Modulação da hemostasia por inibição enzimática exercida por folhas de Averrhoa carambola
DOI:
https://doi.org/10.20873/jbb.uft.cemaf.v9n4.oliveiraPalavras-chave:
inibidores enzimáticos, produtos naturais plantas, fenólicos peçonhas como ferramentas, medicinais compostosResumo
Os medicamentos fitoterápicos representam uma alternativa vantajosa para a prevenção e tratamento de diversas doenças quando comparados aos medicamentos alopáticos. Averrhoa carambola (Oxalidaceae) é uma planta rica em compostos fenólicos e popularmente conhecida por suas propriedades medicinais como anti-inflamatória, antioxidante e hipoglicêmica. Diferentes enzimas do organismo humano participam de processos fisiológicos que envolvem hemostasia, inflamação e formação de novos tecidos. Essas enzimas são destacadas como alvos farmacêuticos para o tratamento de inúmeras patologias. O presente trabalho avaliou os extratos aquoso e etanólico das folhas de A. carambola sobre as atividades fosfolipásica, hemolítica, caseinolítica, trombolítica, coagulante e fibrinogenolítica induzidas por fosfolipases A2 e proteases. Compostos fenólicos e flavonoides totais foram quantificados nos extratos aquoso e etanólico das folhas de A. carambola. Esses extratos foram avaliados, in vitro, sobre as atividades fosfolipásica, proteolítica, hemolítica, trombolítica e fibrinogenolítica induzidas por peçonhas de serpentes. Os resultados confirmam o potencial farmacológico de A. carambola uma vez que os extratos foram capazes de modular todas as atividades avaliadas relacionadas à hemostasia por meio de inibições ou potencialização das atividades enzimáticas (fosfolipases A2 e proteases). Os constituintes de A. carambola podem atuar interferindo em processos como coagulação, dissolução de trombos e fibrinogenólise.
Referências
Agência Nacional de Vigilância Sanitária (ANVISA). Farma-copeia brasileira. Brasília, 5.ed., v.1, 545p. 2010. Disponí-vel em: <http://www.anvisa.gov.br/hotsite/cd_farmacopeia/index.htm>. Acesso em: 12 dez. 2020.
Ahmad AS, Sharma R. Comparative analysis of herbal and allopathic treatment systems. European Journal of Molecular & Clinical Medicine, v.7, n.7, p.2869-2876, 2020.
Ansari IA, Akhtar MS. Recent insights on the anticancer properties of flavonoids: prospective candidates for cancer chemoprevention and therapy. Natural Bio-Active Com-pounds, p.425-448, 2019. https://doi.org/10.1007/978-981-13-7154-7_13.
Assafim M, de Coriolano EC, Benedito SE, Fernandes CP, Lobo JFR, Sanchez EF, Rocha LM, Fuly AL. Hypericum brasiliense plant extract neutralizes some biological effects of Bothrops jararaca snake venom. Journal of Venom Re-search, v.2, p.11-16, 2011.
Baumann J, von Bruchhausen F, Wurm G. Flavonoids and related compounds as inhibition of arachidonic acid peroxi-dation. Prostaglandins, v.20, n.4, p.627–639, 1980. https://doi.org/10.1016/0090-6980(80)90103-3.
Bhowmick R, Sarwar MS, Dewan SMR, Das A, Das B, Uddin MMN, Islam MdS, Islam MS. In vivo analgesic, an-tipyretic, and anti-inflammatory potential in Swiss albino mice and in vitro thrombolytic activity of hydroalcoholic ex-tract from Litsea glutinosa leaves. Biological Research, v.47, n.1, 56, 2014. https://doi.org/10.1186/0717-6287-47-56.
Bijak M, Ponczek MB, Nowak P. Polyphenol compounds belonging to flavonoids inhibit activity of coagulation factor X. International Journal of Biological Macromolecules, v.65, p.129–135, 2014. https://doi.org/10.1016/j.ijbiomac.2014.01.023.
Braga MA, de Abreu TS, Trento MVC, Machado GHA, Pereira LLS, Simão AA, Marcussi S. Prospection of en-zyme modulators in aqueous and ethanolic extracts of Lippia sidoides Leaves: genotoxicity, digestion, inflammation, and hemostasis. Chemistry & Biodiversity, v.16, n.3, e1800558, 2019. https://doi.org/10.1002/cbdv.201800558.
Burnett BP, Jia Q, Zhao Y, Levy RM. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual in-hibitor of cyclooxygenase and 5-lipoxygenase to reduce in-flammation. Journal of Medicinal Food, v.10, n.3, p.442–451, 2007. https://doi.org/10.1089/jmf.2006.255.
Cabrini DA, Moresco HH, Imazu P, Silva CD da, Pietrovski EF, Mendes DAGB, Prudente AS, Pizzolatti MG, Brighen-te IMC, Otuki MF. Analysis of the potential topical anti-inflammatory activity of Averrhoa carambola L. in mice. Evidence-Based Complementary and Alternative Medicine, v.2011, 908059, 2011. https://doi.org/10.1093/ecam/neq026.
Castro O, Gutiérrez JM, Barrios M, Castro I, Romero M, Umaña E. Neutralización del efecto hemorrágico inducido por veneno de Bothrops asper (Serpentes: Viperidae) por extractos de plantas tropicales. Revista de Biología Tropical, v.47, n.3, p.605–616, 1999. https://doi.org/10.15517/RBT.V47I3.19215.
Cazarolli LH, Kappel VD, Pereira DF, Moresco HH, Brighen-te IMC, Pizzolatti MG, Silva FGMB. Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia, v.83, n.7, p.1176–1183, 2012. https://doi.org/10.1016/j.fitote.2012.07.003.
Cintra ACO, De Toni LGB, Sartim MA, Franco JJ, Caetano RC, Murakami MT, Sampaio SV. Batroxase, a new metal-loproteinase from B. atrox snake venom with strong fibrino-lytic activity. Toxicon. v.60, n.1, p.70–82, 2012. https://doi.org/10.1016/j.toxicon.2012.03.018.
Dehelean CA, Marcovici I, Soica C, Mioc M, Coricovac D, Iurciuc S, Cretu OM, Pinzaru I. Plant-derived anticancer compounds as new perspectives in drug discovery and al-ternative therapy. Molecules, v.26, n.4, p.1109, 2021. https://doi.org/10.3390/molecules26041109.
Dey A, Nath De J. Phytopharmacology of Antiophidian Bo-tanicals: A Review. International Journal of Pharmacology, v.8, n.2, p.62–79, 2012. https://doi.org/10.3923/ijp.2012.62.79.
Félix-Silva J, Souza T, Menezes YAS, Cabral B, Câmara RBG, Silva-Junior AA, Rocha HAO, Rebecchi IMM, Zu-colotto SM, Fernandes-Pedrosa, MF. Aqueous leaf extract of Jatropha gossypiifolia L. (Euphorbiaceae) inhibits enzy-matic and biological actions of Bothrops jararaca snake venom. PLoS One, v.9, n.8, e104952, 2014. https://doi.org/ 10.1371/journal.pone.0104952.
Fox JW, Serrano SMT. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to ven-om complexity. The FEBS Journal, v.275, n.12, p.3016–3030, 2008. https://doi.org/10.1111/j.1742-4658.2008.06466.x.
Glasl S, Khan IA. Quality control of herbal drugs and prepara-tions. Planta Medica, v.84, n.6-7, p.348–349, 2018. https://doi.org/ 10.1055/a-0578-0271.
Gutiérrez J, Avila C, Rojas E, Cerdas L. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon, v.26, n.4, p.411–413, 1988. https://doi.org/10.1016/0041-0101(88)90010-4.
Gutiérrez J, Lomonte B, León G, Rucavado A, Chaves F, Angulo Y. Trends in snakebite envenomation therapy: sci-entific, technological and public health considerations. Cur-rent Pharmaceutical Design, v.13, n.28, p.2935–2950, 2007. https://doi.org/10.2174/138161207782023784.
Hage-Melim LIS, Sampaio S V, Taft CA, Silva CHTP. Phos-pholipase A2 inhibitors isolated from medicinal plants: alter-native treatment against snakebites. Mini Reviews in Medic-inal Chemistry, v.13, n.9, p.1348–1356, 2013. https://doi.org/ 10.2174/1389557511313090009.
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics, v.96, n.(2–3), p.67–202, 2002. https://doi.org/10.1016/s0163-7258(02)00298-x.
Islam S, Alam MB, Ahmed A, Lee S, Lee S-H, Kim S. Identi-fication of secondary metabolites in Averrhoa carambola L. bark by high-resolution mass spectrometry and evaluation for α-glucosidase, tyrosinase, elastase, and antioxidant po-tential. Food Chemistry, v.332, 127377, 2020. https://doi.org/10.1016/j.foodchem.2020.127377.
Jucá MM, Cysne Filho FMS, de Almeida JC, Mesquita DS, Barriga JRM, Dias KCF, Barbosa TM, Vasconcelos LC, Leal LKAM, Honório Júnior JER,Vasconcelos SMM. Fla-vonoids: biological activities and therapeutic potential. Natu-ral Product Research, v.34, n.5, p.692-705, 2020. https://doi.org/10.1080/14786419.2018.1493588.
Kapoor B, Gulati M, Gupta R, Singh SK, Gupta M, Nabi A, Chawla PA. A review on plant flavonoids as potential anti-cancer agents. Current Organic Chemistry, v.25, n.6, p.737-747, 2021. https://doi.org/10.2174/1385272824999201126214150.
Kim HP, Son KH, Chang HW, Kang SS. Anti-inflammatory Plant flavonoids and cellular action mechanisms. Journal of Pharmacological Sciences, v.96, n.3, p.229–245, 2004. https://doi.org/10.1254/jphs.crj04003x.
Laemmli UK. Cleavage of structural proteins during the as-sembly of the head of bacteriophage T4. Nature, v.227, n.5259, p.680–685, 1970. https://doi.org/10.1038/227680a0.
Lättig J, Böhl M, Fischer P, Tischer S, Tietböhl C, Menschikowski M, Gutzeit HO, Metz P, Pisabarro MT. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design. Journal of Com-puter-Aided Molecular Design, v.21, n.8, p.473–483, 2007. https://doi.org/10.1007/s10822-007-9129-8.
López-Posadas R, Ballester I, Abadía-Molina AC, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Effect of flavonoids on rat splenocytes, a structure–activity relationship study. Biochemical Pharmacology, v.76, n.4, p.495–506, 2008. https://doi.org/10.1016/j.bcp.2008.06.001.
Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. Journal of Thrombosis and Haemostasis, v.3, n.8, p.1791–1799, 2005. https://doi.org/10.1111/j.1538-7836.2005.01358.x.
Marques TR, Braga MA, Cesar PHS, Marcussi S, Corrêa AD. Jabuticaba (Plinia jaboticaba) skin extracts as inhibi-tors of phospholipases A2 and proteases. Anais da Acade-mia Brasileira de Ciências, v.91, n.2, e20180248, 2019. https://doi.org/10.1590/0001-3765201920180248.
Marsh NA. Snake venoms affecting the haemostatic mecha-nism--a consideration of their mechanisms, practical applica-tions and biological significance. Blood Coagulation & Fi-brinolysis, v.5, n.3, p.399–410, 1994.
Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR. Interactions of flavonoids with iron and cop-per ions: a mechanism for their antioxidant activity. Free Radical Research, v.36, n.11, p.1199–1208, 2002. https://doi.org/10.1080/1071576021000016463.
Molander M, Nielsen L, Søgaard S, Staerk D, Rønsted N, Diallo D, Chifundera KZ, Staden JV, Jäger AK. Hyaluroni-dase, phospholipase A2 and protease inhibitory activity of plants used in traditional treatment of snakebite-induced tis-sue necrosis in Mali, DR Congo and South Africa. Journal of Ethnopharmacology, v.157, p.171–180, 2014. https://doi.org/10.1016/j.jep.2014.09.027.
Moresco HH, Queiroz GS, Pizzolatti MG, Brighente IMC. Chemical constituents and evaluation of the toxic and antiox-idant activities of Averrhoa carambola leaves. Revista Bra-sileira de Farmacognosia, v.22, n.2, p.319–324, 2012. https://doi.org/10.1590/S0102-695X2011005000217.
Mors BW, Nascimento CM, Pereira MRB, Pereira AN. Plant natural products active against snake bite — the molecular approach. Phytochemistry, v.55, n.6, p.627–642, 2000. https://doi.org/10.1016/s0031-9422(00)00229-6.
Moura-da-Silva AM, Almeida MT, Portes-Junior JA, Nicolau CA, Gomes-Neto F, Valente RH. Processing of snake ven-om metalloproteinases: generation of toxin diversity and en-zyme inactivation. Toxins (Basel), v.8, n.6, 183, 2016. https://doi.org/10.3390/toxins8060183.
Núñez V, Castro V, Murillo R, Ponce-Soto LA, Merfort I, Lomonte B. Inhibitory effects of Piper umbellatum and Pip-er peltatum extracts towards myotoxic phospholipases A2 from Bothrops snake venoms: Isolation of 4-nerolidylcatechol as active principle. Phytochemistry, v.66, n.9, p. 1017–1025, 2005. https://doi.org/10.1016/j.phytochem.2005.03.026.
Patiño AC, Benjumea DM, Pereañez JA. Inhibition of venom serine proteinase and metalloproteinase activities by Re-nealmia alpinia (Zingiberaceae) extracts: Comparison of wild and in vitro propagated plants. Journal of Ethnophar-macology, v.149, n.2, p.590–596, 2013. https://doi.org/10.1016/j.jep.2013.07.033.
Pithayanukul P, Leanpolchareanchai J, Bavovada R. Inhibitory effect of tea polyphenols on local tissue damage induced by snake venoms. Phytotherapy Research, v.24, n.Suppl 1, p.S56–62, 2010. https://doi.org/10.1002/ptr.2903.
Queiroz MR, Sousa BB, Pereira DFC, Mamede CCN, Matias MS, Morais NCG, Costa JO, de Oliveira F. The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon, v.133, p.33-47, 2017. https://doi.org/10.1016/j.toxicon.2017.04.013.
R Core Team. R: A Language and Environment for Statistical Computing. Viena, R Foundation for Statistical Computing, 2012.
Rodrigues VM, Soares AM, Guerra-Sá R, Rodrigues V, Fontes MR, Giglio JR. Structural and functional characteri-zation of neuwiedase, a nonhemorrhagic fibrin(ogen)olytic metalloprotease from Bothrops neuwiedi snake venom. Ar-chives of Biochemistry and Biophysics, v.381, n.2, p.213–224, 2000. https://doi.org/10.1006/abbi.2000.1958.
Romero L, Marcussi S, Marchi-Salvador DP, Silva FP, Fuly AL, Stábeli RG, da Silva SL, González J, Del Monte A, So-ares AM. Enzymatic and structural characterization of a basic phospholipase A2 from the sea anemone Condylactis gigantea. Biochimie, v.92, n.8, p.1063–1071, 2010. https://doi.org/10.1016/j.biochi.2010.05.007.
Siddika A, Zahan T, Khatun L, Habib MR, Aziz MA, Tareq ARM, Rahman MH, Karim MR. In vivo the antioxidative extract of Averrhoa carambola Linn. leaves induced apop-tosis in Ehrilch ascites carcinoma by modulating p53 ex-pression. Food Science and Biotechnology, v.29, n.9, p.1251-1260, 2020. https://doi.org/10.1007/s10068-020-00775-x.
Thomas S, Patil DA, Patil A, Gand NC. Pharmacognostic evaluation and physicochemical analysis of Averrhoa ca-rambola L. fruit. Journal of Herbal Medicine & Toxicology, v.2, n.2, p.51-54, 2008.
Urs NAN, Yariswamy M, Joshi V, Nataraju A, Gowda TV, Vishwanath BS. Implications of phytochemicals in snake-bite management: present status and future prospective. To-xin Reviews, v.33, n.3, p.60-83, 2013. https://doi.org/10.3109/15569543.2013.854255.
Vale LHF, Mendes MM, Fernandes RS, Costa TR, Hage-Melim ISL, Sousa MA, Hamaguchi A, Homsi-Brandeburgo MI, Franca SC, Silva CHTP, Pereira PS, Soares AM, Ro-drigues VM. Protective effect of Schizolobium parahyba flavonoids against snake venoms and isolated toxins. Cur-rent Topics in Medicinal Chemistry, v.11, n.20, p.2566–2577, 2011. https://doi.org/10.2174/156802611797633438.
Woisky RG, Salatino A. Analysis of propolis: some parame-ters and procedures for chemical quality control. Journal of Apicultural Research, v.37, n.2, p.99–105, 1998. https://doi.org/10.1080/00218839.1998.11100961.
Yang Y, Xie H, Jiang Y, Wei X. Flavan-3-ols and 2-diglycosyloxybenzoates from the leaves of Averrhoa ca-rambola. Fitoterapia, v.140, 104442, 2020. https://doi.org/10.1016/j.fitote.2019.104442
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 - Journal of Biotechnology and Biodiversity
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution (CC BY 4.0 no link http://creativecommons.org/licenses/by/4.0/) que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer momento antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (disponibilizado em O Efeito do Acesso Livre no link http://opcit.eprints.org/oacitation-biblio.html).