PREDIÇÃO FÍSICO-QUÍMICA, MODELAGEM E ANÁLISE DO MECANISMO DE INTERAÇÃO DA QUITINASE Mo-chi1 [Moringa oleifera, LAM.], COM POLI-β-(1-4)-N-ACETIL-D-GLUCOSAMINE: UMA ABORDAGEM in silico
DOI:
https://doi.org/10.20873/uft.2359-3652.2018vol5n1p111Resumo
Quitinases são enzimas capazes de hidrolisar ligações β-(1,4) entre os resíduos de N-acetil-β-D-glucosamina (GlcNAc), presente em diversos organismos. Elucidar as propriedades físico-químicas da Mo-chi1 identificada na planta Moringa oleifera empregando ferramentas in silico. Após busca no Chinese Herbal Plant Genome Database, a sequência (ID: 10006495) foi analisada quanto ao peptídeo sinal, propriedades físico-químicas, pontes de sulfeto, domínios, estruturas secundárias, modelagem. O modo de interação entre Mo-chi1 e quitina foi predito com o programa AutoDock Vina. A Mo-chi1 possui peptídeo sinal com 19 aminoácidos de comprimento (clivado: Ala19 e Ile20), formando polipeptídio maduro de 379 resíduos. A madura possui Mr = 39,56 kDa, pI = 5.44, II = 35.61 e GRAVY = -0.135. Possui uma ponte de sulfeto (5Cys-Cys398). Pertencer à família das GH18 com E-value de 7.43e-153 (CDD) e de 2.3e-90 (SMART). Detém predominância de β-folha (16,85–37%), seguidas de α-Helix (23,3–30,34%) e alças (39,5–52,81%). O estudo de docking molecular mostrou energia favorável a interação entre Mo-chi1 e GlcNAc com E-valor = -5.9 kcal.mol-1. Embora a Mo-chi1 tenha apresentado propriedades físico-químicas semelhantes a outras quitinases GH18, são necessários estudos mais refinados a fim de identificar seu real potencial.
Referências
BRIMNER, T. A.; BOLAND, G. J. A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems & Environment, v. 100, n. 1, p. 3–16, nov. 2003.
CÁCERES, A.; CABRERA, O.; MORALES, O.; MOLLINEDO, P.; MENDIA, P. Pharmacological properties of Moringa oleifera. 1: Preliminary screening for antimicrobial activity. Journal of Ethnopharmacology, v. 33, n. 3, p. 213–6, 1991.
CAN, M. Conformational parameters for amino acids in helical, β-Sheet, and random coil regions calculated from proteins: After 40 years. Southeast Europe Journal of Soft Computing. v. 4, n. 1, p. 1–6, 2015.
CHEN, M. Elucidation of bactericidal effects incurred by Moringa oleifera and chitosan. Journal of the U.S. SJWP, v. 4, n. 65, p. 65–79, 2009.
DUNDAS, J.; OUYANG. Z.; TSENG, J.; BINKOWSKI, A.; TURPAZ, Y.; LIANG, J. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, v. 34, n. WEB. SERV. ISS., p. 116–118, 2006.
EL-MOHAMEDY, R. S. R.; ABDALLAH, A. M.; GHONAME, A. A. Field application of chitosan and Moringa oleifera extracts as fungicides alternatives to control early blight and improvement growth and yield quality of potato. Plant Pathology Journal, v. 15, n. 4, p. 135–143, 2016.
EMSLEY, P.; LOHKAMP, B.; SCOTT, W. G.; COWTAN, K. Features and development of Coot. Acta Crystallographica, v. 66, n. Pt 4, p. 486–501, 2010.
FERRÈ, F.; CLOTE, P. DiANNA 1.1: An extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Research, v. 34, p. 182–185, 2006.
FERREIRA, P. M. P.; CARVALHO, A. F. U.; FARIAS, D. F.; CARIOLANO, N. G.; MELO, V. M. M.; QUEIROZ, M. G. R.; MARTINS, A. M. C.; NETO, J. G. M. Larvicidal activity of the water extract of Moringa oleifera seeds against Aedes aegypti and its toxicity upon laboratory animals. Anais da Academia Brasileira de Ciências, v. 81, n. 2, p. 207–16, 2009.
GANGULY, R.; GUHA, D. Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer’s disease & protection by Moringa oleifera. Indian Journal of Medical Research, v. 128, n. 6, p. 744–51, 2008.
GASSENSCHMIDT, U.; JANY, K. D.; BERNHARD T.; NIEBERGALL, H. Isolation and characterization of a flocculating protein from Moringa oleifera Lam. BBA - General Subjects, v. 1243, n. 3, p. 477–481, 1995.
GASTEIGER, E.; HOOGLAND, C.; GATTIKER, A.; DUVAUD, S.; WILKINS, M. R.; APPEL, R. D.; BAIROCH, A. Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005). pp. 571-607.
GEOURJON, C.; DELÉAGE, G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, v. 11, n. 6, p. 681–684, 1995.
GHEBREMICHAEL, K. A.; GUNARATNA, K. R.; HENRIKSSON, H.; BRUMER, H.; DALHAMMAR, G. A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research, v. 39, n. 11, p. 2338–2344, 2005.
GIFONI, J. M. OLIVEIRA, J. M.; OLIVEIRA, J. T.; BATISTA, A. B.; PEREIRA, M. L. GOMES, A. S.; OLIVEIRA, H. P.; GRANGEIRO, T. B. VASCONCELOS, I. M. A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control. Biopolymers, v. 98, n. 4, p. 406–415, 2012.
GOYAL, B. R. AGRAWAL, B. B.; MEHTA, A. A. Phyto-pharmacology of Moringa oleifera Lam . ó An overview. Natural Product Radiance, v. 6, n. 4, p. 347–353, 2007.
GURUPRASAD K.; REDDY B. V. B.; M. PANDIT, W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, v. 4, no. 2, pp. 155–161, 1990.
HAMEL, F., BOIVIN, R.; TREMBLAY, C.; BELLEMARE, G. Structural and evolutionary relationship among chitinases of flowering plants, Journal of Molecular Structure, v. 44, no. 6, pp. 614–624, 1997.
HOEKSTRA, A. Y.; MEKONNEN, M. M.; CHAPAGAIN, A. K.; MATHEWS R. E.; RICHTER, B. D. monthly water scarcity: blue water footprints versus blue water availability. PloS one, v. 7, n. 2, p. e32688, 2012.
HOFFMANN, C. C.; DANUCALOV, I. P.; PURIM, K. S. M.; QUEIROZ-TELLES, F. Infecções causadas por fungos demácios e suas correlações anátomo-clínicas. Anais Brasileiros de Dermatologia, v. 86, n. 1, p. 138–141, 2011.
KELLEY, L. A.; MEZULIS, S.; YATES, C. M.; WASS, M. N.; STERNBERG, M. J. The Phyre2 web portal for protein modeling predicion and analysis. Nature Protocols, v. 10, 845-858, 2015.
KOEBEL, M. R.; SCHMADEKE, G.; POSNER, R. G.; SIRIMULLA, S. AutoDock VinaXB: Implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. Journal of Cheminformatics, v. 8, n. 1, p. 1–8, 2016.
KOZAKOV, D.; GROVE, L. E.; HALL, D. R.; BOHNUUD, T.; MOTTARELLA, S. E.; LUO, L.; XIA, B.; BEGLOV, D.; VAJDA, S. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, v. 10, n. 5, p. 733–755, 2015.
KUMAR, A. T. CFSSP: Chou and Fasman Secondary Structure Prediction server. WIDE SPECTRUM: Research Journal. v. 1, n. 9, p.15–19, 2013.
LETUNIC, I.; DOERKS, T.; BORK, P. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Research, v. 43, n. D1, p. D257–D260, 2015.
LIN, K. SIMOSSIS V. A.; TAYLOR W. R.; HERINGA J. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics, v. 21, n. 2, p. 152–159, 2005.
LIPIPUN, V.; KUROKAWA, M.; SUTTISRI, R.; TAWEECHOTIPATR, P.; PRAMYOTHIN, P.; HATTORI, M.; SHIRAKI, K. Efficacy of Thai medicinal plant extracts against Herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Research, v. 60, n. 3, p. 175–180, 2003.
MANAHEJI, H.; JAFARI S.; ZARINGHALAM, J.; REZAZADEH, S.; TAGHIZADFARID, R. Analgesic effects of methanolic extract of the leaf or root od Moringa oleifera on complete Freund’s adjuvant-induced artritis in rats. Journal of Chinese Integrative Medicine, v. 9, n. 2, p. 216-222, 2011.
MÉTRAUX, J. P.; STREIT, L.; STAUB, T.; A pathogenesis-relatedprotein in cucumberis a chitinase. Physiological and Molecular Plant Pathology, vol. 33, no. 1, pp. 1–9, 1988.
MORRIS, G. M.; GOODSELL, D. S.; HALLIDAY, R. S.; HUEY, R.; HART, W. E.; BELEW, R. K.; OLSON, A. J. AutoDock-related material automated docking using a Lamarckian Genetic Algorithm and an empirical binding free energy function. Journal of Computational Chemistry, v. 19, n. 14, p. 1639–1662, 1998.
MUANGNOI, C.; CHINGSUWANROTE, P.; PRAENGAMTHANACHOTI, P.; SVASTI, S.; TUNTIPOPIPAT, S. Moringa oleifera pod inhibits inflammatory mediator production by lipopolysaccharide-stimulated RAW 264.7 murine macrophage cell lines. Inflammation, v. 35, n. 2, p. 445-455, 2012.
NDABIGENGESERE, A.; NARASIAH, K. S.; TALBOT, B. G. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research, v. 29, n. 2, p. 703–710, 1995.
NWOSU, M.; OKAFOR, J. I. Preliminary studies of the antifungal activities of some medicial plants against Basidiobolus and some other pathogenic fungi. Mycoses, v. 38, p. 191–5, 1995.
OKUDA, T.; BAES, A. U.; NISHIJIMA, W.; OKADA, M. Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Research, v. 35, n. 2, p. 405–10, 2001.
ONYEKE, C. C.; AKUESHI, C. O. Infectivity and reproduction of Meloidogyne incognita (Kofoid and White) Chitwood on African yam bean, Sphenostylis stenocarpa (Hochst Ex. A. Rich) Harms accessions as influenced by botanical soil amendments. African Journal of Biotechnology, v. 11, n. 67, p. 13095–103, 2012.
PATIL, R. S.; GHORMADE, V.; DESHPANDE, M. V. Chitinolytic enzymes: An exploration. Enzyme and Microbial Technology, v. 26, n. 7, p. 473–483, 2000.
PEREIRA, M. L.; OLIVEIRA, H. D.; OLIVEIRA, J. T.; ROCHA, R.; SOUSA, D.; VASCONCELOS, I. M. Purification of a chitin-binding protein from Moringa oleifera seeds with potential to relieve pain and inflammation. Protein and Peptide Letters, v. 18, n. 11, p. 1078–1085, 2011.
PETERSEN, T. N.; BRUNAK S.; HEIJNE G.; NIELSEN, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, v. 8, n. 10, p. 785–786, 2011.
PFISTER, S.; BAYER, P.; KOEHLER, A.; HELLWEG, S. Projected water consumption in future global agriculture: scenarios and related impacts. The Science of the Total Environment, v. 409, n. 20, p. 4206–4216, 2011.
PRAPAGDEE, B.; KUEKULVONG, C.; MONGKOLSUK, S. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, v. 4, n. 5, p. 330–7, 2008.
RIZZELLO, C. G.; LAVECCHIA, A.; GRAMAGLIA, V.; GOBBETTI, M. Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. International Journal of Food Microbiology, v. 131, n. 2–3, p. 189–196, 2009.
ROCHA, M. F. G.; AGUIAR, F. L. N.; BRILHANTE, R. S. N. Extratos de Moringa oleifera e Vernonia sp. sobre Candida albicans e Microsporum canis isolados de cães e gatos e análise da toxicidade em Artemia sp. Ciência Rural, v. 41, n. 10, p. 1807–1812, 2011.
ROLIM, L. A.; MACEDO M. F.; SISENANDO, H. A.; NAPOLEÃO, T. H., FELZENSZWALB, I., AIUB, C. A.; COELHO, L. C.; MEDEIROS, S. R.; PAIVA, P. M. Genotoxicity evaluation of Moringa oleifera seed extract and lectin. Journal of Food Science, v. 76, n. 2, p. 56-58, 2011.
ROMEIS, J. RAYBOULD, A.; BIGLER, F.; CANDOLFI, M. P. HELLMICH, R. L.; HUESING, J. E.; SHELTON, A. M. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere, v.90, n. 3, p. 901-909, 2012.
SANTANA, C. R.; PEREIRA, D.F.; ARAUJO, N. A.; CAVALCANTI, E. B.; SILVA, G. F. Caracterização físico-química da moringa (Moringa oleifera Lam). Revista Brasileira de Produtos Agroindustriais, v. 12, n. 1, p. 55–60, 2010.
SIMOSSIS, V; KLEINJUNG, J; HERINGA, J. An overview of multiple sequence alignment, Current protocols in bioinformatics, pp. 3–7, 2003.
SOTRIFFER, C; FLADER, W; WINGER, R. H; RODE, B. M; LIEDL, K. R; VARGA, J. M. Automated docking of ligands to antibodies: methods and applications. Methods, v. 20, n. 3, p. 280–291, 2000.
SREELATHA, S.; JEYACHITRA, A.; PADMA, P. R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food and Chemical Toxicology, v. 49, n. 6, p. 1270–1275, 2011.
VICTORIA, G. C; BARRETO, M. L.; LEAL, M. C.; MONTEIRO, C. A., SCHMIDT, M. I.; PAIM, J; BASTOS, F. I; ALMEIDA, C; BAHIA, L; TRAVASSOS, C; REICHENHEIM, M; BARRO, F. C. Condições de saúde e inovações nas políticas de saúde no Brasil: O caminho a percorrer. Saúde no Brasil, p. 90-102, 2011.
VIERA, G. H. F; MOURÃO, J. A; ANGELO, A. M; COSTA, R. A; VIEIRA, R. H. S. F. Antibacterial effect (in vitro) of Moringa oleifera and Annona muricata against Gram positive and Gram negative bacteria. Revista do Instituto de Medicina Tropical de São Paulo, v. 52, n. 3, p. 129–132, 2010.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
1. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License (CC BY-NC 4.0), permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
2. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto posterior ao processo editorial.
4. Além disso, o AUTOR é informado e consente com a revista que, portanto, seu artigo pode ser incorporado pela DESAFIOS em bases e sistemas de informação científica existentes (indexadores e bancos de dados atuais) ou a existir no futuro (indexadores e bancos de dados futuros), nas condições definidas por este último em todos os momentos, que envolverá, pelo menos, a possibilidade de que os titulares desses bancos de dados possam executar as seguintes ações sobre o artigo:
a. Reproduzir, transmitir e distribuir o artigo, no todo ou em parte sob qualquer forma ou meio de transmissão eletrônica existente ou desenvolvida no futuro, incluindo a transmissão eletrônica para fins de pesquisa, visualização e impressão;
b. Reproduzir e distribuir, no todo ou em parte, o artigo na impressão.
c. Capacidade de traduzir certas partes do artigo.
d. Extrair figuras, tabelas, ilustrações e outros objetos gráficos e capturar metadados, legendas e artigo relacionado para fins de pesquisa, visualização e impressão.
e. Transmissão, distribuição e reprodução por agentes ou autorizada pelos proprietários de distribuidoras de bases de dados.
f. A preparação de citações bibliográficas, sumários e índices e referências de captura relacionados de partes selecionadas do artigo.
g. Digitalizar e / ou armazenar imagens e texto de artigo eletrônico.