K-SUN BELONGS TO HELLY B2-EPG

K-SUN PERTENCE A B2-EPG-HELLY

K-SUN PERTENECE A B2-EPG-HELLY

Tanilson Dias dos Santos

Doctor in Systems and Computing Engineering -PESC/COPPE-UFRJ. Professor of the Computer Science Course - Federal University of Tocantins, Brazil. tanilson.dias@mail.uft.edu.br.
(D) 0000-0002-0636-5751

Kedson Alves Silva

Bachelor of Computer Science - Federal University of Tocantins. Brazil. alves.kedson@mail.uft.edu.br.

0000-0003-0370-3118

Luis Fernando dos Santos Marinho

Bachelor of Computer Science - Federal University of Tocantins. Brazil. fernando.marinho@mail.uft.edu.br.

0000-0003-0412-7431
Mailing address: Universidade Federal do Tocantins, Reitoria, DIRETORIA DE COMUNICAÇÃO. Quadra 109

Norte Avenida NS 15, Plano Diretor Norte, 77001090 -
Palmas, TO - Brasil

Received: 03.14.2023.
Accepted: 05.16.2023.
Published: 06.02.2023.

Abstract

: In this article we explore the B_{2}-EPG class and the Helly property. We present generic results on EPG representations and define terms that support the other results, in addition, we finish the research with an unpublished algorithm that builds a Helly B_{2}-EPG representation of any k-sun graph.

KEYWORDS: $\quad B_{2}$-EPG; Graph Theory; Intersection Graphs; Helly Property; k-sun Graphs.

Introduction

$E P G$ is the acronym of Edge-intersection Graphs of Paths on a Grid. They correspond exactly to graph class of path intersection on a grid. The EPG graph class was defined by Golumbic, Lipshteyn and Stern (2009), studied later by Golumbic, Lipshteyn and Stern (2013) in addition to being explored by recent works in the literature (Asinowski; Suk, 2009; Cameron; Chaplick; Hoàng, 2013; Heldt; Knauer; Ueckerdt, 2014a; Szwarcfiter et al., 2020; Alcón; Mazzoleni; Santos, 2021; Marinho; Silva; Santos, 2023). In particular, the class of B_{2}-EPG graphs has been less studied, where we can cite the work of Heldt, Knauer and Ueckerdt (2014b) who addressed the bend number of planar and outerplanar graphs, Biedl and Stern (2010) who classified line graphs and bipartite planar graphs as B_{2}-EPG, as well as Alcón et al. (2018) and Francis and Lahiri (2016) which respectively classified the normal circlearc graphs and the Halin graphs as B_{2}-EPG. Among the most important works we can mention Pergel and Rzążewski (2017) that presents an NP-completeness proof for the B_{2}-EPG graphs recognizing problem.

An EPG representation of a graph G, denoted by R_{G}, is an edge-intersection model of paths on a grid. There is a bijective relationship among the set of vertices and edges of the graph G and its corresponding EPG representation. We denote each vertex $v_{i} \in$ $V(G)$ as a related path $P_{v_{i}}$ drawn on the grid, and two vertices V_{i}, V_{j} are adjacent to each
other if and only if the corresponding paths ($P_{v_{i}}$ and $P_{v_{j}}$) intersect in at least one edge. We denote each path of the representation as a set of edges (and not of vertices), so that the path is considered as a finite sequence of consecutive edges $e_{1}=\left(v_{1}, v_{2}\right), e_{2}=$ $\left(v_{2}, v_{3}\right), e_{3}=\left(v_{3}, v_{4}\right), \ldots, e_{i}=\left(v_{i}, v_{i+1}\right), \ldots, e_{m}=\left(v_{m}, v_{m+1}\right)$, where $v_{i} \neq v_{j}$ for $i \neq j$. A path in the representation is a path hosted on the grid.

A bend is defined as a pair of consecutive edges, e_{1} and e_{2}, that have different directions on the grid. When this happens e_{1} and e_{2} are called bend edges. If a path has no bends it is called a segment. Still on EPG representations, we say that it is a B_{k}-EPG representation, when all paths of the representation have at most k bends, i.e. k changes of direction, where $k \geq 0$ and k is an integer.

A very famous property of the Set Theory is the Helly property. This property of intersecting sets can be defined as follows: A collection of sets satisfies the Helly property when every subcollection that is mutually intersecting has at least one element in common. In an EPG representation of a graph G, we observe the Helly property with respect to edge-intersections of paths. When a collection of paths is mutually intersecting, if this collection of paths shares at least one common edge of the representation then it is a Helly representation.

Figura 1 Sets that do not satisfy the Helly property (at left) and sets that satisfy the property (at right), respectively

Figura 2 A graph G (at left), a non-Helly B_{2}-EPG representation of G (in the center), and a Helly B_{2}-EPG representation of G (at right), respectively

Figure 1 presents two families of subsets, each family of subsets is pairwise intersecting with each other, i.e. is a 2 to 2 intersecting family, or we can say that any two elements of this family have non-empty intersection. The family of sets depicted in Figure 1, at the left, is pairwise intersecting but the intersection of all the sets is empty, so it is an example of a family of sets that does not satisfy the Helly property. On the other hand, depicted in Figure 1, at the right, we have a collection of pairwise intersecting sets whose intersection of all elements is not empty, so this collection satisfies the Helly property.

We can observe the Helly property in Graph Theory. In particular, in EPG graphs we observe the Helly property of the intersections of the set of paths in the representation. In Figure 2 is depicted a graph G, at the left, with two of its possible B_{2} EPG representations. In Figure 2, at the right, we have a representation where the paths $P_{v_{2}}, P_{v_{3}} P_{v_{4}}$ intersect and they have a common edge, so the representation is Helly. On the other hand, in Figure 2, at the center, we have a set of pairwise intersecting paths but there is no edge of the common representation, simultaneously, to these 3 paths, thus constituting a non-Helly representation.

Methodology

In this work we adopted an exploratory and investigative research methodology. It is investigative and exploratory because its goal is to investigate or to know something that, through this research, gives a more complete point of view about the problem under study. In this work we seek to explore, in general, the B_{2}-EPG graph class and the related Helly property.

This research investigate the B_{2}-EPG graphs and generic results about relationships among paths. The following section brings some definitions and general results of the work, in addition we present algorithms that generate B_{2}-EPG representations of some particular graphs.

Some Results for $\boldsymbol{B}_{\mathbf{2}}$-EPG Graphs and Others

Follow we present some of the results obtained from the study of the B_{2}-EPG class.

a. Generic Results

Lemma 1. Let L_{1} and L_{2} be two grid lines parallel to each other, if a path P_{1} edgeintersects L_{1} and L_{2} then the path P_{1} necessarily has at least two bends.

Proof. Without loss of generality, consider any two distinct horizontal (thus parallel) lines of the grid, say L_{1} and L_{2}. If path P_{1} has a segment on line L_{1}, then it must make at least one bend to reach line L_{2}. However, if P_{1} reaches L_{1} and does not bend again then P_{1}, at most, will vertex-intersect Line L_{2}. Therefore, for there to be a segment of P_{1} on L_{2}, P_{1} must have at least two bends. \#

Corollary 2. If the path $P_{1} \in B_{2}-E P G$, where P_{1} has two bends, then P_{1} has exactly two segments in the same direction (either horizontal or vertical).

Proof. In a rectangular grid there are only two directions (horizontal and vertical). If path P_{1} has two bends, it is necessarily composed of three segments. Therefore, by the pigeonhole principle, we need to accommodate these three segments in the two possible directions, i.e., we have more segments than directions to accommodate. Inevitably we will have to accommodate two segments in one of the directions. \#

Definition 3. Let P_{1} be a path B_{2}-EPG with two bends. We call the central segment of P_{1} the body, while the segments attached to the body are called the legs.

Corollary 4. Let $P_{1} \in B_{2}-E P G$, where P_{1} has two bends and three segments. The body segment of P_{1} has the opposite direction to the leg segments of P_{1}.

Proof. By Corollary 2 we know that there are two segments in the same direction. Assume by contradiction that the body and at least one of the legs have the same direction. Now, but if that happens we will have two consecutive segments of the same path in the same direction. In this case, either the segments are on the same grid line, if
they are together, one at the end of the other, they actually form the same segment. Or they are on the same line and there is a discontinuity, so it does not form a path. Or they are on different grid lines, in which case by Lemma 1 the path has more than two bends. In all cases we concluded a contradiction.

Corollary 5. Given $P_{1} \in B_{2}-E P G$ where P_{1} has two bends and three segments, if P_{1} has two segments in the same direction, then these two segments are on parallel lines of the representation grid.

Proof. By Corollary 4, we know that the body of P_{1} has the opposite direction to the direction of the legs, in addition, at each extremity of the segment of the body of P_{1} there is a bend for the segments of the legs. Let is consider P_{1} formed by the segments S_{1}, S_{2} and S_{3}, with S_{2} being the body, and considering any line of the representation grid, say L_{1}, if S_{2} is on L_{1} from column C_{1} to column C_{2}, as S_{1} and S_{3} must have direction opposite to S_{2} and share 1 extremity vertex with S_{2}, then S_{1} and S_{3} must necessarily be one on C_{1} and the other on C_{2}. Since C_{1} and C_{2} are columns at the extremities of segment S_{1}, we conclude that S_{1} and S_{3} are therefore parallel to each other. \#

Lemma 6. Let S_{1} and S_{2} be two distinct path segments of an EPG representation, if $S_{1} \cap_{v} S_{2} \neq \emptyset$ and $S_{1} \cap_{e} S_{2}=\emptyset$, then at most $\left|S_{1} \cap_{v} S_{2}\right|=1$.

Proof. In an EPG grid representation, a path segment lies solely on a grid line. So let is say that S_{1} and S_{2} are on the grid lines L_{1} and L_{2} respectively, where L_{1} and L_{2} can be lines of different directions, lines in the same direction but parallel or they can be the same line.

- If L_{1} and L_{2} are lines in the same direction but parallel, then $\left|S_{1} \cap_{v} S_{2}\right|=\varnothing$;
- If L_{1} and L_{2} are lines of different directions, then L_{1} and L_{2} can intersect at exactly one point, so at most $\left|S_{1} \cap_{v} S_{2}\right|=1$;
- If L_{1} and L_{2} are the same line, for S_{1} and S_{2} to share more than one vertex then they must be consecutive vertices, since they are on the same line. In the representation grid, two consecutive vertices form an edge, that way, if S_{1} and S_{2} share more than one consecutive vertex, then $S_{1} \cap_{e} S_{2}=\emptyset$, so at most $\left|S_{1} \cap_{v} S_{2}\right|=$ $1 ;$

Given these facts, we conclude that at most $\left|S_{1} \bigcap_{v} S_{2}\right|=1$.

Lemma 7. Given a path $P_{1} \in B_{2}-E P G$ where P_{1} has two bends, and let S_{2} be a segment of the same representation. If $\left|P_{1} \cap_{v} S_{2}\right| \neq \emptyset$ and $\left|P_{1} \cap_{e} S_{2}\right|=\emptyset$, then at most $\left|P_{1} \cap_{v} S_{2}\right|=2$.

Proof. By Corollary 4 we know that the body of P_{1} has the opposite direction to the other segments. By Corollary 5, P_{1} is legs are not on the same grid line. By Lemma 6, we know that two segments that do not share an edge can vertex-intersect in at most one point. By contradiction, suppose that $\left|P_{1} \bigcap_{v} S_{2}\right|>2$, say $\left|P_{1} \bigcap_{v} S_{2}\right|=3$, so there must be a configuration where S_{2} vertex-intersects the three segments of P_{1}. By Lemma 6 we know that two segments that do not intersect on an edge can have at most one vertex in common. So for S_{2} to have three points of intersection with path P_{1}, necessarily S_{2} would have to intersect the three segments of P_{1}.

- S_{2} cannot be on grid lines parallel to P_{1} is legs, since if positioned that way S_{2} could vertex-intersect only one of the three segments of P_{1} or a bend vertex of P_{1}, so $\left|P_{1} \cap_{v} S_{2}\right|=1$.
- Case S_{2} is on a grid line perpendicular to the lines where the two legs of P_{1} are positioned. If this line is the same as P_{1} is body is drawn, then S_{2} could vertexintersect P_{1} only at one extremities of its body, so $\left|P_{1} \bigcap_{v} S_{2}\right|=1$. If S_{2} is hosted on a line that allows it to vertex-intersect the legs of P_{1} :
- If the legs bend to different sides: in this case $\left|P_{1} \cap_{v} S_{2}\right|=1$;
- If both legs bend to the same side: with this configuration $\left|P_{1} \cap_{v} S_{2}\right|=2$, see Figure 3.
Therefore, we conclude in a contradiction because in all tested configurations, at most $\left|P_{1} \cap_{v} S_{2}\right|=2$.
\#

Figura 3 Intersection of a segment with a B_{2}-EPG path

b. k-sun Graph

Definition 8. A k-sun graph S_{k}, with $k \geq 3$, consists of $2 k$ vertices, where there is an independent set $X=\left\{x_{1}, \ldots, x_{k}\right\}$ a clique $Y=\left\{y_{1}, \ldots, y_{k}\right\}$ and edges $E_{1} \cup E_{2}$, where $E_{1}=$ $\left\{x_{1} y_{1}, y_{1} x_{2}, x_{2} y_{2}, y_{2} x_{3}, \ldots, x_{k} y_{k}, y_{k} x_{1}\right\}$ form the external cycle and $E_{2}=\left\{y_{i} y_{j} \mid i \neq j\right\}$ form the inner clique.

Definition 9. The mod operator is used to return the remainder of integer division. When the division is exact, it returns zero. When dividend is less than divisor, then returns the dividend itself. Examples: $4 \bmod 8=4 ; 12 \bmod 4=0 ; 10 \bmod 4=2 ; 5 \mathrm{mod}$ $4=1$.

According to results presented by Golumbic, Lipshteyn and Stern (2009), k-sun \notin B_{1}-EPG, for $k \geq 4$. Next, we prove that k-sun $\in B_{2}$-EPG for all $k \geq 3$. After the first feedback about a work submitted to the CSBC ETC congress, we were surprised by the fact that the result that appears in our Lemma 10 would have already been presented, in the literature, in the paper by Cela and Gaar (2019), where there is a result similar to that of this work, however, with a different approach. The distinct approach allows us to conclude the Corollary 11.

Lemma 10. The k-sun graph $\in B_{2}-E P G$.
Proof. Consider row l_{0} and column c_{0} as the central row and column of the representation, see Figure 2. We consider two particular cases in our construction:

- k even: The path $P_{y_{i}}$ to $i=1$, in this case $P_{y_{i}}$ has a horizontal segment on line l_{0} between columns c_{-1} and $c_{\frac{k}{2}}$. In column c_{-1}, the path $P_{y_{i}}$ bends and extends to line l_{1}, whereas in column $c_{\frac{k}{2}}$, if $\mathrm{k} \bmod 4=0$, then $P_{y_{i}}$ bends and extends to line l_{-1}, otherwise $P_{y_{i}}$ bends and extends to line l_{1}.
- k odd: The path $P_{y_{i}}$ for $i=1$, has a horizontal segment on the line l_{0} between columns c_{-1} and c_{0}. In column c_{-1}, the path $P_{y_{i}}$ bends and extends to line l_{1}, whereas in column $c_{0}, P_{y_{i}}$ bends and extends to line l_{-1}. The path $P_{y_{i}}$ for $i=k$, has a horizontal segment on line l_{0} between columns c_{0} and $\frac{c_{k-1}^{2}}{}$. If $(\mathbf{k}+1) \bmod 4 \neq 0$, both extremities of the path $P_{y_{i^{\prime}}}$ respectively on columns c_{0} and $c_{\frac{k-1}{2}}$ bend and extend to line l_{-1}, otherwise the path $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ bends in c_{0} and extends to line l_{-1}, and also bends at $\frac{c_{\frac{k-1}{2}}^{2}}{}$ and extends to line l_{1}. The path $\mathrm{P}_{\mathrm{x}^{\prime}}$ for $i=k$, is represented by a vertical segment on column c_{0} between lines l_{0} and l_{-1}.

To represent the vertices of the clique Y follow the procedure below. The algorithm represents each path $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$, where i is odd. When k is even, consider $i \neq 1$, and when k is odd, consider $i \neq 1$ and $i \neq k$, as these paths were previously constructed by the algorithm. In this case we have two subcases, case 1.1 , when $(i+1) \bmod 4=0$, then $P_{y_{i}}$ has a horizontal segment on line l_{0}, between columns $c_{-\frac{i+1}{2}}$ and $c_{\frac{i-1}{2}}$. In column $c_{-\frac{i+1}{2}}$, the path $P_{y_{i}}$ bends and extends to line l_{-1}, while in column $c_{\frac{i-1}{2}}, P_{y_{i}}$ bends and extends to line l_{1}; case 1.2 , when $(i+1) \bmod 4 \neq 0$, then $P_{y_{i}}$ has a horizontal segment on line l_{0}, between columns $c_{-\frac{i+1}{2}}$ and $c_{\frac{i-1}{2}}$. In column $c_{-\frac{i+1}{2}}$, the path $P_{y_{i}}$ bends and extends to line l_{1}, while in column $\frac{c_{\frac{i-1}{2}}^{2}}{}, P_{y_{i}}$ bends and extends to line l_{-1}.

Let $P_{y_{i}}$ be the path, where i is even and $\mathrm{i} \bmod 4 \neq 0$. In this case, $P_{y_{i}}$ has a horizontal segment on line l_{0} between columns $c_{-\frac{i}{2}}$ and $c_{\frac{i}{2}-}$. Both extremities of the $P_{y_{i}}$ path bend, respectively in columns $c_{-\frac{i}{2}}$ and $c_{\frac{i}{2}-}$ and extend to line l_{1}. Case path $P_{y_{i}}$ when i is even and $i \bmod 4=0$, then $P_{y_{i}}$ has a horizontal segment on line l_{0} between columns $c_{-\frac{i}{2}}$ and $c_{\frac{i}{2}}$. Both extremities of path $P_{y_{i^{\prime}}}$ respectively in columns $c_{-\frac{i}{2}}$ and $c_{\frac{i}{2}}$ bend and extend to line l_{-1}.

The vertices of the independent set X are represented by vertical segments that occupy different columns. Consider $i \neq \mathrm{k}$ when k is odd. In the case of path $P_{x_{i}}$, where i is even and $i \bmod 4=0, P_{x_{i}}$ is represented by a segment on column $c_{\frac{i}{2}}$ between lines l_{0} and l_{-1}. For $P_{x_{i}}$, where i is even and $i \bmod 4 \neq 0, P_{x_{i}}$ is represented by a segment on column $c_{\frac{i}{2}}$ between lines l_{0} and l_{1}. The path $P_{x_{i^{\prime}}}$ where i is odd and $(i+1) \bmod 4=0, P_{x_{i}}$ is represented by a segment on column $c_{-\frac{i+1}{2}}$ between lines l_{0} and l_{-1}. For $P_{x_{i^{\prime}}}$ where i is odd and $(i+1) \bmod 4 \neq 0, P_{x_{i}}$ is represented by a segment on column $c_{-\frac{i+1}{2}}$ between lines l_{0} and l_{1}.
\#

Figura 4 k-sun graph (at left) and a particular B_{2}-EPG representation (at right)

To facilitate understanding, we write an algorithm to describe the lemma 10, the code can be found in Algorithm 1, in page 19.

Corollary 11. The k-sun graph \in Helly B_{2}-EPG.
Proof. Consider row I_{0} and column c_{0} as the central row and column of the representation. We consider in our construction three particular cases:

- k even: The path $P_{y_{i^{\prime}}}$ for $i=k-1$, has a horizontal segment on line l_{0} between columns c_{0} and $c_{\left[\frac{k-1}{2}\right]}$. In column $c_{0}, P_{y_{i}}$ bends and extends to line l_{1}, while in column $c_{\left\lfloor\frac{k-1}{2}\right\rfloor} P_{y_{i}}$ bends and extends to line l_{-1}. The path $P_{y_{i^{\prime}}}$ for $i=k$, has a vertical segment on column c_{0} between lines l_{0} and l_{1}. In line $l_{0}, P_{y_{i}}$ bends and extends to column c_{1}, whereas in line $l_{1}, P_{y_{i}}$ bends and extends to column $c_{-\left\lfloor\frac{k-1}{2}\right]}$. The $P_{x_{i}}$ path, for $i=\mathrm{k}-1$ is represented by a vertical segment on column c_{0} between lines l_{0} and l_{1}.
- k odd and $k \neq 3$: The path $P_{y_{i}}$, for $i=k-1$, has a horizontal segment on the line l_{0} between columns $c_{-\left(\left[\frac{k-1}{2}\right\rfloor-1\right)}$ and $c_{\left\lfloor\frac{k-1}{2}\right\rfloor}$. In column $c_{-\left(\left[\frac{k-1}{2}\right\rfloor-1\right)^{\prime}} P_{y_{i}}$ bends and extends to line l_{-1}. The path $P_{y_{i^{\prime}}}$ for $i=k$ has a vertical segment on column c_{0} between lines l_{0} and l_{1}. In line $l_{0}, P_{y_{i}}$ bends and extends to column $c_{\left\lfloor\frac{k-1}{2}\right\rfloor}$, whereas in line $l_{1}, P_{y_{i}}$ bends and extends to column $c_{-\left\lfloor\frac{k-1}{2}\right\rfloor}$. The path $P_{x_{i^{\prime}}}$ for $i=k-1$ is represented by a horizontal segment on line l_{0} between columns $c_{\left[\frac{k-1}{2}\right]-1}$ and $c_{\left[\frac{k-1}{2}\right]}$.
- $k=3$: The path $P_{y_{i}}$ for $i=k-1=2$, is represented by a horizontal segment on line l_{0} between columns c_{-1} and c_{2}. The path $P_{y_{i^{\prime}}}$ for $i=k=3$ has a vertical segment on column c_{0} between lines l_{0} and l_{1}. In line $l_{0}, P_{y_{i}}$ bends and extends to
column c_{2}, while in line $l_{1}, P_{y_{i}}$ bends and extends to column c_{-1}. The path $P_{x_{i^{\prime}}}$ for i $=k-1=2$ is represented by a horizontal segment on the line l_{0} between columns c_{1} and c_{2}.
To represent the vertices of the clique Y follow the procedures below. During the execution of the following steps if $k=3$ or $k=4$, consider $-\left(\left[\frac{k-1}{2}\right\rfloor-1\right)=0$. The path $\mathrm{P}_{\mathrm{y}^{\prime}}$ for $i=1$, has a vertical segment on the column $\mathrm{c}_{-\left\lfloor\frac{\mathrm{k}-\frac{1}{2}}{} \mathrm{~J}\right.}$ between lines l_{0} and l_{1}. In line $l_{1} \mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ bends and extends to column $c_{-\left(\left[\frac{k-1}{2}\right]-1\right)^{\prime}}$, whereas in line $l_{0}, \mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ bends and extends to column c_{1}. The path $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$, for $i=2$ (except when $k=3$, as it was already defined earlier), has a horizontal segment on line l_{0} between columns $c_{-\left\lfloor\frac{k-1}{2}\right\rfloor}$ and c_{1}. In column $c_{1} \mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ bends and extends to line l_{-1}.
For the other paths $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ that represent the vertices of the clique Y (which exclude i $=1, i=2, i=k-1$ and $i=k$), do the following: For $\mathrm{P}_{\mathrm{yi}_{\mathrm{i}}}$, where i is odd, $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ has a horizontal segment on line l_{0} between columns $c_{-\frac{i-1}{2}}$ and $\frac{c_{i-1}^{2}}{2}$, at both extremities $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ bends and extends to line l_{-1}. For $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$, where i is even, $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ has a horizontal segment on line l_{0} between columns $c_{-\left(\frac{i}{2}-1\right)}$ and $c_{\frac{i}{2}}$, at both extremities $\mathrm{P}_{\mathrm{y}_{\mathrm{i}}}$ bends and extends to line l_{-1}.

The vertices of set X are segments distributed through the representation. For $P_{X_{i}}$ ' where $i=1, \mathrm{P}_{\mathrm{x}_{\mathrm{i}}}$ is represented by a segment on line l_{0} between columns $c_{-\left(\left[\frac{k-1}{2}\right]\right)}$ and ${ }^{c}-\left(\left[\frac{k-1}{2}\right]-1\right)$. For $\mathrm{P}_{\mathrm{X}_{\mathrm{i}}}$ where $i=\mathrm{k}, \mathrm{P}_{\mathrm{x}_{\mathrm{i}}}$ is represented by a segment on line l_{1} between columns $c_{-\left(\left[\frac{k-1}{2}\right]\right)}$ and $c_{-\left(\left[\frac{k-1}{2}\right]-1\right)}$. For the rest of paths $\mathrm{P}_{\mathrm{X}_{\mathrm{i}}}$ (which exclude $i=1, i=k-1$ and $i=k$), do the following: For $\mathrm{P}_{\mathrm{x}_{\mathrm{i}}}$, where i is even, $\mathrm{P}_{\mathrm{x}_{\mathrm{i}}}$ is represented by a vertical segment on column $c_{\frac{i}{2}}$ between lines l_{0} and l_{-1}. for $\mathrm{P}_{\mathrm{x}^{\prime}}$, where i is odd, $\mathrm{P}_{\mathrm{x}_{\mathrm{i}}}$ is represented by a vertical segment on column $c_{-\frac{i-1}{2}}$ between lines l_{0} and l_{-1}. \#

Figura 5 K-sun graph (at left) and a particular Helly B_{2}-EPG representation (at right). To facilitate visualization, we present the Corollary 11 as a code in the Algorithm 2, in page 19

Concluding Remarks

This work presents a study of the B_{2}-EPG and Helly B_{2}-EPG classes. We present some general results about the B_{2}-EPG class approaching also geometric arrangements from paths and segments. In addition, we also present two demonstrations (by constructive algorithms) that prove the following results: k-sun graph $\in B_{2}$-EPG and k sun graph \in Helly B_{2}-EPG. The next steps of this research are to investigate the behavior particular of some graph classes in B_{2}-EPG, e.g. chordal, split, and another. We would like to know about the Helly B_{2}-EPG graph recognizing problem. We agree that B_{2}-EPG graph recognizing problem is NP-Complete, because the related results in literature, e.g. B_{1}-EPG graph recognizing is NP-Complete, similarly also Helly B_{1}-EPG graph recognizing is NP-Complete. Maybe proving the monotonicity of the hierarchy within the B_{k}-EPG class is also an interesting field for future work.

References

Alcón, L., et al. (2018). On the Bend Number of Circular-arc Graphs as Edge Intersection Graphs of Paths on a Grid. Discrete Applied Mathematics, 234, 12-21.
Alcón, L., Mazzoleni, M. P., \& Santos, T. D. (2021). Relationship Among B1-EPG, VPT and EPT Graphs Classes. Discussiones Mathematicae Graph Theory.
Asinowski, A., \& Suk, A. (2009). Edge Intersection Graphs of Systems of Paths on a Grid with a Bounded Number of Bends. Discrete Applied Mathematics, 157(14), 31743180.

Cameron, K., Chaplick, S., \& Hoàng, C. T. (2016). Edge Intersection Graphs of L-shaped Paths in Grids. Discrete Applied Mathematics, 210, 185-194.
Cela, E., \& Gaar, E. (2019). Monotonic Representations of Outerplanar Graphs as EdgeIntersection Graphs of Paths on a Grid. arXiv preprint arXiv:1908.01981.
Francis, M. C., \& Lahiri, A. (2016). VPG and EPG Bend-Numbers of Halin Graphs. Discrete Applied Mathematics, 215, 95-105.

Golumbic, M. C., Lipshteyn, M. \& Stern, M. (2009). Edge Intersection Graphs of Single Bend Pathson a grid. Networks: An International Journal, 54(3), 130-138.
Golumbic, M. C., Lipshteyn, M., \& Stern, M. (2013). Single Bend Paths on a Grid Have Strong Helly number 4: errata atque emendationes ad "Edge Intersection Graphs of Single Bend Paths on a Grid". Networks, 62(2), 161-163.
Heldt, D., Knauer, K., \& Ueckerdt, T. (2014). Edge-Intersection Graphs of Grid Paths: thebend number. Discrete Applied Mathematics, 167, 144-162.
Heldt, D., Knauer, K., \& Ueckerdt, T. (2014). On the Bend-Number of Planar and Outerplanar graphs. Discrete Applied Mathematics, 179, (109-119).
Marinho, L. F. S., Silva, K. A., \& Santos, T. D. B2-EPG Split. (2023). Academic Journal on Computing, Engineering and Applied Mathematics, 4(1), 1-7, 2023.
Pergel, M., \& Rzążewski, P. (2017). On edge intersection graphs of paths with 2 bends. Discrete Applied Mathematics, 226, 106-116.
Stern, M., Biedl, T. (2010). On Edge-Intersection Graphs of k-Bend Paths in Grids. Discrete Mathematics and Theoretical Computer Science, 12(1), 1-12.
Szwarcfiter, J. L., et al. (2020). The Complexity of Helly-B ${ }_{1}$-EPG Graph Recognition. Discrete Mathematics and Theoretical Computer Science, 22.

Abstract

RESUMO: Neste artigo exploramos a classe de grafos B_{2}-EPG e a propriedade Helly. Apresentamos resultados genéricos sobre representações EPG e definimos termos que suportam os demais resultados, além disso, apresentamos um algoritmo inédito que constrói uma representação B_2-EPG-Helly de qualquer grafo k-sun.

PALAVRAS-CHAVE: B_{2}-EPG; Teoria dos Grafos; Grafos de Interseção; Propriedade Helly; Grafos k-sun.

RESUMEN:
En este artículo exploramos la clase B_{2}-EPG y la propiedad Helly. Presentamos resultados genéricos sobre las representaciones EPG y definimos términos que respaldan los otros resultados, además, finalizamos la investigación con un algoritmo original que construye una representación B_{2}-EPG -Helly de cualquier grafo k-sun.
PALABRAS CLAVE: B_{2}-EPG; Teoría de Grafos; Grafos de Intersección; Propiedad Helly; Grafos k-sun.

