Predicción fisicoquímicas, modelado y análisis mecanismo de interacción de la quitinasa Mo-chi1, un poli-β-(1-4)-N-acetil-D-glucosamina [Moringa oleifera, LAM.]: Un enfoque in silico

Autores/as

  • Lara Cristhian Costa Bezerra
  • Evaristo Wagner Alves de Queiroz
  • José Ednésio da Cruz Freire

DOI:

https://doi.org/10.20873/uft.2359-3652.2018vol5n1p111

Resumen

Las quitinasas son enzimas capaces de hidrolizar enlaces β-(1,4) entre residuos de N-acetil-β-D-glucosamina (GlcNAc), presentes en varios organismos. Conocer las propiedades fisicoquímicas de Mo-chi1 identificadas en la planta de Moringa oleifera utilizando herramientas in silico. Después de buscar en la base de datos del genoma chino de plantas herbales, se analizó la secuencia (ID: 10006495) para péptido señal, propiedades fisicoquímicas, puentes de sulfuro, dominios, estructuras secundarias, modelado. El modo de interacción entre Mo-chi1 y quitina se predijo con el programa AutoDock Vina. Mo-chi1 posee péptido señal con 19 aminoácidos de longitud (escindido: Ala19 e Ile20), formando un polipéptido maduro de 379 residuos. El maduro tiene Mr = 39.56 kDa, pI = 5.44, II = 35.61 y GRAVY = -0.135. Tiene un puente de sulfuro (5Cys-Cys398). Pertenecen a la familia GH18 con un valor E de 7.43e-153 (CDD) y 2.3e-90 (SMART). Tiene un predominio de β-sheet (16.85-37%), seguido de α-Helix (23.3-30.34%) y loops (39.5-52.81%). El estudio de acoplamiento molecular mostró energía favorable para la interacción entre Mo-chi1 y GlcNAc con un valor E = -5.9 kcal.mol-1. Aunque Mo-chi1 mostró propiedades fisicoquímicas similares a otras quitinasas GH18, se necesitan estudios más refinados para identificar su verdadero potencial.

Citas

ANWAR, F.; BHANGER, M. I. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. Journal of Agricultural and Food Chemistry, v. 51, n. 22, p. 6558–6563, 2003.

BRIMNER, T. A.; BOLAND, G. J. A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems & Environment, v. 100, n. 1, p. 3–16, nov. 2003.

CÁCERES, A.; CABRERA, O.; MORALES, O.; MOLLINEDO, P.; MENDIA, P. Pharmacological properties of Moringa oleifera. 1: Preliminary screening for antimicrobial activity. Journal of Ethnopharmacology, v. 33, n. 3, p. 213–6, 1991.

CAN, M. Conformational parameters for amino acids in helical, β-Sheet, and random coil regions calculated from proteins: After 40 years. Southeast Europe Journal of Soft Computing. v. 4, n. 1, p. 1–6, 2015.

CHEN, M. Elucidation of bactericidal effects incurred by Moringa oleifera and chitosan. Journal of the U.S. SJWP, v. 4, n. 65, p. 65–79, 2009.

DUNDAS, J.; OUYANG. Z.; TSENG, J.; BINKOWSKI, A.; TURPAZ, Y.; LIANG, J. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, v. 34, n. WEB. SERV. ISS., p. 116–118, 2006.

EL-MOHAMEDY, R. S. R.; ABDALLAH, A. M.; GHONAME, A. A. Field application of chitosan and Moringa oleifera extracts as fungicides alternatives to control early blight and improvement growth and yield quality of potato. Plant Pathology Journal, v. 15, n. 4, p. 135–143, 2016.

EMSLEY, P.; LOHKAMP, B.; SCOTT, W. G.; COWTAN, K. Features and development of Coot. Acta Crystallographica, v. 66, n. Pt 4, p. 486–501, 2010.

FERRÈ, F.; CLOTE, P. DiANNA 1.1: An extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Research, v. 34, p. 182–185, 2006.

FERREIRA, P. M. P.; CARVALHO, A. F. U.; FARIAS, D. F.; CARIOLANO, N. G.; MELO, V. M. M.; QUEIROZ, M. G. R.; MARTINS, A. M. C.; NETO, J. G. M. Larvicidal activity of the water extract of Moringa oleifera seeds against Aedes aegypti and its toxicity upon laboratory animals. Anais da Academia Brasileira de Ciências, v. 81, n. 2, p. 207–16, 2009.

GANGULY, R.; GUHA, D. Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer’s disease & protection by Moringa oleifera. Indian Journal of Medical Research, v. 128, n. 6, p. 744–51, 2008.

GASSENSCHMIDT, U.; JANY, K. D.; BERNHARD T.; NIEBERGALL, H. Isolation and characterization of a flocculating protein from Moringa oleifera Lam. BBA - General Subjects, v. 1243, n. 3, p. 477–481, 1995.

GASTEIGER, E.; HOOGLAND, C.; GATTIKER, A.; DUVAUD, S.; WILKINS, M. R.; APPEL, R. D.; BAIROCH, A. Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005). pp. 571-607.

GEOURJON, C.; DELÉAGE, G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, v. 11, n. 6, p. 681–684, 1995.
GHEBREMICHAEL, K. A.; GUNARATNA, K. R.; HENRIKSSON, H.; BRUMER, H.; DALHAMMAR, G. A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research, v. 39, n. 11, p. 2338–2344, 2005.

GIFONI, J. M. OLIVEIRA, J. M.; OLIVEIRA, J. T.; BATISTA, A. B.; PEREIRA, M. L. GOMES, A. S.; OLIVEIRA, H. P.; GRANGEIRO, T. B. VASCONCELOS, I. M. A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control. Biopolymers, v. 98, n. 4, p. 406–415, 2012.

GOYAL, B. R. AGRAWAL, B. B.; MEHTA, A. A. Phyto-pharmacology of Moringa oleifera Lam . ó An overview. Natural Product Radiance, v. 6, n. 4, p. 347–353, 2007.

GURUPRASAD K.; REDDY B. V. B.; M. PANDIT, W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, v. 4, no. 2, pp. 155–161, 1990.

HAMEL, F., BOIVIN, R.; TREMBLAY, C.; BELLEMARE, G. Structural and evolutionary relationship among chitinases of flowering plants, Journal of Molecular Structure, v. 44, no. 6, pp. 614–624, 1997.

HOEKSTRA, A. Y.; MEKONNEN, M. M.; CHAPAGAIN, A. K.; MATHEWS R. E.; RICHTER, B. D. monthly water scarcity: blue water footprints versus blue water availability. PloS one, v. 7, n. 2, p. e32688, 2012.

HOFFMANN, C. C.; DANUCALOV, I. P.; PURIM, K. S. M.; QUEIROZ-TELLES, F. Infecções causadas por fungos demácios e suas correlações anátomo-clínicas. Anais Brasileiros de Dermatologia, v. 86, n. 1, p. 138–141, 2011.

KELLEY, L. A.; MEZULIS, S.; YATES, C. M.; WASS, M. N.; STERNBERG, M. J. The Phyre2 web portal for protein modeling predicion and analysis. Nature Protocols, v. 10, 845-858, 2015.

KOEBEL, M. R.; SCHMADEKE, G.; POSNER, R. G.; SIRIMULLA, S. AutoDock VinaXB: Implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. Journal of Cheminformatics, v. 8, n. 1, p. 1–8, 2016.
KOZAKOV, D.; GROVE, L. E.; HALL, D. R.; BOHNUUD, T.; MOTTARELLA, S. E.; LUO, L.; XIA, B.; BEGLOV, D.; VAJDA, S. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, v. 10, n. 5, p. 733–755, 2015.

KUMAR, A. T. CFSSP: Chou and Fasman Secondary Structure Prediction server. WIDE SPECTRUM: Research Journal. v. 1, n. 9, p.15–19, 2013.

LETUNIC, I.; DOERKS, T.; BORK, P. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Research, v. 43, n. D1, p. D257–D260, 2015.

LIN, K. SIMOSSIS V. A.; TAYLOR W. R.; HERINGA J. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics, v. 21, n. 2, p. 152–159, 2005.

LIPIPUN, V.; KUROKAWA, M.; SUTTISRI, R.; TAWEECHOTIPATR, P.; PRAMYOTHIN, P.; HATTORI, M.; SHIRAKI, K. Efficacy of Thai medicinal plant extracts against Herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Research, v. 60, n. 3, p. 175–180, 2003.

MANAHEJI, H.; JAFARI S.; ZARINGHALAM, J.; REZAZADEH, S.; TAGHIZADFARID, R. Analgesic effects of methanolic extract of the leaf or root od Moringa oleifera on complete Freund’s adjuvant-induced artritis in rats. Journal of Chinese Integrative Medicine, v. 9, n. 2, p. 216-222, 2011.

MÉTRAUX, J. P.; STREIT, L.; STAUB, T.; A pathogenesis-relatedprotein in cucumberis a chitinase. Physiological and Molecular Plant Pathology, vol. 33, no. 1, pp. 1–9, 1988.

MORRIS, G. M.; GOODSELL, D. S.; HALLIDAY, R. S.; HUEY, R.; HART, W. E.; BELEW, R. K.; OLSON, A. J. AutoDock-related material automated docking using a Lamarckian Genetic Algorithm and an empirical binding free energy function. Journal of Computational Chemistry, v. 19, n. 14, p. 1639–1662, 1998.

MUANGNOI, C.; CHINGSUWANROTE, P.; PRAENGAMTHANACHOTI, P.; SVASTI, S.; TUNTIPOPIPAT, S. Moringa oleifera pod inhibits inflammatory mediator production by lipopolysaccharide-stimulated RAW 264.7 murine macrophage cell lines. Inflammation, v. 35, n. 2, p. 445-455, 2012.
NDABIGENGESERE, A.; NARASIAH, K. S.; TALBOT, B. G. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research, v. 29, n. 2, p. 703–710, 1995.

NWOSU, M.; OKAFOR, J. I. Preliminary studies of the antifungal activities of some medicial plants against Basidiobolus and some other pathogenic fungi. Mycoses, v. 38, p. 191–5, 1995.

OKUDA, T.; BAES, A. U.; NISHIJIMA, W.; OKADA, M. Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Research, v. 35, n. 2, p. 405–10, 2001.

ONYEKE, C. C.; AKUESHI, C. O. Infectivity and reproduction of Meloidogyne incognita (Kofoid and White) Chitwood on African yam bean, Sphenostylis stenocarpa (Hochst Ex. A. Rich) Harms accessions as influenced by botanical soil amendments. African Journal of Biotechnology, v. 11, n. 67, p. 13095–103, 2012.

PATIL, R. S.; GHORMADE, V.; DESHPANDE, M. V. Chitinolytic enzymes: An exploration. Enzyme and Microbial Technology, v. 26, n. 7, p. 473–483, 2000.
PEREIRA, M. L.; OLIVEIRA, H. D.; OLIVEIRA, J. T.; ROCHA, R.; SOUSA, D.; VASCONCELOS, I. M. Purification of a chitin-binding protein from Moringa oleifera seeds with potential to relieve pain and inflammation. Protein and Peptide Letters, v. 18, n. 11, p. 1078–1085, 2011.

PETERSEN, T. N.; BRUNAK S.; HEIJNE G.; NIELSEN, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, v. 8, n. 10, p. 785–786, 2011.

PFISTER, S.; BAYER, P.; KOEHLER, A.; HELLWEG, S. Projected water consumption in future global agriculture: scenarios and related impacts. The Science of the Total Environment, v. 409, n. 20, p. 4206–4216, 2011.

PRAPAGDEE, B.; KUEKULVONG, C.; MONGKOLSUK, S. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, v. 4, n. 5, p. 330–7, 2008.

RIZZELLO, C. G.; LAVECCHIA, A.; GRAMAGLIA, V.; GOBBETTI, M. Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. International Journal of Food Microbiology, v. 131, n. 2–3, p. 189–196, 2009.

ROCHA, M. F. G.; AGUIAR, F. L. N.; BRILHANTE, R. S. N. Extratos de Moringa oleifera e Vernonia sp. sobre Candida albicans e Microsporum canis isolados de cães e gatos e análise da toxicidade em Artemia sp. Ciência Rural, v. 41, n. 10, p. 1807–1812, 2011.

ROLIM, L. A.; MACEDO M. F.; SISENANDO, H. A.; NAPOLEÃO, T. H., FELZENSZWALB, I., AIUB, C. A.; COELHO, L. C.; MEDEIROS, S. R.; PAIVA, P. M. Genotoxicity evaluation of Moringa oleifera seed extract and lectin. Journal of Food Science, v. 76, n. 2, p. 56-58, 2011.

ROMEIS, J. RAYBOULD, A.; BIGLER, F.; CANDOLFI, M. P. HELLMICH, R. L.; HUESING, J. E.; SHELTON, A. M. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere, v.90, n. 3, p. 901-909, 2012.

SANTANA, C. R.; PEREIRA, D.F.; ARAUJO, N. A.; CAVALCANTI, E. B.; SILVA, G. F. Caracterização físico-química da moringa (Moringa oleifera Lam). Revista Brasileira de Produtos Agroindustriais, v. 12, n. 1, p. 55–60, 2010.

SIMOSSIS, V; KLEINJUNG, J; HERINGA, J. An overview of multiple sequence alignment, Current protocols in bioinformatics, pp. 3–7, 2003.

SOTRIFFER, C; FLADER, W; WINGER, R. H; RODE, B. M; LIEDL, K. R; VARGA, J. M. Automated docking of ligands to antibodies: methods and applications. Methods, v. 20, n. 3, p. 280–291, 2000.

SREELATHA, S.; JEYACHITRA, A.; PADMA, P. R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food and Chemical Toxicology, v. 49, n. 6, p. 1270–1275, 2011.

VICTORIA, G. C; BARRETO, M. L.; LEAL, M. C.; MONTEIRO, C. A., SCHMIDT, M. I.; PAIM, J; BASTOS, F. I; ALMEIDA, C; BAHIA, L; TRAVASSOS, C; REICHENHEIM, M; BARRO, F. C. Condições de saúde e inovações nas políticas de saúde no Brasil: O caminho a percorrer. Saúde no Brasil, p. 90-102, 2011.

VIERA, G. H. F; MOURÃO, J. A; ANGELO, A. M; COSTA, R. A; VIEIRA, R. H. S. F. Antibacterial effect (in vitro) of Moringa oleifera and Annona muricata against Gram positive and Gram negative bacteria. Revista do Instituto de Medicina Tropical de São Paulo, v. 52, n. 3, p. 129–132, 2010.

Publicado

2018-03-31

Cómo citar

Bezerra, L. C. C., Queiroz, E. W. A. de, & Freire, J. E. da C. (2018). Predicción fisicoquímicas, modelado y análisis mecanismo de interacción de la quitinasa Mo-chi1, un poli-β-(1-4)-N-acetil-D-glucosamina [Moringa oleifera, LAM.]: Un enfoque in silico. DESAFIOS, 5(1), 111–120. https://doi.org/10.20873/uft.2359-3652.2018vol5n1p111

Número

Sección

Artigos