Otimização das condições de cultivo para a produção de enzimas degradadoras de fitato por Enterobacter sakazakii ASUIA279 isoladas da raiz de milho da Malásia

Autores

  • Anis Shobirin Meor Hussin Department of Biotechnology, Faculty of Science, Taif University
  • Abd-ElAziem Farouk
  • Ralf Greiner Department of Food Technology and Bioprocess Engineering, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany.
  • Anis Shobirin Meor Hussin University Putra Malasya
  • Abd El Aziem Farouk Faculty of Science - Taif University
  • Ralf Greiner Federal Research Institute of Nutrition and Food - Haid und Neu Strasse

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v3n2.hussin

Palavras-chave:

fitase bacteriana, otimização estatística, condições de cultivo

Resumo

A produção de fitase extracelular por Enterobacter sakazakii ASUIA279 foi otimizada usando a metodologia de superfície de resposta com projeto de compósito central centralizado em face de fatorial completo. Dois conjuntos de experimentos foram realizados para otimizar os cinco fatores mais profundos das condições de cultivo, a fim de maximizar a produção de fitase. A temperatura de incubação, o pH inicial do meio e a porcentagem de farelo de arroz suplementado no meio foram otimizados em frascos de Erlenmeyer, enquanto o efeito de agitação e aeração foi controlado em um biorreator. Este projeto reduziu o número de experimentos reais realizados para otimizar a produção de fitase e permitiu o estudo de possíveis interações entre os fatores. No primeiro conjunto de experiências, o efeito linear e quadrático do pH inicial foi determinado como o fator mais significativo que afeta a produção de fitase. No biorreator, ambos os efeitos lineares da agitação e aeração foram identificados como altamente significativos (> 99%) em relação aos rendimentos da fitase. A produção ótima de fitase foi observada na temperatura de incubação de 39,7 ºC, pH inicial de 7,1, suplementação com 13,6% de farelo de arroz, 320 rpm de agitação e 0 vvm de aeração.

Referências

Akhnazarova, S. and Kefarov, V. (1982), Experiment optimization in chemistry and chemical engineering. Moscow: Mir Publisher.

Anis Shobirin, M. H. (2008), Development of bioprocessing technique for the production and purification of phytate-degrading enzyme from Malaysian soil bacteria. PhD Thesis Dissertation. IIUM.

Beg, Q. K.; Saxena, R. K.; Gupta, R. (2002), Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnology Bioengineering, 78, 289-295.

Beg, Q. K.; Sahai, V.; Gupta, R. (2003), Statistical optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Proceeding Biochemistry, 39, 203-209.

Berka, R. M.; Rey, M. W.; Brown, K. M.; Byun, T.; Klotz, A. V. (1998), Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied Environmental Microbiology, 64, 4423-4427.

Bogar, B.; Szakacs, G.; Linden, J. C.; Pandey, A.; Tengerdy, R. B. (2003), Optimization of phytase production by solid substrate fermentation. Journal of Industrial Microbiology and Biotechnology, 30, 183-189.

Choi, Y. M.; Dong, O. N.; Cho, S. H.; Lee, H. K.; Suh, H. J.; Chung, S. H. (1999), Isolation of a phytase producing Bacillus sp. KHU-10 and its phytase production. Microbiology Biotechnology, 9, 223-226.

De Cornink, J.; Bouquelet, S.; Dumortier, V.; Duyme, F.; Denantes, V. I. (2000), Industrial media and fermentation process for improved growth and protease production by Tehrahymena thermophila BIII. Indian Microbiology Biotechnology, 24, 285-290.

Gautam, P.; Sabu, A.; Pandey, A.; Szakacs, G.; Soccol, C. (2002), Microbial production of extra- cellular phytase using polysterene as inert solid support. Bioresource Technology, 83, 229-233.

Greiner, R.; Konitzny, U.; Jany, K. D. (1993), Purification and characterization of two phytases from Escherichia coli. Achieves Biochemistry Biophysical, 303, 107-113.

Greiner, R.; Haller, E.; Konietzky, U.; Jany, K. D. (1997), Purification and characterization of a phytase from Klebsiella terrigena. Achieves Biochemistry Biophysical, 341, 201-206.

Heinonen, J. K. and Lahti, R. J. (1981), A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analysis Biochemistry, 113, 313-317.

Irving, G. C. J. and Cosgrove, D. J. (1971), Inositol phosphate phosphatases of microbiological origin. Some properties of partially purified bacterial (Pseudomonas sp.) phytase. Australian Journal Biological Science, 24, 547-557.

Irving, G. C. J. and Cosgrove, D. J. (1972), Inositol phosphate phophatase of microbiological origin: the inositol pentaphosphate products of Aspergillus ficuum phytase. Journal Bacteriology, 112, 434-438.

Karthikeyan, R. S.; Rakshit, S. K.; Baradarajan, A. (1996), Optimization of batch fermentation conditions for dextran production. Bioprocess Engineering, 15, 247-251.

Khuri, A. I. and Cornell, J. A. (1987), Response surfaces: design and analysis. New York: John Wiley and Sons, 291-334.

Kim, Y. O.; Kim, H. K.; Bae, K. S.; Yu, J. H.; Oh, T. K. (1998), Cloning of thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiology Letters, 162, 185-191.

Krishna, C. and Nokes, S. E. (2001), Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. Indian Microbiology Biotechnology, 26,161-170.

Mitchell, D. B.; Vogel, K.; Weimann, B. J.; Pasamontes, L.; Van Loon, A. S. P. G. M. (1997), The phytase subfamily of histidine acid phosphatases: isolation of gene for two novel phytases from the fungi Aspergillus tereus and Myceliophthora thermophila. Microbiology, 143, 245-252.

Muralidhar, R. V.; Chirumamila, R. R.; Marchant, R.; Nigam, P. (2001), A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemistry Engineering, 9, 17-23.

Nagashima, T.; Tange, T.; Anazawa, H. (1999), Dephosphorylation of phytase by using the Aspergillus niger phytase with a high affinity for phytate. Applied Environmental Microbiology, 65, 4682-4684.

Park, K. M. and Reardon, K. F. (1996), Medium optimization for recombinant protein production by Bacillus subtilis. Biotechnology Letters, 18, 737-740.

Pasamontes, L.; Haiker, M.; Wyss, M.; Tessier, M..; Van Loon A. P. G. M., (1997), Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Applied Environmental Microbiology, 63, 1696-1700.

Poulsen, H. D. (2000), Phosphorus utilization and excretion in pig production. Journal Environmental Quality, 29, 24-27.

Powar, V. K. and Joganathan, V. (1982), Purification and properties of phytate specific phosphatase from Bacillus subtilis. Journal Bacteriology, 151, 1102-1108.

Puri, S.; Beg, Q. K.; Gupta, R. (2002), Optimization of alkaline protease production from Bacillus sp. using response surface methodology. Current Microbiology, 44, 286-290.

Quan, C.; Zhang, L.; Wang, Y.; Ohta Y. (2001), Production of phytase in a low phosphate medium by a novel yeast Candida krusei. Journal Bioscience Bioengineering, 92 154-160.

Segueilha, L.; Lambrechts, C.; Boze, H.; Moulin, G.; Galzy, P. (1992), Purification and properties of the phytase from Schwanniomyces castellii. Fermentation Bioengineering, 74, 7-11.

Shieh, T. R. and War,e J. H. (1968), Survey of microorganisms for the production of extracellular phytase. Applied Microbiology, 16, 1348-1351.

Vohra, A. and Satyanarayana, T. (2003), Phytases: Microbial sources, production, purification, and potential biotechnological applications. Critical Review Biotechnology, 23, 29-60.

Wodzinski, R. J. and Ullah, A. M. J. (1996), Phytase. Advance Applied Microbiology, 42, 263-302.

Yamada, K.; Minoda, Y.; Yamamoto, S. (1968), Phytase from Aspergillus terreus 1. Production, purification and some general properties of the enzyme. Agriculture Biology Chemistry, 32, 1275-1282.

Yanke, L. J.; Bae, H. D., Selinger, L. B.; Cheng, K. J. (1998), Phytase activity of anaerobic ruminal bacteria. Microbiology, 144, 1565-1573.

Publicado

16-05-2012

Como Citar

Hussin, A. S. M., Farouk, A.-E., Greiner, R., Hussin, A. S. M., Farouk, A. E. A., & Greiner, R. (2012). Otimização das condições de cultivo para a produção de enzimas degradadoras de fitato por Enterobacter sakazakii ASUIA279 isoladas da raiz de milho da Malásia. Journal of Biotechnology and Biodiversity, 3(2), 1–10. https://doi.org/10.20873/jbb.uft.cemaf.v3n2.hussin

Artigos mais lidos pelo mesmo(s) autor(es)