Plant growth-promoting traits in soil yeasts from Brazilian natural ecosys-tems
DOI:
https://doi.org/10.20873/jbb.uft.cemaf.v13n1.18788Palabras clave:
indole-3-acetic acid, bioinputs, unicellular fungi, phosphate solubilization, biocontrolResumen
Soil yeasts are known to be abundant and diverse inhabitants in natural ecosystems and may also play a role as plant growth promoters. To the best of our knowledge, the use of soil yeasts from natural ecosystems as plant growth-promoting agents has yet to be extensively investigated in South America. This study aimed to analyze the plant growth-promoting traits in soil yeasts from natural and revegetated ecosystems. Indole acetic acid production was evaluated in a DF medium using L-tryptophan as a precursor and quantified by Salkowski's method. Siderophore production was assessed using the Chrome Azurol S method. Phosphate solubilization was evaluated on Pikovskaya agar containing aluminum and tricalcium phosphates. The biocontrol activity of phytopathogenic fungi was evaluated by pairing cultures in PDA. In total, 52 isolates presented positive results, representing 17 yeast species. Rhodotorula spp. were the best Indole-3-acetic acid producers and showed siderophore-producing capacity. Wickerhamomyces anomalus and Meyerozyma guilliermondii strains exhibited phosphate solubilizing activity. Eight species exhibited antagonistic effects against Fusarium oxysporum. The Candida insectorum, W. anomalus and Rh. mucilaginosa strains proved to be promising for future investigations. Our study results highlight the potential use of soil yeasts as potential plant growth-promoting agents.
Citas
Ahmed E, Holmström SJM. Siderophores in environmental research: Roles and applications. Microbial Biotechnology, v. 7, n. 3, p. 196–208, 2014.
https://doi.org/10.1111/1751-7915.12117
Al-Falih AM. Phosphate Solubilization in Vitro By Some Soil Yeasts. Qatar University Sciences Journal, v. 25, p. 119–125, 2005.
Amprayn K, Rose MT, Kecskés M, Pereg L, et al. Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Applied Soil Ecology, v. 61, p. 295–299, 2012. https://doi.org/10.1016/j.apsoil.2011.11.009
Berg G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorgan-isms in agriculture. Applied Microbiology and Biotechnolo-gy, v. 84, n. 1, p. 11–18, 2009. https://doi.org/10.1007/s00253-009-2092-7
Bernales M, Monsalve L, Ayala-Raso A, Valdenegro M, et al. Expression of two indole-3-acetic acid (IAA)-amido synthe-tase (GH3) genes during fruit development of raspberry (Rubus idaeus Heritage). Scientia Horticulturae, v. 246, p. 168–175, 2019.
https://doi.org/10.1016/j.scienta.2018.09.077
Bispo RLB, Ceccato-Antonini SR, Tosta CD, Fontanetti A, Prado, et al. Sugarcane molasses as substrate to soil yeasts: Indole-3-acetic acid production and maize initial growth promotion. Biocatalysis and Agricultural Biotechnology, v. 47, 2023.
https://doi.org/10.1016/j.bcab.2023.102618
Botha A. The importance and ecology of yeasts in soil. Soil Biology and Biochemistry, v. 43, n. 1, p. 1–8, 2011. https://doi.org/10.1016/j.soilbio.2010.10.001
Bright JP, Karunanadham K, Maheshwari HS, Karuppiah EAA, et al. Seed-Borne Probiotic Yeasts Foster Plant Growth and Elicit Health Protection in Black Gram (Vigna mungo L.). Sustainability, v. 14, n. 4618, 2022. https://doi.org/10.3390/su14084618
Calvente V, Orellano ME, Sansone G, Benuzzi D, Tosetti MIS, et al. Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, v. 26, n. 4, p. 226–229, 2001.
doi: 10.1038/sj.jim.7000117.
Chen Y, Xi J, Xiao M, et al. Soil fungal communities show more specificity than bacteria for plant species composition in a temperate forest in China. BMC Microbiology, v. 22, n. 208, 2022.
https://doi.org/10.1186/s12866-022-02591-1
Coda R, Rizzello CG, Cagno RD, Trani A. et al. Antifungal activity of Meyerozyma guilliermondii: Identification of ac-tive compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Mi-crobiology, v. 33, n. 2, p. 243–251, 2013. https://doi.org/10.1016/j.fm.2012.09.023
de-Bashan LE, Hernandez JP, Bashan Y. The potential contri-bution of plant growth-promoting bacteria to reduce envi-ronmental degradation – A comprehensive evaluation. Ap-plied Soil Ecology, v. 61, p. 171–189, 2012. https://doi.org/10.1016/j.apsoil.2011.09.003
Dell’Amico E, Cavalca L, Andreoni V. Analysis of rhizobac-terial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, poten-tially plant growth-promoting bacteria. FEMS Microbiology Ecology, v. 52, p. 153–162, 2006. https://doi.org/10.1016/j.femsec.2004.11.005
El-Mehalawy A. The rhizosphere yeast fungi as biocontrol agents for wilt disease of kidney bean caused by Fusarium oxysporum. International Journal of Agriculture and Biolo-gy, p. 310–316, 2004.
El-Mehalawy AA, Hassanein NM, Youssef YA, Karam Kl-Din, et al. Influence of maize root colonization by the rhizo-sphere actinomycetes and yeast fungi on plant growth and on the biological control of late wilt disease. International Journal of Agriculture and Biology, v. 6, n. 4, p. 599–605, 2004.
El-Tarabily KA, Sivasithamparam K. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience, v. 47, n. 1, p. 25–35, 2006.
https://doi.org/10.1007/S10267-005-0268-2
El-Tarabily KA. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. Journal of Applied Microbiology, v. 96, n. 1, p. 69–75, 2004.
https://doi.org/10.1046/j.1365-2672.2003.02043.x
Fernández de Ullivarri M, Mendoza LM, Raya RR. Character-ization of the killer toxin KTCf20 from Wickerhamomyces anomalus, a potential biocontrol agent against wine spoilage yeasts. Biological Control, v. 121, p. 223–228, 2018. https://doi.org/10.1016/j.biocontrol.2018.03.008
Firrincieli A, Otillar R, Salamov A, Schmutz J. et al. Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Frontiers in Microbiology, v. 6, p. 6–11, 2015.
https://doi.org/10.3389/fmicb.2015.00978
Fu SF, Sun PF, Lu HY, Wei JY, et al. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biology, v. 120, n. 3, p. 433–448, 2016.
https://doi.org/10.1016/j.funbio.2015.12.006
Gastauer M, Souza Filho PWM, Ramos SJ, Caldeira CF, et al. Mine land rehabilitation in Brazil: Goals and techniques in the context of legal requirements. Ambio, v. 1, p. 1-16, 2018. doi: 10.1007/s13280-018-1053-8.
Gordon SA, Weber RP. Colorimetric estimation of indoleace-tic acid. Plant Physiology, v. 26, p. 192–195, 1951. https://doi.org/10.1104/pp.26.1.192
Grzegorczyk M, Żarowska B, Restuccia C, Gabriella Cirvilleri G, et al. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Food Microbiology, v. 61, p. 93–101, 2017. https://doi.org/10.1016/j.fm.2016.09.005
He Y, Hou XY, Li CX, Wang, Y, Ma XR. Soil Microbial Communities Altered by Titanium Ions in Different Agroe-cosystems of Pitaya and Grape. Microbiology Spectrum, v. 10, n. 1, 2022.
https://doi.org/10.1128/spectrum.00907-21
Hesham A, Mohamed H. Molecular genetic identification of yeast strains isolated from egyptian soils for solubilization of inorganic phosphates and growth promotion of corn plants. Journal of Microbiology and Biotechnology, v. 21, p. 55–61, 2011.
https://doi.org/10.4014/jmb.1006.06045
Ignatova LV, Brazhnikova YV, Berzhanova RZ, Mukasheva TD. Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil. Microbiological Research, v. 175, p. 78–83, 2015.
https://doi.org/10.1016/j.micres.2015.03.008
Kaszycki P, Czechowska K, Petryszak P, Miedzobrodzki J, et al. Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environ-mental biotechnology. Acta Biochimica Polonica, v. 53, n. 3, p. 463–473, 2006.
Kumla J, Nundaeng S, Suwannarach N, Lumyong S. Evalua-tion of Multifarious Plant Growth Promoting Trials of Yeast Isolated from the Soil of Assam Tea (Camellia sinensis var. assamica) Plantations in Northern Thailand. Microorgan-isms, v. 8, n. 1168, 2020.
https://doi.org/10.3390/microorganisms8081168
Limtong S, Koowadjanakul N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World Jour-nal of Microbiology and Biotechnology, v. 28, n. 12, p. 3323–3335, 2012.
https://doi.org/10.1007/s11274-012-1144-9
Liu Bin, Ji S, Zhang H, Wang Y, Liu Z. Isolation of Tricho-derma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Micro-biological Research, v. 235, 2020. https://doi.org/10.1016/j.micres.2020.126445
Liu W, Wang B, Wang Q, Hou J, et al. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola. Environmental Science and Pollution Re-search, v. 23, p. 18621–18629, 2016. https://doi.org/10.1007/s11356-016-7041-2
Manici LM, Caputo F, Castellini M, et al. Binucleate Rhi-zoctonia sp. AG-A, indigenous plant-growth promoting fungus in semi-arid Mediterranean soils. Plant Soil, v. 483, p. 379–393, 2023.
https://doi.org/10.1007/s11104-022-05749-y
Millan A, Fernandez-San I, Farran L, Larraya M, et al. Plant growth-promoting traits of yeasts isolated from Spanish vineyards: benefits for seedling development. Microbiologi-cal Research, v. 237, 2020.
https://doi.org/10.1016/j.micres.2020.126480
Moreira GAM, Mangaravite E, Vieira NM, Silveira FA, et al. Yeast species and strains differing along an altitudinal gradi-ent in the Brazilian forest domain. Revista Brasileira de Ci-ência do Solo, v. 44, 2020.
https://doi.org/ 10.36783/18069657RBCS20200033
Moreira GAM, Vale HMM. Occurrence of yeast species in soils under native and modified vegetation in an iron mining area. Revista Brasileira de Ciência do Solo, v. 42, p. 1–15, 2018.
https://doi.org/10.1590/18069657rbcs20170375
Moreira, GAM, Vale HMM. Soil Yeast Communities in Revegetated Post-Mining and Adjacent Native Areas in Central Brazil. Microorganisms, v. 8, n. 8, 2020. https://doi.org/10.3390/microorganisms8081116
Mukherjee S, Sen SK. Exploration of novel rhizospheric yeast isolate as fertilizing soil inoculant for improvement of maize cultivation. Journal of the Science of Food and Agriculture, v. 95, n. 7, p. 1491-1499, 2014. https://doi.org/10.1002/jsfa.6848
Nakayan, P. et al. Phosphate-solubilizing soil yeast Meyero-zyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant and Soil, v. 373, n. 1, p. 301–315, 2013. https://doi.org/10.1007/s11104-013-1792-z
Nassar AH, El-Tarabily KA, Sivasithamparam K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biology and Fertility of Soils, v. 42, n. 2, p. 97–108, 2005.
https://doi.org/10.1007/s00374-005-0008-y
Natarajan S, Balachandar D, Senthil N, Velazhahan R, Para-nidharan V. Volatiles of antagonistic soil yeasts inhibit growth and aflatoxin production of Aspergillus flavus. Mi-crobiology Research, v. 263, 2022. https://doi.org/10.1016/j.micres.2022.127150
Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biology, v. 118, n. 8, p. 683–694, 2014. https://doi.org/10.1016/j.funbio.2014.04.010
Quadros PD, Zhalnina K, Davis-Richardson AG, Drew JC, et al. Coal mining practices reduce the microbial biomass, rich-ness and diversity of soil. Applied Soil Ecology, v. 98, p. 195-203, 2015.
https://doi.org/10.1016/j.apsoil.2015.10.016
Rafi MM, Krishnaveni MS, Charyulu PBBN. Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. Elsevier Inc. p. 223-233, 2019.
Rao RP, Hunter A, Kashpur O, Normanly J. Aberrant synthe-sis of indole-3-acetic acid in Saccharomyces cerevisiae trig-gers morphogenic transition, a virulence trait of pathogenic fungi. Genetics, v. 185, n. 1, p. 211–220, 2010. doi: 10.1534/genetics.109.112854.
Ribeiro CM, Jurandy E, Nogueira B. Isolation, selection and characterization of root-associated growth promoting bacte-ria in Brazil Pine (Araucaria angustifolia). Microbiological Research, v. 167, n. 2, p. 69–78, 2012. https://doi.org/10.1016/j.micres.2011.03.003
Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, v. 321, n. 1, p. 305–339, 2009. https://doi.org/10.1007/s11104-009-9895-2
Saha M, Sarkar S, Sarkar B, Bipin Kumar Sharma BK, et al. Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, v. 23, n. 5, p. 3984–3999, 2016.
https://doi.org/10.1007/s11356-015-4294-0
Saharan BS, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, p. 1–30, 2011.
Santos JV, Varón-López M, Soares CRFS, Leal PL, et al. Biological attributes of rehabilitated soils contaminated with heavy metals. Environmental Science and Pollution Re-search, v. 23, n. 7, p. 6735–6748, 2016. https://doi.org/10.1007/s11356-015-5904-6
Sarabia M, Jakobsen I, Grønlund M, Carreon-Abud Y, Larsen J. Rhizospere yeasts improve P uptake of a maize arbuscular mycorrhizal association. Applied Soil Ecology, v. 125, p. 18-25, 2017.
https://doi.org/10.1016/j.apsoil.2017.12.012
Shah S, Shrestha R, Maharjan S, Selosse M-A, Pant B. Isola-tion and characterization of plant growth-promoting endo-phytic fungi from the roots of Dendrobium moniliforme. Plants, v. 8, n. 1, 2018. https://doi.org/10.3390/plants8010005
Silambarasan S, Logeswari P, Cornejo P, Kannan VR. Evalua-tion of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. International Journal of Biological Mac-romolecules, v. 121, p. 55–62, 2019. https://doi.org/10.1016/j.ijbiomac.2018.10.016
Silva AO, Costa AM, Teixeira AFS, Guimarães AA, et al. Soil microbiological attributes indicate recovery of an iron mining area and of the biological quality of adjacent phyto-physiognomies. Ecological Indicators, v. 93, p. 142–151, 2018. https://doi.org/10.1016/j.ecolind.2018.04.073
Sperandio EM, Vale, HMM, Moreira GAM. Yeasts from native Brazilian Cerrado plants: Occurrence, diversity and use in the biocontrol of citrus green mould. Fungal Biology, v. 119, n. 11, p. 984–993, 2015.
https://doi.org/10.1016/j.funbio.2015.06.011
Streletskii RA, Kachalkin AV, Glushakova AM, DeminVV, Chernov IY. Quantitative determination of indole-3-acetic acid in yeasts using high performance liquid chromatog-raphy—tandem mass spectrometry. Microbiology, v. 85, n. 6, p. 727–736, 2016. https://doi.org/10.1134/S0026261716060187
Sun PF, Fang WT, Shin LY, Wei JY, et al. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS ONE, p. 1–22, 2014. https://doi.org/10.1371/journal.pone.0114196
Syed S, Prasad Tollamadugu NVKV. Role of plant growth-promoting microorganisms as a tool for environmental sus-tainability. In Recent Developments in Applied Microbiolo-gy and Biochemistry. Elsevier Inc., p. 209–222, 2019.
Targino HML, Silva VSL, Escobar IEC, Ribeiro PRA, et al. Maize-associated Meyerozyma from the Brazilian semiarid region are effective plant growth-promoting yeasts. Rhizos-phere, v. 22, 2022.
doi.org/10.1016/j.rhisph.2022.100538.
Tenório DA, Medeiros EV, Lima CS, Silva JM, et al. Biologi-cal control of Rhizoctonia solani in cowpea plants using yeast. Tropical Plant Pathology, v. 44, p. 113–119, 2019. https://doi.org/10.1007/s40858-019-00275-2
Thavamani P, Samkumar RA, Satheesh V, Subashchan-drabose SR, et al. Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. Envi-ronmental Pollution, v. 230, p. 495–505, 2017. https://doi.org/10.1016/j.envpol.2017.06.056
Yurkov, A.M. Yeasts of the soil - obscure but precious. Yeast, v. 35, n. 5, p. 369–378, 2018. https://doi.org/10.1002/yea.3310

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Geisianny Augusta Monteiro Moreira, Helson Mario Martins do Vale

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Copyright (c) 2024 - Journal of Biotechnology and Biodiversity
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.
Los autores que publican en esta revista aceptan los siguientes términos:
Los autores mantienen los derechos autorales y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la LicenciaCreative Commons Attribution (CC BY 4.0 en el link http://creativecommons.org/licenses/by/4.0/) que permite compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
Los autores tienen autorización para asumir contratos adicionales separadamente, para distribución no exclusiva de la versión del trabajo publicado en esta revista (ej.: publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
A los autores se les permite, y son estimulados, a publicar y distribuir su trabajo online (ej.: en repositorios institucionales o en su página personal) en cualquier punto antes o durante el proceso editorial, ya que esto puede generar alteraciones productivas, bien como aumentar el impacto y la citación del trabajo publicado (disponible en El Efecto del Acceso Libre en el link http://opcit.eprints.org/oacitation-biblio.html).