angeles: University of California Press, 1979.

Heinzmann, G. and Stump (2021), D., Henri Poincaré, The Stanford Encyclopedia of Philosophy (Winter 2021

Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2021/entries/poincare/>. (Accessed 28 April 2022).

Holton, G. (1962), Introduction to Concepts and Theories in Physical Science, 6th ed. London: Addison-Wesley,

Koyré, A. (1939), Études Galiléennes, Paris: Hermann, 1939.

Koyré, A. (1943), Galileo and Plato, Journal of the History of Ideas, Vol. 4, No. 4 (Oct., 1943), pp. 400-428 (29

pages), University of Pennsylvania Press, https://doi.org/10.2307/2707166, (Accessed 24 April

.

Mach, E. (1902), The Science of Mechanics, A Critical and Historical Account of its Development, trans. Thomas

McCormack, Chicago and London: The Open Court Publishing Company, 3rd ed. 1902.

Machamer, P. & Miller, D. (2021), "Galileo Galilei", The Stanford Encyclopedia of Philosophy (Summer 2021

Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/sum2021/entries/galileo/>. (Accessed 12 April, 2022).

Matteoli,G., (2019), Galileo, Plato and the Scientific Revolution: The Origins of Galileo’s Platonism Thesis in

the Historiography of Science, Transversal: International Journal for the Historiography of Science

(7): 70-84, ISSN 2526-2270, www.historiographyofscience.org, Belo Horizonte – MG / Brazil.,

(Accessed 14 May, 2022)

Palmieri, P. (2003), Mental models in Galileo’s early mathematization of nature, Stud. Hist. Phil. Sci. 34 (2003)

–264, www.elsevier.com/locate/shpsa (Accessed, 14 May 2022).

PERSPECTIVAS | VOL. 8, Nº 1, 2023, P. 246-262

Galileo’s law of free fall and modern science: historical and philosophical views

DOI: 10.20873/rpv8n1-66

Panza, M. (2002), Mathematization of the Science of Motion and the Birth of Analytical Mechanics: A Historiographical Note.in P. Cerrai, P. Freguglia, C. Pellegrini. The Application of Mathematics to the Sciences

of Nature. Critical moments and Aspects. Kluwer A. P., Plenum P., New York, pp.253-271, 2002.

(Accessed 4, May, 2022).

Poincaré, H., (1902), La Science et l’Hypothèse, Paris : Flammarion, 1902.

Poincaré, H. (1982), The Foundations of Science: Science and Hypothesis, The Value of Science, Science and

Method, translations of Poincaré 1902, 1905b & 1908, University Press of America, 1982.

Radder, H. (2009), The philosophy of scientific experimentation: a review. Autom Exp 1, 2 (2009).

https://doi.org/10.1186/1759-4499-1-2. (Accessed 16 April 2022).

Riegler A. (2012) Constructivism. In: L‘Abate, L. (ed.) Paradigms in Theory Construction, New York: Springer,

–256.

Roux, S. and Festa, E. (2008), The Enigma of the Inclined Plane from Hero to Galileo in Mechanics and Natural

Philosophy before the Scientific Revolution, Netherlands: Kluwer Academic Publishers, pp.195-221,

, halshs-00806464. (Accessed 2 Mars, 2022).

Sady, W. (2021), Ludwik Fleck, The Stanford Encyclopedia of Philosophy (Winter 2021 Edition), Edward N.

Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2021/entries/fleck/>. (Accessed 11

April 2022).

Simonyi, K. (2012) A Cultural History of Physics, New York: A K Peters/CRC Press, 2012 ISBN 9781568813295.

Torretti, R. (1999), The Philosophy of Physics, Cambridge: Cambridge University Press, 1999.

Published

2023-04-05

How to Cite

Serra, I. (2023). Galileo’s law of free fall and modern science: historical and philosophical views. Perspectivas, 8(1), 246–262. https://doi.org/10.20873/rpv8n1-66

Issue

Section

Dossiê Filosofia da Física