Potencial biotecnológico de fungos endofiticos isolados de Clitoria gianensis

Autores

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v12n2.17691

Palavras-chave:

fungos endossimbiontes , vergateza, antagonismo, atividade alelopática

Resumo

A biodiversidade de fungos endofíticos na região do cerrado no Norte do Brasil permanece pouco explorada, portanto, é importante explorar o potencial biotecnológico desses endófitos. Neste estudo, foram isoladas dezessete cepas de fungos endofíticos da planta medicinal Clitoria guianensis e foi testado sua capacidade de inibir três fungos fitopatogênicos: Fusarium oxysporum, Bipolaris oryzae e Curvularia lunata. O ensaio antagônico in vitro foi avaliado em diferentes escalas de tempo (seis e doze dias), observamos que todas as cepas de fungos endofíticos, isoladas de C. guianenses, inibiram o crescimento de F. oxysporum e B. oryzae após seis dias, para C. lunata apenas dez cepas inibiram seu crescimento nos primeiros seis dias. Em doze dias de ensaio apenas as cepas CGF1, CGF3 e CGF4 inibiram o crescimento de F. oxysporum, enquanto para os demais fungos fitopatogênicos a inibição não foi observada.  Os fungos endofíticos foram cultivados em ambiente controlado utilizando meio de batata dextrose (PDB) e os extratos brutos foram obtidos pela extração da cultura do fungo com acetato de etila (AcOEt). Todos os extratos brutos apresentaram atividade antioxidante, avaliada pelo método de 2,2 difenil-1-picrilhidrazil (DPPH). Adicionalmente, quatro concentrações diferentes (C100, C500, C1000 e C2000) dos extratos brutos foram avaliados no ensaio alelopático in vitro utilizando sementes de Lactuca sativa. Alguns extratos fúngicos demonstraram efeitos alelopáticos inibindo o crescimento de plântulas de Lactuca sativa, como por exemplo o extrato bruto obtido da cepa CGF7 na concentração de C2000 inibiu o desenvolvimento das radículas em 75,2%. Enquanto outros atuaram como promotores de crescimento, como é o caso do extrato bruto da cepa CGF10 que contribuiu para o crescimento da radícula de alface em 15,9% em C2000. De modo geral, estes achados sugerem que os fungos endofíticos associados a C. guianensis possuem significativo potencial biotecnológico, podendo ser utilizados como agentes de biocontrole contra fitopatógenos e plantas daninhas, além de promotores de crescimento, tornando-os ferramentas valiosas para a agricultura sustentável.

Referências

Araujo WL, Lacava PT, Marcon J, Lima AOS, Sobral JK, Pizzirani-Kleiner AA, Azevedo JL. Guia prático: isolamento e caracterização de microrganismos endofíticos. Piracicaba: CALO, p.167, 2010.

Behie SW, Bidochka JM. Potential agricultural benefits through biotechnological manipulation of plant fungal asso-ciations. BioEssays, v. 35, n. 4, p. 328–331, 2013. https://doi.org/10.1002/bies.201200147

Bell DK, Wells HD, Markham CR. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, v. 72, p. 379–82, 1982.

Chapla VM, Biasetto CR, Araujo AR. Endophytic fungi: An unexplored and sustainable source of new and bioactive nat-ural products. Revista Virtual de Química, v. 5, n. 3, p. 421–437, 2013.

https://doi.org/10.5935/1984-6835.20130036.

Chen JL, Shi ZS, Cui PM, Kai W, Chen YW et al. Endophytic Trichoderma gamsii YIM PH30019: A promising biocon-trol agent with hyperosmolar, mycoparasitism, and antago-nistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. Journal of Ginseng Research, v. 40, n. 4, p. 315–324, 2016. https://doi.org/10.1016/j.jgr.2015.09.006.

Cunha CL, Siebeneichler SC, Nascimento IR, Holzbach JC. A New Isoflavone and Other Constituents from Roots of Cli-toria guianensis. Journal of the Brazilian Chemical Society, v. 31, n. 8, p. 1753–1757, 2020. https://doi.org/10.21577/0103-5053.20200061.

Dai CC, Gao FK, Liu, XZ. Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiology Research, v. 4, n.13, p. 1346–51, 2010.

Dantas SBS, Alves FAM, Chapla VM. Chemical, diversity, and biotechnological potential of endophytic fungi isolated from Brazilian Cerrado plants. Biota Neotropica, v. 21, n. 2, 2021.

https://doi.org/10.1590/1676-0611-bn-2020-1069

Ferreira DF Sisvar: a guide for its bootstrap procedure in multiple comparisons. Ciência e Agrotecnologia, v. 38, p. 109-112, 2014.

Francisco ASS, Carlos, AVZ. The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, v. 11, n. 39, p. 3733–40, 2016.

doi: 10.5897/ajar2016.11522.

Grabka R, D’entremont TW, Adam, SJ, Walker AK, Tanney JB, Abbasi PA, Ali S. Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants, v. 11, n. 3, p. 384, 2022. https://doi.org/10.3390/plants11030384

Hamzah TNT, Lee SY, Hidayat A, Terhem R, Faridah-Hanum I, Mohamed R. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhi-zophora mucronata, and identification of potential antago-nists against the soil-borne fungus, Fusarium solani. Fron-tiers in Microbiology, v. 15, n. 9, p. 1705, 2018. https://doi.org/10.3389/fmicb.2018.01707.

Huang LQ, Ni, Y, Su L, Deng H, Lyu H. The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. Microbiological Research, v. 231, 2020.

https://doi.org/10.1016/j.micres.2019.126369

Huang WY, Cai YZ, Hyde KD, Corke H, Sun M. Endophytic fungi from Nerium oleander L (Apocynaceae): Main con-stituents and antioxidant activity. World Journal of Microbi-ology and Biotechnology, v. 23, n. 9, p. 1253–63, 2007. doi: 10.1007/s11274-007-9357-z.

Khamare Y, Chen J, Marble SC. Allelopathy and its appli-cation as a weed management tool: A review. Frontiers in Plant Science, v. 28, n. 13, p. 1034649, 2022. https://doi.org/10.3389/fpls.2022.1034649.

Khare E, Mishra J, Arora NK. Multifaceted interactions be-tween endophytes and plant: Developments and Prospects. Frontiers in Microbiology, v. 15, n. 9, p. 2732, 2018. https://doi.org/10.3389/fmicb.2018.02732.

Latif S, Chiapusio G, Weston LA. Allelopathy and the Role of Allelochemicals in Plant Defence. Advances in Botanical Research, v. 82, p. 19–54, 2017. https://doi.org/10.1016/bs.abr.2016.12.001.

Llauradó MG, Rodríguez DM, Hendrix S, Arranz JCE, Boix YF, Pacheco AO, Díaz JG, Quevedo HJM, Dubois AF, Aleman EI, Beenaerts N, Santos IEM, Ratón TO, Cos P, Cuypers A. Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiver-sity in Cuba. Antioxidants, v. 9, n. 11, p. 1–39, 2020. doi: 10.3390/antiox9111048.

Lopes JC, Chagas Junior AF, Neves ACC, Chapla VM, Batistella AR. Fungos endofíticos isolados do capim citro-nela e seleção de antagonistas a fitopatógenos. Biota Ama-zônica, v. 7, n. 3, p. 84–88, 2017.

https://doi.org/10.18561/2179-5746/biotaamazonia.v7n3p84-88

Manganyi MC, Ateba CN. Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biologi-cal applications. Microorganisms, v. 8, n. 12, p.1934, 2020.

https://doi.org/10.3390/microorganisms8121934.

Mishra A, Surendra KG, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN. Season and Tissue Type Affect Fungal Endophyte Communities of the Indian Medicinal Plant Tinospora cordifolia More Strongly than Geographic Location. Microbial Ecology, v. 64, n. 2, p. 388–98, 2012. doi: 10.1007/s00248-012-0029-7.

Oliveira RJV, Sousa NMF, Pinto Neto WPP, Bezerra JL, Silva GA, Cavalcanti, MAQ. Seasonality affects the com-munity of endophytic fungi in coconut (Cocos nucifera) crop leaves. Acta Botanica Brasilica, v. 34, n. 4, p. 704–11, 2020.

doi: 10.1590/0102-33062020abb0106.

Pereira JC, Paulino CLA, Endres L, Santana AEG, Pereira FRS, Souza RC. Allelopathic potential of ethanolic extract and phytochemical analysis of Paspalum maritimum trind. Planta Daninha, v. 37, 2019. https://doi.org/10.1590/S0100-83582019370100053

Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, Marostica Junior MR. Fungal growth promotor endophytes: A pragmatic approach towards sustainable food and agricul-ture. Symbiosis, v. 62, n. 2, p. 63–79, 2014. https://doi.org/10.1007/s13199-014-0273-3.

Ribeiro BA, Mata TB, Canuto GAB, Silva EO. Chemical Diversity of Secondary Metabolites Produced by Brazilian Endophytic Fungi. Current Microbiology, v. 78, n. 1, p. 33–54, 2021.

https://doi.org/10.1007/s00284-020-02264-0

Sadeghi F, Samsampour D, Seyahooei MA, Bagheri A, Soltani J. Diversity and Spatiotemporal Distribution of Fun-gal Endophytes Associated with Citrus reticulata cv. Si-yahoo. Current Microbiology, v. 76, n. 3, p. 279–89, 2019.

doi: 10.1007/s00284-019-01632-9.

Santos CM, Ribeiro AS, Garcia A, Polli AD, Polonio JC, Azevedo JL, Pamphile JÁ. Enzymatic and antagonist activi-ty of endophytic fungi from Sapindus saponaria L. (Sapin-daceae). Acta Biológica Colombiana, v. 24, n. 2, p. 322–30, 2019.

doi: 10.15446/abc.

Santos TT, Varavallo MA. Aplicação de microrganismos endofíticos na agricultura e na produção de substâncias de interesse econômico. Semina: Ciências Biológicas e da Saú-de, v. 32, n. 2, p. 199–212, 2011.

doi: 10.5433/1679-0367.2011v32n2p199.

Silva-Valderrama I, Toapanta D, Miccono MA, Lolas M, Díaz GA, Cantu D, Castro A. Biocontrol potential of Grapevine endophytic and Rhizospheric Fungi against trunk pathogens. Frontiers in Microbiology, v. 11, p. 1–13, 2021.

doi: 10.3389/fmicb.2020.614620.

Simões-Pires CA., Queiroz EF, Henriques AT, Hostettmann K. Isolation and on-line identification of antioxidant com-pounds from three Baccharis species by HPLC-UV-MS/MS with post-column derivatization. Phytochemical Analysis, v. 16, p. 307–14, 2005. https://doi.org/10.1002.pca.826.

Singh DK, Sharma VK, Kumar J, Mishra A, Verma SK, Sieber TN, Kharwar RN. Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn.f.: Spatiotemporal and tissue type effects. Scientific Reports, v. 7, n. 1, 2017. doi: 10.1038/s41598-017-03933-0.

Soares DF. Análise química e biológica dos extratos brutos, hexânico e acetato de etila obtidos das folhas da espécie Cli-toria guianensis Benth. 2016. Monografia (Química Ambi-ental). Universidade Federal do Tocantins, Gurupi.

Souza BS, Santos TT. Endophytic fungi in economically important plants: ecological aspects, diversity and potential biotechnological applications. Journal of bioenergy and food Science, v. 4, n. 2, p. 113–26, 2017.

doi: 10.18067/jbfs.v4i2.121.

Souza CD, Felfili JM. Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil. Acta Botânica Brasilica, v. 20, p. 135–142, 2006.

Strobel G. The emergence of endophytic microbes and their biological promise. Journal of Fungi, v. 4, n. 2, 2018.

doi: 10.3390/jof4020057.

Vila Verde GM, Paula JR, Carneiro DM. Levantamento et-nobotânico das plantas medicinais do cerrado utilizadas pela população de Mossâmedes (GO). Revista Brasileira de Farmacognosia, v. 13, p. 64–66, 2003.

Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao G. Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology, v. 103, n. 8, p. 3327–40, 2019.

https://doi.org/0.1007/s00253-019-09713-2.

Journal of Biotechnology and Biodiversity

Downloads

Publicado

03-06-2024

Como Citar

Ferraz, L. F., Miranda, L. R. L. S., Moraes, G. K. A., Chagas Junior, A. F., & Chapla, V. M. (2024). Potencial biotecnológico de fungos endofiticos isolados de Clitoria gianensis. Journal of Biotechnology and Biodiversity, 12(2), 82–91. https://doi.org/10.20873/jbb.uft.cemaf.v12n2.17691

Artigos mais lidos pelo mesmo(s) autor(es)