Description of the Physical Properties of Pt (100) and Pt (111) Surfaces Using Computational Simulations of First Principles based on Functional Theory of Density
DOI:
https://doi.org/10.20873/uft.2359-3652.2017v4n3p91Abstract
Pt crystal and its surfaces are of great interest because they are used in different technological areas and have been used as a catalysts in fuel cells. However, challenging problems need to be overcome because the efficiency on energy conversion is not satisfactory yet and do not allow a large-scale use for these electrochemical devices. In this way, computational modeling is a useful tool to answer fundamental questions regarding catalysis processes in electrochemical devices. Here we present a systematic investigation of the structural, energetic and electronic properties of the Pt crystal and Pt (100) and Pt (111) surfaces employing first principles methodology based on Density Functional Theory. We used reciprocal space techniques that allowed us to describe the periodicity of these systems together with a low computational cost. The convergence of parameters of the calculations which must be adjusted for metallic systems is discussed in detail. Crystalline structure, cohesion energy and electronic properties for Pt crystal are in excellent agreement with experimental and theoretical data in the literature. Structural, energetic and electronic properties of Pt(100) and Pt(111) surfaces are discussed. Convergence tests evidenced that it is essential to use slabs with at least 06 atomic layers for the correct computational description of these surfaces. The comparison with published computational simulations on the literature or experimental results show that the our methodology is adequate to the description of Pt crystal and its surfaces and the presented results can be useful to guide future computational simulations of more complex systems involving this material.
Keywords: Pt metallic surface, Density Functional Theory, Electronic structure.
References
GIANNOZZI , BARONI, P., S., BONINI, N., CALANDRA, M., CAR, R. , CAVAZZONI, C. , CERESOLI, D., CHIAROTTI, G. L., COCOCCIONI, M., DABO, I., DAL CORSO, A., DE GIRONCOLI, S., FABRIS, S., FRATESI, G., GEBAUER, R., GERSTMANN, U., GOUGOUSSIS, C., A. KOKALJ, M. LAZZERI, L. MARTIN-SAMOS, N. MARZARI, F. MAURI, R. MAZZARELLO, S. PAOLINI, A. PASQUARELLO, L. PAULATTO, C. SBRACCIA, S. SCANDOLO, SCLAUZERO, G., SEITSONEN, A. P. A. SMOGUNOV, P. UMARI e WENTZCOVITC , R. M.. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, v. 21, n. 39, p. 395502, 2009.
HOHENBERG, P. e KOHN, W. Inhomogeneous Electron Gas. Phys. Rev. B, v. 136, p. 864, 1964.
KOHN, W. e SHAM, L. J. Self-Consistent Equations Including Exchange and Correlations Effects. Phys. Rev., v. 140, p. A1133, 1965.
KORTLEVER, R., SHEN, SCHOUTEN, J. K. J. P., CALLE-VALLEJO, F. AND KOPER, M. T. M.. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. v. 6, 4073, 2015.
KRUPSKI, K., MOORS, M., JÓŹWIK, P., KOBIELA, T. e KRUPSKI, A. Structure Determination of Au on Pt(111) Surface: LEED, STM and DFT Study. Materials, v. 8, 2935, 2015.
LI, M.-R., CHEN, J. AND WANG, G.-C.. Reaction Mechanism of Ethanol on Model Cobalt Catalysts: DFT Calculations. J. Phys. Chem. C, v. 120, 14198, 2016.
LOPES., P. P. Aproveitamento de etanol em células a combustível: eletrocatálise da reação de oxidação direta e da oxidação do hidrogênio contaminado por co obtido por sua reforma. Tese de Doutorado-USP, São Carlos, 2013.
MARZARI, N.; VANDERBILT, D. Thermal contraction and disordering of the Al(110) surface. Phys Rev. Lett., v. 82, p. 3296, 1999.
PERDEW, J. P., BURKE, K. e ERNZERHOF, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., v. 77, p. 3865, 1996.
SANTAROSSA, G. VARGAS, A., IANNUZZI, M., PIGNEDOLI, C. A., PASSERONE, D. e BAIKER, A.. Modeling bulk and surface Pt using the "Gaussian and plane wave" density functional theory formalism: Validation and comparison to k-point plane wave calculations. The Journal Of Chemical Physics, v. 129, 234703, 2008.
SHENG, T., LIN, W-F., HARDACRE, C. and HU, P.. Role of Water and Adsorbed Hydroxyls on Ethanol Electrochemistry on Pd: New Mechanism, Active Centers, and Energetics for Direct Ethanol Fuel Cell Running in Alkaline Medium. J. Phys. Chem. C v. 118, 5762, 2014.
SILVA, J. L. D.; STAMPFL, C.; SCHEFFLER, M. Converged properties of clean metal surfaces by all-electron first-principles calculations. Surf. Sci., v. 600, p. 703–715, 2006.
SINGH-MILLER, N. E.; MARZARI, N. Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys. Rev. B, v. 80, p. 235407, 2009.
SKÚLASON, E. TRIPKOVIC, V., BJORKETUN, M. E., GUDMUNDSDÓTTIR, S., KARLBERG, G., ROSSMEISL, J., BLIGAARD, T., JÓNSSON, H., AND NØRSKOV, J. K.. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. J. Phys. Chem. C, v. 114, 18182, 2010.
WENDT, H.; GöTZ, M.; LINARDI., M. Tecnologia de Células a combustível l. Quím. Nova., v. 23, n. 4, 2000.
ZHAO, L., WANG, S., DING, Q., XU, W., SANG, P., CHI, Y., LU, X. AND GUO, W.. The Oxidation of Methanol on PtRu(111): A Periodic Density Functional Theory Investigation. J. Phys. Chem. C, v. 119, 20389, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Autores que publicam nesta revista concordam com os seguintes termos:
1. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License (CC BY-NC 4.0), permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
2. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto posterior ao processo editorial.
4. Além disso, o AUTOR é informado e consente com a revista que, portanto, seu artigo pode ser incorporado pela DESAFIOS em bases e sistemas de informação científica existentes (indexadores e bancos de dados atuais) ou a existir no futuro (indexadores e bancos de dados futuros), nas condições definidas por este último em todos os momentos, que envolverá, pelo menos, a possibilidade de que os titulares desses bancos de dados possam executar as seguintes ações sobre o artigo:
a. Reproduzir, transmitir e distribuir o artigo, no todo ou em parte sob qualquer forma ou meio de transmissão eletrônica existente ou desenvolvida no futuro, incluindo a transmissão eletrônica para fins de pesquisa, visualização e impressão;
b. Reproduzir e distribuir, no todo ou em parte, o artigo na impressão.
c. Capacidade de traduzir certas partes do artigo.
d. Extrair figuras, tabelas, ilustrações e outros objetos gráficos e capturar metadados, legendas e artigo relacionado para fins de pesquisa, visualização e impressão.
e. Transmissão, distribuição e reprodução por agentes ou autorizada pelos proprietários de distribuidoras de bases de dados.
f. A preparação de citações bibliográficas, sumários e índices e referências de captura relacionados de partes selecionadas do artigo.
g. Digitalizar e / ou armazenar imagens e texto de artigo eletrônico.