Avaliação de microalgas verdes isoladas nas costas central e norte de São Paulo como fonte de óleos

Autores

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v9n1.matsudo

Palavras-chave:

microalgas, biomassa, single-cell-oil, ácidos graxos, lipídios

Resumo

Microalgas de água doce, isoladas em áreas de mangue nas costas central e norte do estado de São Paulo (Brasil), foram avaliadas considerando conteúdo de lipídios, perfil de ácidos graxos e conteúdo de proteí-nas. Essa composição bioquímica foi comparada com cepas obtidas da Coleção de Culturas da UTEX (EUA). Entre as sete algas verdes identificadas, Monoraphidium contortum (CCMA-UFSCar-701) apre-sentou o maior conteúdo lipídio (43,60%), valor próximo ao observado em Botryococcus braunii (UTEX-2441, 48,85%). O conteúdo de proteínas nos isolados variou entre 13,90 e 23,60%. Os ácidos graxos mais abundantes foram ácido palmítico (C16:0), ácido oleico (C18:1), ácido linoleico (C18:2) e ácido y-linolénico (C18:3).Chlorella vulgaris (CCMA-UFSCar-704) destacou-se por seu alto conteúdo de ácido linoleico (49%), enquanto Elakatothrix sp (CCMA-UFSCar-702) e Scenedesmus obliquus (UTEX-B2630) apresentaram o maior conteúdo de ácido oleico (41% e 43%, respectivamente), sendo que este ácido se destaca como matéria prima para produção de biodiesel.

Referências

Andersen RA, Kawachi M. Traditional micoalgae isolation techniques. In: Andersen RA (Ed.) Algal culturing tech-niques. Esevier Academic Press, pp.83-100, 2005

AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed. Arlington: American Public Health Association, 1141p. 1984.

Avila-Leon I, Matsudo MC, Sato S, Carvalho JCM. Arthro-spira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. Journal of Applied Microbiology, v. 112, p. 1086–1094, 2012. https://doi.org/10.1111/j.1365-2672.2012.05303.x

Barka A, Blecker C. Microalgae as a potential source of sin-gle-cell proteins. A review. Biotechnology, Agronomy, So-ciety and Envionment, v. 20, p. 427–436, 2016. DOI: 10.25518/1780-4507.13132

Becker EW. Microalgae - Biotechnology and Microbiology. New york: Cambridge University Press, 293p. 1994.

Beijerinck MW. Kulturversuche mit Zoochlorellen, Lichenen-gonidien und anderen nie-deren Algen. Bot Zeitung, v. 47, p. 725–788, 1980.

Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Saygh F, Aggelis G. Microalgal lipids biochemistry and biotechno-logical perspectives. Biotechnology Advances, v.32, p. 1476–1493, 2014. https://doi.org/10.1016/j.biotechadv.2014.10.003

Brown ML, Zeiler KG. Aquatic biomass and carbon dioxide trapping. Energy Conversion and Management, v.34, p. 1005-1013, 1993. https://doi.org/10.1016/0196-8904(93)90048-F

Chen X, He G, Deng Z, Wang N, Jiang W, Chen S. Screening of Microalgae for Biodiesel Feedstock. Advances in Micro-biology,v.4, p.365-376, 2014. https://doi.org/10.4236/aim.2014.47044

Chisti Y. Biodiesel from microalgae. Biotechnology Advanc-es, v.25, p.294-306, 2007. https://doi.org/10.1016/j.biotechadv.2007.02.001

Chisti Y. Microalgae: our marine forests. In: Richmond A. (Ed.) Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Science. 566p. 2004.

Cruz-Martínez LC, Jesus CKC, Matsudo MC, Danesi EDG, Sato S, Carvalho JCM. Growth and composition of Arthro-spira (Spirulina) platensis in a tubular photobioreactor using ammonium nitrate as the nitrogen source in a fed-batch pro-cess. Brazilian Journal of Chemical Engineering, v.32, p.347-356, 2015. https://doi.org/10.1590/0104-6632.20150322s00003062

Derner RB, Ohse S, Villela M, Villela M, Carvalho SM, Fett R. Microalgae, products and applications. Ciência Rural, v.36, p.1959-1967, 2006. https://doi.org/10.1590/S0103-84782006000600050

Dunstan GA, Volkman JK, Barrett SM, Garland CD. Changes in the lipid composition and maximisation of the polyunsatu-rated fatty acid content of three microalgae grown in mass culture. Journal of Applied Phycology, v.5, p.71-83, 1993. https://doi.org/10.1007/BF02182424

Gouveia L, Marques AE, Sousa JM, Moura P, Bandarra N. Microalgae – source of natural bioactive molecules as func-tional ingredients. Food Science and Technology Bulletin, v.7, p. 21-37, 2011. https://doi.org/10.1616/1476-2137.15884

Guillard RRL, Ryther JH. Studies of marine planktonic dia-toms. Canadian Journal of Microbiology, v.8, p.229-239, 1962. https://doi.org/10.1139/m62-029

Hartman L, Lago RC. Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practices, v.22, p.475-477, 1973.

Horrobin DF. Nutritional and medical importance of gamma-linolenic acid. Progress in Lipid Research, v.31, p.163-194, 1992. https://doi.org/10.1016/0163-7827(92)90008-7

Janssen M, Tramper J, Mur LR, Wijffels RH. Enclosed out-door photobioreactors: Light regime, photosynthetic effi-ciency, scale-up, and future prospects. Biotechnology and Bioengineering, v.81, p.193-210, 2003. https://doi.org/10.1002/bit.10468

Knothe G. “Designer” Biodiesel: optimizing fatty ester compo-sition to improve fuel properties. Energy Fuels, v.22, p.1358-1364, 2008. https://doi.org/10.1021/ef700639e

Komárková-Legnerová J. The systematics and ontogenesis of the genera Ankistrodesmus Corda and Monoraphidium gen. nov. Academia, 70p. 1969.

Kus MMM, Silva SA, Aued-Pimentel S, Mancini-Filho J. Nutrition facts of infant formulas sold in São Paulo state: assessment of fat and fatty acid contents. Revista de Nu-trição, v.24, p.209-218, 2011. https://doi.org/10.1590/S1415-52732011000200002

Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of Starch Synthesis Results in Overproduction of Lipids in Chlamydomonas reinhardtii. Biotechnology and Bioengi-neering, v.107, p.258-268, 2010. https://doi.org/10.1177/0969733010361439

Liu B, Benning C. Lipid metabolism in microalgae distin-guishes itself. Current Opinion in Biotechnology, v.24, p.300-309, 2013. https://doi.org/10.1016/j.copbio.2012.08.008

Mahmoud EA, Farahat LA, Abdel Aziz ZK, Fatthallah NA, El Din RAS. Evaluation of the potential for some isolated mi-croalgae to produce biodiesel. Egyptian Journal of Petrole-um, v.24, p.97-101, 2015. https://doi.org/10.1016/j.ejpe.2015.02.010

Matsudo M, Bezerra R, Sato S, Perego P, Converti A, Carva-lho JCM. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Bio-chemical Engineering Journal, v.43, p.52-57, 2009. https://doi.org/10.1016/j.bej.2008.08.009

Matsudo MC, Bezerra RP, Sato S, Converti A, Carvalho JCM. Photosynthetic efficiency and CO2 assimilation rate of Arthrospira (Spirulina) platensis continuously cultivated in tubular photobioreactor. Biotechnology Journal, v.7, p.1412-1417, 2012. https://doi.org/10.1002/biot.201200177

Molino A, Iovine A, Casella P, Mehariya S, Chianese S, Cerbone A, Rimauro J, Musmarra D. Microalgae characteri-zation for consolidated and new application in human food, animal feed and nutraceuticals. International Journal of Envi-ronmental Research and Public Health, v.15, p.1-21, 2018. https://doi.org/10.3390/ijerph15112436

Norton TA, Melkonian M, Andersen RA. algal biodiversity. Phycologia, v.35, p.308-326, 1996. https://doi.org/10.2216/i0031-8884-35-4-308.1

Olaizola M. Commercial development of microalgal biotech-nology: From the test tube to the marketplace. Biomolecular Engineering, v. 20, p. 459–466, 2003. https://doi.org/10.1016/S1389-0344(03)00076-5

Olguín E, Galicia S, Angulo O, Hernández E. The effect of low light flux and nitrogen deficiency on the chemical com-position of Spirulina sp. growth on pig waste. Bioresourse Technology, v.77, p.19-24, 2001. https://doi.org/10.1016/S0960-8524(00)00142-5

Pérez-Mora LS, Matsudo MC, Cezare-Gomes EA, Carvalho JCM, An investigation into producing Botryococcus braunii in a tubular photobioreactor. Journal of Chemical Technol-ogy and Biotechnology, v.91, p.3053-3060, 2016. https://doi.org/10.1002/jctb.4934

Piorreck M, Baasch K, Pohl P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, v.23, p.207-216, 1984.

Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol, v.65, p.635-648, 2004. https://doi.org/10.1007/s00253-004-1647-x

Ract JNR, Gioielli LA. Modified lipids obtained from milk fat, sunflower oil, and phytosterols esters for application in spreads. Quim Nova, v.31, p.1960-1965, 2008. https://doi.org/http://dx.doi.org/10.1590/S0100-40422008000800008

Ramazanov A, Ramazanov Z. Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycological Research, v.54, p.255-259, 2006. https://doi.org/10.1111/j.1440-1835.2006.00416.x

Ronda SR, Lele SS. Culture conditions stimulating high γ-linolenic acid accumulation by Spirulina platensis. Brazilian Journal of Microbiology, v.39, p.693-697, 2008. https://doi.org/10.1590/S1517-83822008000400018

Sassano CEN, Gioielli LA, Ferreira LS, Rodrigues MS, Sato S, Converti A, Carvalho JCM. Evaluation of the composi-tion of continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Bi-omass and Bioenergy, v.34, p.1732-1738, 2010. https://doi.org/10.1016/j.biombioe.2010.07.002

Schlösser UG. Sammlung von Algenkulturen. Berichte der Deutschen Botanischen Gesellschaft, v.95, p.181-276, 1982. https://doi.org/10.1111/j.1438-8677.1982.tb02862.x

UTEX. The Culture Collection of Algae at the University of Texas at Austin. http://www.sbs.utexas.edu/utex/. Accessed 3 Sep 2011

Verlengia R, Lima TM. Síntese de Ácidos Graxos. In: Curi R, Pompeia C, Miyasaka CK, Procópio J (Eds) Entendendo a gordura: os ácidos graxos. São Paulo: Manole. pp.121-134, 2002.

Wille N. Beschreibung einiger Planktonalgen aus norwe-gischen süsswasserseen. Biologisches Centralblatt, v.18, p. 302, 1898.

Downloads

Publicado

22-03-2021

Como Citar

Matsudo, M. C. ., Sant´Anna, C. L. ., Pérez-Mora, L. S., Silva, R. C. da, & Carvalho, J. C. . (2021). Avaliação de microalgas verdes isoladas nas costas central e norte de São Paulo como fonte de óleos. Journal of Biotechnology and Biodiversity, 9(1), 012–019. https://doi.org/10.20873/jbb.uft.cemaf.v9n1.matsudo