Biorremediación de nutrientes de vinaza mediante el cultivo de la microalga Klebsormidium flaccidum y producción simultánea de biomasa con potencial económico
DOI:
https://doi.org/10.20873/jbb.uft.cemaf.v13n1.18757Palabras clave:
efluente, microalga, remediação, sustentabilidadeResumen
El etanol es una alternativa sostenible para la movilidad debido a su baja emisión de carbono. En Brasil, la producción de etanol de la caña de azúcar genera una gran cantidad de vinaza, cuyo principal uso en la fertirrigación causa impactos ambientales negativos. Este estudio tiene como objetivo cultivar la microalga Klebsormidium flaccidum utilizando vinaza como fuente de nutrientes, con el fin de remover nutrientes y producir simultáneamente biomasa de valor económico. Se probaron tres tratamientos con concentraciones de 10%, 20% y 30% de vinaza diluida, denominados T1, T2 y T3, respectivamente. Un cultivo utilizando Bold Basal Medium se consideró como control. Aunque los tratamientos resultaron en densidades celulares inferiores al control, hubo un aumento en la masa seca (MS) debido a la disponibilidad de nutrientes. Los pigmentos fotosintéticos (clorofila a y carotenoides) fueron inferiores en los tratamientos, pero las proteínas (T2 y T3: 8,72 ± 0,11% MS) aumentaron con la adición de vinaza. Los carbohidratos fueron más abundantes en la concentración más baja de vinaza (T1: 66,39% MS), mientras que los lípidos registraron el mayor valor entre los tratamientos en T1 (5,74% MS). Entre los ácidos grasos, se destacó la presencia elevada del ácido mirístico (T3: 164,4 µg g-1 MS) y el ácido palmítico (T2: 176,4 µg g-1 MS). K. flaccidum demostró una alta eficiencia en la eliminación de N-total y NH4+ (> 90%) en los tratamientos T2 y T3. Las mayores eliminaciones de P-total, su forma iónica PO4-3, y K también ocurrieron en estos tratamientos. Nuestros resultados destacan el potencial de K. flaccidum en la biorremediación de aguas residuales agrícolas, promoviendo una economía sostenible.
Palabras clave: alga, efluente, remediación, sostenibilidad.
Citas
American Public Health Association (APHA). Standard Methods for the Examination for Water and Wastewater. 22th ed. Washington, D.C.: AWWA, WPCF, 2012.
Beuckels A, Smolders E, Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, v. 77, p. 98-106, 2015.
https://doi.org/10.1016/j.watres.2015.03.018
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, v. 37, p. 911-917, 1959.
https://doi.org/10.1139/o59-099
Budiyono IS, Sumardiono S, Sasongko SB. Production of Spirulina platensis biomass using digested vinasse as culti-vation medium. Trends in Applied Sciences Research, v. 9, p. 93-102, 2014.
https://doi.org/10.3923/tasr.2014.93.102
Calixto CD, da Silva Santana JK, de Lira EB, Sassi PGP, Rosenhaim R, da Costa Sassi CF, da Conceição MM, Sassi R. Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Bioresource Technology, v. 221, p. 438–446, 2016. https://doi.org/10.1016/j.biortech.2016.09.066
Candido C, Bernardo A, Lombardi AT. Optimization and qualitative comparison of two vinasse pre-treatments aiming at microalgae cultivation. Engenharia Sanitária e Ambiental, v. 26, n. 2, p. 359-367, 2021.
https://doi.org/10.1590/S1413-415220190306
Candido C, Lombardi AT. The physiology of Chlorella vul-garis grown in conventional and biodigested treated vinas-ses. Algal Research, v. 30, p. 79-85, 2018.
https://doi.org/10.1016/j.algal.2018.01.005
Caporgno MP, Taleb A, Olkiewicz M, Font J, Pruvost J, Legrand J, Bengoa C. Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane. Algal Research, v. 10, p. 232–239, 2015.
https://doi.org/10.1016/j.algal.2015.05.011
Christofoletti CA, Escher JP, Correia JE, Marinho JF, Fonta-netti CS. Sugarcane vinasse: Environmental implications of its use. Waste Management, v. 33, n. 12, p. 2752–2761, 2013.
https://doi.org/10.1016/j.wasman.2013.09.005
Conceição GR, da Silva CS, do Vale TO, dos Santos JN, Matos JBTL, de Almeida PF, Chinalia FA. Culture opera-tional strategies for the production of methane and algal oil using ethanol vinasse effluent. Journal of Applied Phycolo-gy, v. 35, n. 5, p. 2135–2149, 2023. https://doi.org/10.1007/s10811-023-03019-7
Da Silva JC, Lombardi AT. Chlorophylls in Microalgae: Occurrence, Distribution, and Biosynthesis. In: Jacob-Lopes E, Queiroz MI, Zepka LQ (eds). Pigments from Microalgae Handbook. Springer Nature, Switzerland, p. 1-18, 2020.
https://doi.org/10.1007/978-3-030-50971-2
Delgado RT, Guarieiro MS, Antunes PW, Cassini ST, Terre-ros HM, Fernandes VO. Effect of nitrogen limitation on growth, biochemical composition, and cell ultrastructure of the microalga Picocystis salinarum. Journal of Applied Phy-cology v. 33, n. 4, p. 2083–2092, 2021.
https://doi.org/10.1007/s10811-021-02462-8
Engin IK, Cekmecelioglu D, Yücel AM, Oktem HA. Evalua-tion of heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05 on vinasse and its scale up for bio-diesel production. Bioresource Technology, v. 251, p. 128-134, 2018.
https://doi.org/10.1016/j.biortech.2017.12.023
Ferreira G, Fernandes D, Pinto LR, Tasic M, Maciel Filho R. Investigation of Desmodesmus sp. growth in photobioreac-tor using vinasse as a carbon source. Chemical Engineering Transactions, v. 65, p. 721-726, 2018.
https://doi.org/10.3303/CET1865121
Fogg GE, Thake B. Algal Cultures and Phytoplankton Ecolo-gy. The University of Wisconsin Press, London, 175p., 1987.
Franco-Morgado M, Amador-Espejo GG, Pérez-Cortés M, Gutiérrez-Uribe J.A. Microalgae and Cyanobacteria Poly-saccharides: Important Link for Nutrient Recycling and Re-valorization of Agro-Industrial Wastewater. Applied Food Research, v. 3, n. 100296, p. 1-11, 2023. https://doi.org/10.1016/j.afres.2023.100296
Fuess LT, Garcia ML, Zaiat M. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Science of The Total Environment, v. 634, p. 29–40, 2018.
https://doi.org/10.1016/j.scitotenv.2018.03.326
Grobbelaar JU. The microalgal cell with reference to mass cultures. Inorganic algal nutrition. In: Richmond A, Hu Q (eds). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Wiley-Blackwell, Oxford, p. 123-133, 2013.
https://doi.org/10.1002/9781118567166.ch8
Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M et al. Klebsormidium flaccidum genome reveals pri-mary factors for plant terrestrial adaptation. Nature Commu-nications, v. 5, p. 3978, 2014. https://doi.org/10.1038/ncomms4978
Jeffrey SW, Humphrey GF. New spectrophotometric equa-tions for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochemie und Physiologie der Pflanzen, v. 167, p. 191-194, 1975. https://doi.org/10.1016/S0015-3796(17)30778-3
Kadioglu A, Algur OF. Tests of media with vinasse for Chla-mydomonas reinhardtii for possible reduction in vinasse pollution. Bioresource Technology, v. 42, n. 1, p. 1-5, 1992. https://doi.org/10.1016/0960-8524(92)90080-H
Karsten U, Herburger K, Holzinger A. Photosynthetic plastici-ty in the green algal species Klebsormidium flaccidum (Streptophyta) from a terrestrial and a freshwater habitat. Phycologia, v. 56, n. 2, p. 213–220, 2016. https://doi.org/10.2216/16-85.1
Kochert G. Carbohydrate determination by phenol–sulfuric acid method. In: Hellebust JA, Craigie JS (eds). Handbook of Phycological Methods: Physiological and Biochemical Methods. Cambridge University Press, Cambridge, p. 95–97, 1978.
Kumar N, Banerjee C, Chang JS, Shukla P. Valorization of wastewater through microalgae as a prospect for generation of biofuel and high-value products. Journal of Cleaner Pro-duction, v. 362, p. 132114, 2022. https://doi.org/10.1016/j.jclepro.2022.132114
Liu J, Danneels B, Vanormelingen P, Vyverman W. Nutrient removal from horticultural wastewater by benthic filamen-tous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor algal turf scrubber (ATS). Water Research, v. 92, p. 61-68, 2016.
https://doi.org/10.1016/j.watres.2016.01.049
Liu J, Pemberton B, Lewis J, Scales PJ, Martin GJO. Wastewater treatment using filamentous algae – A review. Bioresource Technology, v. 298, p. 122556, 2020. https://doi. org/10.1016/j.biortech.2019.122556
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Bio-logical Chemistry, v. 193, n. 265–275, 1951. https://doi.org/10.1016/S0021-9258(19)52451-6
Lyra FH, Carneiro MTWD, Brandão GP, Pessoa HM, Castro EVR. Determination of Na, K, Ca and Mg in biodiesel sam-ples by flame atomic absorption spectrometry (F AAS) us-ing microemulsion as sample preparation. Microchemical Journal, v. 96, n. 1, p. 180-185, 2010. https://doi.org/10.1016/j.microc.2010.03.005
Markou G, Vandamme D, Muylaert K. Microalgal and cyano-bacterial cultivation: The supply of nutrients. Water Rese-arch, v. 65, p. 186–202, 2014. https://doi.org/10.1016/j.watres.2014.07.025
Marques SSI, Nascimento IA, de Almeida PF, Chinalia FA. Growth of Chlorella vulgaris on sugarcane vinasse: The ef-fect of anaerobic digestion pretreatment. Applied Biochemis-try and Biotechnology, v. 171, p. 1933-1943, 2013. https://doi.org/10.1007/s12010-013-0481-y
Mitra D, Van Leeuwen J., Lamsal B. Hetero-trophic/mixotrophic cultivation of oleaginous Chlorella vul-garis on industrial co-products. Algal Research, v. 1, n. 1, p. 40-48, 2012. https://doi.org/10.1016/j.algal.2012.03.002
Montoya T, Gómez J, Mariano M, Jara E, Carrasco N, Tara-zona R et al. Comunidades aereoterrestres de la microalga Klebsormidium (Klebsormidiophyceae, Streptophyta) en costras biológicas del desierto costero peruano. Arnaldoa, v. 26, n. 3, p. 1105-1124, 2019. https://doi.org/10.22497/arnaldoa.263.26317
Oliveira O, Gianesella S, Silva V, Mata T, Caetano N. Lipid and carbohydrate profile of a microalga isolated from was-tewater. Energy Procedia, v. 136, p. 468–473, 2017. https://doi.org/10.1016/j.egypro.2017.10.305
Patel AK, Vadrale AP, Singhania RR, Michaud P, Pandey A, Chen, SJ. et al. Algal polysaccharides: current status and future prospects. Phytochemistry Reviews, v. 22, p. 1167–1196, 2023.
doi:10.1007/s11101-021-09799-5
Ramirez NNV, Farenzena M, Trierweiler JO. Growth of microalgae Scenedesmus sp. in ethanol vinasse. Brazilian Archives of Biology and Technology, v. 57, n. 5, p. 630-635, 2014.
https://doi.org/10.1590/S1516-8913201401791
Renewable Fuels Association (RFA). Annual Ethanol Produc-tion. Washington, D.C.: RFA, 2024. Available at: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production. Accessed on: Feb. 20, 2024.
Rodrigues DB, Flores EMM, Barin JS, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Re-search International, v. 65, p. 144–148, 2014. https://doi.org/10.1016/j.foodres.2014.06.037
Santana H, Cereijo CR, Teles VC, Nascimento RC, Fernandes MS, Brunale P. et al. Microalgae cultivation in surgacane vinasse: Selection, growth and biochemical characterization. Bioresource Technology, v. 228, p. 133-140, 2017.
https://doi.org/10.1016/j.biortech.2016.12.075
Santos RR, Araújo ODQF, Medeiros JL, Chaloub RM. Culti-vation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresource Technology, v. 204, p. 38-48, 2016.
https://doi. org/10.1016/j.biortech.2015.12.077
Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF. Microalgae metabolites: A rich source for food and medi-cine. Saudi Journal of Biological Sciences, v. 26, n. 4, p. 709–722, 2019.
https://doi.org/10.1016/j.sjbs.2017.11.003
Silva AS, Griebeler NP, Borges LC. Uso de vinhaça e impac-tos nas propriedades do solo e lençol freático. Revista Brasi-leira de Engenharia Agrícola e Ambiental, v.11, n.1, p. 108-114, 2007.
https://doi.org/10.1590/S1415-43662007000100014
Singh AK, Sharma N, Farooqi H, Abdin MZ, Mock T, Kumar S. Phycoremediation of municipal wastewater by microalgae to produce biofuel. International Journal of Phytoremedia-tion, v. 19, n. 9, p. 805-812, 2017. https://doi.org/10.1080/15226514.2017.1284758
Siqueira JC, Braga MQ, Ázara MS, Garcia KJ, Alencar SNM, Ramos TS, Siniscalchi LAB, Assemany PP, Ensinas AV. Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations. Renewable and Sustainable Energy Reviews, v. 155, p. 111904, 2022. https://doi.org/10.1016/j.rser.2021.111904
Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Com-mercial application of microalgae. Journal of Bioscience and Bioengineering, v. 101, n. 2, p. 87–96, 2006. https://doi.org/10.1263/jbb.101.87
Stein J. Handbook of Phycological methods. Culture methods and growth measurements. Cambridge University Press, 448 p., 1973.
Strickland JDH, Parsons TR. A practical handbook of sea-water analysis. Bulletin of the Fisheries Research Board of Canada, Ottawa, 310p., 1972.
Syaichurrozi I, Jayanudin J. Effect of tofu wastewater addition on the growth and carbohydrate-protein-lipid content of Spirulina platensis. International Journal of Engineering, v. 30, n. 11, p. 1631–1638, 2017. https://doi.org/10.5829/ije.2017.30.11b.02
Tawfik A, Ismail S, Elsayed M, Qyyum MA, Rehan M. Sus-tainable microalgal biomass valorization to bioenergy: key challenges and future perspectives. Chemosphere, v. 296, p. 133812, 2022.
https://doi.org/10.1016/j.chemosphere.2022.133812
Valderrama LT, Del Campo CM, Rodriguez CM, de Bashan LE, Bashan Y. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlo-rella vulgaris and the macrophyte Lemna minuscula. Water Research, v. 36, n. 17, p. 4185-4192, 2002. https://doi.org/10.1016/S0043-1354(02)00143-4
Wang Y, Guo W, Yen HW, Ho SH, Lo YC, Cheng CL, Ren N, Chang JS. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, v. 198, p. 619-625, 2015. https://doi.org/10.1016/j.biortech.2015.09.067
Zhang L, Cheng J, Pei H, Pan J, Jiang L, Hou Q et al. Cultiva-tion of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renewable Energy, v. 115, p. 276-287, 2018. https://doi.org/10.1016/j.renene.2017.08.034
Zheng S, He M, Jiang J, Zou S, Yang W, Zhang Y et al. Effect of kelp waste extracts on the growth and lipid accu-mulation of microalgae. Bioresource Technology, v. 201, p. 80–88, 2016. https://doi.org/10.1016/j.biortech.2015.11.038
Znad H, Al Ketife AMD, Judd S, AlMomani F, Vuthaluru, HB. Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecological Engineering, v. 110, p. 1-7, 2018.

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Ronald Tarazona Delgado, Mayara dos Santos Guarieiro, Frederico Pacheco Militão, Valéria de Oliveira Fernandes

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Copyright (c) 2024 - Journal of Biotechnology and Biodiversity
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.
Los autores que publican en esta revista aceptan los siguientes términos:
Los autores mantienen los derechos autorales y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la LicenciaCreative Commons Attribution (CC BY 4.0 en el link http://creativecommons.org/licenses/by/4.0/) que permite compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
Los autores tienen autorización para asumir contratos adicionales separadamente, para distribución no exclusiva de la versión del trabajo publicado en esta revista (ej.: publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
A los autores se les permite, y son estimulados, a publicar y distribuir su trabajo online (ej.: en repositorios institucionales o en su página personal) en cualquier punto antes o durante el proceso editorial, ya que esto puede generar alteraciones productivas, bien como aumentar el impacto y la citación del trabajo publicado (disponible en El Efecto del Acceso Libre en el link http://opcit.eprints.org/oacitation-biblio.html).