Efeito do nitrogênio mineralizado através da decomposição de resíduos vegetais na absorção de milho (Zea mays L.) na zona ecológica da sava-na sudanesa da Nigéria

Autores

  • Noah Alabi Oyebamiji Federal University Dutsin-Ma
  • Oluwatoyin Abimbola Babalola Federal University of Agriculture, Abeokuta, Nigeria
  • David Olusegun Adelani Federal College of Forestry, Mechanization, Nigeria

DOI:

https://doi.org/10.20873/jbb.uft.cemaf.v10n1.oyebamiji

Palavras-chave:

plant residues, decomposition, mineralization, uptake

Resumo

Um experimento de campo foi projetado para determinar o efeito do nitrogênio mineralizado (N) através da decomposição da biomassa foliar de espécies de árvores agroflorestais como resíduos para destacar sua absorção pelo milho em condições de savana do Sudão. O experimento foi estabelecido como fatorial 3 x 4 x 2 em um delineamento de parcelas subdivididas com três repetições para duas safras. Os fatores considerados incluem: controle, espécies de biomassa (Albizia lebbeck e Parkia biglobosa) como parcelas principais, quatro níveis de fertilizante nitrogenado (0, 40, 80, 120 kg N ha-1) como subparcelas e duas variedades de milho (DMR -ESR-7 e EVAT 2009) como sub-subparcelas. Os dados foram analisados por meio de Análise de Variância (ANOVA). A composição química da biomassa de A. lebbeck apresentou maiores teores médios de N (32,4 g kg-1) e C (186,4 g kg-1) e menor relação C:N média (57,5) do que P. biglobosa e isso afetou suas taxas de decomposição, portanto, A. lebbeck se decompôs mais rápido que P. biglobosa. 56% do N nos sacos de lixo foram liberados nas primeiras 2 semanas de incorporação da biomassa e aumentaram progressivamente até 10 semanas após o plantio (WAP). A absorção total de N pelo milho foi menor (2,8 kg N ha-1) em P. biglobosa e maior (8,6 kg N ha-1) em parcelas corrigidas de A. lebbeck. Conclui-se então que a absorção total de N pela cultura do milho aumentou rapidamente entre 4-6 WAP, e o impacto foi óbvio em parcelas alteradas com biomassa de A. lebbeck do que em parcelas de P. biglobosa durante as duas safras.

Referências

Akinnifesi FK, Chirwa PW, Ajayi OC, Sileshi G, Matakala P, Kwesiga FR, Harawa H. and Makumba W. Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options, Journal of Agriculture, v. 3, p.58–75, 2008.

Allison LE. Organic carbon. In: Black CA. (ed.) Methods of Soil Analysis Part 2. Chemical and Microbiological Proper-ties. American Society Agronomy, Madison, Wisconsin. p. 1376-1378, 1965.

Anderson JM. Ingram JS. Tropical Soil Biology and Fertility, A Handbook of Methods. CAB International, Wallingford. p. 45-49, 1993.

Bationo A, Waswa BS. New challenges and opportunities for integrated soil fertility management in Africa. In Innovation as Key to the Green Revolution in Africa. Exploring the Scientific Facts, Vol 1 (Eds Bationo A, Waswa B, Okeyo JM, Maina, F, Kihara J). New York, NY: Springer, Science +Business Media p. 1, 2011.

Bisht VK, Nautiyal BP, Kuniyal CP, Prasad P, Sundriyal RC. Litter Production , Decomposition , and Nutrient Release in Subalpine Forest Communities of the Northwest Himalaya. Journal of Ecosystems, v. 2014, p. 1-13, 2014.

Biswas M, Islam N, Islam S, Ahmed M. Seedling raising methods for Production of Transplanted Maize. International Journal of Sustainable Crop Production, v. 4, n. 2, p. 6-13, 2009.

Black CA. Methods of Soil Analysis II. Chemical and Micro-biological Properties. Madison Wisconsion. American Soci-ety of Agronomy, p. 152, 1965.

Brandstreet RD. Kjeldahl method for organic N. Academic Press. London. p. 85, 1965.

Bray RH, Kurtz LT Determination of total organic and availa-ble form of P in soil. Soil Science, v. 59, p. 39-45, 1945.

Bremner JM. Total nitrogen. In Black CA. (ed.) Methods of Soil Analysis part 2: Chemical and Microbiological Proper-ties. American Society of Agronomy, Madison, Wisconsin. p. 1149-1178, 1965.

Dorich RA, Nelson DW. Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soil. Soil Science Society of America Journal, v. 48, p. 72-75, 1984.

Duncan DB. Multiple Range and Multiple F- test. Biometrics. v. 11, p. 1-42, 1955.

FAO 2014. Faostat. Retrieved September 23, 2014 from http://faostat.fao.org/site/339/default.aspx

Giashuddin MM, Garrity DP, Aragon ML. Weight loss, nitrogen content changes, and nitrogen release during de-composition of legume tree leaves on and in the soil. Nitro-gen Fixing Tree Research Reports, v. 2, p. 43–50, 1993.

Hagerman A. Extraction of tannin from fresh and preserved leaves. Journal of Chemical Ecology, v. 2, n. 2, p. 95-121, 1988.

Hattenschwiler S, Tiunov A, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology and Evolution, v. 36, p.191-218, 2005. http://doi.org/10.1146/annurev.ecolsys.36.112904.151932

Hussaini MA, Ogunlela VB, Ramalan AA, Falaki AM. Min-eral composition of dry season maize (Zea mays L.) in re-sponse to varying levels of nitrogen phosphorus and irriga-tion at Kadawa, Nigeria. World Journal of Agriculture Sci-ences, v. 4, n. 6, p. 775-780, 2008.

Jama B, Zeila A. Agroforestry in the drylands of eastern Afri-ca: A call for action. ICRAF Working Paper – v. 1, 2005.

Koorem K, Price JN, Moora M. Species-specific effects of woody litter on seedling emergence and growth of herba-ceous plants. PLoS ONE, v. 6, n.10, 2011. http://doi.org/10.1371/journal.pone.0026505

Mugwe J, Mugendi D, Mucheru-Muna M, Merckx R, Chianu J, Vanlauwe B. Determinants of the decision to adopt inte-grated soil fertility management practices by smallholder farmers in the Central highlands of Kenya. Experimental Agriculture, v. 45, p. 61-75, 2009.

Murphy J, Riley JR. A modified single solution method for the determination of P in natural waters. Annal of Chemistry Acta, v. 27, p. 31-36, 1962.

Mweta DE, Akinnifesi FK, Saka JDK, Makumba W, Choko-tho N. Green manure from prunings and mineral fertilizer affect phosphorus adsorption and uptake by maize crop in a gliricidia maize intercropping, Journal of Science Resources Essays, v. 2, p. 446–453, 2007.

Osuji GE, Okon MA, Chukwuma MC, Nwarie II. Infiltration characteristics of soils under selected land use practices in Owerri, Southeastern Nigeria. World Journal of Agricultural Sciences, v. 6, n. 3, p. 322–326, 2010.

Oyebamiji NA, Aduradola AM. Effect of fertilization on maize (Zea mays L.) shelling percentage. Journal of Forestry Re-search and Management, v. 15, n. 1, p.1-12, 2018. ISSN 0189-8418.

Oyebamiji NA, Babalola OA, Aduradola AM. Decomposi-tion and Nitrogen Release Patterns of Parkia biglobosa and Albizia lebbeck Leaves with Nitrogen Fertilizer for Maize Production in Sudan Savanna Alfisol of Nigeria. Journal of Tropical Forestry and Environment, v. 7, n. 1, p. 54-64, 2017a.

Oyebamiji NA, Adesoji AG, Aduradola AM. Influence of Leguminous Trees Biomass and Nitrogen Fertilizer on Growth and Yield of Maize. Journal of Agriculture and En-vironment, v. 12, n. 2, p. 119-127, 2016.

Oyebamiji NA, Jamala GY, Adesoji AG. Soil Chemical prop-erties as influenced by incorporated leafy biomass and nitro-gen fertilizer in soil with maize (Zea mays L.) in a semi-arid environment, Fudma-Journal of Agriculture and Agricultur-al Technology, v. 3, n. 1, p. 93-103, 2017b.

Oyebamiji NA, Ojekunle OP, Aduradola AM. Utilization of tree leafy biomass as a complement to nitrogen fertilizers for increased dry matter production of maize. Proceedings of the 42nd Annual Conference of the Forestry Association of Ni-geria (FAN) held in Ibadan between 23rd – 28th November, 2020. p. 449-507, 2020.

Oyebamiji NA, Oladoye AO, Ogundijo DS. Influence of Leafy Biomass Transfer of Agroforestry Trees with Nitro-gen Fertilizer on Maize Stover Yield in Makera, Nigeria. Journal of Research in Forestry, Wildlife and Environment, v. 9, 4, p. 66-75, 2017c.

Parkinson JA, Allen SE. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological materials. Communication Soil Science Plant Analysis, v. 6, p. 1-11, 1975.

Rosenstock TS, Tully KL, Neufeldt H, Verchot LV. Agrofor-estry with N2-fixing trees : sustainable development’s friend or foe ? Current Opinion in Environmental Sustainability, v. 6, p. 15–21, 2014. http://doi.org/10.1016/j.cosust.2013.09.001

Santonja M, Baldy V, Fernandez C, Balesdent J, Gauquelin T. Potential shift in plant communities with climate change : Outcome on litter decomposition and nutrient release in a Mediterranean Oak forest. Ecosystems, v. 18, p. 1253- 1268, 2015. http://doi.org/10.1007/s10021-015-9896-3

SAS. Statistical Analysis Systems. SAS release 9.1 for win-dows, SAS Institute. Cary, N.C USA. p. 949, 2003.

Tukur R, Adamu GK, Abdulrahid I, Rabi’u M. Indigenous trees inventory and their multipurpose uses in Dutsin-Ma area, Katsina State. European Scientific Journal, v. 9, n. 11, p. 288-300, 2013.

Vanlauwe B, Bationo A, Chianu J, Giller KE, Merckx R, Mokwunye U, Ohiokpehai, O, Pypers P, Tabo R, Shepherd KD, Smaling EMA, Woomer PL, Sanginga N. Integrated soil fertility management. Operational definition and conse-quences for implementation and dissemination. Outlook on Agriculture, v. 39, p. 17-24, 2010.

Journal of Biotechnology and Biodiversity

Downloads

Publicado

01-03-2022

Como Citar

Oyebamiji, N. A. ., Babalola, O. A. ., & Adelani, D. O. . (2022). Efeito do nitrogênio mineralizado através da decomposição de resíduos vegetais na absorção de milho (Zea mays L.) na zona ecológica da sava-na sudanesa da Nigéria. Journal of Biotechnology and Biodiversity, 10(1), 094–101. https://doi.org/10.20873/jbb.uft.cemaf.v10n1.oyebamiji