m}_—-

LARRATRNELLA

ALY

\

L
T

l.
!

- -||
4

e

h.dﬁ”ﬁ‘ \ E _-1 n

Do Basmo ao Complexo:
. prendendo Banco de Dados-—--—-

T |

_'____'___'_JI

Eduardo Ferreira Ribeiro

UNIVERSIDADE FEDERAL DO TOCANTINS
CAMPUS UNIVERSITARIO DE PALMAS
CURSO DE CIENCIA DA COMPUTAGAO

CURSO DE LICENCIATURA EM COMPUTAGAO - UAB

Do Basico ao Complexo: Aprendendo a Banco
de Dados em SQL com o ChatGPT

EDUARDO RIBEIRO

Palmas - TO

2024

Copyright © 2024 - Universidade Federal do Tocantins — Todos direitos reservados

Universidade Federal do Tocantins (UFT) | Campus de Palmas
Avenida NS 15, Quadra 109 Norte | Plano Diretor Norte
Bloco IV, Reitoria
Palmas/TO | 77001-090

Atribuicao 4.0 Internacional (CC BY 4.0)

Dados Internacionais de Catalogagdo na Publicagéo (CIP)
Sistema de Bibliotecas da Universidade Federal do Tocantins (SISBIB)

R484b Ribeiro, Eduardo Ferreira.
Do Basico ao Complexo: Aprendendo a Banco de Dados em SQL com o ChatGPT /
Eduardo Ferreira Ribeiro. — Palmas, TO: EdUFT, 2024.
356p.

Portal de Livros da Editora vinculada a Pro-reitoria de Pesquisa e Pdés-Graduagao
(Propesqg/UFT), a Editora da Universidade Federal do Tocantins (EdUFT). Acesso em:
hitps://sistemas.uft.edu.br/periodicos/index.php/editora.

ISBN: §78-65-5390-129-2.

1. Educacao fisica. 2. Esgrima. 3. Esportes paralimpicos. 4. Cadeiras de rodas. I. Lima,
Luan Pereira. Il. Santos, Erlany Miranda dos. lll. Mattos, Luma da Silva Conceigao. IV.
Titulo.

CDD 005.74

TODOS OS DIREITOS RESERVADOS - A reprodugao total ou parcial, de qualquer forma ou por
qualquer meio deste documento é autorizado desde que citada a fonte.

UNIVERSIDADE FEDERAL DO TOCANTINS

Editora da Universidade Federal do Tocantins - EDUFT

Reitor Pré-Reitor de Pesquisa e Pés-Graduacao

Luis Eduardo Bovolato
Vice-reitora
Marcelo Leineker Costa

Pré-Reitor de Administracao e Financas
(PROAD)

Carlos Alberto Moreira de Araujo

Pré-Reitor de Avaliacao e Planejamento
(PROAP)

Eduardo Andrea Lemus Erasmo
Pré-Reitor de Assuntos Estudantis (PROEST)
Kherlley Caxias Batista Barbosa

Pro-Reitora de Extensdo, Cultura e Assuntos
Comunitarios (PROEX)

Maria Santana Ferreira dos Santos

Pro-Reitora de Gestdo e Desenvolvimento de
Pessoas (PROGEDEP)

Michelle Matilde Semiguem Lima Trombini
Duarte

Proé-Reitor de Graduagao (PROGRAD)

Eduardo José Cezari

(PROPESQ)

Raphael Sanzio Pimenta

Pré-Reitor de Tecnologia e Comunicacao

(PROTIC)

Ary Henrique Morais de Oliveira

Conselho Editorial
Presidente
Ruhena Kelber Abr&o Ferreira
Membros do Conselho por Area
Ciéncias Biologicas e da Saude
Ruhena Kelber Abrao Ferreira
Ciéncias Humanas, Letras e Artes
Fernando José Ludwig
Ciéncias Sociais Aplicadas
Ingrid Pereira de Assis
Interdisciplinar

Wilson Rogério dos Santo

O padrdo ortogréfico e o sistema de citacdes e referéncias bibliograficas sdo prerrogativas de
cada autor. Da mesma forma, o conteldo de cada capitulo é de inteira e exclusiva

responsabilidade de seu respectivo autor.

$2ABEC

MBRASIL

Assomacao Brasileira de Editores Cientificos

Associacao Brasileira
das Editoras Universitarias

|

Indice

PIETACIO. 1.ttt ettt bbbt st b bbb R R Rt s bk R e s e R e R et et s e s et e sesea e sttt ebeseteseneataeas 7

INEFOTUGAO ..ttt ettt ettt ettt ae et ettt et e s e b ess e s eseasesess s esessesess st esess s ebeasesesssseseasesesnasesesnnas 7

Capitulo 1- Introducao aos BanCos de dadOS........c.cueiieieieieeiieieeiieieeete ettt se e 16
Secao 1.1: Diferenca entre Dado € INfOrMaGA0.......cioiiieieiiieeeeeeee e e 17
SECA0 1.2: TIPOS AE DAUOS.....oceeeieeeetitecteete ettt ettt ettt ettt et seseete b e s eseebesessesesbessessesesans 19
Secdo 1.3: Bancos de Dados € SeUS CONCEILOS........ccuiiieriieieieieieeeeeteeeteteee ettt 23
SeCd0 1.4: Propriedades ACID.......o ettt ettt be bbbt ss b ss s esesseseseasesens 27
Secdo 1.5: Historico dos Modelos de Dados.........eeeeeeeeeeeeeeeeeeeeeee et 29
PROMPTS PARA APRENDER MAIS COM O CHATGPTcoiiteeeeestetsereve s ssnsssens 34
EXERCICIOS DE FIXACAO.oooeoeeeeeeeeeeeeeeeeeeeeseseeseee s eeesesossseeesssosss o sssss s ses s sssssssssssnene 37

Capitulo 2 - Modelo Entidade-Relacionamento (ER).......cocuouiirieiirieiieceeeeeeee e 40
Secdo 2.1: Introducdo ao Modelo Entidade-Relacionamento (ER).......ccoevvveeeevieeiniennieeceeees 42
Secdo 2.6: Ferramentas para Desenho de Modelos ER...........ccoiieieiceicieeeee e 46
SECA0 2.2: ENTIAAUES.....oeieeeeeete ettt ettt ettt b st et as s essaseseseesesnanas 50
SECA0 2.3: ALNDULOS. ...ttt ettt b ettt s b e st s esessesass s esassebeseasesessssesan 53
SECA0 2.4: REIACIONAMENTOS.c.eieiceieieieeeeetee ettt ettt ettt ettt sete et e s e s ere st esseasetessenseseetens 57
Secdo 2.5: Chaves Primdrias @ Chaves EStrangeiras......coceeeeeeeeeeeeeeeeeteeeeeee e 61
Secdo 2.7: Inteligéncia Artificial no auxilio de Criacdo de Diagramas ER.........ccccccevvvveeeererennnee. 69
PROMPTS PARA APRENDER MAIS COM O CHATGPT ...ttt 73
EXERCICIOS DE FIXAGAO......ivierrreiiieneseisseessssssessssssssess st sssnness 75

Capitulo 3 - Modelo Relacional e Projeto Logico de um Banco de Dados........ccceveeeevevecvevceecvenennne. 78
Secdo 3.1: O modelo Relacional de COdd........iiiiiiieiieieeeeeeeeee ettt 81
Secdo 3.2: Chaves Primarias e Estrangeiras em Bancos de Dados Relacionais............cccucu....... 86
Secdo 3.3: Regras de Integridade Referencial em Bancos de Dados Relacionais...........cc......... 89
Secdo 4.4: Ferramentas e Softwares para Projeto Légico de Banco de Dados Relacional....... 91
PROMPTS PARA APRENDER MAIS COM O CHATGPTccoiiiireieieeetertrisieieesseesssse e seens 95
EXERCICIOS DE FIXAGAO. ... oo ssssssssssssss s sssss s ssssssssssssssssssssssssssssssss 96

Capitulo 4 - NormaliZAca80 d@ DATOS. ..ottt ettt eas s eas s eseannas 99
Secdo 4.1: Conceitos Basicos de NOIrMaliZaCa0.......c.ccieveueuieeeuieeieeeeeeeeeteeeee e 101
Secdo 4.2: Primeira Forma NOrmal (TFN).......c.ouoioeiieeieeeeeeeceet ettt seas 108
Secdo 4.3: Segunda FOrma NOIrmMal (2FN).....c.ciioiiieiieieeieeeeetet ettt seas 110
Secdo 4.4: Terceira FOrma NOrmMal (BFN). ..ottt esns 14
PROMPTS PARA APRENDER MAIS COM O CHATGPTccoiiirieeteietenneisisere s ssssssssnnns 121
EXERCICIOS DE FIXAGAO. ... ses s s sss s ss s 124

Capitulo 5 - Sistemas Gerenciadores de Bancos de Dados (SGBDS)......ccccceerrrrereieeenenereseseeeenens 128

Secdo 5.1: Conceitos BASICOS A SGBDS........o ettt 129

|
Secdo 5.2: Estrutura de um Sistema de Banco de Dados..........coceeeeeiceereieecieceeceeeeeeeeeeeene 130
Secdo 5.3: Vantagens e Desvantagens de Sistemas de Banco de Dados........cccceeeeevieeeeeennne. 135
SeCA0 5.4: EXEMPIOS @ SGBDS......oooicietieeeteeteeete ettt ettt ettt et et neae et s ne e 138
Secao 5.5: SGBDS ONlNE - NUVEM . ..ottt ettt ettt s ne s 140
Secdo 5.6: Exemplos de Plataformas de Bancos de Dados Online.........cccoceeeeeeeeerceceereeennne 143
Secdo 6.7: Exemplo Pratico de Integracao de Servidor com Banco de Dados MySQL........... 146
PROMPTS PARA APRENDER MAIS COM O CHATGPT ..ot 159
EXERCICIOS DE FIXACAOceeeeeeeeeeeeeeeeeeeeee e se s seeseessese s sesesesesese e e sessesesseesseeesaeeseseseseeasens 162
Capitulo 6 - Introducado a Linguagem SQL e Linguagem de Definicdo de Dados (DDL)................. 165
Secdo 6.1: Introducdo a Linguagem SQL.......c.cciiiieeeecseiee ettt 166
Secdo 6.2: Categorias de ComandOSs SQL.....ccoiirieuiuiiniriririeeeietete sttt ettt ens 169
Secdo 6.3: Linguagem de Definicdo de DAdos (DDL).....ccceeeeerieeinieiieieerieeesseesesseesseesesessssenas 170
Secdo 6.4: Tipos de DAados €M SQlL.......cciuiieiciieieeeeeteeeeete ettt ettt eae et eaeanene 172
Secdo 6.5: RestricOes e Integridade de Dados e Restricdes de Dominio........ccceeeeveevereeeevennee. 175
Secdo 6.6: Validacdo de Valores PermitidOS........cccioieieieeiieeeeeeeeeeeeeeete et 179
Secd0 6.6: Criacdo € Gerenciamento A INAICES. ... eeeeeeeeeee oo seeseeeeeeeeeeeeeeeseeesens 181
Secdo 6.7: Visualizacdo de Estruturas de Tabela € INAICES ... vweveoeeeeeereeeeeeeeeseeceseeeeeeseeeeesesenone 181
Secdo 6.8: Modificacdo da Estrutura e Exclusdo de Tabelas........ccceeeinieeceeieecicreeceeeeeee, 183
Secdo 6.9: Insercdo de Dados €m TabElas........c ittt 185
PROMPTS PARA APRENDER MAIS COM O CHATGPTcooiiiieeteteteseertseeve s sssssnsnnns 191
EXERCICIOS DE FIXACGAO oot ev et seseess e s seees s saess e seseesseases e seeene 192
Capitulo 7 - Linguagem de Manipulagdo de Dados (DML).....c.ccvrverireeeeiniririnieieseeeeseseeieseeeeeens 196
Secao 71: Comandos DML BASICOS - SELECT ...ttt 197
Seca0 7.2: ComandO INSERT ...ttt ettt b et e be s nn e 199
Secdo 7.3: ComMANAO UPDATE........o ettt ettt ettt ae et seaneseanas 202
SeCa0 7.4: CoOMANAO DELETE......c.o ottt 205
Secdo 7.5: Introducdo @s CoNSURAS SQL......ccirieiiirieiieieisieieereee ettt b e eeseeas 207
Secdo 7.6: Fungdes de Agregacan BASICAS......ccuiiiiriririeieieieiiiiintse et sesssssessssesesesesesens 209
Secdo 7.7: Comando GROUP BY...... ettt ettt s ettt et eseaeaes 213
Secdo 7.8: Um Exemplo Pratico COMPIETO........ccociiuiiiceiietcecee ettt 214
PROMPTS PARA APRENDER MAIS COM O CHATGPT ..ottt 226
EXERCICIOS DE FIXACAO. ...t seeeseeese e seeesseeseesesessseseease s sssasssssesssesesaseseseseseseseeas 228
Capitulo 8 - Consultas Avancadas e Manipulacdo de Dados........cceeeeueeeveeiereeeeeeeeeeeeeeeee e 232
Secado 8.1: Filtragem de Grupos COmM HAVING..........ccooiiiririreieeeee ettt 234
Secdo 8.2: Teoria de Conjuntos Aplicada a Bancos de Dados.........cccccveeeeieeieieenieeeeieeeeveenns 237
Secdo 8.3: Comando INNER JOIN........c ettt bbb s 241
Secdo 8.4: ComandO LEFT JOIN. ..ottt ettt et ettt ese e seseanas 243

Secdo 8.5: Comando RIGHT JOIN.......ci ettt b ettt b e sees 246

|
Secdo 8.6: Comando FULL OUTER JOIN.......oouiiiiieeeeeeeeteeetetetetete ettt 248
Secdo 8.7: Comando CROSS JOIN... ..ottt ettt ettt a et ae s seneas 251
Secdo 8.8: Subconsultas (Subqueries) EXPIOradas.......ccceeieeirieiieeeieeesieeeete e eeesesnees 253
Secdo 8.9: Operadores e Condigcdes Avangadas €m SQL.....ccoveireeeiniecinieeieeeeeeeeeenens 256
Secdo 8.10: Manipulacdo de Strings © Datas.......cccieeciieeeieeeieeeeeeeeee ettt 261
SECAO BN1: VISTAS (WIEWS)..ueiuieiriieieieieieieiitete ettt ettt ettt e s e s s esesesesenensneaes 266
Secao 8.12: Um Exemplo Pratico COMPIELO.......oouciiieeeceecteeeeeteeetee ettt eae 269
PROMPTS PARA APRENDER MAIS COM O CHATGPT ..ottt 278
EXERCICIOS DE FIXAGAO oot eees s veees e seees e es s ss e seseess s eseesseasesesenes 280

Capitulo 9 - Linguagem de Controle de Dados (DCL) e Arquitetura Cliente/Servidor em Bancos

(o [T B 1= T o 13T ST O SEPRUSR U SRTRR 285
Secdo 9.1: Linguagem de Controle de Dados (DCL)....cccvveeeiiririrrieeieieeeeeteieieee et 287
Secdo 9.2: Comandos GRANT € REVOKE......... ettt 287
Secdo 9.3: Controle de Acesso e PermissGes em Bancos de Dados.........cccceeeeeieeeeenecieeenenne. 291
Secdo 9.4: Arquitetura Cliente/Servidor em Bancos de Dados.........ccceeeveeeeereeeierececreeeeeeeenne 293
Secdo 9.5: Exemplos de Implementacdo de Bancos de Dados Cliente/Servidor..................... 296
Secdo 9.6: Um Exemplo Pratico COMPIELO......coiiicieeeeeceeeee et 298
PROMPTS PARA APRENDER MAIS COM O CHATGPTcoiivieeereteeeeeseve s sisssaeas 316
EXERCICIOS DE FIXACGAO oot ev et seseess e s seees s saess e seseesseases e seeene 318

Capitulo 10 - Otimizacdo de Consultas SQL: Praticas para Cédigo Limpo, Legivel e Eficiente.... 320
Secdo 10.1: Escrita de Codigo SQL LiMpPO € LEGIVEL ... 321
Secdo 10.2: Convencdes de Nomenclatura em Bancos de Dados.........ccceeeeveeeecieeeeerecieeneen. 325
Secdo 10.3: Comentdrios N0 COAIGO SQlL.....omiuiioiieiieieeeicteeeeeee ettt 328
Secdo 10:4: Otimizacdo de ConSUtas SQL.......ccciiiiririeieeeeteee e 331
SECEO0 10.5: OtiMIZACHO A INTICES .euveeeeeeeeeeeeeeeeeeeeseees e eeeeeesseeseeessessesesessesesesesseeseeseseeesesesasesesene 335
Secdo 10.6: Otimizacdo de Planos de EXECUGA0.......cooueicuieieieieeeeeeee et 337
Secdo 10.7: Otimizacdo do Particionamento de Tabelas.........ccoceeeieecieeeceeeeeeeeeeeeee e 339
PROMPTS PARA APRENDER MAIS COM O CHATGPT ...ttt 340
EXERCICIOS DE FIXAGAO. ... ivoeereiiieessesiseessssissesssssssssssssssss s ssnns 343

CONSIAEIACOES FIN@IS...ciiuiceiciiieeeeteeteeeteet ettt ettt ettt ettt te et et e s eseete b essesessessess et esessessetessensessssensessesens 347

RETEIENCIAS. .. vttt sttt ettt ettt e s se s e s s e s e et e s e s eseseseses e s et e s s et e sesesas st et et esesesesennrssesesens 353

SO O AULO ettt ettt e et e et e e et e e et e e s eseesate s aseseaseesaseesssesatesenseesaseesaseeestessasesnneesnneas 354

Prefacio

Ola! Meu nome € Eduardo Ribeiro, sou professor do Curso de Ciéncia da Computacdo
da Universidade Federal do Tocantins e do curso de Licenciatura em Computacdo da
Universidade Aberta do Brasil, e tenho uma mensagem para vocé antes de comecar a ler este
livro:

Caro leitor intrépido, parabéns por retornar ou comecar sua jornada de aprendizado
com o ChatGPT! Apds o sucesso estrondoso do primeiro livro, "Do Bdsico ao Complexo:
Aprendendo a Programar em Python com o ChatGPT', estamos de volta com uma nova
aventura: "Do Bdsico ao Complexo: Aprendendo Banco de Dados em SQL com o ChatGPT"

Assim como no nosso primeiro livro, este também foi escrito pela incrivel inteligéncia
artificial ChatGPT, que provavelmente sabe mais sobre SQL do que eu jamais sabereil Sim, é
verdade! Vocé vai encontrar pdginas repletas de exemplos brilhantes e explicacdes claras, tudo
gracas ao nosso genial ChatGPT. E eu? Bem, sou apenas um humano que as vezes confunde
um comando INNER JOIN com um OUTER JOIN (brincadeira, mas vocé entendeu a ideia).

Mas néo se preocupe, estou aqui para te guiar através dessa jornada igualmente
cadtica e fascinante. Enquanto vocé aprende a criar e gerenciar bancos de dados, a realizar
consultas eficientes e a otimizar suas operacbées em SQL, eu estarei ocupado tentando nédo
fazer uma query que acabe deletando todo o banco de dados. Prepare-se para mais uma vez
observar meus pequenos tropecos enquanto tento extrair conceitos complexos do ChatGPT. E
sim, as vezes até o ChatGPT precisa intervir para salvar o dia e corrigir meus pedidos confusos.
as no final a gente sempre se entende e levamos a vocé um material 100% confidvel!

E as ilustragbes? Bem, o DALL-E, nossa talentosa IA para geragdo de imagens, continua
a criar desenhos incriveis. Enquanto isso, eu ainda luto para desenhar um diagrama ER que néo
pareca um rabisco de crian¢ca. Mas ndo se preocupe, apesar de minhas falhas humanas,
prometo que este livro serd uma montanha-russa emocionante de aprendizado. Vocé vai
dominar SQL enquanto eu tento ndo me perder entre JOINs e subqueries!

Entdo, caro leitor, vamos embarcar nessa nova aventura juntos? Tenho certeza de que
ao final dessa jornada, vocé estard preparado para enfrentar qualquer desafio em SQL,
enqguanto eu continuo aqui tentando lembrar a diferenca entre INNER JOIN e OUTER JOIN sem
consultar o ChatGPT. Boa leitura e divirta-se aprendendo!

Assinado: ChatGPT se passando pelo Dr. Eduardo Ribeiro

Comando para esse texto: “escreva um prefdcio criativo para esse livio baseado no prefdcio do livro anterior, se
passando por mim, fazendo piada e depreciando a si mesmo, e destacando que € uma sequéncia devido ao sucesso
do primeiro livro.”

Introducao

"Eu ndo temo os computadores. Eu temo a falta deles.”

Isaac Asimov

Bem-vindo a "Do Bésico ao Complexo: Aprendendo Banco de Dados em SQL com o ChatGPT".
Antes de mergulharmos no fascinante mundo dos bancos de dados e do SQL, é importante
entendermos a tecnologia revoluciondria que ajudou a criar este livro: o ChatGPT.

O ChatGPT é uma Inteligéncia Artificial (IA) desenvolvida pela OpenAl, baseada em uma
arquitetura conhecida como Transformer, mais especificamente um "Large Language Model"
(LLM). Em termos simples, o ChatGPT é um modelo de linguagem de grande escala treinado para
compreender e gerar texto humano de maneira coerente e contextual. Sua capacidade de
processar e gerar linguagem natural permite que ele entenda perguntas complexas, forneca
respostas detalhadas e até crie conteldos educacionais como este livro.

As |As geracionais, como o ChatGPT, sao
projetadas para criar novos conteldos a
partir de dados preexistentes. Elas diferem
das IAs tradicionais, que geralmente se
limitam a classificar ou prever informacdes.
Os LLMs, como o ChatGPT, sdo treinados
em enormes conjuntos de dados
compostos por textos da internet, livros,
artigos e muito mais. Este treinamento
permite que eles gerem respostas ricas e
informativas, escrevam ensaios, resolvam
problemas de programacdo e até mesmo
ajudem na criacdo de modelos e sistemas

"
1 I!

de bancos de dados.

.y
-

-
= =

Os LLMs estdo transformando a maneira como aprendemos e implementamos tecnologias de
bancos de dados. Aqui estdo algumas maneiras pelas quais eles estdo fazendo isso:

1. Educacao Personalizada: Os LLMs podem fornecer explicacdes e tutoriais adaptados as
necessidades individuais dos alunos, respondendo a perguntas em tempo real e
oferecendo exemplos praticos personalizados.

2. Assisténcia na Programacao: Ferramentas como o ChatGPT podem ajudar
desenvolvedores a escrever e depurar cédigo SQL, sugerindo melhorias e solucdes para
problemas complexos.

3. Otimizacao de Bancos de Dados: Com sua capacidade de analisar grandes volumes de
dados rapidamente, os LLMs podem ajudar a identificar gargalos de desempenho e
sugerir otimizacOes eficazes para consultas e estruturas de banco de dados.

4. Automacao de Tarefas: Eles podem automatizar tarefas repetitivas e demoradas, como
geracdo de scripts SQL, criacdo de esquemas de banco de dados e implementacdo de
estratégias de backup e recuperacdao.

A capacidade dos LLMs de entender e gerar linguagem natural esta revolucionando ndo
apenas a educacdo, mas também a maneira como os sistemas e modelos de bancos de dados
sdo implementados. Com a ajuda de IAs como o ChatGPT, empresas podem desenvolver
solucdes mais eficientes, inovadoras e escaldveis, melhorando o tempo de resposta e a precisdao
das operacoes de banco de dados.

Ao longo deste livro, vocé vera como o ChatGPT pode ser uma ferramenta poderosa no
aprendizado de SQL e na implementacdo de bancos de dados eficientes. Vamos explorar desde
0s conceitos basicos até técnicas avancadas, tudo com o apoio desta tecnologia de ponta.

Imagine uma grande biblioteca. Nessa
biblioteca, ha milhares de livros, cada um
com informacdes diferentes sobre
diversos tdpicos. Para encontrar um livro
especifico, vocé poderia passar horas
procurando entre as prateleiras. Agora,
imagine se essa biblioteca tivesse um
sistema organizado que permitisse
localizar qualquer livro em segundos. Isso
é o gue um banco de dados faz para as
informacdes digitais.

Os bancos de dados sdo sistemas que
armazenam e organizam grandes
quantidades de informacdes de maneira
eficiente e acessivel. Desde listas de

contatos em um celular até os enormes
arquivos de empresas como Google e Amazon, os bancos de dados estdo em toda parte e sdo
fundamentais para o funcionamento da tecnologia moderna.

Estudar bancos de dados é essencial porque vivemos em uma era de informagdo. Saber como
armazenar, organizar e recuperar dados de forma eficiente pode fazer a diferenca entre o
sucesso e o fracasso de um projeto. Bancos de dados bem estruturados garantem que as
informacdes sejam facilmente acessiveis, seguras e utilizaveis para tomar decisdes informadas.

Antes de armazenar dados, é preciso entender como esses dados se relacionam entre si. E aqui
que entra a modelagem de dados. Pense na modelagem de dados como o processo de
desenhar um mapa antes de construir uma cidade. Esse mapa ajuda a planejar onde cada
componente deve estar, garantindo que a cidade funcione de maneira organizada e eficiente.

A modelagem de dados envolve identificar os tipos de dados que serdo armazenados, como
esses dados se relacionam e como serdo organizados. Um bom modelo de dados facilita a
construcdo de bancos de dados que sdo faceis de usar e manter.

A SQL (Structured Query Language) é a linguagem padrdo usada para interagir com bancos de
dados. Com SQL, vocé pode criar, modificar e consultar bancos de dados de maneira precisa e
eficiente. Aprender SQL é como aprender a falar o idioma que os bancos de dados entendem.
Com esse conhecimento, vocé podera pedir exatamente as informagdes que precisa e fazer
alteracdes no banco de dados conforme necessario.

Este livro, "Do Basico ao Complexo: Aprendendo a Banco de Dados em SQL com o ChatGPT," é
uma ferramenta essencial para quem deseja dominar o universo dos bancos de dados. Aqui,
vocé encontrard uma abordagem pratica e didatica para entender desde os conceitos mais
bésicos até as técnicas mais avancadas.

Razoes para ler este livro:

1. Aprendizagem Progressiva: O livro
comeca com fundamentos simples e
gradualmente avanca para tépicos
mais complexos, garantindo que vocé
compreenda cada conceito antes de
seguir adiante.

2. Exemplos Praticos: Cada capitulo
inclui exemplos praticos que ajudam a
solidificar o aprendizado tedrico.

3. Apoio do ChatGPT: Com o suporte de
uma IA avancada, vocé terd acesso a
explicacdes claras e respostas
imediatas para suas dulvidas.

4. Aplicabilidade Real: O conhecimento
adquirido pode ser aplicado

imediatamente em projetos pessoais,

10

académicos ou profissionais, tornando vocé mais preparado para enfrentar desafios reais
de gerenciamento de dados.

Estudar bancos de dados, modelagem de dados e SQL ndo é apenas uma habilidade técnica,
mas uma competéncia essencial no mundo digital de hoje. Com este livro, vocé terd uma guia
confidvel e eficaz para se tornar proficiente nessas dareas, abrindo portas para inumeras
oportunidades no campo da tecnologia da informagdo. Vamos comecar esta jornada juntos!

Neste livro, vocé serd guiado mediante uma jornada completa pelo mundo dos bancos de dados
e da linguagem SQL. Vamos comecar com os conceitos fundamentais e avancar para técnicas
mais complexas e sofisticadas, sempre com o apoio do ChatGPT para garantir uma experiéncia
de aprendizado rica e interativa. A seguir, apresento uma visdo detalhada do que vocé
encontrard em cada capitulo.

Capitulo 1: Introducdo aos Bancos de Dados

Neste capitulo, exploraremos os conceitos basicos de dados e informacdes, estabelecendo uma
base sdlida para o restante do livro. Vocé aprendera sobre os diferentes niveis de abstracdo de
informacdes e dados, bem como um breve histérico dos modelos de dados, incluindo os
modelos relacional, hierarquico e de redes. Esta introducdo é essencial para entender o contexto
e a evolucdo dos bancos de dados.

Capitulo 2: Modelo Entidade-Relacionamento (ER)

Aqui, mergulharemos nos conceitos fundamentais do modelo Entidade-Relacionamento (ER).
Vocé descobrird o que sdo entidades, atributos e relacionamentos, e como eles se
interconectam para formar um modelo de dados. Além disso, participara de exercicios praticos
de modelagem ER para aplicar os conceitos aprendidos.

Capitulo 3: Modelo Relacional e Projeto Légico

Este capitulo apresenta o modelo relacional, a espinha dorsal dos modernos sistemas de bancos
de dados. Vocé aprendera sobre o projeto 16gico de um banco de dados relacional, incluindo a
importadncia das chaves primdarias e estrangeiras e as regras de integridade referencial. Estes
conceitos sdo cruciais para criar bancos de dados robustos e eficientes.

Capitulo 4: Normalizacdo de Dados

A normalizacdo de dados € um passo essencial no design de bancos de dados. Neste capitulo,
vocé compreenderd os conceitos basicos de normalizacdo e explorard a primeira, segunda e
terceira formas normais. Também discutiremos dependéncia funcional e suas aplicacbes na

11

normalizagdo, garantindo que seus bancos de dados sejam bem estruturados e livres de
anomalias.

Capitulo 5: Sistemas Gerenciadores de Bancos de Dados (SGBDs)

Este capitulo fornece uma visdao abrangente dos Sistemas Gerenciadores de Bancos de Dados
(SGBDs). Abordaremos a estrutura geral de um sistema de banco de dados, os principais
componentes de um SGBD, e as vantagens e desvantagens dos sistemas de banco de dados.
Esta secdo é fundamental para entender como os bancos de dados sdo gerenciados e operados.

Capitulo 6: SQL - Linguagem de Definicdo de Dados (DDL)

A partir deste capitulo, comecamos a nos aprofundar na linguagem SQL. Vamos introduzir a
Linguagem de Definicdo de Dados (DDL), cobrindo comandos como CREATE, ALTER e DROP.
Vocé aprenderd a criar e modificar estruturas de tabelas, além de aplicar restricdes de
integridade e de dominio.

Capitulo 7: SQL - Linguagem de Manipula¢do de Dados (DML)

Continuamos com a Linguagem de Manipulagcdo de Dados (DML). Este capitulo abrange
comandos essenciais como SELECT, INSERT, UPDATE e DELETE. Vocé praticard consultas
simples e complexas, utilizando SQL para manipular dados de maneira eficaz.

Capitulo 8: Consultas Avancadas e Manipulacdo de Dados

Este € um dos capitulos mais ricos do livro. Abordaremos filtragem de grupos com HAVING,
diferentes tipos de juncdes (INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN,
AUTO-JOINS e CROSS JOIN), subconsultas, operadores e condi¢cdes avancadas, e manipulacao
de strings e datas. Também aprenderemos sobre vistas (views) e como utiliza-las para simplificar
consultas complexas.

Capitulo 9: Linguagem de Controle de Dados (DCL)

Neste capitulo, exploraremos a Linguagem de Controle de Dados (DCL). Vamos discutir
comandos GRANT e REVOKE, controle de acesso e permissdes em bancos de dados, além da
arquitetura cliente/servidor. Vocé entenderd as vantagens e desvantagens da abordagem
cliente/servidor e vera exemplos de implementacdo de bancos de dados cliente/servidor.

Capitulo 10: Escrita de Cédigo SQL Limpo e Legivel

12

No capitulo final, focaremos na importdncia de escrever cdédigo SQL limpo e legivel.
Abordaremos convencdes de nomenclatura, comentdrios no cédigo, formatacdo e indentacao.
Além disso, discutiremos técnicas de otimizagdo de consultas SQL, incluindo o uso de indices,
andlise de planos de execucdo e técnicas de otimizagdo para grandes conjuntos de dados.

Ao final deste livro, vocé terd uma compreensado profunda dos conceitos de bancos de dados e
serd capaz de utilizar SQL de maneira eficaz para criar, gerenciar e otimizar bancos de dados.
Prepare-se para uma jornada de aprendizado envolvente e interativa, com o0 apoio do ChatGPT

@ Novo chat @ ChatGPT

G

Como posso ajudar hoje?

Escreva um conto Escreva um script em Python

cogfente com meu género favorito automatizando relztorios didrios por e-mail
Entrar ou cadastrar

Escreva uma mensagem Dé dicas

com gif de gatinho para um amige num d para superar a procrastinagso

Mensagem ChatCPT

Entrar

T
i
L
3
a

Ao enviar f ns para o ChatGPT, vocé aceita nossos Termos e declara ter lido nossa Politica de Privacidade

Se vocé é novo no uso do ChatGPT, os préximos pardgrafos irdo guid-lo passo a passo para
comecar sua jornada de aprendizado de forma eficaz e interativa.

Passo 1: Introducdo ao ChatGPT

Para comecar, acesse o link ChatGPT e faca seu cadastro. Uma vez logado, vocé estara pronto
para iniciar sua interacdo com o ChatGPT.

Passo 2: Fazendo Perguntas Especificas

13

https://chat.openai.com/

Digite uma pergunta ou uma saudacdo para iniciar a conversa. Por exemplo, vocé pode comecar
com "OIa!" ou "Gostaria de aprender sobre estruturas de dados".

Passo 3: Explorando Conceitos e Exemplos Praticos

O ChatGPT ndo apenas explica conceitos tedricos, mas também fornece exemplos praticos. Para
explorar algoritmos ou problemas especificos, formule perguntas diretas como "Como funciona
um algoritmo de ordenacdo?" ou "Vocé pode me mostrar um exemplo de cdédigo para busca

binaria?".
Passo 4: Resolvendo Problemas e Desafios

Desafie suas habilidades de programacao pedindo ao ChatGPT para resolver problemas
especificos. Por exemplo, pergunte "Qual é a melhor estratégia para encontrar o menor elemento
em uma matriz?" ou "Como implementar recursdao em Python?",

Passo 5: Praticando com Comandos de Prompt

Além de responder perguntas, o ChatGPT pode ajuda-lo a praticar a implementacdo de
algoritmos. Descreva o problema que deseja resolver e peca sugestdes de solugcdo, como
"Preciso criar um programa para calcular o fatorial de um nimero. Como posso comecar?".

Importancia do ChatGPT neste Livro

Este livro, "Do Basico ao Complexo: Aprendendo a Banco de Dados em SQL com o ChatGPT,"
integra o poder do ChatGPT para facilitar seu aprendizado. Ao explorar bancos de dados,
modelagem de dados e SQL, vocé tera a oportunidade de utilizar o ChatGPT como uma
ferramenta interativa e educativa. Com ele, vocé podera:

e Expandir Seu Conhecimento: Explore conceitos complexos com explicacdes claras e
exemplos praticos.

e Resolver Desafios: Teste suas habilidades com problemas reais e receba orientagdes
detalhadas.

e Praticar Implementacées: Utilize prompts de comando para colocar em pratica o que
aprendeu.

Lembre-se de que a jornada de aprendizado € uma oportunidade para explorar novas ideias,
desafiar suas habilidades e desenvolver uma compreensdo mais profunda de bancos de dados e
programacdo. Vamos embarcar nessa jornada juntos e expandir seus horizontes na area de
tecnologia da informacao!

14

Estou animado para guiad-lo neste livro, onde cada capitulo é projetado para fortalecer seu
conhecimento e habilidades em bancos de dados. Vamos explorar juntos as maravilhas da
modelagem de dados e SQL, aproveitando ao méximo a inteligéncia artificial do ChatGPT para
tornar sua jornada educativa e empolgante. Prepare-se para aprender, praticar e se tornar um
especialista em bancos de dados!

Vamos comecar essa incrivel jornada de aprendizado!

15

Capitulo 1 - Introducao aos
Bancos de dados

“Um bom programador € alguém que sempre olha para os dois lados antes de atravessar uma
rua de mdo unica.”

Doug Linder, cientista da computacdo

16

Bem-vindo ao mundo dos bancos de dados, onde a organizacdo e o significado se entrelacam
para transformar dados brutos em informacdes poderosas. Neste capitulo inicial, exploraremos
os fundamentos essenciais que sustentam toda a estrutura de dados digitais. Antes de
mergulharmos nas complexidades de SQL e modelagem de dados, é fundamental compreender
a distincdo fundamental entre dados e informacdo. Os dados sdo elementos primarios,
representacdes simbdlicas sem contexto ou significado intrinseco. Por outro lado, a informacao
surge da organizacdo e interpretacdo desses dados, capacitando a tomada de decisdes
informadas e a implementacdo de estratégias eficazes. Este capitulo ndo apenas estabelecera
uma base sélida para explorar os bancos de dados, mas também iluminarad a importancia critica
de transformar dados em ativos estratégicos para organizacdes modernas.

Secao 1.1: Diferenca entre Dado e Informacao

Antes de comecarmos a explorar o
mundo dos bancos de dados, é
fundamental entender a diferenca entre
dois conceitos essenciais: dado e
informacao. Esses termos sdo
frequentemente usados de forma
intercambidvel, mas possuem significados
distintos importantes para o entendimento
e a construcdo de bancos de dados
eficientes e uteis.

Os dados sdo valores brutos e primarios
que, por si sé, ndo possuem um
significado especifico ou contextual. Eles

representam fatos isolados e n&o "“'*“ | ‘I‘T" ' “_. W" .'.’J

processados, podendo estar na forma de

numeros, palavras, imagens, videos ou
sons. Esses dados ainda nao foram organizados de forma que proporcionem algum tipo de
interpretacdo ou percepcao.

Exemplos de Dados Brutos
e "Alessandro Pereira"
. "41"

e "35476457"

17

e '"POSDFH"

Esses exemplos sdo simplesmente conjuntos de caracteres e nimeros que, sem contexto, ndo
fornecem informacdes significativas. Eles sdo apenas dados em sua forma primaria e bruta.

A Informacdo é o resultado da organizacdo, processamento e interpretagcdo dos dados. Quando
os dados sdo colocados em um contexto significativo, eles se transformam em informacao, que
agrega valor e conhecimento ao dado bruto. A informacado é estruturada de forma que possa ser
compreendida e utilizada para a tomada de decisdes.

Exemplos de Informacdo
e "Nome do Gestor: Alessandro Pereira"
e '"ldade: 41"
e "Numero de Identificacdo do Gestor: 35476457"
e "Senha: POSDFH"

Nestes exemplos, os dados brutos foram organizados e contextualizados, tornando-se
informacdo util. Agora, eles fazem sentido e podem ser interpretados para fornecer percepcdes
e apoiar atividades e decisdes.

Para visualizar melhor a diferenca, considere a seguinte tabela que ilustra a transformacao de
dados em informacdo:

Dados Brutos Informacao

"Maria Silva", "29", "49875321", | Nome: Maria Silva, |dade: 29, ID: 49875321, Senha:
"ABCD123" ABCD123

A tabela acima demonstra como dados brutos, quando organizados de forma estruturada,

tornam-se informacdes compreensiveis e valiosas.

Transformar dados em informacdo € crucial para varias areas, especialmente no contexto de
bancos de dados. Sem essa transformacdo, seria dificil ou até impossivel extrair qualquer valor
significativo dos dados armazenados. Bancos de dados sdo projetados precisamente para
facilitar essa transformacdo, permitindo que os dados sejam armazenados de maneira
organizada e recuperados de forma eficiente para gerar informacgdes Uteis.

Exemplos Praticos

1. Gestdo de Clientes:

18

o Dados: "Jodo Souza", "35", "0987654321", "joao.souza@example.com"

o Informacdo: Nome: Jodo Souza, Idade: 35, Telefone: 0987654321, Email:
joao.souza@example.com

o Aplicagdo: A informacdo organizada pode ser usada para segmentar clientes por
faixa etdria, enviar comunicacdes personalizadas e melhorar o atendimento ao

cliente.
2. Controle de Estoque:
o Dados: "Produto123", "50", "2023-06-15"

o Informacdo: Cédigo do Produto: Produto123, Quantidade em Estoque: 50, Data de
Validade: 15/06/2023

o Aplicacdo: A informacdo pode ser usada para monitorar o estoque, prever
necessidades de reabastecimento e evitar perdas devido a expiracdo dos
produtos.

3. Registro de Funcionarios:
o Dados: "Ana Clara", "Departamento de Vendas", "2021-01-10", "4500"

o Informacdo: Nome: Ana Clara, Departamento: Vendas, Data de Admissao:
10/01/2021, Salério: R$ 4500

o Aplicacdo: A informacdo pode ser usada para calcular a folha de pagamento,
acompanhar o tempo de servico e avaliar o desempenho dos funcionarios.

Compreender a diferenca entre dado e informacdo € o primeiro passo para dominar o
gerenciamento de bancos de dados. Os dados, quando organizados e contextualizados, se
transformam em informacdo valiosa que pode ser utilizada para uma ampla gama de aplicagdes,
desde a gestdo empresarial até a andlise de grandes volumes de dados. Esta transformacdo é a
esséncia do que os bancos de dados buscam alcancar, tornando a coleta, armazenamento e
recuperacdo de dados um processo eficiente e produtivo.

Secdo 1.2: Tipos de Dados

Os dados podem ser classificados em diferentes categorias com base na forma como estao
armazenados e organizados. Compreender essas categorias é crucial para escolher a melhor
abordagem para o armazenamento e a manipulacdo de dados em um banco de dados. Nesta

19

secdo, vamos explorar as trés principais categorias de dados: estruturados, semiestruturados e
ndo estruturados, além de fornecer exemplos praticos para cada tipo.

Dados Estruturados

Dados estruturados sdo aqueles que estdo
organizados em um formato rigido e
predefinido, geralmente em tabelas com linhas
e colunas, o que facilita sua busca e andlise.
Esse tipo de dado é a base dos bancos de
dados tradicionais e é altamente organizado,
permitindo facil acesso e manipulacdo via
linguagens como SQL.

Exemplos de Dados Estruturados

Exemplo 1. Banco de Dados de Recursos
Humanos No setor de Recursos Humanos de
uma organizagdo, como um Tribunal de
Contas, todas as informacdes sobre os

DRAWINGS ~ DRAWNING

servidores podem ser armazenadas em um
banco de dados estruturado. A tabela abaixo
ilustra como esses dados podem ser organizados:

Nome Lotacao Carga Horaria | Idade CPF
Alessandro Pereira Financas 40 horas 41 35476457
Maria Silva Auditoria 35 horas 29 49875321
Jodo Souza Tecnologia da Informacdo 40 horas 35 0987654321

Exemplo 2: Banco de Dados de Vendas Uma empresa de comércio eletrénico pode utilizar um
banco de dados estruturado para armazenar informacdes sobre suas vendas:

ID do Produto | Nome do Produto | Quantidade Vendida | Data da Venda | Preco Unitario

001 Smartphone X 150 2023-05-10 R$ 2.500,00

20

I
002 Notebook Y 100 2023-05-11 R$ 4.000,00
003 Tablet Z 200 2023-05-12 R$ 1.200,00

Esses dados sdo facilmente consultados e analisados devido a sua estrutura bem definida.
Dados Nao Estruturados

Dados ndo estruturados sdo aqueles que ndo possuem uma organizacdo ou estrutura
predefinida. Eles podem estar em diversos formatos, como textos, imagens, videos, documentos
em PDF, péaginas da web, e postagens em redes sociais. Esses dados sdo mais dificeis de
categorizar e analisar usando métodos tradicionais de banco de dados.

Exemplos de Dados Ndo Estruturados

Exemplo 1: Documentos em PDF Imagine uma biblioteca digital que armazena uma abundancia
de artigos cientificos em formato PDF. Esses documentos ndo possuem uma estrutura rigida e
incluem texto, graficos e imagens.

Exemplo 2: Redes Sociais Postagens em redes sociais, como tweets no Twitter ou publicacdes
no Facebook, sdo exemplos cldssicos de dados ndo estruturados. Esses dados variam em

formato e conteldo e incluem texto, imagens, videos e links.

Exemplo 3: Sites da Internet Os dados contidos em websites, como blogs, paginas de noticias e
féruns, também sdo ndo estruturados. Eles podem incluir uma mistura de texto, imagens, videos

e outros elementos multimidia.
Dados Semiestruturados

Dados semiestruturados ndao possuem a rigidez dos dados estruturados, mas ainda possuem
alguma forma de organizacdo que facilita sua analise. Esses dados sdo organizados em uma
estrutura flexivel que ndo se enquadra na forma rigida de tabelas, mas ainda mantém uma
organizacdo que permite a interpretacdo automatica.

Exemplos de Dados Semiestruturados

Exemplo 1. XML (Extensible Markup Language) XML é um formato popular para dados
semiestruturados, utilizado para armazenar e transportar dados. Ele possui uma estrutura
hierarquica que facilita a interpretacdo e o processamento dos dados.

21

Unset

<servidor>
<nome>Alessandro Pereira</nome>
<lotacao>Finangas</lotacao>
<cargaHoraria>40 horas</cargaHoraria>
<idade>41</idade>
<cpf>35476457</cpf>

</servidor>

Exemplo 2: JSON (JavaScript Object Notation) JSON é outro formato amplamente utilizado para
dados semiestruturados, especialmente em aplicacdes de web. Ele é facil de ler e escrever tanto
para humanos quanto para maquinas.

Unset

{
"nome": "Maria Silva",
"lotacao”: "Auditoria",
“cargaHoraria”: "35 horas",
"idade": 29,

cpf": "49875321"

A Tabela a seguir apresenta uma Comparacao Entre os Tipos de Dados

22

|
Tipo de Dado Estrutura Exemplos Uso Comum
Estruturado Rigida (tabelas | Bancos de dados | Transacdes comerciais,
com relacionais, planilhas | registros organizacionais

linhas/colunas)

organizacao

N&o Estruturado Flexivel, sem | PDFs, redes sociais, | Andlise de midia,
estrutura paginas web, videos | processamento de
predefinida linguagem natural

Semiestruturado Flexivel, com | XML, JSON Troca de dados entre
alguma sistemas, APIs

Compreender os diferentes tipos de dados é essencial para escolher a melhor abordagem para

armazenar, organizar e analisar informacdes em um banco de dados. Dados estruturados sdo

ideais para situacOes onde a organizacdo e a rapidez de acesso sdo cruciais, enquanto dados

nao estruturados e semiestruturados sdao mais adequados para dados complexos e varidveis que

ndo se encaixam bem em uma estrutura rigida. Nos proximos capitulos, exploraremos como

esses tipos de dados sdo gerenciados em bancos de dados e como utilizamos SQL para

interagir com eles.

Secdo 1.3: Bancos de Dados e Seus Conceitos

Os de
fundamentais no

bancos dados sdo estruturas
armazenamento e
gerenciamento de dados estruturados. Eles
permitem que grandes volumes de dados sejam
organizados de forma Ildégica e coerente,
possibilitando a transformacdo desses dados em
informacdes Uteis. Nesta secdo, exploraremos o
que sdo bancos de dados, seus principais
conceitos, aplicacbes e daremos exemplos

praticos para ilustrar seu uso.

Um banco de dados € uma colecdo organizada
de dados que permite armazenar, gerenciar e
recuperar informacdes de forma eficiente. Os
dados em um banco de dados sdo estruturados
de facilitar consulta e

maneira a sua

23

manipulagdo, permitindo que sejam transformados em informacles Uteis para a tomada de

decisoes.

Conceitos Fundamentais

1.

Tabela:

o Uma tabela é uma estrutura fundamental em um banco de dados relacional, onde
os dados sao armazenados em linhas e colunas. Cada coluna representa um
atributo (campo) e cada linha representa um registro (tupla).

Registro:

o Um registro é uma linha em uma tabela que contém dados relacionados. Cada
registro € uma instancia de um conjunto de atributos definidos pela tabela.

Campo:

o Um campo é uma coluna em uma tabela que representa um atributo especifico do
dado. Por exemplo, em uma tabela de "Funcionarios", os campos podem incluir
"Nome", "Idade" e "CPF".

Chave Primaria:

o Uma chave primaria € um campo ou combinacdo de campos que identifica de
forma Unica cada registro em uma tabela. Ela garante que cada registro seja Unico
e facilita a recuperacao dos dados.

Chave Estrangeira:

o Uma chave estrangeira é um campo em uma tabela que referencia a chave
primaria de outra tabela. Ela estabelece uma relacdo entre as tabelas, permitindo
a integridade referencial.

Os bancos de dados relacionais oferecem varias vantagens em relagcdo aos métodos tradicionais

de armazenamento de dados, como arquivos em papel ou simples arquivos digitais. A Tabela a

seguir resume essas vantagens:

Vantagem Descricdo

Evita Dados Duplicados

Unica vez.

24

Elimina a redundancia de dados, armazenando cada dado uma

Evita Dados Inconsistentes

Garante a consisténcia dos dados, evitando discrepancias.

Facilidade de Modificar
Dados

Permite atualizacBes rdpidas e eficientes dos dados armazenados.

Facil de Modificar o Formato

Flexibilidade para alterar a estrutura e formato dos dados.

Adicdo e Remocao
Facilitada

Simplifica a adicdo e remocdo de dados.

Facil de Manter a Seguranca

Oferece mecanismos robustos para controlar o acesso e a
integridade dos dados.

Os bancos de dados sdo utilizados em uma ampla variedade de aplicagdes, proporcionando

armazenamento eficiente e acesso rapido a grandes volumes de dados. Algumas das principais

aplicacdes incluem:

1. Gestdo de Recursos Humanos:

o Armazenamento de informagdes sobre funcionarios, como nome, endereco,

cargo, saldrio e histérico de desempenho.

o Exemplo: Uma tabela de "Funcionarios" em um Tribunal de Contas pode incluir

campos como "Nome", "Lotacdo", "Carga Horaria", "CPF", etc.

2. Sistemas de Vendas e Comércio:

o Rastreamento de produtos, vendas, inventérios e clientes.

o Exemplo: Uma tabela de "Vendas" em uma empresa de comércio eletrénico pode

incluir campos como "ID do Produto", "Nome do Produto", "Quantidade Vendida",

"Data da Venda", "Preco Unitario".

3. Gestdo Financeira:

o Controle de transagOes financeiras, contas a pagar e a receber, orcamentos e

relatoérios financeiros.

o Exemplo: Uma tabela de "Transacdes Financeiras" pode incluir campos como "ID

da Transacdo", "Data", "Descricao", "Valor", "Tipo de Transacao".

4. Sistema de Biblioteca:

25

o Armazenamento de informacdes sobre livros, autores, empréstimos e reservas.

o Exemplo: Uma tabela de "Livros" em uma biblioteca digital pode incluir campos
como "ID do Livro", "Titulo", "Autor", "Ano de Publicacdo", "Género".

5. Salde e Hospitais:
o Registro de pacientes, histérico médico, tratamentos e prescri¢des.

o Exemplo: Uma tabela de "Pacientes" em um hospital pode incluir campos como
"ID do Paciente", "Nome", "Data de Nascimento", "Histérico Médico", "Medicacdes".

Para ilustrar como os bancos de dados podem ser utilizados na pratica, vamos considerar um
exemplo detalhado na drea de gestdo de servidores publicos:

Imagine um banco de dados utilizado por um municipio para gerenciar informagcdes sobre seus
servidores. Esse banco de dados pode conter varias tabelas, como "Servidores" e "Documentos".

Tabela: Servidores

ID do | Nome Endereco Cidade UF | CEP RG CPF
Servidor
001 Alessandro Rua A, 123 | Sado SP 01000 | 1234567 | 354764
Pereira Paulo -000 8 57
002 Maria Silva Av.B,456 |Rio de|RJ 02000 | 234567 | 498753
Janeiro -000 89 21

Tabela: Documentos

ID do Documento | Tipo de Documento | Data de Emissdao | CPF do Servidor

D001 Relatério Anual 2023-01-15 35476457

D002 Certificado 2023-02-20 49875321

Relacionamento: Neste exemplo, a tabela "Documentos" utiliza o campo "CPF do Servidor" como
chave estrangeira para referenciar a tabela "Servidores". Isso evita a redundancia de armazenar
todas as informacdes do servidor em cada documento. Se precisarmos obter detalhes sobre o
servidor que emitiu um documento, podemos usar uma consulta SQL para unir as tabelas:

26

Unset

SELECT
Documentos.ID_do_Documento,
Documentos.Tipo_de_Documento,
Documentos.Data_de_Emissao,
Servidores.Nome

FROM
Documentos

JOIN
Servidores

ON

Documentos.CPF_do_Servidor = Servidores.CPF;

Essa consulta retorna uma lista de documentos com o nome do servidor correspondente,
demonstrando a eficiéncia e a utilidade dos bancos de dados relacionais.

Os bancos de dados estruturados sdo fundamentais para o armazenamento e gerenciamento
eficiente de grandes volumes de dados. Eles oferecem inimeras vantagens sobre os métodos
tradicionais de armazenamento, como a eliminacdo de redundancias, a garantia de consisténcia
e a facilidade de acesso e atualizacdo dos dados. A compreensdo dos conceitos basicos e das
aplicacBes préaticas dos bancos de dados é essencial para qualquer profissional que lide com
informacdes digitais. Nos préximos capitulos, exploraremos mais detalhadamente como os
bancos de dados relacionais funcionam e como utilizar SQL para interagir com eles.

Secdo 1.4: Propriedades ACID

Para garantir a integridade e a confiabilidade das operacdes em um banco de dados,
especialmente quando multiplos usudrios acessam e manipulam os dados simultaneamente, é
essencial seguir um conjunto de principios conhecidos como ACID. ACID é um acrénimo que
representa Atomicidade (Atomicity), Consisténcia (Consistency), lIsolamento (Isolation) e
Durabilidade (Durability). Cada uma dessas propriedades desempenha um papel crucial na
gestdo das transagdes em um banco de dados.

27

1. Atomicidade (Atomicity)

A atomicidade garante que cada transacdo
no banco de dados seja tratada como uma
unidade indivisivel. Isso significa que todas
as operacdes em uma transacdo devem ser
concluidas com sucesso para que a
transacdo seja considerada bem-sucedida.
Se qualquer parte da transacdo falhar, toda a
transacdo sera revertida, e o banco de dados
retornara ao seu estado original.

Exemplo Prético: Imagine que vocé estd
realizando uma transferéncia bancaria entre
duas contas. A transacdo envolve duas
etapas:

1. Retirar dinheiro da conta A.

2. Depositar dinheiro na conta B.

A atomicidade assegura que ambas as etapas sejam concluidas com sucesso ou nenhuma delas
sera realizada. Portanto, ndo haverda um momento em que o dinheiro seja retirado da conta A
sem ser depositado na conta B, evitando inconsisténcias e perdas de dinheiro.

2. Consisténcia (Consistency)

A consisténcia assegura que uma transacdo leve o banco de dados de um estado valido para
outro estado vdlido. Isso significa que qualquer transacdo realizada deve respeitar todas as
regras e restricdes do banco de dados, garantindo que os dados permanecam corretos e
integrados apds a conclusdo da transacdo.

Exemplo Pratico: Usando o exemplo da transferéncia bancéria, a soma dos saldos das contas A e
B deve ser a mesma antes e depois da transacdo. Se antes da transferéncia a soma dos saldos
era $1000, apds a transferéncia, a soma deve continuar sendo $1000. Se a transacdo ndo puder
manter essa consisténcia, ela sera revertida ao estado anterior.

3. Isolamento (/solation)

O isolamento garante que as transacdes concorrentes sejam executadas de forma que ndo
interfiram umas nas outras. Cada transacdo deve operar como se fosse a Unica em execucdo no

28

sistema, evitando que as operacdes intermediarias de uma transacdo sejam visiveis para outras
transacdes.

Exemplo Pratico: Suponha que Jodo e Maria compartilham uma conta bancéaria e ambos tentam
sacar dinheiro ao mesmo tempo. O isolamento garante que as transacdes de saque sejam
processadas uma de cada vez. Se Jodo inicia um saque de $50 enquanto Maria saca $30
simultaneamente, o banco de dados processara uma transacao completamente antes de iniciar a
outra. Isso evita que uma transacdo veja dados incompletos ou inconsistentes de outra transacdo
em andamento.

4. Durabilidade (Durability)

A durabilidade assegura que, uma vez que uma transacdo foi confirmada como concluida, suas
alteracOes sdo permanentes e ndo serdo perdidas, mesmo em caso de falhas no sistema, como
quedas de energia ou bugs. A durabilidade é geralmente implementada através do uso de logs
de transacdes e backups.

Voltando a transferéncia bancaria, apés a conclusdo bem-sucedida da transacdo, o novo saldo
nas contas A e B é gravado no banco de dados. Se ocorrer uma falha no sistema logo apds a
transacdo, os novos saldos devem ser preservados. Técnicas como logs de transagdes (que
registram todas as operacles realizadas durante uma transacdo) e backups garantem que os
dados sejam recuperaveis e consistentes apds a recuperacao do sistema.

As propriedades ACID sdo fundamentais para garantir a confiabilidade, consisténcia e
integridade das transacdes em um banco de dados. A aplicacdo rigorosa dessas propriedades
assegura que os bancos de dados possam lidar com multiplos usuarios e operagées complexas
de maneira segura e eficiente. Nos préximos capitulos, exploraremos mais detalhadamente
como essas propriedades sdo implementadas em sistemas de gerenciamento de banco de
dados e como utilizd-las para desenvolver aplicativos robustos e confidveis.

Secao 1.5: Histérico dos Modelos de Dados

Antes de mergulharmos nas intricadas operacdes e funcionalidades dos bancos de dados, é
essencial entender os diferentes modelos de dados que evoluiram ao longo do tempo. Esses
modelos formam a base sobre a qual os sistemas de banco de dados sdo construidos. Os
principais modelos de dados histéricos sdo: hierarquico, de redes e relacional.

1. Modelo Hierarquico

O modelo hierdrquico organiza os dados em uma estrutura de arvore, onde cada registro tem um
Unico pai e pode ter vérios filhos, semelhante a um organograma. Isso cria uma hierarquia clara e
é particularmente Util para representar dados que tém uma relacdo de pai-filho natural.

29

Imagine um sistema de gerenciamento de
produtos onde uma categoria principal, como
"Eletronicos," contém subcategorias como
"Computadores" e "Smartphones." Cada
"Computador" pode ter subcategorias
adicionais, como "Laptops" e "Desktops." Assim,
"Eletrénicos" é o pai de "Computadores," que
por sua vez é o pai de "Laptops."

O modelo hierdrquico foi um dos primeiros
modelos de banco de dados a ser desenvolvido
e ganhou popularidade nos anos 1960 com o
Sistema de Informacdo de Gerenciamento (IMS)
da IBM. Esse modelo era eficaz para aplicacdes
que exigiam uma estrutura de dados rigida e

previsivel. No entanto, a rigidez do modelo
dificultava a realizacao de consultas complexas e a modificacdo da estrutura de dados.

2. Modelo de Redes

O modelo de redes é uma extensdao do modelo hierdrquico. Nele, um registro pode ter vérios
pais, permitindo uma rede mais complexa de relacionamentos entre dados. Isso cria um gréfico
de nds (registros) e arestas (relacionamentos), onde os
registros sdo interligados de forma mais flexivel.

Considerando um sistema de gerenciamento de
cursos universitarios, um aluno pode estar inscrito em
varios cursos, e cada curso pode ter vdrios alunos.
Aqui, "Aluno" e "Curso" sdo nés, e a relacdo de
inscricAdo € uma aresta que pode conectar multiplos
nés em ambos os lados.

O modelo de redes surgiu nos anos 1970, sendo
promovido pelo Comité de Sistemas de Banco de
Dados (CODASYL). Esse modelo oferecia maior
flexibilidade do que o modelo hierarquico, permitindo

representacdes mais complexas de dados. No entanto, a navegacdo através dos dados ainda
era complicada e exigia um conhecimento detalhado da estrutura do banco de dados.

3. Modelo Relacional

30

O modelo relacional organiza os dados em tabelas (ou relacdes) que consistem em linhas (tuplas)
e colunas (atributos). Cada tabela representa uma entidade, e as relacdes entre essas entidades
sdo estabelecidas através de chaves primarias e estrangeiras. Esse modelo abstrai a
complexidade dos relacionamentos de dados, facilitando consultas e manipulagdes usando uma
linguagem declarativa, como SQL (Structured Query Language).

Em um sistema de gerenciamento de biblioteca, podemos ter uma tabela "Livros" com colunas
como "ID do Livro," "Titulo" e "Autor," e outra tabela "Empréstimos" com colunas como "ID do
Empréstimo," "ID do Livro" e "Data de Devolucdo." As relacdes sdo estabelecidas pela "ID do
Livro," que aparece em ambas as
tabelas, conectando um livro

especifico a um empréstimo.

O modelo relacional foi proposto por
Edgar F. Codd em 1970 enquanto
trabalhava na IBM. Este modelo
revolucionou o gerenciamento de
dados por sua simplicidade e
flexibilidade. A introducdo do SQL
facilitou enormemente a execucdo
de consultas complexas e a
manipulacdo de dados, promovendo
uma adocdo ampla em diversas
industrias. Desde entdo, o modelo
relacional se tornou o padrdo
dominante para sistemas de banco

de dados devido a sua eficiéncia,
robustez e facilidade de uso.

Cada modelo de dados oferece vantagens e desvantagens distintas, dependendo da aplicacdo e
das necessidades de armazenamento e recuperacdo de dados. O modelo hierdrquico é ideal
para estruturas de dados rigidas, o modelo de redes para representacdes mais complexas e
flexiveis, e o modelo relacional para uma manipulacdo de dados mais simples e eficiente. A
compreensdo desses modelos é fundamental para apreciar a evolucdo dos sistemas de banco
de dados e as capacidades avancadas que eles oferecem hoje. Nos préximos capitulos,
exploraremos mais detalhadamente como esses modelos sdao implementados e utilizados em
sistemas de gerenciamento de banco de dados modernos.

4. Modelo de Dados NoSQL

31

O modelo de dados NoSQL é uma abordagem mais recente ao armazenamento e
gerenciamento de dados que se diferencia dos modelos tradicionais (hierarquico, de redes e

relacional). Desenvolvido para lidar com os desafios da era do Big Data, os bancos de dados

NoSQL oferecem escalabilidade horizontal, flexibilidade no esquema e capacidade de lidar com

grandes volumes de dados e tréfego. NoSQL, que significa "Not Only SQL," abrange uma

variedade de tipos de bancos de dados que ndo seguem a estrutura tabular tradicional dos

bancos de dados relacionais.

Tipos de Bancos de Dados NoSQL

Existem quatro principais tipos de bancos de dados NoSQL, cada um projetado para diferentes

tipos de aplicacGes e padrdes de dados:

1. Document Store (Armazenamento de Documentos):

o

Definicdo: Armazenam dados em documentos, geralmente no formato JSON,
BSON ou XML. Cada documento é uma unidade autbnoma que pode conter
dados complexos e aninhados.

Exemplo Pratico: Imagine um sistema de gerenciamento de e-commerce onde um
documento representa um pedido. O documento pode conter informacdes sobre
o cliente, itens do pedido, status do envio e histérico de transacdes, tudo em um
Unico documento JSON.

Histérico: Tornaram-se populares com a ascensdo de aplicacdes web e médveis
que requerem flexibilidade para armazenar dados heterogéneos e em evolucdo
rapida. Exemplos incluem MongoDB e CouchDB.

2. Key-Value Store (Armazenamento de Chave-Valor):

o

Definicdo: Armazenam dados como pares chave-valor. Cada chave é unica e
aponta para um valor, que pode ser uma string, nimero, objeto, ou qualquer outro
tipo de dado.

Exemplo Pratico: Um sistema de cache, como o Redis, onde as chaves podem ser
IDs de usuario e os valores sdo perfis de usudrio serializados.

Historico: Projetados para serem extremamente rapidos e escaldveis, sdo usados
em aplicagbes que requerem consultas simples e rdpidas, como caching e
sessdes de usuario.

3. Column Family Store (Armazenamento de Colunas):

32

4.

o Definicdo: Armazenam dados em tabelas, mas ao invés de linhas, os dados sdo
organizados em colunas. Cada coluna pode armazenar um numero grande de
valores associados a uma unica chave de linha.

o Exemplo Pratico: Um sistema de andlise de logs, onde cada linha representa uma
instancia de log e as colunas representam diferentes atributos do log (timestamp,
nivel de log, mensagem, etc.). Exemplos incluem Apache Cassandra e HBase.

o Histérico: Desenvolvidos para processar grandes volumes de dados de forma
distribuida, sdo ideais para andlises de Big Data e aplicacbes de alto
desempenho.

Graph Database (Banco de Dados de Grafos):

o Definicdo: Armazenam dados em estruturas de grafos, que representam
entidades e suas relagdes com vértices (nds) e arestas.

o Exemplo Pratico: Uma rede social, onde usudrios (nds) tém conexdes (arestas) uns
com os outros. Cada usuario pode ter varias conexodes, e cada conexdo pode ter
propriedades como data de amizade, tipo de conexdo, etc. Exemplos incluem
Neo4j e OrientDB.

o Histérico: Uteis para aplicacdes que envolvem muitos relacionamentos
complexos, como redes sociais, motores de recomendacao e sistemas de fraude.

A seguir temos as principais Diferenca entre Bancos de Dados NoSQL e Bancos de Dados

Relacionais:

Modelo Relacional (SQL):

e Estrutura: Tabelas com linhas e colunas.
e Esquema: Estrutura rigida com esquemas pré-definidos.
e Escalabilidade: Principalmente vertical (aumentar capacidade de um Unico servidor).
e Transacdes: Suporte robusto a ACID (Atomicidade, Consisténcia, Isolamento,
Durabilidade).
e Consultas: Usa SQL para consultas complexas e manipulacdo de dados.
Modelo NoSQL:
e Estrutura: Documentos, pares chave-valor, colunas ou grafos.

33

e Esquema: Estrutura flexivel, sem necessidade de esquemas rigidos.

e Escalabilidade: Principalmente horizontal (adicionar mais servidores para lidar com o
aumento de dados).

e Transagdes: Muitos oferecem garantias de consisténcia eventual, com menos énfase em
ACID para melhorar desempenho.

e Consultas: Dependente do tipo de banco de dados NoSQL, com linguagens de consulta

especificas.

Neste livro, decidimos focar exclusivamente em bancos de dados relacionais (SQL) por vérias
razdes:

1. Popularidade e Estabilidade: Os bancos de dados relacionais sdo amplamente utilizados
e tém sido o padrdo na industria por décadas. Eles possuem uma base tedrica sdlida e
sdo bem compreendidos.

N

TransacOes ACID: Para muitas aplicacGes criticas, a necessidade de transacdes que
garantam atomicidade, consisténcia, isolamento e durabilidade é essencial. Os bancos de
dados relacionais sdo projetados para suportar essas garantias de forma robusta.

w

Linguagem SQL: A Structured Query Language (SQL) é uma linguagem poderosa e
padronizada para a gestdo e manipulagdo de dados, faciltando a adocdo e a
interoperabilidade entre diferentes sistemas de banco de dados.

P

Modelagem de Dados Estruturados: A modelagem de dados em bancos relacionais
promove uma estrutura clara e bem definida, o que é vantajoso para entender e manter a
integridade dos dados.

5. Propdésito Educacional: Este livro visa proporcionar uma base sélida em gerenciamento
de bancos de dados, e os conceitos fundamentais de SGBDs relacionais sao cruciais para
qualquer profissional da area.

Portanto, ao longo deste livro, focaremos em conceitos, técnicas e praticas relacionadas aos
bancos de dados relacionais, preparando vocé para lidar com a maioria das necessidades
tradicionais de gerenciamento de dados no ambiente corporativo e educacional.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

Ao final de todo capitulo, vamos explorar como vocé pode usar o ChatGPT para aprofundar seu
entendimento sobre os conceitos discutidos neste capitulo. O ChatGPT é uma ferramenta

34

poderosa que pode ajudar a esclarecer duvidas, fornecer exemplos adicionais e oferecer
explicacdes detalhadas sobre tdpicos especificos de bancos de dados. Aqui estdo alguns
prompts que vocé pode utilizar para aprender mais sobre as secdes deste capitulo.

1. Dados vs. Informacdo

Para entender melhor a diferenca entre dados e informacdo, vocé pode fazer perguntas como:
e "Qual é a diferenca entre dados e informacdo? Pode me dar mais exemplos?"
e "Como dados brutos sdo transformados em informacdo dtil em um banco de dados?"

e "Pode explicar a importancia de organizar dados para converté-los em informacao?"

2. Tipos de Dados

Para explorar os diferentes tipos de dados (estruturados, semiestruturados e ndo estruturados),

vocé pode perguntar:
e "Quais sdo os principais tipos de dados e como eles sdo armazenados?"

e "Pode me dar exemplos praticos de dados estruturados, semiestruturados e nao

estruturados?"

e "Como os dados semiestruturados, como XML, sdo utilizados em bancos de dados?"

3. Modelos de Dados Histéricos

Para obter mais detalhes sobre os modelos de dados hierdrquicos, de redes e relacional,

considere os seguintes prompts:

e "Pode explicar com mais detalhes o modelo hierdrquico de banco de dados com

exemplos adicionais?"
e "Como o modelo de redes de banco de dados difere do modelo hierdrquico?"

e "Quais sdo as vantagens e desvantagens do modelo relacional em comparacdo com os

modelos hierdrquico e de redes?"
4. Propriedades ACID
Para aprofundar seu conhecimento sobre as propriedades ACID, vocé pode perguntar:

e "O que significa cada uma das propriedades ACID em um banco de dados?"

35

"Pode fornecer mais exemplos praticos de atomicidade, consisténcia, isolamento e
durabilidade?"

"Como as propriedades ACID sdo implementadas nos sistemas de gerenciamento de
banco de dados modernos?"

5. Aplicacdes e Conceitos dos Bancos de Dados

Para entender melhor as aplicacdes e conceitos dos bancos de dados, use prompts como:

"Quais sdo as principais vantagens de usar um banco de dados relacional em vez de
arquivos tradicionais?"

"Como os bancos de dados garantem a integridade e a consisténcia dos dados
armazenados?"

"Pode me explicar como funciona a integragdao de dados em um banco de dados com
exemplos praticos?"

6. Exemplos Préticos e Casos de Uso

Para explorar exemplos praticos e casos de uso de bancos de dados, considere perguntas como:

"Pode fornecer um exemplo detalhado de como um banco de dados é usado em um
sistema de gerenciamento de biblioteca?"

"Quais sdo alguns casos de uso comuns para bancos de dados em empresas e 6rgaos
publicos?"

"Como a mineracdo de dados pode ser usada para gerar novos conhecimentos a partir
de um banco de dados?"

Dicas para Usar o ChatGPT

Seja Especifico: Quanto mais especifico for o seu prompt, mais detalhada e relevante
serd a resposta. Em vez de perguntar "O que é um banco de dados?", pergunte "Como os
bancos de dados relacionais garantem a integridade referencial?"

Peca Exemplos: Exemplos praticos ajudam a entender conceitos complexos. Pergunte por
exemplos para ilustrar um ponto especifico.

Explorar Detalhes: Ndo hesite em fazer perguntas de acompanhamento para explorar um
tépico em maior profundidade. Por exemplo, apds entender o que é a atomicidade,
pergunte como ela é implementada em sistemas de banco de dados reais.

36

e Aplicacoes Praticas: Pergunte como conceitos tedricos sdo aplicados na pratica. Isso

ajuda a conectar a teoria com o mundo real.

Usando esses prompts, vocé pode aproveitar ao maximo o ChatGPT para complementar seu

aprendizado e obter uma compreensdo mais profunda dos conceitos de banco de dados

apresentados neste capitulo.

EXERCICIOS DE FIXACAO

Para consolidar seu entendimento dos conceitos abordados em cada capitulo, elaboramos

alguns exercicios criativos e interessantes que vocé pode realizar.

1. Comparando Dados e Informacdo:

o

Descricdo: Dada a lista de dados brutos a seguir, organize-os em informacdes
significativas.

Dados Brutos: "Jodao da Silva", "35" "Rua das Flores, 123", "987654321"

"joao.silva@example.com"

Pergunta: Como vocé organizaria esses dados em informagdes Uteis? Crie pelo
menos trés exemplos de informacdes a partir desses dados.

2. Classificagdo de Tipos de Dados:

o

O

o

Descricdo: Considere os seguintes conjuntos de dados e classifique-os como
estruturados, semiestruturados ou ndo estruturados.

Conjuntos de Dados:
m Uma planilha de Excel com nomes, idades e enderecos.
m Um documento XML contendo a estrutura de uma pégina web.
m Um conjunto de tweets sobre um evento recente.

Pergunta: Classifique cada conjunto de dados e explique sua classificagdo.

3. Modelagem Hierarquica:

o

Descricdo: Crie uma estrutura hierdrquica para um banco de dados de uma
escola.

37

o Pergunta: Desenhe a arvore hierarquica incluindo pelo menos trés niveis (por
exemplo, Escola > Turmas > Alunos). Expliqgue como os dados seriam
armazenados e acessados nesse modelo.

4. Rede de Dados:

o Descricdo: Imagine que vocé esta criando um banco de dados para uma rede

social.

o Pergunta: Descreva como vocé organizaria os dados usando o modelo de redes.
Inclua nds e arestas representando usudrios e suas conexdes (amizades).

5. Projeto Relacional:
o Descricdo: Considere um sistema de gerenciamento de biblioteca.

o Pergunta: Crie duas tabelas, uma para "Livros" e outra para "Empréstimos." Defina
as chaves primadrias e estrangeiras e mostre como elas se relacionam.

6. Exemplificando ACID:

o Descricdo: Dé exemplos praticos para cada propriedade ACID (atomicidade,
consisténcia, isolamento, durabilidade) em um sistema bancario.

o Pergunta: Descreva uma situacdo para cada propriedade e explique como o
sistema garante a propriedade em questao.

7. Explorando a Consisténcia:

o Descricdo: Suponha que vocé estd lidando com um banco de dados de um
sistema de reservas de hotel.

o Pergunta: Explique como a consisténcia € mantida quando um cliente faz uma
reserva € ao mesmo tempo outro cliente tenta reservar o mesmo quarto.

8. Isolamento em Transacdes:
o Descricdo: Imagine um supermercado com um banco de dados de estoque.

o Pergunta: Descreva uma situacao onde multiplos funcionarios estao atualizando o
estoque ao mesmo tempo e explique como o isolamento previne problemas de

inconsisténcia.

9. Durabilidade na Préatica:

38

o Descricdo: Pense em um sistema de e-commerce que processa pedidos.

o Pergunta: Explique como a durabilidade assegura que um pedido ndo seja
perdido mesmo que o sistema falhe apds a confirmagdo de um pedido.

10. Comparacdo de Modelos de Dados:

o Descricdo: Crie uma tabela comparativa entre os modelos hierdrquico, de redes e
relacional.

o Pergunta: Liste pelo menos trés vantagens e trés desvantagens de cada modelo.
Use exemplos praticos para ilustrar suas respostas.

Esses exercicios sdo projetados para reforcar os conceitos discutidos no capitulo e encorajar
uma compreensao mais profunda dos modelos de dados, tipos de dados e propriedades ACID.

Lembre-se de que a pratica é essencial para o aprendizado da programacdo. Tente resolver os
exercicios por conta prépria, utilizando os conceitos e técnicas aprendidos durante a leitura
desse livro. Caso tenha alguma dificuldade, vocé sempre pode consultar a documentacdo do
Python ou pedir ajuda ao ChatGPT.

39

Capitulo 2 - Modelo

Entidade-Relacionamento
(ER)

“A disseminacdo de computadores e da Internet colocard os empregos em duas categorias.
Pessoas que dizem aos computadores o que fazer e pessoas que sdo ditadas pelos
computadores.”

Marc Andreessen, empreendedor, inventor do Netscape

40

O Modelo Entidade-Relacionamento (ER) é uma ferramenta crucial na modelagem de banco de
dados, projetada para representar visualmente as relacdes entre entidades e estruturas de
dados de forma clara e intuitiva. Introduzido por Peter Chen na década de 1970, o modelo ER se
tornou um padrdo na engenharia de software devido a sua capacidade de descrever
complexidades de dados de maneira organizada e acessivel. Ao focar em entidades, atributos e
relacionamentos, o modelo ER permite aos desenvolvedores e analistas capturar com precisdo
as nuances das interagles e estruturas de dados, essenciais para projetar sistemas de
informacao robustos e eficientes.

O Modelo ER é crucial por vdrias razdes fundamentais. Primeiramente, ele oferece uma
visualizacdo conceitual clara dos requisitos do sistema, facilitando a comunicacdo entre
stakeholders técnicos e ndo técnicos. Além disso, sua simplicidade na notacdo gréfica
padronizada ajuda a eliminar ambiguidades na representacdo das entidades e suas interacoes,
tornando-o uma escolha ideal para documentar e projetar sistemas de banco de dados
complexos. Ao transformar requisitos de negécio em um modelo estruturado, o modelo ER nao
apenas simplifica o design lIégico do banco de dados, mas também estabelece as bases para
implementacbes eficientes em
sistemas gerenciadores de banco
de dados (SGBDs).

Neste capitulo, exploraremos os
conceitos fundamentais do Modelo
Entidade-Relacionamento (ER),
comecando pela definicdo de
entidades, atributos e

relacionamentos. Discutiremos
como esses elementos essenciais

se interconectam para formar um

modelo coeso de dados. Além

disso, examinaremos exemplos

praticos que ilustram a aplicacdao do
modelo ER em diferentes contextos,

desde sistemas escolares e lojas

virtuais até redes sociais e sistemas

académicos. Ao final deste capitulo,
vocé terd uma compreensdo sdlida

de como o Modelo ER pode ser utilizado para modelar eficientemente a estrutura I6gica dos

41

bancos de dados, fornecendo uma base essencial para o desenvolvimento e implementacdo de

sistemas de informacao.

Secao 2.1: Introducao ao Modelo Entidade-Relacionamento (ER)

O Modelo Entidade-Relacionamento (ER) é uma ferramenta fundamental na modelagem de

banco de dados, utilizada para representar de forma visual e conceitual as estruturas e relacdes

entre os dados. Este modelo foi introduzido por Peter Chen na década de 1970 e desde entdo

tem sido amplamente adotado pela sua eficiéncia em descrever a estrutura légica dos bancos de

dados de maneira clara e organizada.

O modelo ER é crucial por diversas razoes:

1.

Visualizacdo Conceitual: Ele permite aos projetistas de banco de dados entenderem e
comunicarem facilmente os requisitos do sistema, representando entidades (objetos ou
coisas no mundo real), atributos (caracteristicas das entidades) e relacionamentos
(associacOes entre entidades).

Simplicidade e Clareza: Utiliza uma nota¢do grafica simples, com simbolos padronizados
para entidades, atributos e relacionamentos, facilitando a compreensdo tanto para
desenvolvedores quanto para stakeholders ndo técnicos.

Projeto Ldégico e Implementacdo Eficiente: Ajuda na transformacao dos requisitos de
negdécio em um modelo de dados estruturado, que servird de base para o projeto fisico
do banco de dados e implementacdo utilizando sistemas gerenciadores de banco de
dados (SGBDs).

O Modelo Entidade-Relacionamento é uma abordagem para modelar os dados de um sistema via

trés conceitos principais:

Entidades: Sdo objetos ou conceitos no mundo real que podem ser diferenciados de
outros objetos. Exemplos incluem "Cliente", "Produto", "Pedido".

Atributos: Sdo caracteristicas ou propriedades das entidades que ajudam a descrevé-las
mais detalhadamente. Cada entidade possui um conjunto de atributos especificos. Por
exemplo, um "Cliente" pode ter atributos como "Nome", "CPF", "Endereco".

Relacionamentos: Representam associagdes significativas entre entidades. Podem ser
um-para-um, um-para-muitos ou muitos-para-muitos. Exemplos incluem "Cliente faz
Pedido", "Produto estd em Pedido".

Para ilustrar esse modelo ER, vamos considerar um sistema de biblioteca simples:

42

e Entidades:
o Livro (com atributos como Titulo, Autor, ISBN).
o Autor (com atributos como Nome, Nacionalidade).
o Leitor (com atributos como Nome, Data de Nascimento).
e Relacionamentos:
o Autor escreve Livro (um autor pode escrever varios livros).
o Leitor empresta Livro (um leitor pode emprestar varios livros).

Um diagrama ER para este sistema poderia ser desenhado com entidades representadas por
retangulos e relacionamentos por losangos, conectando entidades com linhas que indicam as
associacoes.

O Modelo ER desempenha um papel fundamental na fase inicial do desenvolvimento de
sistemas de banco de dados:

e Requisitos Claros: Ajuda a identificar e documentar os requisitos dos usuarios e do
sistema de maneira organizada e estruturada.

e Minimizacdo de Redundancias e Inconsisténcias: Facilita a criacdo de um esquema de
banco de dados que evita duplicacdo desnecessaria de dados e mantém a consisténcia
das informacdes.

e Facilidade de Manutencao: Proporciona uma base sdlida para o projeto Iégico do banco
de dados, facilitando futuras modificagcdes e adaptacdes conforme os requisitos do
sistema evoluem.

Vamos explorar um pouco mais esse modelo. Um exemplo pratico da realidade pode ser dado
em um sistema de gestdo académica de uma universidade:

e Entidades: Aluno, Disciplina, Professor.

e Atributos: Aluno (Nome, Matricula, Curso), Disciplina (Nome, Cddigo, Créditos), Professor
(Nome, Departamento).

e Relacionamentos: Aluno estd matriculado em Disciplina, Professor ministra Disciplina.

O Modelo Entidade-Relacionamento (ER) é uma ferramenta fundamental na modelagem de
banco de dados, utilizada para representar de forma visual e conceitual as estruturas e relacdes

43

entre os dados. A representacdo grafica através de diagramas ER € uma das principais razdes
pelas quais esse modelo é tdo eficaz e amplamente adotado. O diagrama ER para esse sistema
ajudaria a definir claramente como as entidades estdo relacionadas entre si e quais informacdes
sdo necessdrias para cada uma delas. A seguir apresento algumas ferramentas que podem ser
utilizadas para desenhar esses diagramas.

Ao desenhar modelos Entidade-Relacionamento (ER), existem duas principais abordagens de
representacdo: uma mais simples, assemelhada a um fluxograma, e outra mais detalhada, que se
aproxima dos diagramas UML.

1. Desenho Simples Similar a Fluxograma

Nesta abordagem, o modelo ER é representado de forma simplificada, utilizando simbolos
bésicos como retangulos, elipses e losangos, semelhante a um fluxograma. Cada simbolo tem
um significado especifico:

Retdngulos: Representam entidades, ou seja, objetos ou conceitos no mundo real, como
"Cliente", "Produto" ou "Pedido".

Elipses: Representam atributos das entidades, ou seja, caracteristicas ou propriedades das
entidades, como "Nome", "CPF" ou "Data de Nascimento".

Losangos: Representam relacionamentos entre as entidades, indicando associagOes
significativas, como "Cliente faz Pedido" ou "Produto estd em Pedido".

Este estilo de representacdao é direto e facil de entender, ideal para comunicacdo rapida de
ideias entre diferentes partes interessadas, desde desenvolvedores até stakeholders ndo
técnicos.

2. Desenho Similar a Diagrama UML

A segunda abordagem utiliza uma notacdo mais formal e detalhada, semelhante aos diagramas
da Linguagem de Modelagem Unificada (UML). O UML é uma linguagem padrdo para
modelagem de sistemas de software, que inclui diversos tipos de diagramas, como diagramas de
classe, diagramas de sequéncia e diagramas de atividade.

Diagramas UML: Sdo diagramas que utilizam uma variedade de simbolos padronizados para
representar diferentes aspectos de um sistema. Por exemplo:

Diagrama de Classe: Representa as classes do sistema, seus atributos, métodos e
relacionamentos.

44

Diagrama de Sequéncia: Mostra a interacdo entre objetos ao longo do tempo, destacando a
ordem das mensagens trocadas entre eles.

Diagrama de Atividade: Descreve o fluxo de atividades dentro do sistema, mostrando decisdes,
bifurcacdes e acdes sequenciais.

A escolha entre uma abordagem mais simples, similar a fluxograma, e uma mais detalhada,
similar a UML, depende do contexto e da complexidade do sistema sendo modelado. Para
sistemas simples ou para comunicacao inicial de conceitos, o estilo similar a fluxograma pode ser
mais adequado devido a sua simplicidade e clareza. J& para sistemas mais complexos ou para

documentacdo detalhada e andlise profunda, o estilo similar a UML oferece uma estrutura mais
robusta e abrangente.

Ambas as abordagens tém suas vantagens e sdo ferramentas valiosas na modelagem de
sistemas, ajudando a garantir que todos os aspectos e requisitos do sistema sejam
adequadamente capturados e representados de maneira compreensivel para todos os
envolvidos no processo de desenvolvimento.

AT ; ; I_ Name _J.-I £ Y
" ey Habitium’ “'-‘r*"' | Habmo |
f J b]
- / ¥
i\ Userd | 3 / Pa
\, >,
~— ‘\' = Has ——————o< Habit
P Y Uw
(eana) |
| Coachil | L
L4 0 (cheexn)
| pae JJ o 9
i |'r b \II
‘_,_.---"""fpdt Checkinll |
Does o< Checkin ~—
| Habino |
¢ \/—“ L /’J
p =
asmmea | Userid |
' /
{ i\ Coach -
I\@aemn il fi
- _j P
™ 3 | Commentio |
[name | L/
4 e
. ——o< Comment o
{ ot r'/ T (Cammant|
| Gheckinio) et)
D | e
h M\\ fm',

| £
cﬂmm)‘ | Useric | |\ Date |
¥ X -

45

—
Users
PK | UserlD Habits Checkins
| Coachin - : PK | HabitiD +H———0c= PK | HabitCheckinlD
Mame Ji HabitMame FK | HabitiDd
HabitNum bl FiC | UseriD
PK UserHabitiD CheckinDate
FK1 UserlD
Coach FK2 - Hame N
PK | CoachlD Comments
Name PK | CommentiD

FK | HabitCheckinlD
FK | UserlD

FK | CoachlD
CommentDate

CommentText

Neste livro, optamos por utilizar o formato simples e intuitivo similar a fluxograma para
representar os modelos Entidade-Relacionamento (ER). Esta escolha tem como objetivo facilitar a
compreensdo e a comunicagdo dos conceitos essenciais de modelagem de dados. As vantagens
deste formato incluem a clareza na visualizacdo das entidades, atributos e relacionamentos do
sistema, tornando mais acessivel tanto para desenvolvedores quanto para stakeholders nao
técnicos. Além disso, a simplicidade dos simbolos utilizados permite uma rdpida assimilacao das
estruturas e das interacdes entre os elementos do banco de dados, acelerando o processo de
andlise e projeto.

Secdo 2.6: Ferramentas para Desenho de Modelos ER

Na modelagem de dados, o uso de ferramentas apropriadas pode facilitar significativamente a
criacdo e a manutencdo de diagramas de Entidade-Relacionamento (ER). Abaixo, discutiremos
algumas das principais ferramentas disponiveis para desenho de modelos ER, destacando suas
caracteristicas e funcionalidades.

1. Lucidchart

Descrigcdo: Lucidchart € uma plataforma colaborativa para criacdo de diagramas que permite
modelar diagramas ER a partir do zero usando templates, simbolos e notacdes padrdo. Além
disso, é possivel importar bancos de dados existentes para facilitar a criacdo de diagramas ER.

46

Recursos Principais:
e Amplas opgdes de colaboracdo, incluindo notas adesivas, comentdrios e mencdes.
e Biblioteca extensa de simbolos e templates.
e Interface amigdvel para facilitar a criagcdo e edicdo dos diagramas.

2. Diagrams.net (formerly Draw.io)

Diagrams.net, anteriormente conhecido como Draw.io, € uma ferramenta de diagramacdo de
banco de dados baseada em navegador e de cdédigo aberto. Esta ferramenta € amplamente
utilizada devido a sua simplicidade, eficiéncia e ao fato de ser gratuita para a maioria dos
usudrios. A Unica situagcdo em que ha cobranga é para integragdo como um complemento para o
ecossistema de produtos da Atlassian.

Recursos Principais

e Interface de Arrastar e Soltar: Diagrams.net oferece uma interface intuitiva onde vocé
pode comecar a desenhar seus diagramas imediatamente, sem a necessidade de criar
uma conta ou fornecer informagdes de pagamento.

e Gratuidade: A ferramenta é gratuita para uso geral, exceto para integracdo especifica
com o ecossistema da Atlassian, como um complemento para Jira, onde ha uma taxa de
$2 por més.

e Codigo Aberto: Sendo uma ferramenta de cédigo aberto, Diagrams.net é suportado por
uma comunidade ativa de desenvolvedores e continua a ser atualizado com novas
funcionalidades e melhorias.

A missdo do Diagrams.net é fornecer software de diagramacdo de alta qualidade de forma
gratuita para todos os usudrios. A equipe por trds da ferramenta acredita que empresas devem
pagar apenas quando percebem um valor adicional significativo, ndo por estarem presas a um
ecossistema especifico. Assim, optaram por manter a ferramenta gratuita para a maioria dos
casos de uso, cobrando apenas para integragdo com o ecossistema Atlassian.

Diagrams.net € uma excelente opc¢do para criar diagramas de banco de dados de maneira rapida
e eficiente, sem custos para a maioria dos usudrios. Sua abordagem de codigo aberto e foco na
comunidade contribuem para sua popularidade e continua evolugdo como uma ferramenta de
diagramacdo acessivel e poderosa.

3. Creately

47

Descricdo: Creately € uma ferramenta que permite desenhar diagramas, fluxogramas e mapas
mentais, incluindo diagramas ER. Oferece uma biblioteca de formas impressionante, conectores
inteligentes e paletas de cores pré-definidas para criar diagramas complexos de forma intuitiva.

Recursos Principais:
e Colaboracdao em tempo real.
e Compartilhamento de versdes apenas para leitura para revisao.
e Utilizacdo por mais de 4 milhdes de pessoas globalmente.

4. DBDiagram

Descricdo: DBDiagram permite criar diagramas ER apenas escrevendo cdodigo usando sua
propria linguagem de marcacdo de banco de dados. Ele gera automaticamente declaragdes SQL
para criar as tabelas do banco de dados baseadas no diagrama projetado.

Recursos Principais:
e Criacdo rédpida de diagramas por meio de cdédigo.
e Exportacdo para imagens e PDFs.
e Compartilhamento facil dos diagramas online.

5. ERDPlus

Descricao: ERDPIus € uma ferramenta baseada na web para modelagem de banco de dados que
permite criar Diagramas de Relacionamento de Entidade, Esquemas Relacionais, Esquemas
Estelares e declaracdes SQL DDL.

Recursos Principais:
e Construcdo de diagramas adicionando formas e conectando linhas.
e Exportacdo de SQL gerado automaticamente.

e Funcionalidade de colaborag¢do limitada, mas robusta em termos de modelagem de
dados.

6. DrawSQL

48

Descricdo: DrawSQL é uma ferramenta simples e bem projetada para criar, visualizar e colaborar
em diagramas de relacionamento de entidade. Possui uma galeria de templates com mais de
200 diagramas disponiveis para escolha.

Recursos Principais:

e Anotacdes em tabelas e colunas para explicar detalhes.

e Modo de apresentacdo para compartilhar versdes apenas para leitura.

e Enfase na simplicidade e usabilidade para explicar conceitos a colegas e stakeholders.
7. QuickDBD

Descricdo: QuickDBD permite desenhar diagramas de banco de dados rapidamente apenas
digitando cédigo SQL. E ideal para quem prefere uma abordagem textual para modelagem de
dados.

Recursos Principais:
e Criacdo rédpida de esquemas de banco de dados por meio de digitacdo.
e Compartilhamento facil do diagrama com colegas por meio de links simples.
e Importacdo de diagramas de bancos de dados existentes.

8. ER Draw Max

Descricao: ER Draw Max é uma ferramenta gréfica multipropdsito que permite criar varios tipos
de diagramas, incluindo diagramas ER dedicados a modelagem de banco de dados.

Recursos Principais:
e Interface versatil para criacdo de diagramas detalhados.
e Opcdes avancadas de formatacdo e personalizagdo.
e |deal para projetos que exigem diagramas complexos e personalizados.

A escolha da ferramenta ideal depende das necessidades especificas do projeto, do nivel de
detalhamento necessdrio no diagrama e da preferéncia pessoal quanto ao método de criacdo
(visual ou baseado em cddigo). Experimentar diferentes ferramentas pode ajudar a encontrar
aquela que melhor se adapta ao seu fluxo de trabalho e requisitos de colaboracdao.

49

Essas ferramentas sdo projetadas para simplificar o processo de modelagem de dados,
permitindo aos usudrios concentrar-se na arquitetura e na légica do banco de dados sem se
preocupar com a complexidade técnica do design visual. A partir de agora, todos os exemplos
serdo desenhados utilizando a ferramenta Draw.lO.

Secao 2.2: Entidades

No Modelo Entidade-Relacionamento (ER), uma entidade representa um objeto ou conceito do
mundo real que é distinguivel dos outros objetos. Em termos simples, uma entidade é algo sobre
0 qual desejamos armazenar informacdes no banco de dados. Cada entidade possui
caracteristicas Unicas que a distinguem de outras entidades.

Para representar o desenho de uma entidade no modelo Entidade-Relacionamento (ER),
utilizamos um retangulo.

Exemplos de Entidades em Diferentes Contextos:
1. Contexto Escolar:
o Entidade: Aluno
m Atributos: Nome, Matricula, Data de Nascimento, Turma
o Entidade: Disciplina

m Atributos: Nome, Cdédigo, Professor Responsdvel, Créditos

ALUNO

DISCIPLINA

2. Contexto de Vendas:

o Entidade: Produto

50

m Atributos: Nome, Cdédigo, Preco, Quantidade em Estoque
o Entidade: Cliente

m Atributos: Nome, CPF, Endereco, Telefone

PRODUTO

CLIENTE

3. Contexto de Biblioteca:
o Entidade: Livro
m Atributos: Titulo, Autor, ISBN, Ano de Publicacdo
o Entidade: Bibliotecario

m Atributos: Nome, Matricula, Setor de Atuacdo

LIVRO

BIBLIOTECARIO

Exemplo 1: Sistema Escolar

Imagine um sistema para gerenciar informagdes escolares:

51

e Entidade: Aluno

o Atributos: Nome: Jodo Silva, Matricula: 12345, Data de Nascimento: 10/05/2005,
Turma: 9° ano A

e Entidade: Disciplina
o Atributos: Nome: Matematica, Cédigo: MAT101, Professor: Maria Souza, Créditos: 4

Neste exemplo, "Aluno" e "Disciplina" sdo entidades. Cada aluno (como Jodo Silva) € uma
entidade com seus atributos especificos como nome, matricula e turma. Cada disciplina (como
Matemadtica) também é uma entidade com atributos como nome, cédigo e professor responsavel.

Exemplo 2: Sistema de Loja Virtual
Suponha um sistema para uma loja online:
e Entidade: Produto

o Atributos: Nome: Camiseta Branca, Cdédigo: PRODO0O1, Preco: R$ 29,90,
Quantidade em Estoque: 50 unidades

e Entidade: Cliente

o Atributos: Nome: Ana Lima, CPF: 123.456.789-00, Endereco: Rua das Flores, 123,
Telefone: (11) 98765-4321

Neste caso, "Produto" e "Cliente" sdo entidades. Cada produto na loja (como a Camiseta Branca)
é uma entidade com atributos como nome, cédigo, preco e quantidade em estoque. Cada cliente
(como Ana Lima) é uma entidade com seus atributos como nome, CPF, endereco e telefone.

Importancia das Entidades na Modelagem de Banco de Dados
As entidades desempenham um papel fundamental na modelagem de banco de dados porque:

e Organizacdo Estruturada: Permitem organizar as informacdes de forma estruturada e
I6gica, garantindo que cada tipo de informacdo seja armazenado corretamente.

e Facilidade de Gerenciamento: Facilitam o gerenciamento das informacdes relacionadas a
um mesmo tipo de objeto ou conceito do mundo real.

e Base para Relacionamentos: Servem como base para estabelecer relacionamentos
significativos entre diferentes entidades, permitindo representar de maneira precisa
como esses objetos estdo interligados no mundo real.

52

Secdao 2.3: Atributos

No Modelo Entidade-Relacionamento (ER), um atributo € uma caracteristica ou propriedade que
descreve uma entidade. Cada entidade possui atributos especificos que capturam detalhes

particulares sobre ela. Os atributos sdo usados para representar informagoes significativas sobre
as entidades no banco de dados.

Para representar o desenho de um atributo no modelo Entidade-Relacionamento (ER), na
abordagem semelhante a fluxogramas, os atributos sdo desenhados como circulos flutuando ao
redor da entidade. Se um atributo é utilizado para identificar a entidade, ele é considerado a
chave primaria e é sublinhado. Se o atributo faz referéncia ao atributo identificador de outra
entidade, ele € uma chave estrangeira e é destacado em itdlico. Vamos falar mais a respeito das
chaves primdrias e estrangeiras nas proximas secoes.

Para desenhar os diferentes tipos de atributos no formato de fluxograma do modelo
Entidade-Relacionamento (ER), podemos seguir as seguintes convencdes visuais:

1. Atributos Simples: Sdo representados como circulos ao redor da entidade principal. Por
exemplo, para uma entidade "Pessoa", os atributos simples como "Nome", "ldade" e
"Numero de Telefone" seriam desenhados como circulos individuais conectados a
entidade "Pessoa".

Coome >

PESSOA

2. Atributos Compostos: Sdo atributos que podem ser divididos em partes menores, cada
uma com significado préprio. No formato de fluxograma, representamos atributos
compostos como subcirculos ou circulos menores dentro de um circulo maior que
representa o atributo composto. Por exemplo, para o atributo composto "Endereco"
(composto por rua, numero, cidade, estado, CEP) associado a entidade "Cliente",
desenhariamos um circulo grande para "Endereco" e dentro dele circulos menores para
cada parte do endereco.

53

S
6; 3— Cliente
— L

Atributos Derivados: Sdo atributos cujos valores sdo calculados a partir de outros
atributos ou operacdes sobre eles. No fluxograma, representamos atributos derivados
com uma linha tracejada ao redor do circulo que contém os atributos base dos quais ele
é derivado. Por exemplo, para o atributo derivado "ldade" de uma entidade "Pessoa", que
é calculado a partir da data de nascimento, desenhariamos uma linha tracejada ao redor
do circulo que contém "Data de Nascimento".

Data de
Nascimento

Atributos Multivalorados: Sdo atributos que podem ter multiplos valores para uma Unica

entidade. No fluxograma, representamos atributos multivalorados como circulos
conectados a entidade principal por uma linha dupla ou com um multiplicador (n). Por
exemplo, para o atributo multivalorado "Hobbies" de uma entidade "Pessoa", onde uma
pessoa pode ter multiplos hobbies como leitura, esportes e musica, desenhariamos
circulos separados conectados a entidade "Pessoa" por uma linha dupla ou com um
asterisco indicando a multiplicidade.

54

W

PESSOA

Essas representagdes visuais no formato de fluxograma facilitam a compreensdo e visualizagdo
dos diferentes tipos de atributos dentro do modelo ER, ajudando na definicdo precisa da
estrutura de dados e seus relacionamentos.

Exemplo 1: Sistema Escolar
Considere o sistema escolar mencionado anteriormente:
e Entidade: Aluno
o Atributos Simples: Nome: Jodo Silva, Idade: 15

o Atributo Composto: Endereco: Rua das Flores, 123, Cidade: Sdo Paulo, Estado: SP,
CEP: 01234-567

o Atributo Derivado: Ano de Nascimento: 2005 (calculado a partir da idade)

o Atributo Multivalorado: Hobbies: Leitura, Futebol, Pintura

ALUNO

Qo Yl

3 |
Ny HNasmmemo’ T

55

Exemplo 2: Sistema de Loja Virtual
Para uma loja online:
e Entidade: Produto

o Atributos Simples: Nome: Camiseta Branca, Preco: R$ 29,90, Quantidade em
Estoque: 50 unidades

o Atributo Composto: Dimensdes: Largura: 50 cm, Altura: 70 cm, Profundidade: 2
cm

o Atributo Derivado: Valor Total em Estoque: R$ 1.495,00 (calculado a partir do
preco e quantidade em estoque)

o Atributo Multivalorado: Cores Disponiveis: Branco, Preto, Azul

@ Quantidade
PRODUTO

‘.. Estoque -

Importancia dos Atributos na Modelagem de Banco de Dados
Os atributos desempenham um papel crucial na modelagem de banco de dados porque:

e Captura de Informacdes Especificas: Permitem capturar detalhes especificos sobre cada
entidade, possibilitando armazenar e consultar informacdes de maneira precisa.

e Personalizacdo das Entidades: Permitem que diferentes entidades sejam distinguidas
com base em suas caracteristicas Unicas.

e Facilitam a Andlise e a Consulta: Ajudam na criagdo de consultas e relatérios que
respondem a perguntas especificas sobre os dados armazenados.

56

e Fundamentais para Relacionamentos: Sdo essenciais para estabelecer relacionamentos
significativos entre diferentes entidades, garantindo a integridade e a consisténcia dos
dados.

Secao 2.4: Relacionamentos

No modelo Entidade-Relacionamento (ER), os relacionamentos representam associacdes
significativas entre entidades. Eles descrevem como diferentes entidades estdo conectadas
umas as outras dentro do contexto de um sistema de banco de dados. Os relacionamentos sdo
fundamentais para modelar a estrutura légica dos dados, permitindo entender como as
entidades interagem e se relacionam. No modelo ER, os relacionamentos sdo geralmente
representados por losangos que conectam as entidades envolvidas. A notacdo grafica também
pode incluir rétulos para descrever a natureza do relacionamento, como "faz Pedido" ou
"escreve".

Os relacionamentos mostram como uma entidade estd associada a outra entidade. Por exemplo,
podemos ter duas entidades: Clientes e Pedidos que se relacionam, onde o Cliente faz Pedido.

Cliente
Endereco
1
Cidade

Data Pedido Valor Total

Pedido

A cardinalidade de um relacionamento refere-se ao nimero de instancias de uma entidade que
podem estar relacionadas a uma instancia de outra entidade. A cardinalidade pode ser de trés
tipos principais: um-para-um (1:1), um-para-muitos (1:n), e muitos-para-muitos (N:M). A seguir
vamos exemplificar cada um deles.

57

Relacionamento Um para Um (1:1):

E representado por uma linha simples conectando duas entidades. Cada extremidade da linha se
conecta a uma entidade diferente, indicando que cada entidade estd associada a no méximo
uma entidade do outro tipo. Por exemplo, um relacionamento 1:1 entre as entidades "Cliente" e
"Usudrio" significaria que um cliente possui um Unico usudrio relacionado com Login e Senha.

T (e D (o

Usuério

- Cliente

Relacionamento Um para Muitos (1:N):

E representado por uma linha simples conectando duas entidades, onde a extremidade de um
lado da linha se conecta a uma entidade e a outra extremidade se ramifica para conectar-se a
multiplas entidades. Por exemplo, um relacionamento 1:N entre as entidades "Departamento" e
"Funciondrio" indicaria que um departamento pode ter varios funciondrios, mas cada funcionario

estd associado a apenas um departamento.

T o D Come D

Departamento

- Funcionario

Relacionamento Muitos para Muitos (N:M):

Lotado em

-

58

E representado por uma linha com um "canto" em cada extremidade, indicando que cada
entidade de um tipo pode estar associada a vérias entidades do outro tipo, e vice-versa. Por
exemplo, um relacionamento N entre as entidades "Aluno" e "Disciplina" significa que um aluno
pode estar matriculado em vdérias disciplinas, e uma disciplina pode ter varios alunos

7 Anode .
Idade ¢ :)
. Nascimento .-

matriculados.

ALUNO
N
Cidade
N /./
DISCIPLNA

Essas representacdes visuais ajudam a esclarecer os tipos de relacionamentos existentes entre
as entidades no modelo ER, facilitando a compreensao da estrutura e das interacdes dentro do

banco de dados.
Exemplos Praticos para Alunos Adolescentes
Exemplo 1: Sistema Escolar
Considere um sistema escolar com as seguintes entidades:
e Entidade: Aluno
o Atributos: Nome, Idade, Turma
e Entidade: Disciplina

o Atributos: Nome, Cddigo

59

Tipos de Relacionamentos:
e Relacionamento Um para Muitos (1:N):

o Um aluno estd matriculado em vaérias disciplinas, mas cada disciplina é
frequentada por varios alunos.

Exemplo:

e Cada aluno (ex: Jodo) estd matriculado em varias disciplinas (ex: Matematica, Portugués),
mas cada disciplina (ex: Matematica) é frequentada por varios alunos (ex: Jodo, Maria).

Exemplo 2: Rede Social
Considere uma rede social com as seguintes entidades:
e Entidade: Usuério
o Atributos: Nome, Email
e Entidade: Postagem
o Atributos: Conteudo, Data
Tipos de Relacionamentos:
e Relacionamento Um para Muitos (1:N):

o Um usudrio pode criar varias postagens, mas cada postagem é criada por apenas

N

Postagens

um usuario.

7 e
L . s Nascimento

Exemplo:

e Cada usuario (ex: Maria) pode criar varias postagens (ex: Foto de viagem, Status atual),
mas cada postagem (ex: Foto de viagem) é criada por apenas um usudrio (ex: Maria).

Os relacionamentos sdo essenciais na modelagem de banco de dados porque:

60

e Organizam as Entidades: Permitem estruturar como diferentes entidades estdo
conectadas umas as outras, facilitando a organizacdo e a compreensdo dos dados.

e Evitam Dados Redundantes: Em vez de repetir informacdes em vdrias entidades, os
relacionamentos permitem referenciar informacdes de entidades relacionadas.

e Garantem Integridade Referencial: Asseguram que as conexdes entre entidades sejam
consistentes e vdlidas, mantendo a integridade dos dados no banco de dados.

e Facilitam Consultas e Andlises Complexas: Permitem realizar consultas que envolvem
vdrias entidades relacionadas, fornecendo percepcdes valiosas sobre os dados
armazenados.

Secado 2.5: Chaves Primdrias e Chaves Estrangeiras.

No modelo Entidade-Relacionamento (ER), chaves primdrias e chaves estrangeiras sdo conceitos
essenciais para garantir a integridade e a organizacdo dos dados. Vamos explicar o que sao
esses conceitos e como eles sdo representados em diagramas ER no estilo de fluxograma
simples.

Chaves Primarias (Primary Keys)

Definicdo: Uma chave primaria € um atributo (ou um conjunto de atributos) que identifica
unicamente cada entidade em uma tabela. Ela deve ser Unica e ndo nula para garantir que cada
registro possa ser diferenciado dos demais. Por exemplo um identificador Unico para um cliente
poderia ser o CPF do mesmo ou um identificador Gnico gerado pelo préprio sistema que poderia
ser chamado de ID_ClLiente. A chave primaria é geralmente sublinhada no diagrama para indicar
que é o atributo identificador principal da entidade.

Exemplo:
e Entidade Cliente:
o Atributos: ID_Cliente (chave primaria), Nome, Endereco.

o Desenho: Um retangulo para "Cliente" com o atributo ID_Cliente sublinhado.

61

Data Pedido

Pedido

Chaves Estrangeiras (Foreign Keys)

/

Possui

Usuario

Valor Total

Uma chave estrangeira é um atributo em uma entidade que cria uma relagdo com a chave

primdria de outra entidade. Isso estabelece um vinculo entre as duas tabelas, permitindo a

integracdo dos dados. A chave estrangeira é geralmente italicizada (em itdlico) no diagrama para

indicar que refere-se a chave primaria de outra entidade. Uma chave estrangeira € um campo (ou

uma combinacdo de campos) em uma tabela que cria um vinculo entre os dados em duas

tabelas. A chave estrangeira na tabela "filha" (ou "dependente") € um campo que corresponde a

chave primaria na tabela "mde" (ou "referenciada"). Esse vinculo assegura a integridade

referencial no banco de dados, o que significa que a chave estrangeira deve sempre referenciar

uma chave primdria vdlida na tabela "mae".

Exemplo:

e Entidade Pedido:

o Atributos: ID_Pedido (chave primaria), Data, ID_Cliente (chave estrangeira).

62

o Desenho: Um retdngulo para "Pedido" com o atributo ID_Pedido sublinhado e o

atributo ID_Cliente italicizado.

Data de
Nascimento

Id_Pedido 1

< Faz /

Endereco

& E E

P
s
"

Data Pedido Valor Total
N

Pedido

Exemplos de Diagramas ER Simples

1. Exemplo: Sistema Escolar

o Entidades: Aluno, Disciplina, Professor.

Usuario

o Atributos: Aluno (Nome, idade matricula, Ano de Nascimento, Endereco Hobbies),

Disciplina (Nome, Horas, Cédigo), Professor (Nome, CPF).

o Relacionamentos: Matricula (N:M entre Aluno e Disciplina), Ensina (I:N entre

Professor e Disciplina).

63

!

/k
S

DISCIPLNA N

\N‘K o

; ; 1
—</ Leciona >“>———

2. Exemplo: Rede Social

o

PROFESSOR

. —
\v/

Entidades: Usuario, Postagem, Comentario.

Atributos: Usudario (Nome, Email), Postagem (Conteldo, Data), Comentario (Texto,

Data).

Relacionamentos: Publica (I:N entre Usudrio e Postagem), Comenta (1:N entre

Usuario e Comentario).

Data de

. Conteldo Data
Nascimento

1/-\

~

" _ N| Id_Postagem
Usudrio ~ ———< Cria >—— Postagens ——
~ :

—~

>

Cria N Comentério
~ Data

\\\,\/ L. |
\ Id_Postage

=

3. Exemplo: Sistema de Vendas Online

o

o

o

Entidades:

Cliente (ID_Cliente, Nome, Endereco, Email)
Produto (ID_Produto, Nome, Descricdo, Preco)
Pedido (ID_Pedido, Data, Total)

ltemPedido (ID_Item, Quantidade, Subtotal)

Categoria (ID_Categoria, Nome)

Atributos:

Cliente: ID_Cliente (Chave Primaria), Nome, Endereco, Email
Produto: ID_Produto (Chave Primaria), Nome, Descricdo, Preco
Pedido: ID_Pedido (Chave Primaria), Data, Total

ltemPedido: ID_Item (Chave Priméria), Quantidade, Subtotal

Categoria: ID_Categoria (Chave Primaria), Nome

Relacionamentos:

Cliente faz Pedido (1
entre Cliente e Pedido)

65

ii. Pedido contém ltemPedido (1

entre Pedido e ltemPedido)

iii. Produto pertence a Categoria (1

entre Produto e Categoria)

{ Idade)

Id_Cliente

~

<l Possui

-

Nome

\\\\v —

~.
Possui =
J//

Id_Produto

&0
Caoma ™™

N ~
1 _ >
Produto —(\ Possui
~_ _
~

4. Exemplo: Sistema de Biblioteca

o Entidades:

az - -
.
>
N .
1/// \\“; N
L =~

& D

Login
Dat'a 0e Endereco g
Nascimento
/\\
e oy
Cliente —1< Possui >—1 Usuario ‘
11
N
Id_item

Iltem Pedido

|d_Categoria @
>, N
>

Categoria

66

Livro (ID_Livro, Titulo, Autor, ISBN)
Usuario (ID_Usudario, Nome, Endereco, Email)

Empréstimo (ID_Empréstimo, Data_Empréstimo, Data_Devolucao)

iv. Multa (ID_Multa, Valor, Status)
o Atributos:
i. Livro: ID_Livro (Chave Primaria), Titulo, Autor, ISBN
ii. Usuéario: ID_Usuario (Chave Primaria), Nome, Endereco, Email
iii. Empréstimo: ID_Empréstimo (Chave Primdria), Data_Empréstimo,
Data_Devolucdo
iv. Multa: ID_Multa (Chave Priméria), Valor, Status

o Relacionamentos:

Usuario realiza Empréstimo (N:M)entre Usuario e Empréstimo)

Empréstimo envolve Livro (N:M) entre Empréstimo e Livro, com uma tabela
associativa)

Empréstimo gera Multa (1:1 entre Empréstimo e Multa)]

67

r Usuério - Realiza Empréstimo

» Gera Possui
1 ‘|'/ ,

Livro
@ Titulo

Estes exemplos adicionais demonstram como diferentes entidades, atributos e relacionamentos

podem ser modelados usando diagramas ER, abrangendo sistemas de vendas online e de
biblioteca. Cada diagrama € estruturado de maneira a representar de forma clara como as
entidades estdo conectadas e interagem dentro do contexto especifico de cada sistema.

Nesta secdo, abordamos os componentes basicos de um diagrama ER, incluindo entidades,
atributos, relacionamentos, chaves primdrias e estrangeiras. Discutimos também a notacdo e os
simbolos utilizados para representar esses elementos de maneira clara e padronizada. Além
disso, fornecemos exemplos praticos de diagramas ER simples para ilustrar como esses
conceitos sdo aplicados na pratica da modelagem de banco de dados.

A modelagem de um diagrama ER para um aplicativo de loja de roupas envolve a identificacdo
clara de entidades, atributos e relacionamentos, seguida pela criagdo de um diagrama que
representa de forma precisa a estrutura do banco de dados. Através deste estudo de caso,
esperamos ter proporcionado uma compreensdo pratica e detalhada de como o modelo ER
pode ser aplicado em cendrios reais de desenvolvimento de software.

68

Secdo 2.7: Inteligéncia Artificial no auxilio de Criacao de Diagramas ER

Com o avanco da tecnologia de inteligéncia artificial (IA), surgiram ferramentas que automatizam
a criacdo de diagramas de Entidade-Relacionamento (ER) a partir de texto descritivo. Essas
ferramentas visam simplificar o processo de modelagem de dados, permitindo aos usudrios gerar
diagramas precisos com base em descricdes simples.

O Lucidchart oferece recursos de IA integrados, como o Lucid Custom GPT, que permite aos
usudrios gerar diagramas a partir de texto descritivo. Com a ajuda do OpenAl ChatGPT, o Lucid
Custom GPT cria uma prévia do diagrama com base no texto inserido. Os usuarios podem editar
e compartilhar o diagrama diretamente no Lucidchart, facilitando a colaboracao e a revisdo. Para
ilustrar essa geragcdo automatica, pedimos ao chat GPT que gerasse um prompt para uma
inteligéncia artificial que desenha diagramas, de um sistema de gestdo de fabrica. O prompt
gerado e que foi utilizado para alimentar a IA do LucidChart esta apresentado abaixo:

Unset

Crie um diagrama de entidade-relacionamento (ERD) para um sistema de
gestdo de fabrica. A fabrica é composta por vdrios departamentos,
funciondrios, maquinas, produtos e pedidos. Abaixo estdo os detalhes das
entidades, seus atributos e relacionamentos:

Entidades e Atributos:
Departamento

DepartmentID (Chave Primdria)
Nome

Localizacgéo

Orgamento

Funcionario

EmployeeID (Chave Priméria)
PrimeiroNome

Sobrenome

DataNascimento
DataContratacao

Saldrio

DepartmentID (Chave Estrangeira referenciando Departamento)
Maquina

MachineID (Chave Priméria)
Nome

DataCompra

DepartmentID (Chave Estrangeira referenciando Departamento)
Status

Produto

ProductID (Chave Priméria)
Nome

Categoria

69

Preco

CustoFabricacao

Pedido

OrderID (Chave Priméria)

DataPedido

ProductID (Chave Estrangeira referenciando Produto)
Quantidade

CustoTotal

EmployeeID (Chave Estrangeira referenciando Funciondrio)
Relacionamentos:

Departamento - Funcionario

Um-para-Muitos (Um Departamento tem muitos Funciondrios)

Um departamento pode ter vdrios funciondrios, mas um funciondrio pertence
a apenas um departamento.

Departamento - Maquina
Um-para-Muitos (Um Departamento tem muitas Maquinas)

Um departamento pode ter vdrias maquinas, mas uma maquina € atribuida a
apenas um departamento.

Funciondrio - Pedido

Um-para-Muitos (Um Funciondrio pode lidar com muitos Pedidos)

Um funciondrio pode lidar com varios pedidos, mas um pedido é processado
por apenas um funciondrio.

Produto - Pedido

Um-para-Muitos (Um Produto pode fazer parte de muitos Pedidos)

Um produto pode fazer parte de vadrios pedidos, mas um pedido inclui apenas
um produto.

Cardinalidade:

Departamento para Funcionario:

1 Departamento para N Funciondrios

Departamento para Maquina:

1 Departamento para N Maquinas

Funciondrio para Pedido:

1 Funcionario para N Pedidos

Produto para Pedido:

1 Produto para N Pedidos

O resultado do LucidChart é apresentado abaixo:

70

I
Departamenio
Department!D PK siring
home string
Localizacan string
Orcamanto Miat
Departmento
T+
“possui®
L,
R
Maguina Funcionario
MachinelD PK string EmplayesiD PK string
Nome string Produta PrimeiraNome string
DataCompra date Productix PK siring Sabrenome string
Department!D FK string Nome string DataNascimento date
Status string Categoria string DataContratacan date
Preco Tioat Salario Mosat
CustoFabricacan fioat Department|D FK. string
.wL. ‘
? Pedido %
OrderlD PK string
DaraPedido date
Productil FK string
Quantidads int
CustoTotal final
EmployeelD FX string

Além do Lucidchart, temos outras ferramentas que estdo explorando a aplicacdo de IA na
geracdo automatica de diagramas ER. O Diagramming IA por exemplo, € uma plataforma que
combina o poder da inteligéncia artificial para design e edicdo de diagramas UML e workflows.
Permite aos wusudrios criar projetos para gerenciar diagramas, com opc¢les para criar
automaticamente diagramas com instrugdes para a IA baseada em GPT. A ferramenta oferece
funcionalidades como ajuste de texto para otimizacdo da geracdo de diagramas, selecdo de
templates para personalizacdo, e controle sobre a quantidade de saida de diagramas. Além
disso, ha recursos avancados como andlise de estruturas de websites para gerar diagramas
resumidos. Os diagramas podem ser baixados em formatos SVG ou PNG, e hd opcdes para
compartilhamento via URL. Diagramming IA também suporta edicdo de codigo gerado pela IA,
facilitando correcBes e personalizacdes. A plataforma estd em constante atualizacdo, incluindo
modelos e temas de cores, e oferece uma versdo gratuita com limitagdes generosas para
projetos e diagramas. Utilizando o mesmo prompt para geragdao de um modelo ER para um
sistema de gestdo de fabrica, temos o seguinte resultado:

71

DEPARTAMENTO
int DepartmentlD
string] Nome

string Localizacao

int] Orcamento
tem/x
tem
~ §
x >

_FUNGIONARIO B\

int EmployeelD MAQUINA

string | PrimeiroNome int | MachinelD

string 'L Sobrenome string | Nome

date | DataNascimenta date | DataCompra

date | DataContratacan int DepartmentiD

float iSaf.a;io string | Status

int DepartmentiD o

licka com
\ PEDIDO
C&S int | OrderD

daie | DataPedido
F ProductlD
int | Quantidade
float | CustoTotal
int EmployeeiD

int

PRODUTO
' ProductiD

string

Nome

string

Categoria

float

Preco

float

e

faz parte de

CustoFabricacao

Além dos dois sistemas citados anteriormente vale destacar os sistemas Erases e PlantUML, O

Eraser oferece um processo simples de dois passos para converter texto em diagramas ER. Os

usudrios fornecem o texto descritivo e recebem o diagrama ER como saida. O PlantUM utiliza um

processo de trés passos, envolvendo o ChatGPT para converter o texto em cdédigo PlantUML.

Esse cddigo pode ser copiado e colado no site PlantUML para gerar o diagrama correspondente.

72

PROMPTS PARA APRENDER MAIS COM O CHATGPT

Nesta secdo, exploraremos como o ChatGPT pode continuar ajudando vocé a aprofundar seus
conhecimentos sobre modelagem de dados e especificamente na criagdo de um diagrama de
Entidade-Relacionamento (ER) para diferentes cendrios.

Continuando a Aprendizagem com o ChatGPT

O ChatGPT pode ser um recurso valioso para expandir seu entendimento sobre diversos
aspectos da modelagem de dados e do modelo ER. Aqui estdo algumas sugestdes sobre como
vocé pode utilizar o ChatGPT para aprender mais:

1. Exploracdo de Conceitos Fundamentais:

o Peca ao ChatGPT para explicar detalhadamente os conceitos de entidades,
atributos e relacionamentos no contexto de bancos de dados. Isso pode incluir
definicbes claras, exemplos praticos e comparacles entre diferentes tipos de
atributos e relacionamentos.

2. Duvidas Especificas sobre Modelagem ER:

o Caso tenha duvidas especificas sobre como modelar um determinado cenério
usando o modelo ER, solicite exemplos praticos ao ChatGPT. Por exemplo, como
modelar um relacionamento muitos para muitos entre entidades especificas como
clientes e produtos.

3. Consultas e Melhores Praticas:

o Peca sugestdes ao ChatGPT sobre melhores praticas na criagdo de diagramas ER.
Isso pode incluir como definir chaves primdrias e estrangeiras, como lidar com
atributos multivalorados ou como estruturar corretamente a cardinalidade dos
relacionamentos.

4. Otimizacdo e Refinamento de Modelos:

o Se vocé ja tem um diagrama ER inicial, o ChatGPT pode ajudar a revisar e otimizar
0 modelo. Peca dicas sobre como melhorar a estrutura do banco de dados para
torna-lo mais eficiente e facil de entender.

5. Discussoes sobre Casos Préticos:
o Para casos mais complexos ou especificos do seu dominio de aplicacdo, utilize o

ChatGPT para discutir diferentes abordagens na modelagem ER. Isso pode incluir

73

como lidar com requisitos novos que surgem durante o desenvolvimento do
aplicativo da loja de roupas.

Como o ChatGPT Pode Ajudar na Modelagem de um Diagrama ER?

Aqui estdo algumas maneiras especificas de como o ChatGPT pode auxiliar vocé durante o
processo de criacdo de um diagrama ER para um cenario especifico, como o da loja de roupas:

1. Entendimento dos Requisitos:

e ChatGPT pode ajudar: explicando e esclarecendo os requisitos do sistema. Vocé pode
fornecer uma descricdo detalhada do cendrio e receber insights sobre quais entidades,
atributos e relacionamentos sdo necessarios para o modelo ER.

2. Modelagem de Entidades:

e ChatGPT pode ajudar: identificando todas as possiveis entidades relevantes para o
sistema da loja de roupas. Por exemplo, discutindo sobre clientes, produtos, pedidos e
itens de pedidos que devem ser representados no diagrama.

3. Definicdo de Atributos:

e ChatGPT pode ajudar: sugerindo tipos de atributos adequados para cada entidade. Por
exemplo, discutindo sobre os atributos como nome, preco, descricdo para produtos e
nome, endereco, e-mail para clientes.

4. Estabelecimento de Relacionamentos:

e ChatGPT pode ajudar: esclarecendo a cardinalidade e a natureza dos relacionamentos
entre entidades. Por exemplo, explicando como definir que um cliente pode fazer varios
pedidos, mas um pedido pertence a apenas um cliente.

5. Refinamento do Diagrama ER:

e ChatGPT pode ajudar: revisando o diagrama ER inicial e sugerindo melhorias. Por
exemplo, discutindo sobre como garantir que o modelo seja eficiente e siga as melhores
praticas de design de banco de dados.

6. Resolucao de Problemas Especificos:

e ChatGPT pode ajudar: oferecendo solucdes para problemas especificos durante a
modelagem, como lidar com heranca de entidades ou como representar atributos
derivados no diagrama ER.

74

Utilizar o ChatGPT como um recurso para aprender e aprimorar seus conhecimentos em
modelagem de dados e diagramas ER pode ser extremamente Util. Ao seguir essas sugestdes e
interagir de maneira direcionada com o ChatGPT, vocé estard melhor equipado para enfrentar
desafios na criacdo de modelos de banco de dados para diferentes cendrios, como o aplicativo
da loja de roupas descrito neste estudo de caso.

EXERCICIOS DE FIXAGAO

Aqui estd uma lista de seis exercicios para vocé praticar em casa utilizando uma ferramenta de
modelagem:

1. ldentificacdo de Entidades e Atributos

o Crie um cenario hipotético de uma biblioteca. Identifique as entidades principais e
seus atributos relevantes. Exemplo: Entidade Livro (atributos: ISBN, titulo, autor,
ano de publicacao).

2. Relacionamentos Basicos

o Considere um sistema de gestao de escolas. Modele o relacionamento entre as
entidades Aluno e Turma. Determine a cardinalidade desse relacionamento.

3. Atributos Multivalorados

o Em um sistema de cadastro de produtos, identifique um atributo multivalorado
para a entidade Produto. Exemplo: Atributo Tamanhos (P, M, G) para produtos de
vestuario.

4. Diagrama Simples

o Desenhe um diagrama ER simples para um sistema de cadastro de clientes de
uma loja. Inclua entidades como Cliente e Endereco, e um relacionamento bdsico
entre elas.

5. Identificacdo de Chaves

o Para um sistema de reservas de hotéis, identifique a chave priméaria para a
entidade Reserva e a chave estrangeira associada a entidade Cliente.

6. Relacionamentos Complexos

75

o Em um sistema de gestdo hospitalar, modele o relacionamento entre Paciente,
Médico e Consulta. Considere como lidar com consultas multiplas para um mesmo
paciente e médico.

7. Heranca de Entidades

o Em um sistema de vendas online, modele a heranca de entidades entre Produto e
Produto Eletréonico (subclasse de Produto). Considere atributos especificos de
Produto Eletrénico como tipo de conexao e voltagem.

8. Atributos Derivados

o Em um sistema de folha de pagamento, identifique um atributo derivado para a
entidade Funcionario. Exemplo: Saldrio Liquido calculado com base no Saldrio
Bruto e descontos.

9. Sistema de Gerenciamento de Eventos

o Desenvolva um diagrama ER para um sistema de gerenciamento de eventos.
Inclua entidades como Evento, Participante e Local, definindo os relacionamentos

entre elas.

o Dica: Comece identificando as entidades principais e seus atributos. Em seguida,
modele os relacionamentos entre as entidades com base nas interacdes
esperadas no sistema.

10. Aplicativo de Rede Social

o Modele um diagrama ER para um aplicativo de rede social. Considere entidades
como Usuario, Postagem e Comentario, e defina os relacionamentos entre elas.

o Dica: Pense nos tipos de informacdes que armazenaria cada entidade e como
elas se relacionariam entre si. Comece mapeando as entidades principais e
depois detalhe os relacionamentos com base nas interacdes tipicas dos usudrios.

Esses exercicios ajudardo a consolidar seus conhecimentos sobre modelagem de dados usando
o modelo Entidade-Relacionamento (ER), desde conceitos bdsicos até casos de uso mais
complexos e praticos.

76

77

Capitulo 3 - Modelo
Relacional e Projeto Logico
de um Banco de Dados

As pessoas pensam que os computadores as impedirdo de cometer erros. Elas estdo erradas.
Com os computadores, vocé comete erros mais rdpido.

Adam Osborne,

78

O modelo relacional ¢ uma abordagem fundamental para estruturar dados em sistemas de
gerenciamento de banco de dados (SGBDs). Ele organiza os dados em tabelas (ou relagdes),
onde cada tabela representa uma entidade do mundo real e cada linha na tabela representa uma
ocorréncia especifica (ou tupla) dessa entidade. Cada coluna da tabela corresponde a um
atributo ou caracteristica dessa entidade.

No modelo relacional:

e A Tabela (Relacdo): Representa uma entidade do mundo real, como, por exemplo, uma
tabela "Cliente" que armazena informacdes sobre clientes.

e O Atributo: Cada coluna em uma tabela representa um atributo especifico da entidade,
como "Nome", "Idade", "Endereco" em uma tabela de clientes.

e A Tupla (Registro): Cada linha em uma tabela representa uma ocorréncia especifica da
entidade, ou seja, um registro completo com valores para cada atributo.

No contexto do modelo relacional e do projeto
l6gico e fisico de bancos de dados, os diagramas
visuais detalhados, como 0s diagramas
Entidade-Relacionamento (ER), ndo sdo tdo comuns.
Em vez disso, o foco estd na definicdo textual ou
esquematica das tabelas, atributos, chaves primarias,
chaves estrangeiras e nas relagdes entre elas.

Os modelos de dados podem ser categorizados em
trés tipos principais: conceitual, 16gico e fisico. Cada
um desses modelos serve a um propdsito especifico
e tem um publico-alvo diferente:

1. Modelo Conceitual:

o O modelo conceitual ERD (Diagrama de Entidade-Relacionamento) captura
informacdes de alto nivel baseadas nos requisitos de negécios. Ele descreve as
entidades principais e seus relacionamentos, sem se preocupar com detalhes
técnicos ou estruturais especificos de um banco de dados. Este modelo é usado
principalmente por analistas de negdcios para entender e comunicar os requisitos
de dados de forma clara e abstrata.

2. Modelo Légico:

79

O

O modelo légico ERD refinado deriva do modelo conceitual e adiciona detalhes
mais técnicos. Aqui, as entidades sdo definidas com seus atributos especificos e
sdo modeladas as relacdes entre elas usando chaves primarias e estrangeiras.
Este modelo é crucial para o design de banco de dados antes da implementacdo
fisica. Ele ndo se preocupa diretamente com o tipo de banco de dados especifico
(DBMS - Sistema de Gerenciamento de Banco de Dados), mas foca na estrutura
I6gica dos dados conforme exigido pelos requisitos de negdcios.

3. Modelo Fisico:

o

O modelo fisico ERD representa o design concreto e detalhado do banco de
dados relacional. Ele especifica como exatamente os dados serdo armazenados e
estruturados em um DBMS especifico, como MySQL, PostgreSQL, Oracle, entre
outros. O modelo fisico incorpora consideracdes especificas do DBMS, como
tipos de dados, tamanhos de campo, indices e restricbes de integridade
referencial (como chaves primdrias e estrangeiras). Este modelo é usado pelos
designers de banco de dados para criar o esquema exato que serd implementado
fisicamente no banco de dados.

Diferencas e Utilizacdo dos Modelos

Modelo Conceitual: Utilizado para capturar os requisitos de negdcios de maneira
abstrata, sem se preocupar com a implementacdo técnica.

Modelo Légico: Refina o modelo conceitual ao adicionar detalhes técnicos como tipos de
dados e relacionamentos, preparando o caminho para o modelo fisico.

Modelo Fisico: Descreve a estrutura fisica real do banco de dados, incluindo todos os
detalhes necessdrios para sua implementacdo e uso pratico.

Ao progredir de um modelo conceitual para um modelo fisico, hd uma transicdo clara de

abstracdo para concretude, garantindo que todos os requisitos de negdcios sejam atendidos de

maneira eficiente e precisa no ambiente de banco de dados real.

Entender a distincdo entre os modelos conceitual, I6gico e fisico é fundamental para o sucesso

no projeto e implementacdao de sistemas de banco de dados relacionais. Cada fase do modelo

desempenha um papel crucial na garantia de que os dados sejam estruturados de maneira

adequada para atender aos requisitos de negdcios e as necessidades operacionais da

organizacdo. Ao escolher uma ferramenta de modelagem de dados, é essencial considerar qual

modelo ela suporta e como ela pode facilitar a transicdo entre essas fases no ciclo de vida do

desenvolvimento de software.

80

Secao 3.1: O modelo Relacional de Codd

O modelo relacional foi proposto por Edgar F. Codd em seu artigo seminal "A Relational Model of
Data for Large Shared Data Banks" em 1970. Codd, um matematico e cientista da computacao,
desenvolveu os fundamentos tedricos para o armazenamento e manipulacdo de dados em
formato tabular, utilizando a teoria dos conjuntos e a légica de predicados.

A proposta de Codd revolucionou a forma como os dados sdo armazenados e consultados em
sistemas de banco de dados, introduzindo conceitos como normalizacdo, integridade referencial
e operacdes relacionais (como SELECT, INSERT, UPDATE e DELETE).

Para exemplificar a modelagem relacional, vamos imaginar que estamos desenvolvendo um
sistema para gerenciar o estoque de uma loja. Uma parte crucial desse sistema é a tabela de
produtos, que organiza informacdes essenciais sobre cada item disponivel para venda. Na tabela
abaixo, podemos visualizar como esses dados sdo estruturados:

Suponha que estamos modelando um sistema de estoque de uma loja. Podemos ter uma tabela
de produtos da seguinte forma:

ProdutolD | Nome Categoria | Preco

1 Camiseta Vestuario | 29.99

2 Ténis Calcados 79.99

3 Calca Vestuario | 49.99
Jeans

4 Mochila Acessorios | 39.99

Neste exemplo:
e ProdutolD: Chave primaria que identifica unicamente cada produto.
e Nome: Atributo que armazena o nome do produto.
e Categoria: Atributo que classifica o produto em uma categoria especifica.
e Preco: Atributo que registra o preco do produto.

Este exemplo ilustra como o modelo relacional organiza os dados em tabelas com atributos bem
definidos, facilitando o armazenamento, consulta e manipula¢cdo dos dados em um SGBD.

81

Ao entender esses conceitos basicos do modelo relacional, os profissionais de banco de dados
podem projetar esquemas eficientes e robustos que atendam as necessidades de
armazenamento e recuperacdo de dados em uma variedade de aplicagBes e contextos
empresariais.

O projeto légico de um banco de dados relacional envolve a transformacdo do modelo
conceitual (Entidade-Relacionamento, ER) em um esquema relacional concreto, adequado para
implementacdo em um Sistema de Gerenciamento de Banco de Dados (SGBD). Nesta secdo,
exploraremos o0 processo passo a passo dessa transformacao, discutindo as etapas envolvidas e
fornecendo exemplos praticos.

A seguir serd ilustrado um passo a passo da transformacdo do Modelo Conceitual para o Projeto
Légico

1. Revisdo do Diagrama ER

Primeiramente, revisamos o diagrama ER desenvolvido na secdo anterior, que descreve as
entidades, atributos e relacionamentos do sistema. Vamos utilizar um exemplo pratico para
ilustrar esse processo:

Exemplo de Caso de Uso: Sistema de Gestdo de Biblioteca

Suponha que estamos desenvolvendo um sistema de gestdo de biblioteca. O diagrama ER
conceitual inclui as seguintes entidades:

e Livro (com atributos como ISBN, Titulo, Autor)

e Autor (com atributos como AutorID, Nome)

e Editora (com atributos como EditoralD, Nome)

e Empréstimo (com atributos como EmpréstimolD, Data Empréstimo, Data Devolucado)
Além disso, ha relacionamentos como:

e Um Livro pode ter multiplos Autores (relacionamento muitos para muitos)

e Um Livro é publicado por uma Editora (relacionamento um para um)

e Um Empréstimo envolve um Livro e um Usuario (relacionamento um para muitos)

2. ldentificacdo das Tabelas

82

Para cada entidade no diagrama ER, identificamos uma tabela correspondente no projeto légico.
No nosso exemplo:

e Tabela Livro com colunas ISBN (chave primaria), Titulo, EditoralD (chave estrangeira), etc.
e Tabela Autor com colunas AutorlD (chave primaria), Nome, etc.
e Tabela Editora com colunas EditoralD (chave primaria), Nome, etc.

e Tabela Empréstimo com colunas EmpréstimolD (chave primaria), Data Empréstimo, Data
Devolucdo, etc.

3. Definicao dos Atributos e Tipos de Dados

Para cada atributo de uma entidade, definimos o tipo de dado apropriado no SGBD utilizado
(como VARCHAR, INT, DATE, etc.). Por exemplo:

e |SBN na tabela Livro pode ser VARCHAR(20)

e Nome na tabela Autor pode ser VARCHAR(100)

e Data Empréstimo na tabela Empréstimo sera do tipo DATE
4. Chaves Primdrias e Chaves Estrangeiras

Identificamos as chaves primdrias para cada tabela, que sdo usadas para identificar
exclusivamente cada linha na tabela. As chaves estrangeiras sdo entdo definidas para
estabelecer relacionamentos entre as tabelas. Exemplo:

e Na tabela Livro, ISBN é a chave primaria. EditoralD € uma chave estrangeira
referenciando EditoralD na tabela Editora.

5. Relacionamentos

Os relacionamentos identificados no diagrama ER sdo implementados através das chaves
estrangeiras. Por exemplo:

e Na tabela Livro, EditoralD referencia a tabela Editora para indicar a editora de cada livro.
Projeto Logico do Sistema de Gestdo de Biblioteca

Ao transformar o modelo conceitual (ER) em um projeto I6gico para um sistema de gestdo de
biblioteca, utilizamos tabelas estruturadas com chaves primarias, chaves estrangeiras e atributos
definidos. Essa abordagem é essencial para a implementagdo organizada e eficiente de um
banco de dados relacional dentro de um Sistema de Gerenciamento de Banco de Dados (SGBD).

83

Tabelas Principais: Livro, Autor, Editora e Empréstimo
e Tabela Livro:
o ISBN (Chave Primaria)
o Titulo

o EditoralD (Chave Estrangeira para Tabela Editora)

e Tabela Autor:
o AutorID (Chave Primaria)

o Nome

e Tabela Editora:
o EditoralD (Chave Primaria)

o Nome

e Tabela Empréstimo:
o EmpréstimolD (Chave Primaria)
o Data Empréstimo
o Data Devolucao
o LivrolSBN (Chave Estrangeira para Tabela Livro)
O

Este exemplo ilustra como o modelo ER é traduzido em um esquema légico que utiliza chaves
primdrias para garantir a unicidade dos registros em cada tabela e chaves estrangeiras para
estabelecer relacionamentos entre diferentes entidades. Essa estruturacdo ndo apenas facilita a
implementacdo do banco de dados, mas também assegura a integridade dos dados e otimiza a
consulta e manipulacdo de informacgdes dentro do sistema.

84

Para construir as tabelas do Sistema de Gestdo de Biblioteca conforme descrito, vamos

preenché-las com exemplos reais ficticios para ilustrar como seriam os dados armazenados.

Tabela Livro:
ISBN Titulo EditoralD
978-0553801477 "Duna" 1
978-0061120084 "To Kill a Mockingbird" 2
978-0345342966 "1984" 3
978-0060850524 "Harry Potter and the Prisoner of Azkaban" 2
Exemplo:

e [SBN: Cédigo unico que identifica cada livro.
e Titulo: Nome do livro.
e EditoralD: Chave estrangeira que referencia a tabela Editora.

Tabela Autor:

AutorlD Nome

1 Frank Herbert
2 Harper Lee

3 George Orwell
4 J.K. Rowling
Exemplo:

e AutorlD: Identificador Unico para cada autor.
e Nome: Nome completo do autor.

Tabela Editora:

EditoralD Nome

1 Ace Books

85

—
2 HarperCollins Publishers
3 Penguin Books

Exemplo:

e EditoralD: Identificador Unico para cada editora.
e Nome: Nome da editora.

Tabela Empréstimo:

EmpréstimolD Data Empréstimo Data Devolugdo LivrolSBN

1 2024-06-01 2024-06-15 978-0553801477

2 2024-06-02 2024-06-16 978-0061120084

3 2024-06-03 2024-06-17 978-0345342966
4 2024-06-04 2024-06-18 978-0060850524
Exemplo:

e EmpréstimolD: Identificador Unico para cada empréstimo.
e Data Empréstimo: Data em que o livro foi emprestado.

e Data Devolucdo: Data prevista para a devolucao.

e LivrolISBN: Chave estrangeira que referencia a tabela Livro.

Este exemplo pratico demonstra como as entidades do diagrama ER (Livro, Autor, Editora e
Empréstimo) sdo transformadas em tabelas estruturadas no projeto légico de um banco de
dados relacional. Cada tabela possui chaves primdrias para garantir a unicidade dos registros e
chaves estrangeiras para estabelecer relacionamentos entre as entidades. Essa abordagem nado
sé facilita a implementacdo do sistema de gestdao de biblioteca, mas também garante a
integridade dos dados e otimiza a manipulacdo de informacdes dentro do ambiente do SGBD.

Secado 3.2: Chaves Primadrias e Estrangeiras em Bancos de Dados Relacionais

As chaves primdrias e estrangeiras desempenham papéis cruciais na estruturacdo e na
integridade dos dados em bancos de dados relacionais. Vamos explorar mais a fundo esses
conceitos, sua importancia e exemplos praticos de como sdao implementados.

86

Chave Priméria

A chave primaria € um atributo ou conjunto de atributos que identifica de maneira Unica cada
registro em uma tabela. Ela desempenha um papel fundamental na garantia de que ndo haja
duplicidade de informacdes e na facilitacdo de operacdes de busca e indexacdo eficientes. Ao
escolher uma chave primdria, € essencial considerar a unicidade e a estabilidade dos valores ao
longo do tempo.

Exemplo Pratico: Tabela de Clientes

Considere uma tabela simples de Clientes:

IDCliente Nome Email Telefone

1 Jodo joao@email.com 123456789
2 Maria maria@email.com 987654321
3 José jose@email.com 555555555

Neste exemplo, IDCliente é escolhido como chave primdaria. Cada valor Unico em IDCliente
identifica um cliente especifico na tabela, garantindo que ndo haja repeticdes de identificadores.

Chave Estrangeira

s

A chave estrangeira é um atributo em uma tabela que estabelece uma relacdo com a chave
primaria de outra tabela. Ela é fundamental para criar vinculos entre diferentes conjuntos de
dados, permitindo consultas que combinam informacdes de varias fontes relacionadas. As
chaves estrangeiras sdo cruciais para assegurar a integridade referencial dos dados em um
banco de dados relacional.

Exemplo Préatico: Tabelas de Pedidos e Clientes
Considere duas tabelas simples: Clientes e Pedidos.

Tabela Clientes:

IDCliente Nome Email

1 Jodo joao@email.com
2 Maria maria@email.com
3 José jose@email.com

87

Tabela Pedidos:

IDPedido Data Total IDCliente
1 2024-06-01 100.00 1

2 2024-06-02 150.00 2

3 2024-06-03 200.00 1

Neste exemplo, IDCliente na tabela Pedidos é uma chave estrangeira que referencia a chave
primaria IDCliente na tabela Clientes. Isso estabelece uma relacdo entre pedidos especificos e
os clientes que os realizaram, permitindo consultas que recuperam informacdes detalhadas de
cada pedido associado a um cliente especifico.

Ao implementar chaves primdrias e estrangeiras em um esquema relacional, é essencial seguir
algumas préticas:

1. Definicdo Clara das Chaves Primarias:

o Escolha um atributo ou conjunto de atributos que seja Unico e estavel para cada
registro na tabela.

o Utilize restrices de integridade para garantir a unicidade dos valores.
2. Estabelecimento de Relacionamentos com Chaves Estrangeiras:

o Identifique os relacionamentos entre tabelas e defina as chaves estrangeiras nas
tabelas dependentes.

o Garanta que os valores na chave estrangeira existam na tabela referenciada
(chave primdria correspondente).

3. Manutencado da Integridade Referencial:

o Utilize operacles de atualizacdo e exclusdo cuidadosamente para manter a
integridade referencial entre tabelas.

o Considere o uso de acles em cascata para propagar alteracdes relacionadas
automaticamente.

As chaves primarias e estrangeiras sdo conceitos fundamentais em bancos de dados relacionais,
permitindo a organizacado estruturada e a integridade dos dados. Ao projetar e implementar um
esquema relacional, o uso adequado dessas chaves garante a eficiéncia das consultas e a

88

consisténcia dos dados ao longo do tempo. Utilize os exemplos praticos fornecidos para

entender melhor como aplicar esses conceitos em seus préprios projetos de banco de dados.

Secao 3.3: Regras de Integridade Referencial em Bancos de Dados Relacionais

Conceito de Integridade Referencial

Integridade referencial € um conceito fundamental em bancos de dados relacionais que garante

a consisténcia e a validade dos dados. Ela assegura que as relacdes entre tabelas sejam

mantidas de forma correta, preservando a integridade dos dados armazenados.

Importancia da Integridade Referencial:

Imagine um banco de dados de uma loja
online que armazena informacdes sobre
clientes e pedidos. Sem integridade
referencial, um pedido poderia estar
associado a um cliente inexistente ou a um
produto que ndo estd mais disponivel. Isso
comprometeria a confiabilidade e a
precisdao das informacdes, afetando
diretamente a operacdo do negdcio.

Regras de Integridade Referencial

As principais regras de integridade
referencial sdo:

1. Restricdo de Chave Estrangeira:

o A chave estrangeira em uma

tabela (tabela filha) deve sempre referenciar uma chave primdria correspondente

na tabela relacionada (tabela pai).

Xt

o Isso garante que ndo haja referéncias "6rfas", ou seja, registros na tabela filha sem

correspondéncia na tabela pai.

2. Acles de Cascata (CASCADE):

o As acdes de cascata permitem automatizar mudancas relacionadas entre tabelas.

Por exemplo, ao atualizar ou excluir um registro na tabela pai, as acdes de cascata

propagam automaticamente as alteracdes para os registros correspondentes na

tabela filha.

89

O

Isso ajuda a manter a consisténcia dos dados sem a necessidade de intervencdo

manual.

3. Valor Nulo (NULL):

Vamos explorar um exemplo pratico que ilustra como as tabelas de clientes e pedidos sdo
estruturadas em um banco de dados relacional, destacando conceitos importantes como chaves
estrangeiras, acdes de cascata e valores nulos.

o

Uma coluna que contém uma chave estrangeira pode aceitar valores nulos,
indicando que ndo ha correspondéncia obrigatdria com a tabela pai. Isso permite

flexibilidade ao lidar com relacdes opcionais entre tabelas.

Tabelas Simples: Clientes e Pedidos

e Tabela Clientes:

IDCliente: Identificador Unico do cliente.

e Tabela Pedidos:

]
o Nome: Nome do cliente.
o Email: Endereco de e-mail do cliente.
IDCliente | Nome | Email
1 Jodo | joao@email.com
2 Maria | maria@email.com
3 José | jose@email.com

o IDPedido: Identificador Gnico do pedido.

o Data: Data em que o pedido foi realizado.

o Total: Valor total do pedido.

o |IDCliente: Chave estrangeira que referencia o cliente associado ao pedido.
IDPedido Data Total IDCliente
1 2024-06-01 100.00 1
2 2024-06-02 150.00 2

I
3 2024-06-03 200.00 1
4 2024-06-04 50.00 4

Explicacdo do Exemplo:

e Restricdo de Chave Estrangeira: A coluna IDCliente na tabela Pedidos € uma chave
estrangeira que aponta para a chave primaria IDCliente na tabela Clientes. Isso garante
que cada pedido esteja associado a um cliente valido na tabela Clientes, mantendo a
integridade dos dados.

e AcoOes de Cascata (CASCADE): Se uma acdo de cascata estiver configurada para a
remocado de um cliente da tabela Clientes, todos os pedidos associados a esse cliente na
tabela Pedidos serdo automaticamente removidos. Isso preserva a consisténcia dos
dados e evita referéncias a clientes que ndo existem mais no sistema.

e Valor Nulo (NULL): O pedido com IDPedido = 4 possui IDCliente = 4, que ndo estd
presente na tabela Clientes. Se a coluna IDCliente na tabela Pedidos permitir valores
nulos, isso significa que o pedido pode existir sem uma associacdo direta com um cliente
especifico, embora seja uma prética a ser evitada para manter a integridade referencial.

As regras de integridade referencial sdo fundamentais para assegurar que os bancos de dados
relacionais mantenham a consisténcia e a confiabilidade dos dados ao longo do tempo. Ao
projetar um banco de dados e estabelecer relacionamentos entre tabelas, é crucial aplicar
corretamente essas regras para evitar inconsisténcias e erros, proporcionando uma base sélida

para operagdes de negdcios eficientes e precisas.

Este exemplo prético demonstra como esses conceitos sdo aplicados na pratica, preparando
vocé para projetar e implementar bancos de dados robustos e confidveis.

Secao 4.4: Ferramentas e Softwares para Projeto Légico de Banco de Dados
Relacional

Ao projetar e modelar bancos de dados relacionais, a escolha da ferramenta certa pode fazer
toda a diferenca na eficiéncia e na precisdo do processo. Existem diversas ferramentas
disponiveis, desde IDEs especializados em bancos de dados até softwares especificos para
modelagem de dados. Nesta secdo, vamos explorar algumas das principais opcdes e
consideragdes importantes ao escolher uma ferramenta de modelagem de dados.

Ao avaliar uma ferramenta de modelagem de dados para seu projeto, é essencial considerar os
seguintes aspectos:

91

1. Propdsito:

o A ferramenta deve estar alinhada aos requisitos de negécios e aos padrdes da
sua organizagao. E importante escolher uma ferramenta que seja suficientemente
abrangente para atender a todos os propdsitos do projeto.

2. Recursos:

o Os recursos oferecidos pela ferramenta sdo cruciais. Alguns recursos Uteis
incluem suporte para varios tipos de banco de dados, capacidade de engenharia
reversa (reverse engineering), geracdo de cédigo a partir do modelo, ferramentas
colaborativas para trabalho em equipe, controle de versdo, e exportacdao de
diagramas em diferentes formatos.

3. Facilidade de Uso:

o A usabilidade da ferramenta é fundamental para sua eficiéncia. Deve ser intuitiva
o suficiente para ser utilizada por usudrios com diferentes niveis de habilidade
técnica, desde iniciantes até especialistas. Isso inclui processos como instalacdo,
configuracdo, automacdo de tarefas e facilidade para realizar mudancas.

4. Escalabilidade:

o A ferramenta deve ser capaz de acompanhar o crescimento do seu negécio,
suportando necessidades crescentes de dados, nimero de modelos e tipos
diferentes de bancos de dados, além de facilitar a colaboracdo entre equipes
distribuidas.

5. Integracdo:

o E essencial que a ferramenta possa se integrar facilmente com outras plataformas
e tipos de bancos de dados, tanto relacionais quanto ndo relacionais. O modelo
de dados criado pela ferramenta deve ser compativel com outros softwares
utilizados pela organizacao.

6. Comunidade de Usuérios:

o Além do suporte ao cliente, uma comunidade ativa de usuarios pode ser valiosa
para troca de conhecimentos, discussdo de problemas e atualizacdes. Uma
comunidade engajada pode ser uma fonte importante de suporte e aprendizado
continuo.

92

Aqui estdao algumas das principais ferramentas de modelagem de dados que sdo gratuitas e de

codigo aberto:

1. Diagrams.net

o

Anteriormente conhecido como Draw.io, é uma ferramenta de diagramacao online
gratuita e de cdédigo aberto que permite aos usudrios criar uma variedade de
diagramas, incluindo fluxos, organogramas, wireframes e diagramas de banco de
dados. Sua interface intuitiva facilita o desenho de diagramas complexos sem
exigir habilidades avancadas em programacdo ou modelagem. A ferramenta
suporta a importacdo de scripts de bancos de dados como PostgreSQL e MySQL,
permitindo comecar com modelos existentes, além de oferecer funcionalidades
robustas de exportacdo para diversos formatos. Permite colaboracdo em tempo
real, ideal para projetos colaborativos, e integracdo com servicos de
armazenamento em nuvem como Google Drive e Dropbox, facilitando o
compartilhamento seguro de diagramas. Com uma ampla personalizacdo de
elementos graficos e formatacdo, Diagrams.net é uma escolha poderosa tanto
para iniciantes quanto para profissionais experientes em design de banco de
dados.

2. Dbdiagram.io:

o Ferramenta online para desenho de diagramas de banco de dados utilizando uma
interface intuitiva baseada em cdédigo. Permite importar scripts existentes de
PostgreSQL e MySQL e exportar diagramas em diferentes formatos.

3. HeidiSQL:

o Software livre e de cédigo aberto popular para modelagem de dados em sistemas
de bancos de dados como MariaDB, MySQL, MS SQL, PostgreSQL e SQLite.
Oferece recursos avancados como edicdo em massa, exportacdo de tabelas e
edicdo de sintaxe SQL.

4. Archi:

o Ferramenta de modelagem de dados aberta que utiliza a linguagem ArchiMate
para analise e visualizacdo de sistemas de banco de dados complexos. Disponivel
para Windows, Mac e Linux, com recursos como histérico de versoes e geracdo
de cdédigo.

5. ArgoUML:

93

10.

1.

o Ferramenta de modelagem UML de cédigo aberto que suporta todos os
diagramas UML 14 e oferece mddulo extendido DB-UML para esquemas de
banco de dados relacionais. Disponivel em varios idiomas e executavel
diretamente no navegador.

PgModeler:

o Modelador de banco de dados open-source para PostgreSQL, com interface
intuitiva e suporte para automacdo de processos, validacdo de modelos e
exportacdao em multiplos formatos.

MySQL Workbench:

o Ferramenta abrangente que ndo s6 oferece modelagem de diagramas ER, mas
também integra administracdo de banco de dados, monitoramento de
desempenho e migracdo de dados para MySQL. Suporta edicdo de SQL
avancada e conexdes SSH.

Umbrello:

o Ferramenta de cédigo aberto para criagdo e edigcao de diagramas UML disponivel
para Linux, Windows e macOS. Permite importar e exportar cédigo em vdrias
linguagens de programacao.

ModelSphere:

o Modelador UML de cédigo aberto que suporta modelos de dados conceituais,
I6gicos e fisicos. Oferece recursos de engenharia reversa, geragao de scripts SQL
e integragao com varios sistemas de gerenciamento de banco de dados.

DBDesigner:

o Ferramenta de design visual de banco de dados que integra modelagem de
dados, design e manutencdo em um Unico ambiente. Embora tenha sido sucedida
pelo MySQL Workbench, ainda € uma opcdo para modelagem de dados
simplificada.

Database Deployment Manager (DDM):

o Ferramenta de design de banco de dados open-source que suporta engenharia
reversa, geracao visual de consultas e exportacdo de diagramas em diferentes
formatos. Oferece validacdo de design e histérico de versdo.

94

A escolha da ferramenta de modelagem de dados certa € crucial para o sucesso de projetos de
banco de dados relacionais. Cada uma das ferramentas mencionadas possui caracteristicas
Unicas que podem atender diferentes necessidades de modelagem e colaboracdo. Ao avaliar
essas ferramentas, considere sempre as especificidades do seu projeto, as capacidades da
equipe e as demandas do negdcio para tomar a melhor decisdo possivel.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

O ChatGPT pode ser uma ferramenta poderosa para explorar e aprofundar seu conhecimento
em diversas areas relacionadas ao projeto légico de banco de dados relacional. Abaixo estdo
alguns prompts especificos que vocé pode usar para aprender mais sobre as secdes deste
capitulo:

1. Modelo Relacional e Estruturacdo de Dados:

o Para entender melhor como o modelo relacional estrutura dados em tabelas,
pergunte ao ChatGPT: "Explique como funciona o modelo relacional e como ele
utiliza tabelas para representar entidades e atributos."

2. Histéria e Evolucdo do Modelo Relacional:

o Para obter mais informacdes sobre a histdria e evolucdo do modelo relacional
desde sua proposicao inicial por Edgar F. Codd, solicite: "Conte-me mais sobre a
evolucdo do modelo relacional desde os anos 1970 até os dias de hoje."

3. Processo de Transformacdo do Modelo Conceitual para o Logico:

o Peca ao ChatGPT para detalhar as etapas envolvidas na transformacdo de um
modelo conceitual (ER) em um esquema relacional concreto: "Quais sdo as etapas
principais no processo de transformacdao de um modelo conceitual em um
esquema relacional?"

4. Definicdo de Tabelas, Atributos e Tipos de Dados:

o Para aprender como definir tabelas, atributos e tipos de dados em um projeto
I6gico, solicite exemplos especificos: "Como eu posso definir as tabelas, atributos
e tipos de dados ao criar um esquema relacional?"

5. Chaves Primarias e Estrangeiras:

95

o Para entender melhor a definicdo e importdncia das chaves primdrias e
estrangeiras, pergunte ao ChatGPT: "Qual é a diferenca entre chaves primarias e
chaves estrangeiras em um banco de dados relacional?"

6. Regras de Integridade Referencial:

o Peca ao ChatGPT para explicar as regras de integridade referencial e como elas
garantem a consisténcia dos dados: "Como funcionam as regras de integridade
referencial em um banco de dados e por que sdo importantes?"

7. Ferramentas e Softwares para Projeto Ldgico:

o Para obter uma visdo geral das ferramentas disponiveis para auxiliar no projeto
I6gico de banco de dados relacional, pergunte ao ChatGPT: "Quais sdo as
principais ferramentas e softwares que posso utilizar para modelagem de dados
em projetos légicos de bancos de dados?"

Utilize esses prompts para explorar conceitos mais aprofundados, esclarecer duvidas especificas
e expandir seu conhecimento sobre projeto légico de banco de dados relacional com a
assisténcia do ChatGPT.

EXERCICIOS DE FIXACAO

Aqui estd uma lista de exercicios para vocé praticar em casa utilizando alguma ferramenta de
modelagem a sua escolha:

1. Definicdo de Tabelas:

o Crie um exemplo de tabela para uma entidade "Produto", listando os atributos
mais comuns que poderiam ser necessarios para gerenciar informacdes bdasicas
de produtos em um sistema de vendas.

2. Chaves Primadrias e Estrangeiras:

o Explique qual é a funcdo de uma chave primaria em uma tabela de banco de
dados e por que ela é importante.

3. Relacionamentos entre Entidades:

o Dé um exemplo de como vocé definiria um relacionamento muitos-para-muitos
entre duas entidades em um modelo relacional.

4. Modelo Légico Completo:

96

o Desenvolva um modelo légico para um sistema de biblioteca, incluindo entidades
como Livro, Autor e Empréstimo. Defina os atributos relevantes para cada
entidade e estabeleca os relacionamentos apropriados entre elas.

5. Chaves Estrangeiras e Integridade Referencial:

o Explique como vocé garantiria a integridade referencial em um banco de dados
ao definir e implementar chaves estrangeiras. Dé exemplos praticos de cendrios
onde isso seria crucial.

6. Normalizacdo de Dados:

o Discuta a importancia da normalizacdo de dados em um modelo relacional. Liste
os diferentes niveis de normalizacdo e explique brevemente cada um deles.

7. Modelagem de Dados de Vendas:

o Crie um modelo Iégico para um sistema de vendas online, incluindo entidades
como Cliente, Pedido e Produto. Identifique os atributos necessarios para cada
entidade e defina os tipos de relacionamentos entre elas.

8. Sistema de Gerenciamento de Eventos:

o Projete um modelo l6gico para um sistema de gerenciamento de eventos que
inclua as entidades Evento, Participante e Local. Defina os atributos para cada
entidade e estabeleca os relacionamentos entre elas.

9. Aplicativo de Rede Social:

o Desenvolva um modelo Iégico para um aplicativo de rede social, considerando
entidades como Usuério, Postagem e Comentdrio. Identifique os atributos
relevantes e estabeleca os relacionamentos apropriados entre essas entidades.

10. Sistema de Reservas de Hotel:

o Crie um modelo légico para um sistema de reservas de hotel, definindo as
entidades necessarias (como Hotel, Quarto e Cliente) e os relacionamentos entre
elas. Dé dicas para identificar os atributos corretos para cada entidade e como
estruturar as tabelas no banco de dados.

Dicas para os Exercicios:

97

e Inicie com o Diagrama Conceitual: Antes de criar o modelo légico, faca um diagrama
conceitual para visualizar as entidades principais e seus relacionamentos de forma clara.

e Identifique Entidades e Atributos: Para cada exercicio, comece identificando todas as
entidades envolvidas (como Cliente, Produto, Evento) e seus atributos mais relevantes
(como Nome, ID, Data).

e Defina Relacionamentos Corretamente: Utilize técnicas como relacionamentos
um-para-muitos, muitos-para-muitos e um-para-um conforme necessario para representar
adequadamente as interacles entre as entidades.

e Pense na Normalizacdo: Considere a normalizacdo para evitar redundancias e garantir
eficiéncia no armazenamento e manipulacdo dos dados.

e Use Ferramentas de Modelagem: Utilize ferramentas como o Diagrams.net para criar
visualizacdes claras e precisas do modelo légico. Isso ajuda a organizar suas tabelas e
relacionamentos de maneira mais intuitiva.

Estes exercicios ajudardo a solidificar seu entendimento sobre projeto 16gico de banco de dados
relacional, permitindo que vocé pratique a criagdo de modelos detalhados e funcionais para
diferentes cendrios de aplicacdo.

98

Capitulo 4 - Normalizacao de
Dados

"Se depurar € o processo de remover bugs de software, entdo programar deve ser o processo
de colocd-los."

Edsger Dijkstra

99

Neste capitulo, exploraremos o0s
fundamentos essenciais da normalizacdo
de dados, um processo crucial para
projetar bancos de dados relacionais
eficientes e livres de redundancias. A
normalizagdo visa organizar dados em
tabelas para minimizar a redundancia e a
dependéncia, garantindo consisténcia e
integridade dos dados. Abordaremos os
seguintes tépicos:

e Definicdio de Normalizacdo:
Explicacdo sobre o que ¢é
normalizacdo de dados e sua
importancia no projeto de bancos
de dados relacionais.

e Objetivos da Normalizacdo:

Discutiremos 0s principais
objetivos da normalizacdo, como reducdo de redundancia, melhoria na consisténcia e
facilitacdo da manutencdo dos dados.

Formas Normais

e Primeira Forma Normal (1FN): Descricdo dos critérios necessarios para que uma tabela
esteja na 1FN, incluindo a eliminagdo de valores repetidos e a identificacdo de atributos

atomicos.

e Segunda Forma Normal (2FN): Explicacdo sobre os requisitos para alcancar a 2FN,
focando na eliminacdo de dependéncias parciais em relacdo a chave primaria.

e Terceira Forma Normal (3FN): Detalhamento dos critérios para atingir a 3FN, que inclui a
remocao de dependéncias transitivas, garantindo que cada atributo ndo chave dependa
apenas da chave primaéria.

Dependéncia Funcional

e Definicdo de Dependéncia Funcional: Conceito de dependéncia funcional entre atributos
e como ela influencia o processo de normalizagdo.

100

e Aplicagdes da Dependéncia Funcional na Normalizagdo: Exemplos praticos de como
identificar dependéncias funcionais e aplica-las para normalizar esquemas de banco de
dados.

Neste capitulo, vocé aprenderd os principios fundamentais da normalizacdo de dados, desde os
conceitos bésicos até a aplicacdo pratica das formas normais. Compreender esses conceitos &
essencial para projetar bancos de dados eficientes e robustos, garantindo a integridade e o
desempenho dos sistemas que os utilizam.

Secao 4.1: Conceitos Basicos de Normalizacao

A normalizacdo de dados € um
processo fundamental no projeto
de bancos de dados relacionais.
Ela se refere a técnica de
organizar os dados em tabelas de
forma estruturada e eficiente. O
objetivo principal da normalizagao
é eliminar a redundancia e
inconsisténcia nos dados,
garantindo que cada pedaco de
informacdo seja armazenado
apenas uma vez e de maneira
correta. Isso facilita a manutencdo
do banco de dados e reduz o
risco de inconsisténcias ou erros.

A redundancia de dados ocorre
quando uma mesma informacao é

armazenada mais de uma vez no
banco de dados. Isso pode
acontecer em diferentes registros ou tabelas, levando a uma duplicacdo desnecesséaria de
informacdes. Por exemplo, imagine uma tabela de clientes onde cada cliente tem suas
informacdes, incluindo endereco. Se um cliente realizar varias compras, e seu endereco estiver
armazenado em cada registro de compra, isso é redundancia.

Exemplo:

Suponha que temos a seguinte tabela de Clientes:

101

—
ID Nome Endereco

1 Jodo Rua A, S&o Paulo

2 Maria Av. B, Rio de Janeiro
3 Pedro Rua C, Sao Paulo

E uma tabela de Pedidos:

ID Pedido ID Cliente Data Total Endereco

1 1 2024-06-15 100 Rua A, Sao Paulo

2 1 2024-06-16 150 Rua A, S8o Paulo

3 2 2024-06-15 200 Av. B, Rio de Janeiro
4 1 2024-06-17 120 Rua A, Sdo Paulo

Note que o endereco do cliente estd duplicado para o Jodo em cada pedido que ele fez. Isso é

redundancia de dados.

A inconsisténcia de dados ocorre quando informacdes contraditdorias ou conflitantes sdo

armazenadas no banco de dados. Isso pode acontecer devido a falta de controle sobre as

atualizacGes ou alteracdes nos dados. Por exemplo, se um cliente altera seu endereco em um

pedido, mas essa atualizacdo ndo é refletida em todos os lugares onde o endereco é

armazenado, podemos ter inconsisténcias.

Exemplo:

Continuando com os exemplos acima, se o cliente Jodo alterar seu endereco para "Rua D, Sdo

Paulo" apenas no Udltimo pedido, mas o endereco anterior ainda estd registrado nos pedidos

anteriores, teremos uma inconsisténcia de dados.

ID Pedido ID Cliente Data Total Endereco

1 1 2024-06-15 100 Rua A, Sdo Paulo

2 1 2024-06-16 150 Rua A, S&o Paulo

3 2 2024-06-15 200 Av. B, Rio de Janeiro

102

4 1 2024-06-17 120 Rua D, S&o Paulo

Neste caso, o endereco de Jodo ndo esté consistente em todos os pedidos.

Para ilustrar melhor esses conceitos, vamos utilizar mais um exemplo. Imagine que vocé esta
criando um banco de dados para uma escola. Vocé precisa armazenar informacdes sobre os
alunos, como nome, idade, turma e notas. Em vez de ter uma Unica tabela enorme com todas
essas informacdes misturadas, a normalizagao sugere dividir essas informacdes em tabelas
separadas com relacdes claras entre elas. Por exemplo:

Tabela Alunos:

ID Aluno Nome Idade Turma
1 Jodo 15 A
2 Maria 14 B
3 Pedro 16 A

Tabela Notas:

ID Nota ID Aluno Disciplina Nota
1 1 Matematica 8.5
2 1 Historia 7.0
3 2 Matematica 9.0
4 2 Historia 8.5
5 3 Matematica 7.5
6 3 Historia 6.5

Neste exemplo, temos uma tabela separada para 0s alunos e outra para as notas. Cada tabela
tem uma chave priméria Unica (ID Aluno e ID Nota) para identificar cada registro de forma

exclusiva.

Para ilustrar um exemplo negativo de como nao estruturar um banco de dados, vamos consolidar
todas as informacgdes sobre alunos, turmas e notas em uma Unica tabela sem normalizacdo:

Tabela Ndo Normalizada:

103

—
ID Nome Idade Turma Disciplina Nota
1 Jodo 15 A Matematica 8.5
2 Maria 14 B Historia 7.0
3 Pedro 16 A Matematica 9.0
4 Jodo 15 A Historia 8.5
5 Pedro 16 A Matematica 7.5
6 Maria 14 B Historia 6.5

Nesse caso, se um aluno mudar de turma, com as tabelas divididas vocé sé precisa atualizar a
informacdo na tabela Alunos, e ndo em todas as ocorréncias onde o aluno aparece, como seria
se tudo estivesse em uma Unica tabela. A normalizacdo resolve esses problemas ao dividir as
informacdes em tabelas separadas, como Alunos e Notas, com relacionamentos claros entre
elas. Isso ndo apenas economiza espaco de armazenamento, mas também facilita a manutencao
dos dados, reduzindo o risco de inconsisténcias e melhorando o desempenho das consultas no
banco de dados.

A normalizacao, portanto, ndo apenas organiza os dados de maneira mais eficiente, mas também
ajuda a garantir que o banco de dados seja mais facil de manter e menos propenso a erros.
Esses principios sdo fundamentais para qualquer projeto de banco de dados,
independentemente da sua complexidade ou escala.

Objetivos da Normalizacdo

1. Reducdo de Redundancia: Evitar a repeticdo desnecessdria dos dados. Com a
normalizacdo, as informacdes sdo armazenadas apenas uma vez, economizando espaco
e melhorando a eficiéncia.

2. Melhoria na Consisténcia: Garantir que os dados sejam precisos e consistentes em todo
o banco de dados. Isso ajuda a evitar discrepancias ou informagdes contraditdrias.

3. Facilitacdo da Manutencdo dos Dados: Simplificar as operacdes de atualizacdo e
manutencdo do banco de dados. Mudancas em uma parte do banco de dados nao
precisam ser replicadas em varias tabelas, tornando o sistema mais facil de gerenciar e
menos Propenso a erros.

Problemas com a Ndo Normalizacao:

104

Redundancia de Dados: Os dados de alunos (nome, idade, turma) sdo repetidos para
cada disciplina em que o aluno estd matriculado. Por exemplo, Jodo e Pedro aparecem
varias vezes na tabela, resultando em desperdicio de espago de armazenamento.

Inconsisténcia dos Dados: Se um aluno alterar sua idade, turma ou nome, todas as
ocorréncias desses dados na tabela terdo que ser atualizadas individualmente. Isso
aumenta a probabilidade de inconsisténcias nos dados se alguma atualizagdo for
esquecida.

Dificuldade de Manutencdo: Adicionar novas disciplinas ou alunos implica em inserir
multiplas linhas na tabela, o que pode ser propenso a erros e dificulta a manutencdo do
banco de dados.

Desempenho Reduzido: Consultas que precisam agrupar ou filtrar informacdes
especificas (como todas as notas de um aluno) podem ser mais lentas devido a estrutura
ampla e redundante da tabela.

Vamos utilizar outro exemplo para ilustrar ainda mais esses problemas. Imagine que estamos

projetando um banco de dados para uma loja de roupas que precisa gerenciar informacdes

sobre clientes, produtos e pedidos.

Para exemplificar como ndo fazer um projeto légico de banco de dados, vamos consolidar as

tabelas de Clientes, Produtos, Pedidos e ltens do Pedido em tabelas maiores que poderiam ter

valores repetidos. Vamos criar uma estrutura simplificada, ndo normalizada, para ilustrar:

Tabela Unificada (Ndo Normalizada):

ID No | Telef | Email ID Nom | Categ | Pre |ID Dat | ID | Quanti
Clie | me | one Prod | e oria co Pedi | a Ite | dade
nte | Clie uto Prod do Pedi | m
nte uto do
1 Joa [(M) joao@email |1 Cami | Roupa [R$ |1 202 |1 2
o) 9876 | .com seta S 39, 4-0
Silv | 5-43 Branc 90 6-15
a 21 a
1 Joa [(M) joao@email | 2 Calca | Roupa | R$ |1 202 | 2 1
o] 9876 | .com Jeans | s 89, 4-0
Silv | 5-43 90 6-15
a 21

105

|

2 Mari | (11) maria@ema | 3 Ténis | Calca [R$ |2 202 | 3 1
a 9987 | il.com Espor | dos 129, 4-0
Sou | 6-54 tivo 90 6-16
za 32

3 Ped | (1) pedro@em |1 Cami |[Roupa |R$ |3 202 | 4 3
ro 9876 | ail.com seta S 39, 4-0
Sant | 5-123 Branc 90 6-17
0s 4 a

3 Ped | (11) pedro@em |2 Calca | Roupa |R$ |3 202 |5 |1
ro 9876 | ail.com Jeans | s 89, 4-0
Sant | 5-123 90 6-17
0s 4

Justificativa para Nao Normalizacao:

Redundancia de Dados: Cada vez que um cliente faz um pedido, suas informacdes
pessoais (nome, telefone, e-mail) sdo repetidas para cada item do pedido. Isso aumenta o
armazenamento necessario e dificulta a atualizacdo de informacdes pessoais do cliente
sem alterar multiplos registros.

Inconsisténcia dos Dados: Se um cliente atualizar seu telefone ou e-mail, seria necessario
atualizar todas as ocorréncias na tabela unificada, o que pode resultar em erros de
inconsisténcia se alguma atualizacao for esquecida.

Dificuldade de Manutencado: Adicionar ou remover produtos de um pedido implica em
modificar multiplos registros, aumentando a complexidade da operacdo e a chance de

erros.

Desempenho Reduzido: Consultas que precisam agrupar ou filtrar informacdes
especificas (como todos os pedidos de um cliente) podem ser mais lentas devido a
estrutura ampla e redundante da tabela.

Esta abordagem ndo normalizada resultaria em um banco de dados menos eficiente, mais dificil

de manter e com maior risco de inconsisténcias nos dados a medida que a loja de roupas cresce

e aumenta seu volume de vendas.

A normalizacdo nos ajuda a organizar esses dados da seguinte maneira:

Tabela Clientes:

ID Cliente Nome Endereco Telefone

106

—
1 Maria Silva Rua A, 123 (11) 98765-4321
2 Jodo Santos Av. Principal, 456 (11) 99999-8888
3 Ana Costa Travessa B, 789 (11) 87654-3210

Tabela Produtos:

ID Produto Nome Categoria Preco

1 Camiseta Branca Roupas R$ 39,90

2 Calca Jeans Roupas R$ 89,90

3 Ténis Esportivo Calcados R$ 129,90
Tabela Pedidos:

ID Pedido ID Cliente Data Pedido Total

1 1 2024-06-01 R$ 129,80

2 2 2024-06-02 R$ 219,80

3 3 2024-06-03 R$ 169,90
Tabela Itens do Pedido:

ID ltem ID Pedido ID Produto Quantidade

1 1 1 2

2 1 3 1

3 2 1 3

4 3 3 1

Neste exemplo, temos quatro tabelas separadas: Clientes, Produtos, Pedidos e Itens do Pedido.
Cada tabela possui uma chave primaria Unica (ID Cliente, ID Produto, ID Pedido, ID Item) para
identificar cada registro de forma exclusiva. Isso permite que as informacdes sejam organizadas
de maneira eficiente, facilitando a gestao de clientes, produtos e pedidos na loja de roupas.

107

Secado 4.2: Primeira Forma Normal (1FN)

A Primeira Forma Normal (1FN) € um conceito fundamental no projeto de bancos de dados

relacionais, que estabelece os critérios basicos para estruturar tabelas de forma organizada e

sem redundancias. Ela se originou no contexto
dos estudos sobre modelagem de dados e foi
formalizada como parte da teoria de
normalizagdo por Edgar F. Codd nos anos 1970.

A 1FN surgiu da necessidade de organizar os
dados de maneira que cada atributo (ou campo)
de uma tabela contenha apenas valores
atbmicos, ou seja, valores indivisiveis e simples.
Antes da normalizacdo, era comum armazenar
multiplos valores em uma Unica célula da tabela,
o que dificultava a consulta e manipulacdo dos
dados.

Para que uma tabela esteja na Primeira Forma

Normal, ela deve atender aos seguintes critérios:

Valores Atomicos: Cada célula da tabela deve conter apenas um valor simples e
indivisivel. Isso significa que um campo ndo deve conter multiplos valores, listas ou
estruturas complexas.

Identificacdo da Chave Primaria: Cada tabela deve ter uma chave primaria que identifique
exclusivamente cada registro. A chave primaria ndo deve repetir-se em nenhum registro
da tabela.

A Primeira Forma Normal é importante por diversos motivos:

Reducdo de Redundancia: Ao organizar os dados em valores atomicos, evita-se a
repeticio desnecessaria de informacdes na tabela, o que economiza espaco de
armazenamento e melhora a eficiéncia.

Melhoria na Consisténcia: Garante que os dados sejam precisos e consistentes, uma vez
que cada valor é armazenado de forma Unica e clara.

Facilitacdo da Manutencdo: Simplifica as operacdes de atualizacdo, insercdo e exclusdo
de dados. Mudancas em um campo especifico afetam apenas aquele campo, sem afetar
outras partes da tabela.

108

Vamos utilizar um Exemplo Negativo (Ndo Normalizado - Escola):

ID Nome Idade Turma Disciplina Nota 1 Nota 2
1 Jodo 15 A Matematica, Historia 8.5 7.0
2 Maria 14 B Matematica, Histéria 9.0 8.5
3 Pedro 16 A Matematica, Historia 7.5 6.5

e Problemas: A coluna Disciplina contém multiplos valores, violando a regra de valores
atémicos. Além disso, as notas estdo repetidas em colunas separadas, o que pode levar a
inconsisténcias e dificuldades de atualizacao.

Normalizacdo para 1FN (Escola):

ID Nome Idade Turma Disciplina Nota
1 Jodo 15 A Matematica 8.5
1 Jodo 15 A Historia 7.0
2 Maria 14 B Matematica 9.0
2 Maria 14 B Historia 8.5
3 Pedro 16 A Matematica 7.5
3 Pedro 16 A Historia 6.5

e Melhoria: Agora cada linha contém apenas um valor para Disciplina e Nota, eliminando a
redundancia e respeitando a atomicidade dos dados. Lembrando que essa tabela ainda
nao estd 100% normalizada, e sim normalizada na forma N1.

Vamos ver outro Exemplo Negativo (Ndo Normalizado - Loja de Roupas):

ID Cliente Produto Categoria Preco

1 Jodo Camiseta, Calca Vestudrio 50, 80
2 Maria Ténis, Camiseta Calcados 120, 60
3 Pedro Casaco, Calca Vestudrio 150, 80

109

e Problemas: A coluna Produto contém mudltiplos valores, violando a regra de valores
atdbmicos. Além disso, os precos estdo repetidos em colunas separadas para cada
produto.

Normalizacdo para 1FN (Loja de Roupas):

ID Cliente Produto Categoria Preco
1 Jodo Camiseta Vestuario 50

1 Jodo Calca Vestuario 80

2 Maria Ténis Calcados 120
2 Maria Camiseta Vestuario 60

3 Pedro Casaco Vestuario 150

3 Pedro Calca Vestudrio 80

e Melhoria: Cada linha agora representa apenas um produto com seu respectivo preco,
eliminando a repeticdo de dados na coluna Produto e respeitando a atomicidade dos
valores. Porém, isso ainda pode ser melhorado, como veremos a seguir.

Secao 4.3: Segunda Forma Normal (2FN)

A Segunda Forma Normal (2FN) € um conceito avancado na teoria de normalizacdo de bancos
de dados relacionais, desenvolvido por Edgar F. Codd nos anos 1970. Ela surgiu como uma
extensdo da Primeira Forma Normal (1FN), visando eliminar dependéncias parciais em relacdo a
chave primaria, proporcionando uma estrutura de dados mais organizada e eficiente.

A 2FN teve origem na necessidade de eliminar redundancias e dependéncias parciais que
poderiam surgir em tabelas que ja estavam na 1FN. Codd percebeu que, mesmo apds a
normalizacdo para a 1FN, ainda era possivel que alguns campos dependessem apenas de uma
parte da chave primaria, o que poderia comprometer a integridade e consisténcia dos dados.

Para que uma tabela esteja na Segunda Forma Normal, ela deve atender aos seguintes critérios:

1. Estar na 1FN: A tabela ja deve estar na Primeira Forma Normal, ou seja, todos os campos
devem conter valores atomicos e cada registro deve ser Unico e identificado por uma
chave primaria.

2. Eliminar Dependéncias Parciais: Todos os atributos ndo chave (ou seja, que ndo fazem
parte da chave primdria) devem depender completamente da chave primaria. Isso

110

significa que nenhum campo deve depender de apenas uma parte da chave primaria,
mas sim da chave primdria como um todo.

Quando dizemos que um atributo depende parcialmente da chave primaria, significa que parte
do seu valor pode ser determinada por apenas uma parte da chave primdria, em vez de
depender dela como um todo. Isso pode levar a problemas se ndo for corrigido, pois pode
resultar em dados inconsistentes ou dificeis de atualizar. Imagine uma tabela de Pedidos com os
seguintes atributos:

e |D Pedido (Chave Priméria)

e |D Cliente (Parte da Chave Primaria)

e Nome Cliente (Depende do ID Cliente)

e Endereco Cliente (Depende do ID Cliente)
e Data do Pedido (Depende do ID Pedido)
e Total do Pedido (Depende do ID Pedido)

Na situacdo acima, a tabela de Pedidos pode estar em conformidade com a Primeira Forma
Normal (1FN), onde todos os atributos sdo atdbmicos e ndo hé repeticdo desnecessaria de dados.
No entanto, para estar em conformidade com a Segunda Forma Normal (2FN), precisamos
garantir que nenhum atributo dependa parcialmente da chave primaria.

Por exemplo, se o atributo "Nome Cliente" depender apenas do "ID Cliente", e ndo do "ID Pedido"
junto com o "ID Cliente", isso seria uma dependéncia parcial. Na 2FN, o "Nome Cliente" deve
depender do "ID Cliente" e "ID Pedido" juntos, ndo apenas do "ID Cliente" isoladamente. Isso
garante que todas as informac8es do pedido estejam corretamente associadas ao pedido
especifico, evitando inconsisténcias se o mesmo cliente fizer pedidos diferentes ao longo do
tempo.

Assim, a 2FN busca eliminar dependéncias parciais para garantir que cada atributo dependa da
chave primaria como um todo, mantendo a integridade e consisténcia dos dados no banco de
dados relacional.

A Segunda Forma Normal é importante por diversos motivos:

e Eliminacdo de Redundancias: Ao eliminar dependéncias parciais, reduz-se a redundancia
de dados no banco, melhorando a eficiéncia de armazenamento e consulta.

11

e Melhoria na Integridade dos Dados: Garante que os dados sejam consistentes e precisos,

uma vez que cada campo estd corretamente associado a chave primaria completa.

e Facilitacdo da Manutencao: Simplifica operacdes de atualizacdo, insercdo e exclusdo de

dados, pois mudancas na chave primaria refletem-se corretamente em todos os campos

associados.

Exemplo (Escola):

Para exemplificar uma tabela que esta na Primeira Forma Normal (1FN) mas ndo na Segunda

Forma Normal (2FN), vamos considerar uma tabela ficticia para armazenar informacdes sobre

alunos e suas disciplinas matriculadas em uma escola.

Tabela Alunos_Disciplinas:

ID Aluno Nome Aluno Disciplina Professor Nota
1 Jodo Matematica Prof. Silva 8.5
1 Jodo Historia Prof. Santos 7.0
2 Maria Matematica Prof. Silva 9.0
2 Maria Historia Prof. Santos 8.5
3 Pedro Matematica Prof. Silva 7.5
3 Pedro Historia Prof. Santos 6.5
Explicacdo:

Nesta tabela, temos as seguintes colunas:

e |D Aluno: Identificador Unico do aluno.

e Nome Aluno: Nome do aluno.

e Disciplina: Disciplinas em que os alunos estdo matriculados.

e Professor: Nome do professor da disciplina.

e Nota: Nota obtida pelo aluno na disciplina.

Primeira Forma Normal (1FN):

e Todos os valores sdo atdmicos, ou seja, cada célula contém apenas um Unico valor.

12

e Nao ha repeticdo de grupos de colunas.

A tabela acima esta na 1FN porque atende a esses critérios. No entanto, ela ndo esta na Segunda

Forma Normal (2FN) devido as dependéncias parciais em relacdo a chave primaria.

Problema de Dependéncia Parcial (2FN):

Na 2FN, nenhum atributo ndo chave deve depender de apenas uma parte da chave primdria. No

exemplo dado, o atributo Professor depende apenas do ID Aluno e Disciplina juntos, o que é

uma dependéncia parcial. Isso significa que o mesmo professor pode ser associado a diferentes

combinacdes de aluno e disciplina, o que nédo ¢é ideal.

Para corrigir isso e tornar a tabela compativel com a 2FN, precisamos dividir a tabela em duas, de

modo que cada tabela tenha uma chave primaria Unica e as dependéncias sejam mais diretas e

completas.
Exemplo de Divisao:

Tabela Alunos:

ID Aluno Nome Aluno
1 Jodo
2 Maria
3 Pedro

Tabela Disciplinas_Alunos:
ID Aluno Disciplina Professor Nota
1 Matematica Prof. Silva 8.5
1 Historia Prof. Santos 7.0
2 Matematica Prof. Silva 9.0
2 Historia Prof. Santos 8.5
3 Matematica Prof. Silva 7.5
3 Historia Prof. Santos 6.5

Explicacdo da Solucdo:

13

Agora, na nova estrutura:

e Tabela Alunos: Contém apenas informagdes sobre os alunos, com o ID Aluno como chave
primaria.

e Tabela Disciplinas_Alunos: Contém as informagdes sobre as disciplinas em que os alunos
estdo matriculados, com ID Aluno e Disciplina juntos como chave priméria. O Professor e
a Nota dependem diretamente dessa chave primdria composta, eliminando a
dependéncia parcial.

Dessa forma, dividindo a tabela original em duas, garantimos que cada tabela esteja na 1FN e na
2FN, seguindo os principios de normalizacdo para melhorar a estrutura e integridade dos dados
no banco de dados relacional.

Secao 4.4: Terceira Forma Normal (3FN)

A Terceira Forma Normal (3FN) € um conceito avancado na teoria de normalizacdo de bancos de
dados relacionais, também desenvolvido por Edgar F. Codd nos anos 1970. Ela surgiu como uma
evolucdo da Segunda Forma Normal (2FN), focando na eliminacdo de dependéncias transitivas
entre os atributos ndo chave, garantindo assim uma estrutura de dados ainda mais organizada e
eficiente.

A 3FN foi proposta para resolver uma limitacdo da 2FN, que ainda permitia dependéncias
transitivas entre os atributos ndo chave. Codd percebeu que, mesmo apds a normalizacdo para a
2FN, era possivel que um atributo ndo chave dependesse de outro atributo ndo chave, criando
uma cadeia de dependéncias que poderia levar a redundancias e inconsisténcias nos dados.

Critérios da 3FN:
Para que uma tabela esteja na Terceira Forma Normal, ela deve atender aos seguintes critérios:

1. Estar na 2FN: A tabela ja deve estar na Segunda Forma Normal, ou seja, deve eliminar
dependéncias parciais em relacdo a chave primadria.

2. Eliminar Dependéncias Transitivas: Todos os atributos ndo chave devem depender
exclusivamente da chave primaria e ndo de outros atributos ndo chave. Isso significa que
cada atributo ndo chave deve ser diretamente dependente da chave primdria e ndo de
outros atributos ndo chave.

Imagine que vocé tem um conjunto de atributos em uma tabela de banco de dados. A
dependéncia transitiva ocorre quando um atributo ndo chave depende de outro atributo que, por
sua vez, depende da chave primdria. Isso cria uma cadeia de dependéncias indiretas que pode

14

levar a redundancias e problemas de integridade nos dados. Por exemplo, suponha que temos

uma tabela com informacdes sobre estudantes em uma escola. Cada aluno tem um ndmero de

identificacdo Unico (ID Aluno) como chave primaria. Além disso, a tabela possui atributos como

Nome do Aluno, Turma e Endereco.

Se adicionarmos o atributo Cidade ao lado do atributo Endereco, a dependéncia do atributo
Cidade passa a ser transitiva. Isso ocorre porque o atributo Cidade depende diretamente do
atributo Endereco, e o Endereco, por sua vez, depende do ID Aluno.

A Terceira Forma Normal é importante por diversos motivos:

e Reducdo de Redundancias e Anomalias: Ao eliminar dependéncias transitivas, reduz-se a

redundancia de dados e evita-se anomalias de atualizacao, insercdo e exclusdo.

e Melhoria na Estruturacdo dos Dados: Proporciona uma estrutura de dados mais clara e

organizada, facilitando a compreensdo e manutencdo do banco de dados.

e Consisténcia e Integridade: Garante que os dados sejam consistentes e que todas as

informacgdes sejam precisas e corretas, melhorando a qualidade dos dados armazenados.

Para exemplificar a situacdo onde a tabela estd na Primeira e Segunda Forma Normal (1FN e
2FN), mas ndo estd na Terceira Forma Normal (3FN), vou descrever a estrutura das tabelas

Alunos e Disciplinas_Alunos.
Tabela Alunos:
e |D Aluno (Chave Primaria)
e Nome Aluno

Exemplo de dados:

ID Aluno Nome Aluno
1 Jodo
2 Maria
3 Pedro

Tabela Disciplinas_Alunos:

e |ID Aluno (Chave Estrangeira referenciando ID Aluno na tabela Alunos)

e Disciplina

15

e Professor
e Nota

Exemplo de dados:

ID Aluno Disciplina Professor Nota
1 Matematica Prof. Silva 8.5
1 Historia Prof. Costa 7.0
2 Matematica Prof. Silva 9.0
2 Historia Prof. Costa 8.5
3 Matematica Prof. Silva 7.5
3 Historia Prof. Costa 6.5

Anadlise para a 3FN:

Na estrutura atual, a tabela Disciplinas_Alunos ndo esta na Terceira Forma Normal (3FN) devido a

presenca de dependéncias transitivas. Vamos identificar o problema:

1. Dependéncia Transitiva:

o O atributo Professor depende funcionalmente da combinacdo de ID Aluno e

Disciplina.

o Isso significa que o valor do Professor ndo estd diretamente dependente da chave

primdria da tabela, que € o ID Aluno.

2. Solucdo para 3FN:

Para colocar a tabela Disciplinas_Alunos na Terceira Forma Normal, devemos remover essa

dependéncia transitiva. Uma abordagem seria criar uma nova tabela, por exemplo, chamada

Disciplinas, que contenha informacdes sobre as disciplinas e seus respectivos professores.

Assim, a tabela Disciplinas_Alunos faria referéncia apenas a chave estrangeira da tabela

Disciplinas, e ndo teria mais essa dependéncia transitiva.

Exemplo de Estrutura Proposta:

Tabela Disciplinas:

116

e |D Disciplina (Chave Primaria)
e Disciplina
e Professor

Exemplo de dados:

ID Disciplina Disciplina Professor
1 Matematica Prof. Silva
2 Historia Prof. Costa

Tabela Disciplinas_Alunos (apds a normalizacao):
e |ID Aluno (Chave Estrangeira referenciando ID Aluno na tabela Alunos)
e |D Disciplina (Chave Estrangeira referenciando ID Disciplina na tabela Disciplinas)
e Nota

Exemplo de dados:

ID Aluno ID Disciplina Nota
1 1 8.5
1 2 7.0
2 1 9.0
2 2 8.5
3 1 7.5
3 2 6.5

Ao separar a informacdo sobre as disciplinas e seus professores em uma tabela separada
(Disciplinas), eliminamos a dependéncia transitiva que existia na tabela Disciplinas_Alunos.
Agora, cada atributo ndo chave (como Professor) depende diretamente da chave primaria da
tabela a qual pertence (ID Disciplina), tornando a estrutura do banco de dados mais normalizada
e compativel com a Terceira Forma Normal (3FN).

Para elucidar ainda mais esses conceitos. Vamos resolver mais um problema de Normalizacdo de
Dados até a Terceira Forma Normal (3FN) utilizando um Exemplo de uma Pequena Empresa

17

Para ilustrar esse processo de normalizacdo até a Terceira Forma Normal (3FN), vamos
considerar um exemplo simples de uma pequena empresa que armazena informacdes dos
funcionarios em uma Unica tabela sem normalizacdo. Vamos seguir 0 processo passo a passo
para alcancar cada forma normal.

Passo 1: Primeira Forma Normal (1FN)

Suponha que temos uma tabela Unica da empresa com as seguintes informacdes misturadas:

ID [Nome Departamento Localizacdo Departamento | Saldrio | Cargo
Funciondrio

1 Jodo Vendas S&o Paulo 5000 Vendedor
2 Maria Financeiro Rio de Janeiro 6000 Analista
3 Pedro Vendas Sado Paulo 4500 Vendedor

Esta tabela estd em uma forma ndo normalizada, pois mistura atributos de diferentes entidades
(funciondrios, departamentos e detalhes de departamento) em uma Unica estrutura. Para aplicar a
1FN, precisamos dividir essa tabela em estruturas mais simples, garantindo que cada coluna
contenha apenas valores atdmicos e que ndo haja repeticdes de grupos de valores.

Tabela Funcionérios:

ID Nome Funcionario Salario Cargo

1 Jodo 5000 Vendedor
2 Maria 6000 Analista
3 Pedro 4500 Vendedor

Tabela Departamentos:

ID Departamento Localizacao
1 Vendas S3o Paulo
2 Financeiro Rio de Janeiro

Apdbs a primeira normalizacdo, dividimos a tabela original em duas: uma para Funcionarios e
outra para Departamentos. Ainda ndo estamos na 2FN, pois a tabela de Funcionarios ainda
possui dependéncias parciais em relacao a chave primaéria (ID).

118

Passo 2: Segunda Forma Normal (2FN)

Para alcancar a 2FN, precisamos garantir que todos os atributos ndo chave dependam

completamente da chave primdria da tabela. Neste caso, precisamos remover a dependéncia

parcial do departamento em relagcdo ao ID do funcionério.

Tabela Funcionarios:

ID Nome Funcionario Salario Cargo ID Departamento
1 Jodo 5000 Vendedor 1
2 Maria 6000 Analista 2
3 Pedro 4500 Vendedor 1
Tabela Departamentos:
ID Departamento Localizacdo
1 Vendas Sdo Paulo
2 Financeiro Rio de Janeiro

Agora, a tabela Funcionarios possui uma chave estrangeira (ID Departamento) que referencia a
tabela Departamentos. Removemos a dependéncia parcial do Departamento em relagcdo ao ID

do Funcionario.

Passo 3: Terceira Forma Normal (3FN)

Para alcancar a 3FN, devemos garantir que ndo haja dependéncias transitivas entre os atributos

nao chave. Vamos analisar se ha dependéncias transitivas na tabela Funcionarios:

Para garantir que a estrutura das tabelas esteja na Terceira Forma Normal (3FN), devemos

analisar se ha dependéncias transitivas entre os atributos ndo chave. Vamos revisar os atributos

da tabela Funciondrios:

Tabela Funcionarios:

ID Nome Funcionario Salério Cargo ID Departamento
1 Jodo 5000 Vendedor 1
2 Maria 6000 Analista 2

19

3 Pedro 4500 Vendedor 1

Nesta tabela, identificamos os seguintes atributos ndo chave:
e Salario
e Cargo

Para aplicar a Terceira Forma Normal (3FN), devemos garantir que ndo haja dependéncias
transitivas entre esses atributos ndo chave e a chave primaéria (ID).

Anadlise de Dependéncias Transitivas:

1. Salario depende diretamente do ID (chave primdria), pois cada funcionario tem um salario
Unico associado diretamente ao seu ID.

2. Cargo também depende diretamente do ID, pois cada funcionario tem um cargo
especifico associado diretamente ao seu ID.

Mesmo estando na norma 3FN podemos melhorar ainda mais essa relacdo. Poderiamos
considerar a criagdo de uma nova tabela para o Cargo, se cada cargo tiver atributos adicionais
que ndo sejam diretamente dependentes da tabela Funciondrios. Isso ajudaria a evitar
redundancia e a garantir a Terceira Forma Normal (3FN).

Exemplo de Tabela Cargo:

ID Cargo Nome Cargo Descricdo
1 Vendedor Vende produtos aos clientes
2 Analista Analisa dados financeiros

Na tabela Funciondrios, substituiriamos o atributo Cargo pelo ID Cargo como chave estrangeira
referenciando a tabela Cargo:

Tabela Funcionarios (apds modificacdo):

ID Nome Funcionario Saldrio ID Cargo ID Departamento
1 Jodo 5000 1 1
2 Maria 6000 2 2
3 Pedro 4500 1 1

120

Tabela Cargo:

ID Cargo Nome Cargo Descricao
1 Vendedor Vende produtos aos clientes
2 Analista Analisa dados financeiros

Justificacdo da Melhoria:

e Reducdo de Redundancia: Ao separar o cargo em uma tabela prépria, evitamos
repeticdes do mesmo texto (nome do cargo) em vdrias linhas da tabela Funcionarios.

e Consisténcia e Normalizagdo: A chave estrangeira ID Cargo na tabela Funcionarios agora
referéncia diretamente a tabela Cargo, o que facilita a manutencdo e garante a
integridade referencial.

Portanto, ao criar a tabela Cargo e referenciar o ID Cargo na tabela Funcionarios, estamos
promovendo uma estrutura mais normalizada que atende aos critérios da Terceira Forma Normal
(3FN), eliminando dependéncias transitivas e melhorando a organizacao e eficiéncia do banco de
dados.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

Nesta secdo, exploraremos como vocé pode utilizar o ChatGPT para auxiliar no processo de
normalizacdo de suas tabelas de banco de dados. A normalizagdo é crucial para organizar dados
de maneira eficiente, reduzindo redundancias e garantindo consisténcia. Aqui estdo os passos e
exemplos préaticos de como o ChatGPT pode ajudar nesse processo:

Passo 1: Definicdo do Problema e Consulta ao ChatGPT

Antes de iniciar o processo de normalizacdo, € importante entender a estrutura atual dos seus
dados e identificar possiveis problemas de redundancia ou dependéncias ndo necessarias. Aqui
estdo alguns prompts que vocé pode usar para iniciar uma conversa com o ChatGPT:

1. Prompt para ldentificar Estrutura Atual: "Oi ChatGPT, estou trabalhando em um projeto de
banco de dados e tenho uma tabela que parece ter muitos atributos misturados. Posso te
fornecer a estrutura atual da tabela para obter sugestdes sobre como normaliza-la?"

2. Prompt para Consultar sobre Dependéncias Funcionais: "Oi ChatGPT, estou revisando
minha tabela de funciondrios e quero garantir que todos os atributos sejam
funcionalmente dependentes da chave primaria. Vocé pode me ajudar a identificar quais
atributos sdo dependentes de quais?"

121

Exemplo Pratico com o ChatGPT:

Contexto: Vocé estéd trabalhando em um sistema de gerenciamento de vendas para uma loja e
tem uma tabela que contém informacdes sobre pedidos e produtos. No entanto, os dados estdo
misturados e vocé deseja normaliza-los para melhorar a estrutura do banco de dados.

Consulta ao ChatGPT: Vocé decide usar o ChatGPT para orienta-lo no processo de normalizacao
da tabela de pedidos e produtos.

Prompt Inicial: "Oi ChatGPT, estou desenvolvendo um banco de dados para um sistema de
gerenciamento de vendas. Atualmente, tenho uma tabela que contém informacdes misturadas
sobre pedidos e produtos. Posso te fornecer a estrutura atual da tabela para obter orientacdes
sobre como normaliza-la?"

Resposta do ChatGPT: "Claro! Por favor, forneca a estrutura atual da tabela de pedidos e
produtos.”

Estrutura Atual da Tabela:
e |D Pedido
e Data Pedido
e |D Cliente
e Nome Cliente
e Endereco Cliente
e |D Produto
e Nome Produto
e Categoria Produto
e Preco Produto
e Quantidade

Continuacdo da Conversa: "Com base na estrutura atual da tabela, vocé pode me ajudar a
separar os dados relacionados aos pedidos, clientes e produtos em tabelas separadas? Além
disso, como posso garantir que cada atributo seja funcionalmente dependente da chave primaria
correspondente?”

122

ChatGPT: "Para normalizar essa tabela, vocé pode comecar dividindo-a em trés tabelas: Pedidos,
Clientes e Produtos. Na tabela Pedidos, vocé teria ID Pedido, Data Pedido, ID Cliente e ID
Produto como chaves estrangeiras. Na tabela Clientes, vocé pode ter ID Cliente, Nome Cliente e
Endereco Cliente como atributos. E na tabela Produtos, ID Produto, Nome Produto, Categoria
Produto e Preco Produto. Certifique-se de que cada atributo depende diretamente da chave
primdria correspondente, como ID Pedido, ID Cliente e ID Produto."

Ao usar o ChatGPT, vocé pode obter orientacdes valiosas sobre como normalizar suas tabelas de
banco de dados, garantindo uma estrutura mais eficiente e organizada. O ChatGPT pode ajudar
a identificar dependéncias funcionais, sugerir separacdes de tabelas e fornecer insights sobre as
melhores praticas de design de banco de dados.

O ChatGPT pode oferecer ainda valiosas visdes adicionais, exemplos praticos e orientacdes
detalhadas sobre cada aspecto da normalizacdo. Aqui estdao alguns prompts especificos que
podem ajuda-lo a aprofundar seu conhecimento:

1. Conceitos Basicos de Normalizagdo:

e "Oi ChatGPT, posso aprender mais sobre os conceitos bdasicos de normalizacdo de
dados? Quais sdo os beneficios de normalizar um banco de dados?"

e "Como a normalizacdo ajuda a reduzir a redundancia e melhorar a consisténcia dos
dados?"

2. Formas Normais (1FN, 2FN, 3FN):

e "ChatGPT, estou estudando as formas normais. Vocé pode explicar mais detalhadamente
0 que € a Primeira Forma Normal (1FN) e por que é importante?"

e "Quais sdo os critérios para alcancar a Segunda Forma Normal (2FN)? Como identificar
dependéncias parciais em uma tabela?"

e '"Explique a Terceira Forma Normal (3FN). Como identificar e eliminar dependéncias
transitivas usando exemplos praticos?"

3. Dependéncia Funcional:

e "Posso aprender mais sobre dependéncia funcional entre atributos? Como identificar
dependéncias funcionais em um esquema de banco de dados?"

e "Qual é o papel da dependéncia funcional no processo de normalizacdo? Como ela
influencia o design do banco de dados?"

123

4. Aplicacoes da Dependéncia Funcional na Normalizacdo:

e "ChatGPT, gostaria de exemplos praticos de como identificar e aplicar dependéncias
funcionais para normalizar um banco de dados."

e "Como as dependéncias funcionais sdo usadas para dividir uma tabela grande em
estruturas mais eficientes?"

Exemplo de Conversa:

Prompt para Aprender sobre 1FN: "Oi ChatGPT, estou aprendendo sobre normalizacdo de dados
e gostaria de entender melhor o conceito de Primeira Forma Normal (1FN). Vocé pode explicar
mais sobre isso?"

Resposta do ChatGPT: "Claro! A Primeira Forma Normal (1FN) é o primeiro passo na normalizacdo
de dados, onde cada coluna em uma tabela contém apenas valores atémicos (indivisiveis). Isso
significa que ndo deve haver grupos repetidos de valores e cada campo deve conter apenas um
valor. Por exemplo, em uma tabela de clientes, cada cliente deve ter suas informacdes Unicas,
sem repeticdo de dados. Posso te ajudar a aplicar esse conceito em um exemplo especifico?"

Prompt para Aplicar 2FN: "ChatGPT, estou revisando uma tabela de pedidos e produtos. Como
posso garantir que ela esteja na Segunda Forma Normal (2FN)?"

Resposta do ChatGPT: "Para estar na 2FN, é necessario eliminar dependéncias parciais da chave
primdria. Isso significa que cada atributo ndo chave deve depender totalmente da chave primaria
e ndo de apenas parte dela. Por exemplo, se vocé tem um campo 'Preco do Produto'
dependendo apenas do 'ID do Produto!, isso pode indicar uma dependéncia parcial. Posso
ajuda-lo a identificar e corrigir isso na sua tabela?"

Utilizando o ChatGPT, vocé pode explorar ainda mais os conceitos e aplicacdes da normalizacdo
de dados. Os prompts fornecidos acima podem orientd-lo na aprendizagem continua e na
aplicacdo pratica dos principios de normalizacdo, garantindo que seus projetos de banco de
dados sejam eficientes, organizados e livres de inconsisténcias.

EXERCICIOS DE FIXAGAO

Abaixo estdo as questdes sobre normalizacdo reformuladas com exemplos em formato de
tabela, prontas para serem copiadas para o Word:

Questdo 1: Primeira Forma Normal (1FN)

Considere a seguinte tabela que armazena informac¢des sobre alunos e suas disciplinas:

124

Tabela Alunos:

ID_Aluno Nome_Aluno Disciplinas
1 Jodo Matematica, Histéria
2 Maria Inglés, Ciéncias

Esta tabela estd na Primeira Forma Normal (1FN)? Justifique sua resposta e sugira uma forma de
reorganiza-la, se necessario.

Questdo 2: Dependéncias Parciais (2FN)
Analise a seguinte tabela que registra informag¢des sobre pedidos e produtos:

Tabela Pedidos_Produtos:

ID_Pedido Nome_Cliente Produto Preco_Produto
1 Jodo Camisa R$ 50,00
1 Jodo Calca R$ 80,00
2 Maria Camiseta R$ 30,00

Identifique se hé dependéncias parciais em relacdo a chave primaria desta tabela. Explique
como vocé poderia reestruturar esta tabela para estar na Segunda Forma Normal (2FN).

Questdo 3: Terceira Forma Normal (3FN)
Considere a tabela a seguir que armazena informacdes sobre produtos e suas categorias:

Tabela Produtos_Categorias:

ID_Produto Nome_Produto Categoria Descricdo_Categoria
1 Camisa Vestuario Roupas
2 Calca Vestudrio Roupas
3 Ténis Calcados Sapatos

Esta tabela estda na Terceira Forma Normal (3FN)? Justifique sua resposta e sugira possiveis

melhorias, se necessario.

Questdo 4: Normalizagdo de um Sistema de Vendas Online

125

Considere um sistema de vendas online que mantém registros de pedidos e produtos. A
estrutura inicial das tabelas mistura informag¢des dos clientes, produtos e pedidos da seguinte

forma:

Tabela Pedidos_Produtos:

ID_Pedid | Nome_Client | Produto | Categoria_Produt | Preco_Produt | Endereco_Entreg

o] e o o] a

1 Jodo Camisa | Vestuario R$ 50,00 Rua A, Sdo Paulo

1 Jodo Calca Vestuario R$ 80,00 Rua A, Sao Paulo

2 Maria Camiset | Vestuario R$ 30,00 Rua B, Rio de
a Janeiro

Identifique os problemas de redundéancia e dependéncia parcial nesta estrutura. Proponha uma
reorganizacdo das tabelas para atender a Segunda Forma Normal (2FN) e a Terceira Forma
Normal (3FN). Explique como vocé dividiria as informacdes em tabelas separadas, identificando
as chaves primarias e estrangeiras necessarias.

Questdo 5: Normalizacdo de um Sistema de Gestdo de Eventos

Imagine um sistema de gestdo de eventos que registra informacdes sobre eventos, participantes

e localizacdes em uma Unica tabela:

Tabela Eventos:

ID_Eve | Nome_Ev | Data_Ev | Nome_Partici | Email_Particip | Local_Eve | Capacidade_
nto ento ento pante ante nto Local
1 Conferénc | 2023-07- | Jodo joao@email.co | Auditério | 200

ia 15 m A
1 Conferénc | 2023-07- | Maria maria@email.c | Auditério | 200

ia 15 om A
2 Workshop | 2023-08- | Pedro pedro@email.c | Sala B 50

20 om

Analise as dependéncias funcionais presentes nesta tabela. Proponha uma estrutura de tabelas
normalizadas que atendam a Segunda Forma Normal (2FN) e a Terceira Forma Normal (3FN).
Considere como vocé poderia dividir as informacdes de forma eficiente, evitando redundancias e
mantendo a integridade dos dados.

126

Questdo 6: Normalizacdo de um Sistema de Gestdo Escolar

Considere um sistema de gestdo escolar que mantém informacdes sobre alunos, turmas,

disciplinas e notas em uma Unica tabela:

Tabela Escola:

ID_Aluno Nome_Aluno Turma Disciplina Nota
1 Jodo A Matematica 8.5
1 Jodo A Historia 7.0
2 Maria B Matematica 9.0
2 Maria B Historia 8.5
3 Pedro A Matematica 7.5
3 Pedro A Historia 6.5

Identifique as dependéncias transitivas e parciais nesta estrutura. Proponha uma divisdo em
tabelas que atendam a Terceira Forma Normal (3FN), explicando como vocé organizaria as

tabelas de Alunos, Turmas, Disciplinas e Notas. Quais seriam as chaves primérias e estrangeiras

necessarias?

Essas quest8es foram elaboradas para ajudar na compreensdo e aplicacdo dos conceitos de

normalizagdo em cendrios praticos de banco de dados.

127

Capitulo 5 - Sistemas
Gerenciadores de Bancos de
Dados (SGBDs)

"A ciéncia da computac¢do capacita os alunos a criar o mundo de amanhdg”

Satya Nadella, CEO da Microsoft

128

Secao 5.1: Conceitos Basicos de SGBDs

Um Sistema Gerenciador de Banco de Dados (SGBD) é uma aplicacdo que facilita a criacdo,
manipulagdo e gerenciamento de bancos de dados. Ele atua como uma camada intermediaria
entre os usudrios e os dados armazenados, fornecendo uma interface para consulta, atualizacdo
e administracdo do banco de dados. Ou seja, um SGBD é um software especializado que ajuda a
organizar e gerenciar grandes
quantidades de informacdes de
maneira eficiente. Ele atua como um
"guardido" dos dados, permitindo que
as informacdes sejam armazenadas,

acessadas e atualizadas de forma

segura e organizada. Assim, os SGBDs

possuem as seguintes finalidades: i

i
B

o)

Armazenamento Centralizado: O

s

principal objetivo de um SGBD é

=)

fornecer um local centralizado para

armazenar dados importantes de uma & A ' =
organizagdo, como registros de .

clientes, informacbes de produtos,

transacdes financeiras, entre outros.

Gerenciamento de Dados: Além de
simplesmente armazenar dados, o
SGBD permite que os dados sejam
organizados de maneira légica e estruturada, facilitando consultas répidas e precisas quando

necessario.

Controle de Acesso: Um bom SGBD também controla quem pode ver ou modificar os dados,
garantindo que apenas pessoas autorizadas possam acessar informagdes sensiveis.

Importancia do SGBD:

e Eficiéncia: Com um SGBD, as operacdes de insercdo, consulta, atualizacdo e exclusdo de
dados podem ser feitas de maneira eficiente, mesmo com grandes volumes de
informacdes.

e Integridade dos Dados: Ele ajuda a garantir que os dados sejam precisos e consistentes
ao longo do tempo, evitando informacdes duplicadas ou conflitantes.

129

e Seguranca: Os SGBDs tém recursos avancados para proteger os dados contra acesso

ndo autorizado, garantindo que informacdes confidenciais estejam seguras.

e Economia de Espaco: Ao evitar a duplicacdo desnecessaria de dados, o SGBD

economiza espaco de armazenamento, o que € crucial especialmente em grandes

organizagdes com muitos dados.

Um sistema de banco de dados é composto por trés componentes principais:

1. Usuarios: Sdo pessoas ou aplicacdes que interagem com o banco de dados para realizar

operacdes como consulta, insercdo, atualizacdao e exclusdo de dados.

2. SGBD: E o software responsdvel por gerenciar o acesso aos dados, garantindo a

seguranca, integridade e eficiéncia das operacodes realizadas sobre o banco de dados.

3. Banco de Dados: E a colecéo organizada de dados que s&o armazenados e gerenciados

pelo SGBD. Pode incluir tabelas, indices, procedimentos armazenados e outras estruturas

para representar os dados de forma organizada e eficiente.

Além desses componentes principais, existem outros componentes de um SGBD conforme

veremos a seguir:

Secao 5.2: Estrutura de um Sistema de Banco de Dados

Um sistema de banco de dados é essencialmente uma
forma organizada de armazenar e gerenciar informacdes
importantes para diversas aplicacdes. Ele é composto
por trés componentes principais que trabalham juntos
para garantir que os dados sejam armazenados de
maneira segura, organizada e acessivel. Vamos explorar
cada um desses componentes detalhadamente:

1. Usuérios

Os usuarios sdo as pessoas ou aplicagdes que interagem
diretamente com o banco de dados. Eles realizam
operacOes como consulta (buscar informacdes), insercdao
(adicionar novos dados), atualizacdo (modificar
informacdes existentes) e exclusdo (remover dados) de

informagdes no banco de dados. Existem diferentes tipos de usudrios em um sistema de banco

de dados:

130

e Administrador do Banco de Dados: Responsdvel pela configuracdo, manutencdo e
monitoramento do banco de dados.

e Desenvolvedores de AplicagGes: Criam programas que interagem com o banco de dados
para realizar operacdes especificas.

e Usuadrios Finais: Utilizam aplicacdes que acessam o banco de dados para visualizar ou
manipular dados conforme suas necessidades.

2. SGBD (Sistema Gerenciador de Banco de Dados)

O SGBD ¢é o software responsavel por gerenciar todo o banco de dados. Ele atua como uma
camada intermedidria entre os usudrios e o banco de dados fisico, fornecendo uma interface
para realizar operacdes de forma segura e eficiente. As principais fungdes de um SGBD incluem:

e Controle de Acesso: Gerencia quem pode acessar quais partes do banco de dados e
quais operacdes podem ser realizadas.

e Gerenciamento de TransacOes: Garante que operacdes sejam realizadas de forma
consistente e segura, seguindo o principio ACID (Atomicidade, Consisténcia, Isolamento e
Durabilidade).

e Garantia de Integridade: Mantém a integridade dos dados, garantindo que eles estejam
sempre corretos e validos.

e Otimizacdo de Desempenho: Melhora o desempenho das consultas e operacoes,
utilizando indices e outras técnicas de otimizacao.

3. Banco de Dados

O banco de dados € a propria colecdo organizada de dados que € gerenciada pelo SGBD. Ele
consiste em estruturas como tabelas, que sdo conjuntos de dados organizados em linhas e
colunas. Cada tabela pode ter indices para permitir acesso rdpido aos dados, procedimentos
armazenados para executar operacdes complexas no banco de dados, e outros objetos que
ajudam a estruturar e organizar as informacgoes.

Para ilustrar como esses componentes funcionam juntos, vamos considerar um exemplo simples
utilizando o MySQL, que é um dos sistemas de banco de dados mais populares de cdédigo
aberto: Suponha que estamos criando um banco de dados para uma biblioteca. Teriamos
diferentes componentes:

e Usuarios:

131

o Administrador: Responsdvel por configurar o MySQL, criar usuarios e definir
permissdes.

o Desenvolvedor de Aplicacdes: Cria uma aplicagdo web para os usudrios finais da
biblioteca realizarem operacdes como empréstimos e devolucdes de livros.

o Usuadrios Finais: Usuarios da biblioteca que acessam o sistema para verificar
disponibilidade de livros e realizar empréstimos.

e SGBD MySQL:

o Controle de Acesso: Define usuarios e suas permiss@es para acessar as tabelas
de livros, usudrios e empréstimos.

o Gerenciamento de TransacOes: Garante que transacdes de empréstimo e
devolucao sejam concluidas com sucesso ou revertidas em caso de falha.

o Banco de Dados MySQL:
m Tabelas: Livros, Usuarios, Empréstimos.

m Indices: indices nas tabelas para permitir buscas rapidas por titulo de livro
ou nome do usudrio.

m Procedimentos Armazenados: Procedimentos para calcular multas de
atraso ou enviar lembretes de devolucgdo.

Neste exemplo, o MySQL facilita o armazenamento e a recuperacdo de informacdes sobre livros,
usudrios e empréstimos, garantindo que todas as operacdes sejam realizadas de forma segura e
eficiente.

Um sistema de banco de dados é fundamental para organizar e gerenciar dados de forma que
sejam seguros, eficientes e consistentes. Os componentes principais (usudrios, SGBD e banco
de dados) trabalham juntos para fornecer uma plataforma robusta que suporta diversas
aplicagbdes e necessidades de negdcios. Entender como esses componentes interagem é
essencial para quem trabalha com desenvolvimento de software, andlise de dados ou
administracdo de sistemas.

Um Sistema Gerenciador de Banco de Dados (SGBD) é composto por diversos componentes que
trabalham juntos para garantir o armazenamento, acesso e manipulacdo eficiente dos dados.
Vamos explorar os principais componentes de um SGBD:

1. Motor do Banco de Dados

132

O Motor do Banco de Dados, também conhecido como nucleo do SGBD, é responsavel pela
execucdo de todas as operacdes do banco de dados. Ele compreende dois principais
componentes:

e Motor de Armazenamento: Geréncia
como os dados sdo armazenados
fisicamente no disco. Ele pode incluir
métodos para indexacdo, compressdo
e gerenciamento de transacoes.

e Motor de Consulta: Interpreta e
executa comandos SQL (ou outras
linguagens de consulta) enviados pelos
usudrios ou aplicacdes. E responséavel
por traduzir as consultas em operagoes
que o banco de dados pode entender
e realizar.

2. Linguagem de Consulta (SQL)

A Linguagem de Consulta é a interface pela qual os usudrios e aplicacdes interagem com o
banco de dados para realizar operagdes como consultas, insercdes, atualizagdes e exclusdes de
dados. O SQL (Structured Query Language) é a linguagem mais comum e amplamente utilizada
em SGBDs relacionais, como MySQL, PostgreSQL, SQL Server, entre outros.

Exemplo de uso do SQL no MySQL:

Unset

SELECT * FROM Funcionarios WHERE Salario > 5000;

Cada SGBD pode ter variacdes especificas na sintaxe do SQL para fungles e caracteristicas
préprias. Por exemplo, o MySQL pode ter funcdes e comandos especificos que ndo sado
encontrados em outros SGBDs.

Gerenciador de Transacdes

133

O Gerenciador de Transacdes é responsavel por garantir que as transacdes (sequéncias de
operacdes) sejam realizadas de maneira consistente, segura e isolada. Ele segue o conceito
ACID:

e Atomicidade: Todas as operacdes de uma transacdo sdo executadas como uma unidade
indivisivel. Ou todas as operacdes sdo concluidas com sucesso, ou nenhuma delas é
aplicada.

e Consisténcia: A transacdo deve levar o banco de dados de um estado consistente para
outro estado consistente. Nenhuma transacdo pode violar as regras de integridade do
banco de dados.

e Isolamento: As transacdes devem ser executadas de forma isolada, sem interferir umas
com as outras.

e Durabilidade: As alteracdes realizadas por uma transacdo confirmada sdo permanentes e
persistem no banco de dados, mesmo em caso de falha do sistema.

Exemplo simples de transacdo no MySQL:

Unset
START TRANSACTION;
Saldo - 100 WHERE NumeroConta

UPDATE Contas SET Saldo 123;

Saldo + 100 WHERE NumeroConta

UPDATE Contas SET Saldo

456 ;

COMMIT;

Neste exemplo, a transacdo é iniciada com START TRANSACTION, seguida de operacdes de
débito e crédito em duas contas diferentes, e finalizada com COMMIT para confirmar as
alteracoes.

Otimizador de Consultas

O Otimizador de Consultas € um componente do SGBD responsavel por analisar e otimizar
consultas SQL para melhorar o desempenho da execucdo. Ele decide a melhor forma de

134

executar uma consulta, considerando fatores como indices disponiveis, estatisticas de dados e
estratégias de execucdo.

Exemplo simples de otimizagcdo de consulta no MySQL:

Unset

SELECT * FROM Clientes WHERE NomeCliente = 'Joao' AND Cidade =
'Sao Paulo’;

O otimizador de consultas decide se utilizard indices existentes nas colunas NomeCliente e
Cidade para acelerar a busca dos dados desejados.

Os componentes de um SGBD trabalham em conjunto para fornecer um ambiente seguro,
eficiente e confidvel para armazenamento e manipulacdo de dados. Cada componente
desempenha um papel fundamental na gestdo de operacdes de banco de dados, desde a
interacdo dos usudrios até a execucdo e otimizacdo das consultas SQL. Entender esses
componentes é essencial para maximizar o desempenho e a eficiéncia de sistemas de banco de
dados em diversas aplicacdes.

Secdo 5.3: Vantagens e Desvantagens de Sistemas de Banco de Dados

Os Sistemas Gerenciadores de Banco de Dados (SGBDs) oferecem uma série de vantagens
significativas em comparacdo com abordagens de armazenamento de dados menos
estruturadas. No entanto, também apresentam algumas desvantagens que devem ser
consideradas dependendo das necessidades e do contexto de aplicacdo. Vamos explorar essas
vantagens e desvantagens:

Vantagens
1. Controle de Redundancia e Consisténcia de Dados:

o Vantagem: Os SGBDs permitem que os dados sejam organizados de forma
estruturada em tabelas, reduzindo a redundancia e garantindo a consisténcia dos
dados.

o Exemplo: Evita que a mesma informacdo seja armazenada repetidamente,
minimizando o risco de inconsisténcias.

135

2. Seguranca dos Dados:

o Vantagem: Os SGBDs oferecem recursos avancados para garantir a seguranca
dos dados, como controle de acesso, criptografia e auditoria.

o Exemplo: Permite definir permissdes de acesso para diferentes usuarios ou
grupos, protegendo informacdes sensiveis contra acessos ndo autorizados.

3. Recuperacdo e Backup:

o Vantagem: Facilita a realizacdo de backups regulares e recuperacdo de dados em
caso de falhas ou desastres.

o Exemplo: Possibilita restaurar o banco de dados para um estado consistente apods
um erro ou pane no sistema.

4. Integridade Referencial:

o Vantagem: Mantém a integridade dos dados por meio de chaves primérias e
estrangeiras, garantindo relacionamentos entre tabelas.

o Exemplo: Impede que registros érfaos sejam inseridos ou mantidos no banco de
dados, mantendo a consisténcia dos dados.

5. Eficiéncia e Desempenho:

o Vantagem: Oferece otimizagOes internas para melhorar o desempenho de
consultas e operacdes no banco de dados.

o Exemplo: Utiliza indices, técnicas de otimizacdo de consultas e gerenciamento de
memoria para acelerar a recuperacdo de dados.

Desvantagens
1. Custo de Implementacdo e Manutencdo:

o Desvantagem: A implementagcdo de um SGBD pode ser cara devido ao custo de
licengas de software, hardware necessério e manutencdo continua.

o Exemplo: Requer investimento em infraestrutura e pessoal qualificado para
gerenciar e operar o sistema de banco de dados.

2. Complexidade:

136

o Desvantagem: SGBDs podem ser
complexos de configurar e administrar,
especialmente para sistemas de grande
escala.

o Exemplo: Requer conhecimento técnico
especifico para projetar esquemas de
banco de dados, otimizar consultas e
resolver problemas de desempenho.

3. Dependéncia de Tecnologia e Fornecedores:

o Desvantagem: A escolha de um SGBD
pode criar dependéncia de um
fornecedor especifico e sua tecnologia.

o Exemplo: Mudar de fornecedor ou
tecnologia pode ser dificil e custoso devido a necessidade de migragcdo de dados
e reconfiguracdo de sistemas.

4. Overhead de Desempenho:

o Desvantagem: Certos recursos de seguranca e consisténcia podem gerar um
overhead adicional no desempenho do sistema.

o Exemplo: Controles rigorosos de acesso ou verificacdes de integridade podem
aumentar o tempo de processamento de operacdes no banco de dados.

5. Escala Limitada:

o Desvantagem: Alguns SGBDs podem ter limitacdes em escalabilidade horizontal
(adicionar mais servidores) ou vertical (aumentar recursos em um Unico servidor).

o Exemplo: Pode ser dificil dimensionar um banco de dados conforme o nimero de
usuarios ou volume de dados aumenta significativamente.

Os Sistemas Gerenciadores de Banco de Dados oferecem beneficios substanciais em termos de
controle, seguranga, recuperacao e desempenho dos dados. No entanto, essas vantagens
devem ser equilibradas com as desvantagens associadas a custo, complexidade, dependéncia
de tecnologia e possiveis impactos no desempenho. A escolha de um SGBD deve levar em
consideracdo as necessidades especificas da aplicacdo e a capacidade de gerenciamento dos
recursos disponiveis.

137

Secdo 5.4: Exemplos de SGBDs

Aqui estd um apanhado dos sistemas gerenciadores de bancos de dados (SGBDs) mais famosos,
tanto comerciais quanto de cdédigo aberto:

SGBDs Comerciais
1. Oracle Database

o Descricdo: Desenvolvido pela Oracle Corporation, o Oracle Database ¢ um dos
SGBDs mais robustos e populares do mercado.

o Caracteristicas Principais: Oferece suporte para grande volume de dados, alta
disponibilidade, escalabilidade e seguranca avancada.

o Utilizacdo: Amplamente utilizado em grandes corporacdes e empresas que
exigem desempenho e confiabilidade.

2. Microsoft SQL Server

o Descricdo: Criado pela Microsoft, o SQL Server € um SGBD popular
especialmente entre organizacdes que utilizam o ecossistema Microsoft.

o Caracteristicas Principais: Integracdo com outras ferramentas Microsoft, recursos
avangados de Bl (Business Intelligence), armazenamento de dados estruturados e
ndo estruturados.

o Utilizacdo: Amplamente utilizado em ambientes corporativos e de negdcios.
3. IBM Db2

o Descricdo: Desenvolvido pela IBM, o Db2 é um SGBD conhecido por sua robustez
e escalabilidade.

o Caracteristicas Principais: Suporte a multiplas plataformas, grande capacidade de
processamento e integracdo com outros produtos IBM.

o Utilizacdo: Utilizado em empresas de diversos setores, incluindo bancos,
telecomunicacdes e salde.

Sistemas de Gerenciamento de Banco de Dados de Cdodigo Aberto

Nesta secdo, exploraremos alguns dos principais Sistemas de Gerenciamento de Banco de
Dados (SGBDs) de codigo aberto, destacando suas caracteristicas, vantagens e desvantagens.

138

MySQL

Descricdo: Um dos SGBDs de cédigo aberto mais populares, inicialmente desenvolvido
pela MySQL AB e agora pertencente a Oracle.

Caracteristicas Principais: Rapido, facil de usar, escaldvel e compativel com muitas
plataformas.

Utilizacdo: Amplamente utilizado em aplicacbes web, pequenas e médias empresas, e
integracdo em varias plataformas de software. Licenga: Open Source com opgoes
comerciais disponiveis.

PostgreSQL

Descricdo: SGBD relacional de cédigo aberto conhecido por sua robustez, conformidade
com padrdes e extensibilidade.

Caracteristicas Principais: Suporte a tipos de dados complexos, transagdes ACID,
extensodes e suporte a varias linguagens de programacao.

Utilizacdo: Amplamente utilizado em ambientes corporativos, aplicacbes web, loT e
andlise de dados. Licenca: Open Source.

SQlLite

Descricdo: SGBD de cédigo aberto embutido, ideal para aplicacdes méveis, navegadores
web e pequenas aplicacdes desktop.

Caracteristicas Principais: Leve, rdpido, simples de integrar e suporte total ao padrao
ACID.

Utilizacao: Amplamente utilizado em sistemas embarcados e aplicagdes que requerem
um banco de dados local. Licenca: Open Source.

MariaDB

Descri¢do: Criado pelos desenvolvedores originais do MySQL, é uma alternativa de
cédigo aberto ao MySQL.

Caracteristicas Principais: Alta escalabilidade, seguranca robusta, compatibilidade com
MySQL.

Utilizacdo: Utilizado por grandes empresas como Wikipedia, Facebook e Google. Licenca:
Open Source com opcdes comerciais.

139

5. MongoDB

Descricdo: Banco de dados NoSQL de cédigo aberto, conhecido por sua flexibilidade e
escalabilidade horizontal.

Caracteristicas Principais: Documentos flexiveis, suporte a consultas ad-hoc e distribuicao
geogréfica.

Utilizacdo: Aplicativos para dispositivos méveis, loT, gerenciamento de conteldo. Licenca:
Open Source.

6. Firebird

Descricdo: SGBD relacional com padrées ANSI SQL, adequado para sistemas de
producdo.

Caracteristicas Principais: Suporte a diferentes arquiteturas, rastreamento de API e
assisténcia através de uma grande comunidade.

Utilizacdo: Ambientes que requerem uma solucdo de banco de dados gratuita e robusta.
Licenca: Open Source.

7. CUBRID

Descricdo: SGBD otimizado para aplicacdes web que processam grandes volumes de
dados e solicitagdes simultaneas.

Caracteristicas Principais: Bloqueio com granularidade mdltipla, suporte a failover
automatico e fragmentacao de banco de dados.

Utilizacdo: Servicos web complexos que demandam escalabilidade. Licenca: Open
Source.

Esses SGBDs oferecem solugdes robustas e econdmicas para uma variedade de necessidades,
desde pequenos projetos até aplicacdes empresariais complexas. A escolha entre eles
geralmente depende dos requisitos especificos do projeto, da preferéncia por modelo relacional
ou NoSQL, e da comunidade de suporte disponivel para cada plataforma.

Secao 5.5: SGBDs Online - Nuvem

No cenario atual, impulsionado pela explosdo de dados, as empresas buscam solugdes
eficientes para gerenciar informacdes de forma colaborativa. Os bancos de dados online surgem
como uma alternativa robusta, permitindo o armazenamento e acesso aos dados via internet,

140

eliminando a necessidade de infraestrutura
local. Essas plataformas diferem dos sistemas
tradicionais de gerenciamento de banco de
dados (SGBDs), oferecendo acessibilidade
remota e facilitando a colaboracdao entre
equipes.

As solucdes online podem ser divididas, por
exemplo, pelos tipos de Bancos de Dados:

'1T1

b

i @

1. Bancos de dados relacionais:
Estruturados em tabelas com linhas e
colunas, utilizando SQL para consulta e

.
1

manipulacdo de dados. Na nuvem,
oferecem escalabilidade, alta
disponibilidade e gerenciamento
simplificado.

Exemplos populares:
o Amazon RDS
o Google Cloud SQL
o Microsoft Azure SQL Database

2. Bancos de dados NoSQL: Projetados para lidar com grandes volumes de dados ndo
estruturados. Oferecem flexibilidade de esquema, escalabilidade horizontal e
desempenho otimizado para aplicativos modernos na nuvem.

Exemplos:

o MongoDB
o Apache Cassandra
o Amazon DynamoDB

3. Bancos de dados em memodria: Armazenam e processam dados na memoria principal,
proporcionando tempos de acesso extremamente rdpidos, ideais para andlises em tempo
real e processamento de transacoes.

Exemplos:

o Redis

141

o Memcached
o Microsoft Azure Cache for Redis

4. Bancos de dados de grafos: Otimizados para armazenar e consultar relacionamentos
complexos entre os dados. Sdo eficientes para descoberta de padrdes e analise de rede.
Exemplos:

o Neo4j
o Amazon Neptune
o Azure Cosmos DB

5. Bancos de dados de séries temporais: Especializados em dados com marcac¢do temporal,
como registros de sensores e métricas de lol. Oferecem recursos avancados para
agregacdo, consulta e visualizacdo de dados temporais.

Exemplos:

o InfluxDB
o TimescaleDB
o Google Cloud Bigtable

6. Bancos de dados multi modelo: Suportam diferentes modelos de dados (documentos,
gréficos, chave-valor) em um Unico sistema. Sdo altamente flexiveis e eficientes.
Exemplos:

o Couchbase
o Amazon DocumentDB
o Azure Cosmos DB

7. Bancos de dados de processamento analitico: Projetados para consultas complexas e
andlise de grandes volumes de dados. Oferecem processamento distribuido e paralelo
para insights significativos.

Exemplos:

o Amazon Redshift
o Google BigQuery

o Microsoft Azure Synapse Analytics

142

8. Bancos de dados geoespaciais: Especializados em dados com componentes geograficos,
como informacodes de localizacdo e andlise espacial.
Exemplos:

o PostGIS

o Google Cloud Spanner

o Azure Cosmos DB
Secdo 5.6: Exemplos de Plataformas de Bancos de Dados Online
1. Plataformas Diversas
Baserow

e Descricdo: Plataforma de cddigo aberto e sem cdédigo para criagcdo de bancos de dados
personalizados.

e Modelo: Gratis/Comercial: Oferece planos gratuitos e comerciais, incluindo opcdes de
auto-hospedagem.

e Caracteristicas: Interface intuitiva de arrastar e soltar, colaboracdo em tempo real,
controle de acesso baseado em funcdes.

Airtable

e Descricdo: Combina funcionalidades de planilhas com bancos de dados, facilitando a
criacdo de aplicativos complexos.

e Modelo: Gratis/Comercial: Planos gratuitos e pagos, focados em empresas e equipes
criativas.

e Caracteristicas: Diversos modelos de templates, visualizacdes flexiveis (Grade,
Calendario, Kanban), colaboracdo em tempo real.

Caspio

e Descricdo: Solucdo baseada na nuvem para criar aplicativos web e bancos de dados
online sem conhecimento técnico.

e Modelo: Gratis/Comercial: Oferece um plano gratuito e opcdes comerciais com mais
recursos e suporte.

143

Caracteristicas: Ferramentas avancadas de personalizacdo, integracdes com servicos
web, armazenamento escaldvel na nuvem.

NocoDB

Notion

Descricdo: Plataforma de cédigo aberto e baixo cédigo que transforma bancos de dados
SQL/NoSQL em planilhas inteligentes.

Modelo: Gratis/Comercial: Versdo gratuita e hospedagem na nuvem gerenciada, com
recursos empresariais opcionais.

Caracteristicas: Interface de usudrio amigavel, conectividade direta com bancos de
dados, automacao e colaboracao.

Descricdo: Ferramenta de produtividade que combina funcionalidades de notas, gestdo
de tarefas e criacdo de bancos de dados.

Modelo: Gratis/Comercial: Oferece um plano gratuito com funcionalidades bdésicas e
planos pagos para necessidades avangadas.

Caracteristicas: Interface intuitiva estilo editor de texto, diversos modelos de pdégina,
compartilhamento publico de paginas.

2. Grandes Plataformas de Nuvem

Amazon Web Services (AWS)

A AWS se destaca como uma das principais provedoras de servicos de nuvem,
oferecendo uma ampla variedade de opcdes de bancos de dados na nuvem, incluindo:

o Amazon RDS: Suporte a bancos de dados relacionais como MySQL, PostgreSQL e
Microsoft SQL Server, com alta disponibilidade e escalabilidade automatica.

o Amazon DynamoDB: Banco de dados NoSQL altamente escalavel e gerenciado,
ideal para cargas de trabalho dinamicas.

o Amazon Redshift: Data warehouse para andlise de grandes volumes de dados
estruturados.

o Amazon Athena: Servi¢co de analise interativa para consultar dados armazenados
no Amazon S3 usando SQL padrao.

144

Microsoft Azure

e A Microsoft Azure oferece uma variedade de servicos de bancos de dados na nuvem,
destacando-se:

o Banco de Dados SQL do Azure: Totalmente gerenciado, oferece suporte ao SQL
Server com alta disponibilidade e desempenho escalavel.

o Azure Synapse Analytics: Combinacdo de recursos de big data e data
warehousing para processamento e analise avancados de dados.

o Azure Cosmos DB: Banco de dados NoSQL globalmente distribuido, oferecendo
suporte a multiplos modelos de dados.

Google Cloud Platform (GCP)

e A Google Cloud Platform também oferece uma ampla gama de servigos de bancos de
dados na nuvem, incluindo:

o Cloud Spanner: Servico que combina computacdo e armazenamento em varias
regides com forte consisténcia de transacdes.

o Google Cloud SQL: Suporte a bancos de dados MySQL e PostgreSQL com
facilidade de escalabilidade e gerenciamento.

o BigQuery: Data warehouse escaldvel para andlise de big data com recursos
avancados de processamento.

o Firebase Realtime Database: Banco de dados NoSQL em tempo real para
aplicativos moéveis e web, com sincronizagao instantanea.

Essas plataformas oferecem uma ampla gama de opcdes para atender as necessidades de
desenvolvimento e gerenciamento de dados em diversas aplicacdes, seja para pequenas
equipes ou grandes empresas. Os bancos de dados online representam uma evolucdo
significativa em relacdo aos SGBDs tradicionais, oferecendo acesso facil, escalabilidade e
colaboracdo eficiente. Com uma variedade de opcdes disponiveis, desde plataformas gratuitas
até solucGes comerciais avangadas, as equipes podem escolher aquela que melhor se adapta as
suas necessidades de gestdo de dados e colaboracgdo.

Cada um desses SGBDs possui suas préprias caracteristicas, vantagens e casos de uso ideais,
dependendo das necessidades especificas de uma organizagao ou projeto. A escolha entre um
SGBD comercial ou de cdédigo aberto geralmente depende de fatores como requisitos de

145

desempenho, seguranga, suporte técnico, custo e preferéncias de integracdo com outras

tecnologias.
Secado 6.7: Exemplo Pratico de Integracao de Servidor com Banco de Dados MySQL

Nesta secdo, abordaremos um aspecto crucial do desenvolvimento de sistemas: a criacdo e
configuragdo de um servidor para conectar-se a um banco de dados MySQL. Para muitos
projetos, a integracdo eficiente entre o servidor e o banco de dados é fundamental para garantir
o desempenho, a seguranga e a integridade dos dados. Vamos guia-lo da maneira mais simples
e direta possivel, através dos passos necessdrios para planejar e estruturar um banco de dados,
instalar e configurar o MySQL, desenvolver a légica do back-end e, finalmente, conectar o
servidor ao banco de dados.

Antes de iniciar o desenvolvimento de qualquer cdédigo, é essencial planejar a estrutura do
banco de dados, como discutido nos capitulos anteriores. Esse processo inclui:

e I|dentificacdo das Entidades: Definir os principais objetos do sistema que serdo
armazenados no banco de dados, como usuarios, produtos e pedidos.

e Relacionamentos: Estabelecer como essas entidades se relacionam entre si, por exemplo,
um usuario pode fazer vérios pedidos e um pedido pode conter varios produtos.

e Atributos: Determinar os atributos especificos de cada entidade e seus tipos de dados,
como nome do usuario, preco do produto, data do pedido.

Exemplo Simplificado:

Imagine que vocé esteja desenvolvendo um sistema de gerenciamento de produtos. As
principais entidades seriam Produto e Categoria. O relacionamento seria que um produto
pertence a uma categoria. Os atributos do produto podem incluir id, nome e preco. Todo o
modelo relacional e l6gico ja devem estar completos nessa fase.

Criacdo do SGBD (Sistema de Gerenciamento de Banco de Dados) MySQL

Nesta secdo, vamos guiar vocé através dos passos para criar e configurar um banco de dados
utilizando MySQL como exemplo pratico.

1. Instalacdao do MySQL:

o Windows: Baixe o instalador do MySQL Community Server no site oficial

(https://dev.mysgl.com/downloads/mysql/). Siga as instru¢cdes do instalador para
configurar o MySQL Server.

146

https://dev.mysql.com/downloads/mysql/

Linux: No terminal, vocé pode instalar o MySQL Server com o seguinte comando para
distribuicdes baseadas em Debian (como Ubuntu):

Unset
sudo apt-get update

sudo apt-get install mysql-server

o Para outras distribuicdes, consulte a documentacdo especifica de sua distribuicdo
Linux.

o Mac: Baixe o instalador do MySQL Community Server para macOS no site oficial e
siga as instrucdes de instalacdo.

2. Configuragao Inicial: Apds a instalacdo, € necessario configurar o MySQL:

o Windows: Durante a instalagdo, vocé pode definir a senha do usuario root do
MySQL.

Linux e Mac: Apds a instalacdo, vocé pode configurar o MySQL e definir a senha do usudrio root
usando o seguinte comando:

Unset

sudo mysql_secure_installation

o Este comando guiard vocé através de um processo para configurar algumas
opcdes de seguranca basicas, incluindo a definicdo da senha do usudrio root.
3. Acesso ao MySQL

Apods configurar o MySQL, vocé pode acessa-lo através do terminal:

147

Unset

mysql -u root -p

Vocé sera solicitado a inserir a senha do usudrio root que vocé configurou durante a
instalacao.

4. Criacdo do Banco de Dados
Com o MySAQL instalado e configurado, vocé pode criar seu banco de dados e tabelas:

Criando um Banco de Dados:

Unset

CREATE DATABASE nome_do_banco;

o Substitua nome_do_banco pelo nome que vocé deseja dar ao seu banco de
dados.
5. Criacdo das Tabelas

Por exemplo, se estivermos criando um sistema de gerenciamento de produtos, podemos criar
uma tabela produtos com os seguintes atributos:

Unset
USE nome_do_banco;
CREATE TABLE produtos (
id INT AUTO_INCREMENT PRIMARY KEY,

nome VARCHAR(255) NOT NULL,

148

|
preco DECIMAL(18, 2) NOT NULL,
descricao TEXT,
criado_em TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)

Este comando cria uma tabela produtos com colunas para id, nome, preco, descricdo e
criado_em (data de criacdao automatica)

6. Insercdo de Dados:

Vocé pode inserir dados na tabela produtos utilizando o seguinte comando SQL:

Unset
INSERT INTO produtos (nome, preco, descricao)

VALUES ('Produto A', 19.99, 'Descricdo do Produto A');

Este comando insere um produto com nome, preco e descricdo na tabela produtos. Todos esses
comandos utilizam a linguagem SQL, que serd detalhada nos préximos capitulos. Decidimos
apresentar um exemplo simples para que vocé possa entender o processo completo de insercao
de dados em um banco de dados.

7. Consultas SQL

Use consultas SQL para recuperar dados do banco de dados. Essas consultas também utilizam a
linguagem SQL que sera vista nos proximos capitulos. Por exemplo, para selecionar todos os
produtos:

Unset

SELECT * FROM produtos;

149

Esta consulta retorna todos os produtos armazenados na tabela produtos.
8. Gerenciamento de Usuarios (Opcional):

Para adicionar usuarios adicionais e gerenciar suas permissdes, use comandos SQL como
CREATE USER e GRANT no MySQL. Estas fubn¢des também serdo melhor apresentadas no
decorrer deste livro.

Unset

CREATE USER 'usuario'@'localhost' IDENTIFIED BY 'senha';

9. Conceder privilégios:

Unset

GRANT ALL PRIVILEGES ON nome_do_banco.* TO 'usuario'@'localhost’;

Substitua 'usuario' e 'senha' pelos detalhes do usudrio que vocé deseja criar.
10. Finalizacdo e Uso

Apds configurar e popular seu banco de dados MySQL com tabelas e dados, vocé esté
pronto para conectar seu sistema, seja ele um site, aplicativo ou qualquer aplicagao que
precise armazenar e recuperar dados de maneira organizada e eficiente.

Seguindo estes passos, vocé podera criar e configurar um banco de dados MySQL para suportar
seu sistema, gerenciar dados e facilitar operagdes essenciais como insercdo, consulta e

atualizacao de informacdes.

Implementacao do Back End

a

A implementacdo do back end ndo se resume apenas a légica de negdcios, mas também a
integracdo eficiente com o banco de dados. Aqui estdo os passos detalhados:

1. Escolha da Linguagem de Programacdo

Primeiro, é necessdrio escolher a linguagem de programacdo adequada para
desenvolver o back end. Exemplos populares incluem JavaScript com Node.js, Python,
Java, PHP, entre outras. A escolha da linguagem pode depender das necessidades
especificas do projeto e da familiaridade da equipe de desenvolvimento.

150

2. Escolha do Framework (opcional)

Em muitos casos, utilizar um framework pode acelerar significativamente o
desenvolvimento do back end. Por exemplo, para JavaScript com Node.js, frameworks
como Express.js sdo amplamente utilizados devido a sua robustez e facilidade de uso.
Para Python, opcdes populares incluem Django e Flask, que oferecem estruturas sélidas
para construir aplicacdes web.

3. Modelo Entidade-Relacionamento (MER) e Modelo Légico

Antes de iniciar a implementacdo, ¢é essencial referenciar o Modelo
Entidade-Relacionamento (MER) e, subsequentemente, o Modelo Légico do banco de
dados. O MER define as entidades principais, seus atributos e os relacionamentos entre
elas. O Modelo Légico traduz esses conceitos para um formato que o banco de dados
pode entender, especificando as tabelas, colunas, chaves primarias e estrangeiras.

4. Conexao com o Banco de Dados

Utilize bibliotecas especificas da linguagem escolhida para estabelecer a conexdo entre
o sistema desenvolvido e o MySQL, por exemplo. Essas bibliotecas facilitam a execucao
de consultas SQL no banco de dados, permitindo insercdes, atualizacdes, exclusdes e
consultas de dados de forma eficiente. Um exemplo deste foi explicado na secdo anterior.

5. Desenvolvimento da Logica de Negdcios

Implemente a légica de negdcios do sistema, que define como os dados sdo
processados e manipulados. Isso pode incluir regras de validacdo, cdlculos complexos e
integracdo com outras partes do sistema.

Suponha que vocé esteja construindo um sistema de comércio eletrénico. Utilizando o Modelo
Entidade-Relacionamento, identifique que existem entidades como Produto, Usudrio e Pedido.
No Modelo Légico, cada entidade seria representada como uma tabela no banco de dados
MySQL, com atributos como nome do produto, preco, informacdes do cliente, etc. A
implementacdo do back end, entdo, envolveria o desenvolvimento da légica para gerenciar o
carrinho de compras, processar pagamentos e atualizar o estoque, conectando-se ao banco de
dados MySQL para armazenar e recuperar dados conforme necessario.

Exemplo de Conexdao com MySQL (Node.js com Express.js):

Para demonstrar como conectar um sistema em Node.js utilizando o framework Express.js ao
banco de dados MySQL, vamos seguir os passos basicos:

151

1. Instalagdo de Dependéncias

Assim como falamos na secgao anterior, certifique-se de ter o Node.js instalado em seu
sistema. Depois, instale o Express.js e a biblioteca mysql para conectar ao MySQL.:

Unset

npm install express mysql

2. Configuracdo da Conexao

Para integrar um banco de dados MySQL com um servidor back end em Node.js usando
Express.js, vocé precisard configurar a conexdo com o banco de dados, criar rotas para
manipulacdao dos dados e iniciar o servidor Express. A seguir, apresentamos um guia detalhado
sobre como realizar essa integracdo, incluindo cédigo completo e explicacdes.

Primeiro, crie um arquivo chamado database.js para configurar a conexdo com o MySQL. Este
arquivo conterd a Idgica para se conectar ao banco de dados MySQL usando o médulo mysql do
Node.js.

Unset

// database.js

const mysql = require('mysql’');

// Configuragao da conexao com o MySQL

const connection = mysql.createConnection({

host: 'localhost’, // Host do MySQL

user: 'seu_usuario', // Usuario do MySQL

152

password: 'sua_senha', // Senha do MySQL
database: 'nome_database' // Nome do banco de dados

1)

// Conectando ao MySQL
connection.connect((err) => {
if (err) {

console.error('Erro ao conectar ao MySQL: + err.stack);

return;

console.log('Conexdao bem-sucedida ao MySQL com o ID: ' +
connection.threadId);

1)

module.exports = connection;

Certifique-se de substituir 'localhost', 'seu_usuario, 'sua_senha' e 'nome_database' pelos

detalhes de conexdo do seu banco de dados MySQL.

3. Criando o Servidor Express e Rota para Consultar Produtos

Em seguida, crie um arquivo chamado app.js para configurar o servidor Express e definir uma

rota para consultar produtos no banco de dados MySQL.

Unset

// app.js

153

const express = require('express');
const app = express();

const connection = require('./database’);

// Middleware para lidar com JSON

app.use(express.json());

// Rota para consultar todos os produtos
app.get('/produtos’', (req, res) => {

const sql = 'SELECT * FROM produtos';

connection.query(sql, (err, results) => {
if (err) {

return res.status(500).json({ error: "Erro ao buscar
produtos' });

}

res.json(results);
1)
1)

// Iniciando o servidor Express na porta 3000
const PORT = process.env.PORT || 36000;

app.listen(PORT, () => {

154

console.log(Servidor iniciado na porta ${PORT});

1)

Este cédigo configura um servidor Express que escuta na porta 3000 e define uma rota

/produtos que consulta todos os produtos no banco de dados MySQL e retorna os resultados em

formato JSON.

4. Executando o Exemplo

Para executar o exemplo, certifique-se de ter o Node.js instalado em seu sistema. Em seguida,

instale as dependéncias necessarias (Express.js e mysql) executando o comando: de instalar do

npm install express mysql Salve os arquivos database.js e app.js no mesmo diretdrio.

No terminal, execute o servidor Node.js digitando:

Unset

node app.js

Acesse http://localhost:3000/produtos em seu navegador ou use uma ferramenta como Postman

para ver os resultados da consulta ao banco de dados MySQL.

o

A seguir, apresento um pequeno glossario do cédigo discutido nesta secdo para
que vocé possa se familiarizar melhor com os termos e conceitos usados.

mysgql.createConnection

Este método cria uma conexdo com o banco de dados MySQL. Ele recebe um
objeto de configuracdo contendo os detalhes de conexdo, como o host, usuario,
senha e nome do banco de dados.

connection.connect

Este método estabelece a conexdo com o banco de dados MySQL. Caso a
conexao seja bem-sucedida, uma mensagem de sucesso serd exibida. Em caso
de falha, uma mensagem de erro serd retornada.

express()

155

Esta fungdo cria uma aplicagdo Express. Express ¢ um framework minimalista para
Node.js, usado para construir aplicacdes web e APIs.

O app.use(express.json())

Este middleware é usado para processar o corpo das requisicdes HTTP no
formato JSON. Ele permite que o servidor Express interprete os dados enviados
no corpo da requisicdo e os converta em um objeto JavaScript acessivel.

o app.get('/produtos')

Este método define uma rota HTTP GET no caminho /produtos. Quando esta rota
é acessada, o servidor executa a funcdo callback associada, que realiza uma
consulta ao banco de dados MySQL para buscar todos os produtos.

o connection.query

Este método executa uma consulta SQL no banco de dados MySQL. No exemplo
apresentado, ele é usado para selecionar todos os registros da tabela produtos.

o app.listen

Este método inicia o servidor Express e faz com que ele comece a escutar
conexdes na porta especificada. Quando o servidor estd pronto para receber
requisicdes, uma mensagem ¢€ exibida indicando a porta em que ele esta
rodando.

Ao se familiarizar com esses termos e conceitos, vocé estard mais bem preparado para entender
e trabalhar com o cdédigo apresentado, bem como expandir suas funcionalidades conforme
necessario para seu projeto.

Este exemplo demonstra uma conexdo bdsica e uma rota simples para consultar produtos no
banco de dados MySQL utilizando Node.js com Express.js. Vocé pode expandir essa Idgica para
incluir outras operacdes CRUD (Create, Read, Update, Delete), autenticacdo de usuério,
processamento de pedidos e outras funcionalidades conforme necessdrio para seu sistema de
comércio eletrénico.

Integracdao com o Sistema Front End ou Cliente

Apds desenvolver o back end e conectar ao banco de dados, o préximo passo € integrar com o
sistema front end ou cliente. Este pode ser um aplicativo web, um aplicativo mével ou qualquer
outra interface de usuario que consuma os dados fornecidos pelo back end.

156

Para facilitar a comunicacdo entre o front end e o back end, utilizamos APIs (Application
Programming Interfaces). O back end expde essas APIs para permitir que o front end faca
requisicdes e receba dados do servidor. Através das APIs, o front end pode enviar dados para o
servidor, solicitar dados especificos, atualizar informacdes existentes ou deletar dados,
dependendo das necessidades da aplicacdo.

Vamos considerar um exemplo pratico: vocé estd desenvolvendo um aplicativo web para exibir
produtos. O front end precisa obter a lista de produtos do servidor. Para isso, ele fard uma
requisicdo HTTP para a rota /produtos que definimos anteriormente no back end. A rota
/produtos responde com os dados dos produtos que estdo armazenados no banco de dados
MySQL.

Aqui estd uma visdo geral do fluxo:
1. O front end envia uma requisicdo HTTP para a rota /produtos.

2. O back end processa a requisicdo, consulta o banco de dados e envia uma resposta com
os dados dos produtos.

3. O front-end recebe os dados e os exibe na interface do usuario.

Vamos fazer um exemplo bem simples de front-end com um exemplo de Cédigo JavaScript para
rodar o servidor Node.js que criamos (no arquivo app.js) na secdo anterior. Para isso, siga os
passos abaixo:

1. Certifique-se de que vocé tenha o Node.js instalado.
2. Abra o terminal e navegue até o diretério onde seus arquivos estao localizados.

3. Faca a criacdo do SGBD e a implementacdo do Back End conforme mostrado nas secdes
anteriores.

4. Faca a conexdo do Back End com o Front End.

Para conectar o front end ao back end, vamos usar JavaScript para fazer uma requisicdo HTTP
para a rota /produtos. Aqui estd um exemplo de como isso pode ser feito utilizando o fetch API:

157

Unset

// Exemplo de cdédigo JavaScript para fazer requisigao ao back end
e exibir produtos

// Fungao para obter produtos do servidor
async function obterProdutos() {

try {

const response = await
fetch('http://localhost:3000/produtos’);

const produtos = await response.json();
exibirProdutos(produtos);
} catch (error) {

console.error('Erro ao buscar produtos:', error);

// Fungao para exibir produtos na pagina
function exibirProdutos(produtos) {

const listaProdutos =
document.getElementById('lista-produtos');

produtos.forEach(produto => {
const itemProduto = document.createElement('1li');

itemProduto.textContent = “${produto.nome} -
S$${produto.preco};

listaProdutos.appendChild(itemProduto);

158

1)
}
// Chamar a fungao para obter produtos quando a pdgina carregar

window.onload = obterProdutos;

Neste exemplo, a fungao obterProdutos faz uma requisicdo HTTP para a rota /produtos usando a
fetch APl e, em seguida, chama a funcdo exibirProdutos para mostrar os produtos na péagina.
Vocé precisa ter um elemento com o ID lista-produtos no seu HTML onde os produtos serdo
exibidos.

Integrar o back end com o front end é um passo crucial para criar uma aplicacdo completa. Ao
seguir os passos descritos, vocé pode entender como os diferentes componentes de um sistema
interagem para fornecer funcionalidades completas aos usudrios. Este processo envolve planejar
a estrutura do banco de dados, desenvolver o back end para processar dados e conectar ao
banco de dados, e integrar este back end com o sistema front end ou cliente. Com esse
conhecimento, vocé estd bem equipado para construir sistemas robustos e eficientes.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

O ChatGPT é uma ferramenta poderosa e versatil que pode ser usada para aprender e
resolver problemas em diversas dreas do conhecimento. Seja vocé um iniciante ou um usudrio
avancado, o ChatGPT pode ajuda-lo a aprofundar seus conhecimentos em topicos especificos,
oferecer orientacdes detalhadas e fornecer suporte técnico para diversas necessidades. Aqui
estdo algumas maneiras pelas quais vocé pode continuar aprendendo com o ChatGPT e utilizar
essa ferramenta para escolher e configurar um Sistema de Gerenciamento de Banco de Dados
(SGBD) para suas necessidades especificas.

Escolhendo um SGBD com a ajuda do ChatGPT

Escolher o SGBD adequado pode ser um desafio, especialmente com tantas opcdes disponiveis
no mercado. Aqui estdo alguns prompts que vocé pode usar para obter a ajuda do ChatGPT na
escolha de um SGBD:

1. Comparacdo de SGBDs:

o "Quais sdo as principais diferencas entre MySQL, PostgreSQL e MongoDB?"

159

o "Qual SGBD é mais adequado para um projeto de analise de dados em grande
escala?"

o "Preciso de um SGBD para um site de comércio eletrénico. Quais opgdes vocé

recomenda?"
2. Requisitos Especificos:

o "Qual SGBD oferece melhor desempenho para consultas complexas em um
ambiente OLAP?"

o "Estou desenvolvendo um aplicativo mével. Qual SGBD é mais eficiente para
sincronizacao offline?"

o "Quais SGBDs suportam facilmente escalabilidade horizontal?"
3. Consideracdes de Custo:
o "Quais SGBDs sao gratuitos e ideais para uso em projetos de pequeno porte?"

o "Qual SGBD oferece um bom equilibrio entre custo e funcionalidade para uma
startup?"

4. Facilidade de Uso e Suporte:
o "Qual SGBD tem a melhor documentacdo e comunidade de suporte?"
o "Quais SGBDs sdo mais faceis de configurar e manter para um iniciante?"
Configurando e Criando um SGBD com a ajuda do ChatGPT

Uma vez escolhido o SGBD, o ChatGPT pode guia-lo na criacdo e configuracdo do banco de
dados. Aqui estao alguns prompts para ajudar nesse processo:

1. Instalacdo do SGBD:

o "Como instalar o PostgreSQL em um servidor Ubuntu?"

o "Quais sdo os passos para configurar o MySQL no Windows?"
2. Configuracdo Inicial:

o "Como configurar a autenticagcdo e as permissdes no MongoDB?"

160

o "Quais sdo as melhores praticas para configurar um banco de dados PostgreSQL
para alta disponibilidade?"

3. Modelagem de Dados:

o "Como criar um esquema de banco de dados para um sistema de gerenciamento
de inventario?"

o "Quais sdo as melhores préticas para normalizacdo de dados no MySQL?"
4. Otimizacdo e Manutencdo:
o "Como otimizar consultas no MongoDB para melhorar o desempenho?"

o "Quais ferramentas podem ser usadas para backup e recuperacdo no
PostgreSQL?"

5. Seguranca:
o "Quais sdo as melhores préaticas de seguranca para bancos de dados MySQL?"
o "Como configurar SSL/TLS no PostgreSQL para conexdes seguras?"

Para aproveitar ao maximo o ChatGPT, aqui estdo alguns exemplos de prompts que vocé pode
usar para explorar e aprender mais:

e "Explique os conceitos de ACID em bancos de dados relacionais."

e "Como funciona a indexacdo em bancos de dados NoSQL?"

e "Quais sdo os principais desafios na migracdao de um banco de dados SQL para NoSQL?"
e "Como utilizar o Redis como um cache de banco de dados?"

Além dos prompts especificos, vocé pode personalizar sua experiéncia de aprendizado
solicitando exemplos praticos, tutoriais passo a passo e recomendacdes de recursos adicionais,
como livros, artigos e cursos online.

e "Vocé pode fornecer um exemplo de script SQL para criar e popular uma tabela de
clientes?"

e "Quais sdo alguns cursos online recomendados para aprender MongoDB?"

e "Pode me guiar na criagcdo de um pequeno projeto de banco de dados para praticar?"

161

Usando esses prompts e explorando as capacidades do ChatGPT, vocé pode expandir seu
conhecimento sobre SGBDs e obter suporte detalhado para escolher, configurar e otimizar seu
sistema de gerenciamento de banco de dados de maneira eficiente e eficaz.

EXERCICIOS DE FIXAGAO
Exercicio 1: Identificacdo de Componentes

Descricdo: Imagine que vocé é um consultor de Tl contratado para analisar e melhorar um
sistema de banco de dados existente em uma empresa. Para comecar, vocé precisa identificar
corretamente os componentes principais do sistema de banco de dados atual.

Atividade: Dada a seguinte descricdo do sistema de banco de dados da empresa, identifique e
nomeie os principais componentes do SGBD que estdo presentes:

e Um moddulo que permite aos usuarios finais interagir com o banco de dados utilizando
uma interface grafica.

e Um sistema que garante que todas as transacdes no banco de dados sejam executadas
corretamente e em sua totalidade.

e Um conjunto de dados armazenados que sdo manipulados pelo sistema.
e Um mecanismo que controla o acesso dos usuarios e garante a seguranca dos dados.
Exercicio 2: Andlise de Vantagens e Desvantagens

Descricdo: Como parte de um seminario, vocé foi encarregado de preparar uma apresentacdo
sobre as vantagens e desvantagens dos SGBDs. Para isso, vocé precisa entender bem esses
aspectos.

Atividade: Liste pelo menos trés vantagens e trés desvantagens dos sistemas de banco de
dados. Para cada item, forneca um exemplo pratico que ilustre sua aplicacdo no mundo real.

Exercicio 3: Diagrama de Estrutura Geral

Descricdo: Vocé foi designado para criar um diagrama que represente a estrutura geral de um
sistema de banco de dados para uma apresentacdo educativa.

Atividade: Desenhe um diagrama que inclua e conecte os seguintes componentes: Usuarios,
Interface de Usuario, Sistema de Gerenciamento de Transag¢des, Banco de Dados, Sistema de
Controle de Acesso e Ferramentas de Backup e Recuperacdo. Explique brevemente a funcdo de
cada componente no diagrama.

162

Exercicio 4: Estudo de Caso

Descricdo: Vocé é o gerente de Tl de uma startup que esta crescendo rapidamente. A empresa
precisa escolher um SGBD que atenda suas necessidades especificas.

Atividade: Analise o cendrio abaixo e recomende um SGBD. Justifique sua escolha com base nas
caracteristicas e vantagens do SGBD escolhido.

Cenério:
e A empresa precisa de alta escalabilidade e disponibilidade.
e O volume de dados cresce rapidamente.
e Necessidade de suporte para andlise de dados em tempo real.
e Orcamento inicial limitado.
Exercicio 5: Criagdo de um Sistema de Banco de Dados para uma Sorveteria

Vocé foi contratado por uma sorveteria para desenvolver um sistema simples que permita
gerenciar o estoque de sorvetes e visualizar os produtos disponiveis. Esse sistema precisa incluir
um banco de dados, um back end em Node.js com Express.js, e um front end basico para exibir

os dados.
1. Criar o Banco de Dados:
o Defina um banco de dados chamado sorveteria.

o Crie uma tabela chamada sorvetes com os seguintes campos: id (INT,
auto-increment, primary key), sabor (VARCHAR(255)), quantidade (INT), preco
(DECIMAL(5,2)).

2. Desenvolver o Back End:
o Crie um servidor Node.js utilizando Express.js.
o Configure a conexdo com o banco de dados MySQL.
o Implemente uma rota para listar todos os sorvetes.
o Implemente uma rota para adicionar novos sorvetes.

3. Desenvolver o Front End:

163

o Crie uma pagina HTML ou JAvaScript que exiba a lista de sorvetes.

o Adicione um formuldrio para adicionar novos sorvetes ao banco de dados.

164

Capitulo 6 - Introducao a
Linguagem SQL e Linguagem
de Definicao de Dados (DDL)

"Os alunos que estudam ciéncia da computacdo desbloqueiam um mundo de oportunidades

Dr. John Deasy,

165

Secdo 6.1: Introducdo a Linguagem SQL

A SQL, ou Structured Query Language, € uma linguagem de programacdo especializada na

gestdo e manipulacdo de dados em sistemas de banco de dados relacionais. E uma linguagem

declarativa, o que significa que vocé descreve o que deseja que o sistema faca, e ele determina

a melhor maneira de realizar essa tarefa.

A SQL foi desenvolvida na década de 1970
por Donald D. Chamberlin e Raymond F.
Boyce no IBM San Jose Research
Laboratory. A linguagem foi criada com base
no modelo relacional proposto por Edgar F.
Codd. Em 1979, a Oracle Corporation lancou
o primeiro produto comercial que
implementou SQL. Desde entdo, SQL
tornou-se o padrdo de fato para interacdo
com bancos de dados relacionais e foi
formalmente padronizada pelo American
National Standards Institute (ANSI) e pela
International Organization for
Standardization (ISO).

A evolucdo de SQL pode ser dividida em
vdarias etapas chave:

1. Anos 1970: Desenvolvimento inicial na IBM e lancamento do System R.

2. Anos 1980: Lancamento do SQL/DS e DB2 pela IBM e do Oracle Database.

3. Anos 1990: Surgimento de outras implementagdes comerciais como Microsoft SQL Server

e MySQL.

4., Anos 2000 em diante: Evolucdo continua com novas funcionalidades e melhorias,

incluindo suporte a XML, JSON, e outras tecnologias modernas.

A SQL também desempenha um papel crucial em sistemas de banco de dados devido a varias

razoes:

e Manipulacdo de Dados: SQL permite inserir, atualizar, deletar e consultar dados de forma

eficiente.

166

e Definicdo de Dados: Comandos SQL permitem definir a estrutura dos dados (esquemas) e
gerenciar as permissdes de acesso.

e Padroniza¢do: Como linguagem padronizada, SQL oferece uma interface consistente
para trabalhar com diferentes sistemas de gerenciamento de banco de dados (SGBDs).

e Flexibilidade: SQL suporta uma ampla gama de operagdes, desde consultas simples até
agregacOes complexas e manipulacdes de dados.

e Eficiéncia: Linguagens SQL sdo otimizadas pelos SGBDs para garantir operacdes rapidas
e eficientes, mesmo em grandes volumes de dados.

Neste livro, recomendamos o uso do SQL Fiddle para a préatica de SQL. O SQL Fiddle é um
compilador SQL online que permite escrever, editar e executar consultas SQL em tempo real.

SQL Fiddle

@ Login

Welcome ta SQL Fiddle, an oniine SQL compller that Eets you write, edit, and
& Daily Tokers Left: &

execute any SOL query.

@ i i3 Choosa which SQL languapge you would like to practice today:
chat Editor Histary

-
SR
7]

Aefel-1 |- B4

During Phase I, only users who
are legged in can @ccess the AT
chat feature.

SQL Fiddle is free to use and
ad-free!

Want to help us? It cakes 18 AI Chat

secands SOL Flgdle iz now enhanced by an AL chat powered by ChateeT. The chat fs located in

Step 1: Like & Share our EFE the sidebar section of the websitae.

A SLONE
Bulk Extenzions vineos Feal free to ask any kind of SQL-related guastion te help you during your

Step 2! Like d Share sur EEE exercises, learning, and training.
i You carrently peed to be logged it ro use AT features.

& Thank &
AI SQL Generator

SOL Fiddle iz now enhanced by an AL SOL query generatar, You can now generate SQL
queries for inserting or editing data directly Fram the SQU edirer.

The SQL guery generator is located in the sidebar section of the website. ¥ou can
egither generate new code or right-click to open the context menu to choose the code
you would like to edit.

Tou currently need to be logged In fo wse AT features.

wWhat is the purpose of SQL Fiddle?

Nos préximos capitulos, sugerimos a vocé utilizar o SQL Fiddle para exemplificar as consultas e
operacdes SQL, proporcionando uma experiéncia pratica e interativa no aprendizado de SQL.
Assim, vocé pode também utilizar o SQL Fiddle como uma ferramenta essencial para a préatica
interativa da linguagem SQL. O SQL Fiddle oferece suporte as seguintes linguagens SQL para
pratica e desenvolvimento:

e SQL Server
e SQlLite

e PostgreSQL

167

—
e MySQL
e MariaDB
e Oracle

e Oracle PLSQL
Alguns dos Recursos do SQL Fiddle:

Chat de IA: O SQL Fiddle agora inclui um chat de IA alimentado pelo ChatGPT, acessivel na barra
lateral do site. Este recurso permite obter suporte e esclarecer dlvidas relacionadas ao SQL
durante seus exercicios e sessdes de aprendizado.

Gerador de Consultas SQL com IA: Além do chat, o SQL Fiddle apresenta um gerador de
consultas SQL com inteligéncia artificial. Este recurso permite gerar consultas SQL complexas
diretamente do editor SQL, facilitando a criacdo e modificacdo de cddigo de forma eficiente.

O SQL Fiddle foi desenvolvido com o propdsito de fornecer um ambiente dedicado ao
aprendizado e aprimoramento das habilidades em SQL. Ndo se limita apenas a um editor online,
mas serve como uma plataforma interativa onde iniciantes e profissionais podem praticar,
colaborar e compartilhar conhecimento sobre consultas SQL.

Vocé pode utilizar o SQL Fiddle para:
e Criar um ambiente pessoal de pratica online em SQL.
e Compartilhar consultas SQL com colegas e receber feedback.

e Solucionar duvidas ou responder perguntas sobre SQL no Stack Overflow e em outras
plataformas.

Recursos e Vantagens do SQL Fiddle:

e Suporte a Midltiplos Bancos de Dados: Experimente diferentes linguagens SQL para
ampliar seu conhecimento e adaptar-se a diferentes ambientes de banco de dados.

e Execucdo de Cdodigo em Tempo Real: Teste suas consultas SQL imediatamente e visualize
os resultados de forma dinamica.

e Colaboracdo: Facilite a colaboracdo ao resolver problemas de banco de dados ou
demonstrar conceitos SQL.

168

e Assisténcia com IA: Utilize o chat de IA e o gerador de consultas SQL para entender
consultas complexas e gerar cédigo de maneira eficiente.

e Acesso Universal: Como uma plataforma baseada na web, o SQL Fiddle é acessivel de
qualquer dispositivo conectado a internet, permitindo que vocé pratique SQL a qualquer
hora e em qualquer lugar.

Nos proximos capitulos, além de utilizar o SQL Fiddle para praticar consultas SQL de forma
interativa, vocé podera explorar ainda mais suas habilidades com o banco de dados. Vocé pode
também utilizar o arquivo node.js que foi explicado anteriormente no livro, onde vocé poderd
praticar a integracdo de suas préprias fungdes SQL diretamente no método executeQuery e
executar a aplicacdo front end para visualizar os resultados. Isso proporcionard uma abordagem
pratica e abrangente para desenvolver e aprimorar suas competéncias em manipulacdo de
dados com SQL, tanto em ambientes controlados quanto em aplicagdes reais.

Secdo 6.2: Categorias de Comandos SQL

A SQL é uma linguagem poderosa que abrange varias categorias de comandos, cada uma com
um propdsito especifico na gestdo de bancos de dados. Aqui estdo as principais categorias:

1. Linguagem de Definicdo de Dados (DDL)

A DDL é usada para definir e gerenciar a estrutura de um banco de dados. Comandos DDL
incluem:

CREATE: Cria tabelas, indices, ou outras estruturas de banco de dados.
ALTER: Modifica estruturas existentes.
DROP: Remove estruturas de banco de dados.

2. Linguagem de Manipulacdo de Dados (DML)

A DML é utilizada para manipular os dados dentro das estruturas definidas. Comandos DML
incluem:

SELECT: Recupera dados das tabelas.
INSERT: Insere novos dados nas tabelas.
UPDATE: Atualiza dados existentes nas tabelas.

DELETE: Remove dados das tabelas.

169

3. Linguagem de Controle de Dados (DCL)
A DCL controla o acesso aos dados dentro do banco de dados. Comandos DCL incluem:
GRANT: Concede permissdes a usuarios.
REVOKE: Revoga permissdes concedidas.

4. Linguagem de Controle de Transacdes (TCL)

A TCL gerencia as transacdes dentro do banco de dados, garantindo a integridade dos dados.
Comandos TCL incluem:

COMMIT: Confirma uma transacao.
ROLLBACK: Reverte uma transacao nao confirmada.
SAVEPOINT: Define pontos de salvamento dentro de uma transacdao.

Todas essas categorias serdo explicadas nesse livro, porém nosso foco principal serd na
Linguagem de Definicdo de Dados (DDL). Exploraremos detalhadamente os comandos CREATE,
ALTER, DROP e TRUNCATE, que sao fundamentais para definir e modificar a estrutura dos
objetos em qualquer sistema de banco de dados
relacional. A pratica e o dominio desses comandos
sdo essenciais para criar e manter a base sobre a qual
todas as operacdes de manipulacdo de dados serdo
realizadas.

Nos capitulos subsequentes, abordaremos em
profundidade as outras categorias de comandos SQL,
incluindo DML, DCL e TCL, para proporcionar uma
compreensdo abrangente das capacidades e
funcionalidades oferecidas pela linguagem SQL.

Vamos explorar cada um dos comandos DDL (Data
Definition Language) em SQL detalhadamente,

utilizando exemplos praticos com o modelo de banco
de dados de alunos que ja discutimos anteriormente.

Secdo 6.3: Linguagem de Definicdao de Dados (DDL)

O comando CREATE TABLE é uma das funcionalidades fundamentais da Linguagem de Definicdo
de Dados (DDL) em SQL, utilizada para criar novas tabelas em um banco de dados relacional.

170

Este comando permite aos desenvolvedores definir a estrutura de uma tabela, especificando os
nomes das colunas, os tipos de dados que cada coluna pode armazenar e quaisquer restrices

que devem ser aplicadas.

A sintaxe bésica para o comando CREATE TABLE é a seguinte:

Unset
CREATE TABLE nome_da_tabela (
colunal tipo_de_dado [restricoes],

coluna2 tipo_de_dado [restricoes],

colunaN tipo_de_dado [restricoes]

Vamos exemplificar a utilizacdo do comando CREATE TABLE criando uma tabela chamada

Alunos, que ird armazenar informacdes sobre alunos matriculados:

Unset
CREATE TABLE Alunos (
id_aluno INT PRIMARY KEY,
nome VARCHAR(100) NOT NULL,
data_nascimento DATE,

curso VARCHAR(50)

);

Neste exemplo:

171

e id_aluno é uma coluna do tipo INT que serve como chave primaria (PRIMARY KEY),
garantindo que cada registro na tabela tenha um identificador Unico.

e nome € uma coluna do tipo VARCHAR(100) que armazena o nome do aluno e nado
permite valores nulos (NOT NULL).

e data_nascimento é uma coluna do tipo DATE para armazenar a data de nascimento do
aluno.

e curso é uma coluna do tipo VARCHAR(50) que armazena o nome do curso ao qual o
aluno esta associado.

O comando CREATE TABLE ¢ essencial para estruturar os dados de forma organizada e eficiente
dentro de um sistema de banco de dados relacional. Nos préximos capitulos, exploraremos
outras funcionalidades da linguagem SQL, proporcionando uma compreensdo abrangente das
capacidades de gerenciamento de dados oferecidas por essa linguagem poderosa.

Secdo 6.4: Tipos de Dados em SQL

Os tipos de dados em SQL podem variar um pouco dependendo do sistema de banco de dados
especifico (como MySQL, PostgreSQL, SQL Server, etc.), mas geralmente incluem os seguintes
tipos bdsicos:

1. Numeric (Numéricos):
o INT (Integer): Nimeros inteiros, por exemplo, 1, 10, -5.
o BIGINT: Inteiro grande para numeros maiores.

o DECIMAL/NUMERIC: Numeros decimais, como 10.5, 3.14159.

Unset
CREATE TABLE ExemploNumerico (
id INT,

preco DECIMAL(10, 2)

172

2. Character String (Cadeia de Caracteres):
o CHAR(n): Cadeia de caracteres de tamanho fixo, por exemplo, 'abc’.

o VARCHAR(n): Cadeia de caracteres de tamanho varidvel, por exemplo, 'abc|
'‘abcdef".

o TEXT: Cadeia de caracteres de comprimento varidvel (muito longo).

Unset

CREATE TABLE ExemploString (
id INT,
nome VARCHAR(50),

descricao TEXT

3. Date/Time (Data/Hora):
o DATE: Data no formato 'YYYY-MM-DD', por exemplo, '2023-06-28".

o TIME: Hora no formato 'HH:MM
|, por exemplo, "14:30:00".

o DATETIME/TIMESTAMP: Combinacdo de data e hora, por exemplo, '2023-06-28
14:30:00..

Unset
CREATE TABLE ExemploDataHora (
id INT,

data_nascimento DATE,

173

hora_registro TIME,

data_hora TIMESTAMP

4. Boolean (Booleano):

o BOOLEAN/BOOL: Valores verdadeiro/falso, por exemplo, TRUE, FALSE.

Unset
CREATE TABLE ExemploBooleano (
id INT,

ativo BOOLEAN

5. Binary Large Object (Objeto Binario Grande):

o BLOB: Armazena dados binarios, como imagens, videos, etc.

Unset
CREATE TABLE ExemploBLOB (
id INT,

imagem BLOB

174

Secao 6.5: Restricoes e Integridade de Dados e Restricoes de Dominio

Em SQL, as restricbes desempenham um papel crucial na garantia da integridade e validade dos
dados armazenados em um banco de dados relacional. Cada restricdo define regras especificas
que os dados devem seguir, proporcionando um ambiente seguro e consistente para operacdes

de manipulacdo e consulta.

A seguir, apresentamos as principais restricbes utilizadas em SQL:

1. NOT NULL

A restricdo NOT NULL garante que um campo ndo pode conter valores nulos. Por exemplo:

Unset
CREATE TABLE ExemploNotNull (
id INT PRIMARY KEY,

nome VARCHAR(50) NOT NULL

)

Neste exemplo, a coluna nome ndo pode ser deixada em branco para nenhum registro na tabela

ExemploNotNull.
2. UNIQUE

A restricdo UNIQUE assegura que todos os valores em uma coluna sejam diferentes. Por

exemplo:

Unset
CREATE TABLE ExemploUnique (
id INT PRIMARY KEY,

email VARCHAR(160) UNIQUE

175

A coluna email na tabela ExemploUnique deve conter valores (nicos para cada registro.
3. PRIMARY KEY

A restricdo PRIMARY KEY identifica exclusivamente cada registro em uma tabela. Por exemplo:

Unset
CREATE TABLE ExemploPrimaryKey (
id INT PRIMARY KEY,

nome VARCHAR(50)

A coluna id na tabela ExemploPrimaryKey serve como chave primaria, garantindo que cada
registro seja Unico.

4. FOREIGN KEY

A restricao FOREIGN KEY estabelece uma relacdo entre duas tabelas, referenciando a chave
primdria de outra tabela. Por exemplo:

Unset

CREATE TABLE Alunos (
id_aluno INT PRIMARY KEY,
nome VARCHAR(590),
curso_id INT,

FOREIGN KEY (curso_id) REFERENCES Cursos(id)

176

CREATE TABLE Cursos (
id INT PRIMARY KEY,

nome VARCHAR(50)

);

A tabela Alunos possui uma coluna curso_id que referencia a chave primaria id da tabela Cursos,
estabelecendo assim uma relagdo entre alunos e cursos.

5. CHECK

A restricdo CHECK define uma condicdo para os valores permitidos em uma coluna. Por
exemplo:

Unset
CREATE TABLE ExemploCheck (
id INT PRIMARY KEY,

idade INT CHECK (idade >= 18)

);

Na tabela ExemploCheck, a coluna idade sé pode conter valores iguais ou superiores a 18 anos.
6. DEFAULT

A restricdo DEFAULT especifica um valor padrdo para uma coluna quando nenhum valor é
fornecido durante a insercao de dados. Por exemplo:

Unset

CREATE TABLE ExemploDefault (

177

id INT PRIMARY KEY,

estado_civil VARCHAR(20) DEFAULT 'Solteiro’

Na tabela ExemploDefault, se nhenhum valor for fornecido para a coluna estado_civil, o valor
padrdo sera 'Solteiro'.

Essas sdo as principais restrices disponiveis em SQL, que desempenham um papel crucial na
definicdo da estrutura e integridade dos dados em sistemas de banco de dados relacionais. Nos
proximos capitulos, exploraremos casos de uso pratico e avancado das restricdes, capacitando
vocé a utilizar SQL de maneira eficaz e segura em suas aplicacdes de banco de dados.

As restricdes de dominio sdo aquelas que definem os limites e regras para os valores aceitaveis
em uma coluna. Elas podem incluir o tipo de dados permitido, a faixa de valores aceitdveis, entre
outros critérios especificos.

Vamos criar um exemplo pratico para demonstrar como as restricdes de dominio podem ser
aplicadas em uma tabela SQL.

Suponha que estamos criando uma tabela para armazenar informacdes de funcionarios, onde
queremos aplicar algumas restricdes de dominio nas colunas:

1. IDFuncionario: Deve ser um nuimero inteiro positivo e Unico.

2. Nome: Deve ser uma string de até 100 caracteres.

3. Idade: Deve ser um numero inteiro maior ou igual a 18 e menor ou igual a 100.
4. Cargo: Deve ser uma string de até 50 caracteres.

5. Salario: Deve ser um valor numérico positivo.

Aqui estd como podemos definir essas restricdes ao criar a tabela Funcionarios:

178

Unset
CREATE TABLE Funcionarios (
IDFuncionario INT PRIMARY KEY,
Nome VARCHAR(100),
Idade INT CHECK (Idade >= 18 AND Idade <= 100),
Cargo VARCHAR(50),

Salario DECIMAL(10, 2) CHECK (Salario >= 0)

Neste exemplo:

e |DFuncionario é definido como a chave primaria da tabela, garantindo que cada ID seja

Unico.

e Nome é uma coluna simples que aceita strings de até 100 caracteres, sem restricoes
adicionais.

e |dade utiliza uma restricdo CHECK para garantir que os valores inseridos estejam no
intervalo de 18 a 100 anos.

e Cargo é uma coluna simples que aceita strings de até 50 caracteres, sem restricdes
adicionais.

e Salario utiliza uma restricdo CHECK para garantir que apenas valores numéricos positivos
sejam aceitos.

Essas restricbes de dominio ajudam a garantir que os dados inseridos na tabela Funcionarios
estejam dentro dos limites esperados e sejam consistentes com as expectativas do sistema.
Assim, podemos manter a integridade dos dados e evitar valores incorretos ou invalidos.

Secdo 6.6: Validacao de Valores Permitidos

A validacdo de valores permitidos refere-se a restricdo que garante que apenas certos valores
especificos sejam aceitos em uma coluna. Isso pode ser feito utilizando as restricdes CHECK ou

179

via validagbes mais complexas implementadas em procedimentos armazenados, ou triggers,
dependendo do sistema de banco de dados.

Por meio dessas restricbes de integridade e de dominio, é possivel garantir a consisténcia e a
qualidade dos dados armazenados em um banco de dados, evitando problemas como
duplicidade de registros, valores invalidos ou fora do esperado para determinados campos.

Vamos criar um exemplo pratico para demonstrar como a validacdo de valores permitidos pode
ser implementada em uma tabela SQL. Neste caso, vamos considerar uma tabela de produtos
onde queremos garantir que o campo Status sé possa ter valores especificos: "Ativo", "Inativo" ou
"Em Estoque".

Unset
CREATE TABLE Produtos (
IDProduto INT PRIMARY KEY,
Nome VARCHAR(100),
Preco DECIMAL(18, 2),

Status VARCHAR(20) CHECK (Status IN ('Ativo', 'Inativo',
"Em Estoque'))

);

Neste exemplo:
e IDProduto: E a chave primaria da tabela, garantindo unicidade para cada produto.
e Nome: E uma coluna simples que aceita strings de até 100 caracteres.
e Preco: E uma coluna que armazena valores numéricos para o preco do produto.

e Status: Utiliza uma restricdo CHECK para garantir que os valores inseridos estejam
restritos aos valores especificos definidos: "Ativo", "Inativo" ou "Em Estoque".

Dessa forma, qualquer tentativa de inserir um valor diferente de "Ativo", "Inativo" ou "Em Estoque"
na coluna Status resultard em um erro de validacdo. Essa restricdo ajuda a garantir que os dados

180

na tabela Produtos sejam consistentes e que apenas valores permitidos sejam armazenados,
evitando inconsisténcias e facilitando a manutencdo da integridade dos dados no banco de
dados.

Secdo 6.6: Criacdo e Gerenciamento de indices

Os indices desempenham um papel essencial na otimizacdo de consultas em bancos de dados
relacionais. Ao criar indices em uma ou mais colunas de uma tabela, podemos acelerar
significativamente a recuperacdo de registros. Vamos explorar como utilizar o comando CREATE
INDEX para este fim. O comando CREATE INDEX é empregado para criar indices em colunas
especificas de uma tabela. Considere o seguinte exemplo:

Unset

CREATE INDEX idx_nome_curso ON Alunos (nome, curso);

Neste exemplo, criamos o indice idx_nome_curso na tabela Alunos para as colunas nome e
curso. Isso pode melhorar a performance de consultas que envolvem a busca por nome e curso
dos alunos.

Secdo 6.7: Visualizacdo de Estruturas de Tabela e indices

Para visualizar a estrutura completa da tabela e seus indices, podemos utilizar comandos
especificos conforme o sistema de gerenciamento de banco de dados que estamos utilizando.
Abaixo, fornecemos exemplos para alguns dos sistemas mais comuns:

1. MySQL / MariaDB

Para exibir a estrutura da tabela (incluindo indices):

Unset

SHOW CREATE TABLE Alunos;

Para exibir apenas os indices criados:

181

Unset

SHOW INDEX FROM Alunos;

2. PostgreSQL

Para exibir a estrutura da tabela (incluindo indices):

Unset

\d+ Alunos

Para exibir apenas os indices criados:

Unset
SELECT indexname, indexdef
FROM pg_indexes

WHERE tablename = 'Alunos';

3. SAQL Server

Para exibir a estrutura da tabela (incluindo indices):

Unset

EXEC sp_helpindex 'Alunos’;

182

Para exibir apenas os indices criados:

Unset

SELECT *
FROM sys.indexes

WHERE object_id = OBJECT_ID('Alunos');

4. Oracle

Para exibir a estrutura da tabela (incluindo indices):

Unset

DESC Alunos;

Para exibir apenas os indices criados:

Unset
SELECT index_name, column_name, column_position
FROM all_ind_columns

WHERE table_name = 'Alunos’;

Secdo 6.8: Modificacao da Estrutura e Exclusao de Tabelas

O comando ALTER TABLE permite modificar a estrutura de tabelas existentes, possibilitando
adicionar, modificar ou excluir colunas conforme necessario.

183

Suponha que precisamos adicionar uma nova coluna endereco a tabela Alunos:

Unset
ALTER TABLE Alunos

ADD endereco VARCHAR(2600);

Para modificar uma coluna existente, podemos utilizar:

Unset
ALTER TABLE Alunos

ALTER COLUMN curso VARCHAR(100);

O comando DROP TABLE é utilizado para remover completamente uma tabela do banco de
dados, juntamente com todos os seus dados e estruturas associadas.

Unset

DROP TABLE Alunos;

Para remover um indice existente de uma tabela, utilizamos o comando DROP INDEX.

Unset

DROP INDEX idx_nome_curso;

Neste exemplo, excluimos o indice idx_nome_curso que criamos anteriormente na tabela
Alunos. Todas essas técnicas explicadas anteriormente sdo técnicas avancadas de manipulacdo
de tabelas em SQL, incluindo a criacdo de indices para otimizacdo de consultas, modificacGes
estruturais com ALTER TABLE, e a remocdo de tabelas e indices com DROP TABLE e DROP

184

INDEX, respectivamente. Estes comandos sdo fundamentais para o gerenciamento eficaz e
seguro de bancos de dados relacionais, garantindo performance e integridade dos dados. Esses
exemplos fornecem uma base sélida para entender como os comandos DDL funcionam na
pratica, utilizando um contexto familiar de um modelo de banco de dados de alunos. Cada
comando desempenha um papel importante na definicdo, modificacdo e exclusdo de estruturas
de banco de dados, garantindo que as operacdes sejam feitas de maneira eficiente e segura.

Secdo 6.9: Insercao de Dados em Tabelas.

Apdbs a criacdo das tabelas, incluindo definicbes de tipos de dados, restricGes e indices, é
fundamental popular essas tabelas com valores para um banco de dados funcional. Para ilustrar
esse processo detalhadamente, utilizaremos um exemplo pratico envolvendo as seguintes
tabelas: Clientes, Produtos, Pedidos e Itens do Pedido. Vamos abordar a criacdo das tabelas, a
definicdo de indices, além de apresentar exemplos de alteracdo, modificacdo e exclusdo de

dados.

Tabela Clientes:

ID Cliente Nome Endereco Telefone

1 Maria Silva Rua A, 123 (11) 98765-4321

2 Jodo Santos Av. Principal, 456 (11) 99999-8888
3 Ana Costa Travessa B, 789 (11) 87654-3210

Tabela Produtos:

ID Produto Nome Categoria Preco

1 Camiseta Branca Roupas R$ 39,90

2 Calca Jeans Roupas R$ 89,90

3 Ténis Esportivo Calcados R$ 129,90

Tabela Pedidos:

ID Pedido ID Cliente Data Pedido Total

1 1 2024-06-01 R$ 129,80
2 2 2024-06-02 R$ 219,80
3 3 2024-06-03 R$ 169,90

185

Tabela Itens do Pedido:

ID ltem ID Pedido ID Produto Quantidade
1 1 1 2
2 1 3 1
3 2 1 3
4 3 3 1

Para a criacdo dessas tabelas, vamos aplicar os coédigos DDLS explicados nas secdes anteriores.

Tabela Clientes

Unset

CREATE TABLE Clientes (
IDCliente INT PRIMARY KEY,
Nome VARCHAR(100) NOT NULL,
Endereco VARCHAR(260),

Telefone VARCHAR(20)

Apds a criacdo da tabela Clientes, podemos utilizar o comando INSERT INTO seguido de
VALUES para inserir dados nessa tabela. O comando INSERT INTO permite especificar os valores
a serem inseridos em cada coluna da tabela. Veja o exemplo abaixo de insercao de dados de
exemplo na tabela Clientes:

Unset

INSERT INTO Clientes (IDCliente, Nome, Endereco, Telefone)

186

VALUES
(1, 'Maria Silva', 'Rua A, 123', '(11) 98765-4321"),
(2, 'Jodo Santos', 'Av. Principal, 456', '(11) 99999-8888'),

(3, 'Ana Costa', 'Travessa B, 789', '(11) 87654-3210");

Neste exemplo:

e Cada linha dentro de VALUES representa um conjunto de valores a serem inseridos em
uma nova linha da tabela.

e Os valores sdo correspondentes as colunas IDCliente, Nome, Endereco e Telefone,

respectivamente.

Ao executar este comando, trés novos registros serdo inseridos na tabela Clientes com os dados
fornecidos. Esse processo é fundamental para inicializar ou atualizar os dados de uma tabela,
permitindo assim que o banco de dados mantenha informacdes relevantes e atualizadas

conforme necessario.

Vamos fazer o mesmo com a Tabela Produtos:

Unset

CREATE TABLE Produtos (
IDProduto INT PRIMARY KEY,
Nome VARCHAR(100) NOT NULL,
Categoria VARCHAR(50),

Preco DECIMAL(10, 2)

187

Assim poderemos fazer a Insercdo de dados de exemplo, como mostrado a seguir:

Unset
INSERT INTO Produtos (IDProduto, Nome, Categoria, Preco)
VALUES

(1, 'Camiseta Branca', 'Roupas', 39.90),

(2, 'Calga Jeans', 'Roupas', 89.90),

(3, 'Ténis Esportivo', 'Calgados', 129.90);

O mesmo pode ser feito com a Tabela Pedidos.

Unset

CREATE TABLE Pedidos (
IDPedido INT PRIMARY KEY,
IDCliente INT,
DataPedido DATE,
Total DECIMAL(10, 2),

FOREIGN KEY (IDCliente) REFERENCES Clientes(IDCliente)

Fazendo a insercdo de dados de exemplo.

188

Unset
INSERT INTO Pedidos (IDPedido, IDCliente, DataPedido, Total)
VALUES

(1, 1, '2024-06-01', 129.80),

(2, 2, '2024-06-02', 219.80),

(3, 3, '2024-06-03', 169.90);

E finalmente podemos criar e popular a Tabela ltens do Pedido.

Unset
CREATE TABLE ItensPedido (
IDItem INT PRIMARY KEY,
IDPedido INT,
IDProduto INT,
Quantidade INT,
FOREIGN KEY (IDPedido) REFERENCES Pedidos(IDPedido),

FOREIGN KEY (IDProduto) REFERENCES Produtos(IDProduto)

Para popular a tabela ltensPedido automaticamente de forma a garantir a integridade referencial
e evitar erros, vocé pode utilizar o seguinte método:

1. Garantir Dados de Exemplo nas Tabelas Referenciadas: Primeiramente, certifique-se de
que existem dados de exemplo nas tabelas Pedidos e Produtos que serdo referenciados

189

na tabela ltensPedido. Isso significa que os IDs de Pedidos e Produtos especificados na
tabela ltensPedido devem existir nas respectivas tabelas.

2. Insercdo de Dados na Tabela ItensPedido: Utilize o comando INSERT INTO para inserir os
dados na tabela ItensPedido. Certifique-se de que os IDs de Pedido e Produto
especificados ja existem nas tabelas Pedidos e Produtos, respectivamente.

Exemplo de insercdo de dados na tabela ItensPedido:

Unset
INSERT INTO ItensPedido (IDItem, IDPedido, IDProduto, Quantidade)
VALUES

(1, 1, 1, 2), -- IDPedido = 1, IDProduto = 1 (Camiseta
Branca), Quantidade = 2

(2, 1, 2, 1), -- IDPedido = 1, IDProduto = 2 (Calga Jeans),
Quantidade = 1

(3, 2, 3, 1); -- IDPedido = 2, IDProduto = 3 (Ténis
Esportivo), Quantidade = 1

No exemplo acima:
e Estdo sendo inseridos trés itens de pedido.

e Cada item faz referéncia a um IDPedido existente na tabela Pedidos e a um IDProduto
existente na tabela Produtos.

e A coluna Quantidade especifica a quantidade de cada produto incluido no pedido.
Garantindo Integridade Referencial:

e Certifique-se de que todos os IDPedido e IDProduto referenciados na tabela ItensPedido
existem nas tabelas Pedidos e Produtos, respectivamente.

190

e Utilize as chaves estrangeiras (FOREIGN KEY) definidas nas colunas IDPedido e
IDProduto da tabela ltensPedido para garantir que os valores inseridos estejam sempre
de acordo com os valores existentes nas tabelas referenciadas.

Ao seguir esses passos, vocé assegura que a insercdo de dados na tabela ltensPedido seja feita
de forma correta e sem comprometer a integridade referencial do banco de dados.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

Nesta secdo, exploraremos como o ChatGPT pode ser um recurso valioso para aprender mais
sobre o capitulo de SQL, especialmente focado em criacdo de tabelas, restricdes de dominio,
tipos de dados e validagdes. Aqui estao alguns pontos detalhados sobre como o ChatGPT pode

auxiliar:
Aprendendo a Criar Tabelas Relacionais
Ao estudar a criacdo de tabelas no SQL, vocé pode utilizar o ChatGPT para:

1. Modelos Relacionais: Se vocé tiver um modelo relacional em mente ou um esquema de
banco de dados que deseja implementar, o ChatGPT pode ajudar a verificar a estrutura
do modelo e fornecer orienta¢gdes sobre como traduzir esse modelo em tabelas SQL. Por
exemplo, vocé pode descrever suas entidades (como Clientes, Pedidos, Produtos) e
relacionamentos entre elas, e o ChatGPT pode sugerir a estrutura de tabelas
correspondente.

2. Descricdes para Criacdo de Tabelas: Caso vocé tenha uma descricdo detalhada dos
requisitos de uma base de dados, mas ndo tem certeza de como traduzir essas
descricdes em comandos SQL, o ChatGPT pode ajudar a transformar essas informacoes
em scripts SQL concretos. Vocé pode fornecer detalhes como nome das tabelas, colunas
necessarias, tipos de dados, chaves primarias e estrangeiras, e o ChatGPT pode gerar o
codigo SQL correspondente.

3. Exemplos de Tabelas: Se vocé tem uma tabela de exemplo ou uma lista de campos e
tipos de dados, mas precisa da sintaxe correta do SQL para crid-la, o ChatGPT pode gerar
o script SQL completo. Por exemplo, vocé pode fornecer uma tabela simples de clientes
com colunas como IDCliente, Nome, Email, e o ChatGPT pode criar o comando CREATE
TABLE correspondente.

Verificagdo e Criagcdo de Restricdes de Dominio, Tipos de Dados e Checks

Durante a implementacao de um esquema de banco de dados, o ChatGPT pode ajudar com:

191

1. Restricdes de Dominio: Para garantir que os valores em uma coluna atendam a critérios
especificos (como tipos de dados, formatos de data, valores permitidos), vocé pode
descrever esses critérios para o ChatGPT. Ele pode sugerir como aplicar restricbes de
dominio usando CHECK constraints ou outras técnicas relevantes.

2. Verificacdo de Tipos de Dados: Se vocé estiver incerto sobre qual tipo de dados usar
para uma coluna especifica (por exemplo, VARCHAR, INT, DATE), o ChatGPT pode
explicar as diferengas entre os tipos de dados e ajudar a escolher o mais apropriado com
base nos requisitos.

3. ValidagcGes com Checks: Caso precise implementar validacdes mais complexas usando a
cldusula CHECK (por exemplo, validar se uma data estd dentro de um intervalo
especifico), o ChatGPT pode auxiliar na formulacdo dessas verificacdes.

Como Interagir com o ChatGPT para Aprender
Para aproveitar ao méximo o ChatGPT enquanto estuda SQL e criacdo de bancos de dados:

e Seja Descritivo: Forneca o méximo de detalhes possivel sobre o modelo que vocé deseja
implementar, as restricGes que precisa aplicar e os tipos de dados que esta
considerando.

e Peca Exemplos: Solicite exemplos praticos de cédigo SQL com explicacdes detalhadas
para entender melhor como cada conceito € aplicado na pratica.

e |tere e Refine: Use o feedback do ChatGPT para ajustar e refinar seu entendimento sobre
SQL e préaticas recomendadas na criacdo de bancos de dados.

Utilizando essas abordagens, o ChatGPT pode ser um parceiro eficaz no seu aprendizado
continuo de SQL e na aplicacdo pratica de conceitos relacionados a criacdo e gerenciamento de
bancos de dados.

EXERCICIOS DE FIXAGAO

Abaixo serdo descritos alguns exercicios praticos para praticar DDL (Data Definition Language)
em SQL, utilizando o SQL Fiddle com MySQL. Cada exercicio aborda diferentes aspectos da
criacdo, alteracdo e exclusdo de tabelas, criacdo de chaves primdrias e estrangeiras, restricoes
UNIQUE e CHECK, e restricGes de dominio e tipos de dados. Para praticar, acesse o SQL Fiddle
e selecione MySQL como o DBMS (Sistema Gerenciador de Banco de Dados). Copie e cole os
comandos SQL para criar tabelas, definir chaves primdrias e estrangeiras, adicionar restricdes
UNIQUE e CHECK, e configurar tipos de dados e dominios conforme necessario. Experimente

192

http://sqlfiddle.com/

executar consultas para verificar se as tabelas estdo sendo criadas corretamente e se as
restricGes estdo sendo aplicadas conforme planejado.

Dica: Use o painel lateral para visualizar a estrutura das tabelas, executar consultas SQL e
verificar mensagens de erro, se houver. Isso ajudard vocé a entender melhor como cada
comando SQL funciona e como aplica-los de forma eficaz em suas prdéprias aplicacées de banco
de dados.

Exercicio 1: Sistema de Gerenciamento de Eventos

Desenvolva um esquema de banco de dados para um sistema de gerenciamento de eventos.
Considere as entidades Evento, Participante e Local. Modele os relacionamentos entre elas e
defina os atributos apropriados para cada entidade.

Passos:
1. Crie tabelas para Evento, Participante e Local.
2. Defina chaves priméarias e estrangeiras para relacionar as entidades.
3. Inclua uma restricdo UNIQUE para garantir que o nome do Evento seja unico.
4. Utilize restricdes CHECK para validar datas e capacidades de participantes.
Exercicio 2: Aplicativo de Rede Social

Modele um banco de dados para um aplicativo de rede social com entidades como Usuario,
Postagem e Comentario. Defina como essas entidades se relacionam entre si e quais atributos
sdo necessarios para cada uma.

Passos:

1. Crie tabelas para Usuédrio, Postagem e Comentério.

2. Estabeleca relacionamentos usando chaves primarias e estrangeiras.

3. Adicione uma restricdo UNIQUE para o nome de usuario.

4. Utilize CHECK constraints para validar o comprimento das postagens e dos comentarios.
Exercicio 3: Sistema de Reservas de Hotel

Projete um modelo l6gico para um sistema de reservas de hotel. Identifique as entidades Hotel,
Quarto e Cliente, e defina como elas estdo relacionadas. Determine quais atributos sdo
necessarios para cada entidade.

193

Passos:

2.

3.

4.

Crie tabelas para Hotel, Quarto e Cliente.
Defina chaves primarias para Hotel, Quarto e Cliente.
Use chaves estrangeiras para relacionar a reserva de um quarto a um cliente especifico.

Adicione uma restricdo UNIQUE para o numero do quarto.

Exercicio 4: Sistema de Biblioteca

Desenvolva um esquema de banco de dados para um sistema de biblioteca. Considere as
entidades Livro, Autor e Empréstimo, e modele os relacionamentos entre elas.

Passos:

Crie tabelas para Livro, Autor e Empréstimo.
Estabeleca relacionamentos usando chaves primarias e estrangeiras.
Adicione uma restricdo UNIQUE para o ISBN do livro.

Utilize CHECK constraints para garantir que a data de devolucdo seja posterior a data de
empréstimo.

Exercicio 5: Sistema de Compras Online

Modele um banco de dados para um sistema de compras online com entidades como Produto,

Pedido e Cliente. Defina como essas entidades estdo relacionadas e quais atributos sdo

necessarios.

Passos:

2.

3.

4.

Crie tabelas para Produto, Pedido e Cliente.
Defina chaves primdrias para Produto, Pedido e Cliente.
Use chaves estrangeiras para relacionar itens do pedido aos produtos comprados.

Adicione uma restricdo UNIQUE para o nimero do pedido.

Exercicio 6: Sistema de Gerenciamento de Escola

194

Projete um esquema de banco de dados para um sistema de gerenciamento de escola.
Considere entidades como Aluno, Professor e Disciplina, e modele os relacionamentos entre
elas.

Passos:
1. Crie tabelas para Aluno, Professor e Disciplina.
2. Estabeleca relacionamentos usando chaves primérias e estrangeiras.
3. Adicione uma restricdo UNIQUE para o cddigo da disciplina.

4. Utilize CHECK constraints para validar notas dos alunos.

195

Capitulo 7 - Linguagem de
Manipulacao de Dados (DML)

"Houve 5 exabytes de informacdo criada desde o inicio da civilizacdo até 2003, mas essa
quantidade de informacdo é agora criada a cada dois dias.”

Eric Schmidt

196

A Linguagem de Manipulacdo de Dados (DML) é
uma componente crucial da SQL (Structured
Query Language), utilizada para a manipulacdo e
consulta de dados dentro de um banco de dados.
No contexto do MySQL, um dos sistemas de
gerenciamento de banco de dados mais
populares, a DML permite realizar operacdes
Ccomo recuperar, inserir, atualizar e excluir dados
de tabelas. Neste capitulo, exploraremos em
detalhes os principais comandos DML e sua
aplicacdo pratica.

Secao 7.1: Comandos DML Basicos - SELECT

Os comandos basicos da DML no MySQL sdo:
e SELECT: Recupera dados de uma ou mais tabelas.
o |NSERT: Insere novos registros em uma tabela.
e UPDATE: Atualiza registros existentes em uma tabela.
e DELETE: Exclui registros de uma tabela.
Comecaremos nossa exploracdao com o comando SELECT.

O comando SELECT é utilizado para consultar dados de uma tabela ou de varias tabelas
relacionadas. A estrutura bésica do comando SELECT é a seguinte:

Unset
SELECT colunal, coluna2,

FROM nome_da_tabela;

Exemplo:

197

Unset

SELECT * FROM Clientes;

Neste exemplo, Clientes € o nome da tabela de onde queremos selecionar todos os registros.

Vocé pode selecionar colunas especificas de uma tabela, listando-as apds a palavra-chave
SELECT:

Unset
SELECT nome, email, telefone

FROM Clientes;

Neste caso, apenas as colunas nome, email e telefone serao recuperadas da tabela Clientes.

Podemos também utilizar de apelidos ou Aliases para Colunas e Tabelas. Aliases sdo nomes
alternativos que vocé pode atribuir as colunas ou tabelas em suas consultas. Eles sdo Uteis para
melhorar a legibilidade das consultas ou para renomear temporariamente colunas calculadas.

Unset
SELECT nome AS NomeCliente, email AS EmailCliente

FROM Clientes;

Neste exemplo, NomeCliente e EmailCliente sdo aliases para as colunas nome e email,
respectivamente. Isso torna mais claro qual € o propdsito de cada coluna na saida da consulta.

198

Unset
SELECT c.nome, p.nome AS Produto
FROM Clientes c

JOIN Pedidos p ON c.id_cliente = p.id_cliente;

Aqui, c e p sdo aliases para as tabelas Clientes e Pedidos, respectivamente. O uso de aliases é
particularmente Util ao trabalhar com consultas que envolvem varias tabelas, facilitando a
distingdo entre colunas com 0 mesmo nome.

O comando SELECT é uma ferramenta poderosa para recuperar dados especificos de uma ou
mais tabelas em um banco de dados MySQL. A capacidade de selecionar colunas especificas e
usar aliases para tornar as consultas mais legiveis sdo recursos essenciais para trabalhar
eficientemente com dados. Nos proximos capitulos, exploraremos os outros comandos DML,
como INSERT, UPDATE e DELETE, fornecendo exemplos préaticos de como utilizd-los para
manipular os dados em seu banco de dados.

Secdo 7.2: Comando INSERT

O comando INSERT na linguagem SQL é utilizado para inserir novos registros em uma tabela
especifica de um banco de dados. Ele oferece varias formas de insercdo de dados, desde uma
Unica linha até a insercdo de dados provenientes de outra tabela. Vamos explorar cada uma
dessas formas de insercdo de maneira detalhada e didatica.

A estrutura basica do comando INSERT é a seguinte:

Unset
INSERT INTO table_name (column1, column2, ...)
VALUES (valuel, value2, ...);

e table_name: Nome da tabela onde os dados serdo inseridos.

e columni, column2, ...: Lista das colunas onde os valores serdo inseridos.

199

e valuel, value2, ...: Valores a serem inseridos nas colunas correspondentes.

Para inserir uma Unica linha na tabela, vocé especifica os valores correspondentes as colunas

desejadas:

Unset
INSERT INTO Clientes (nome, email, telefone)

VALUES ('Jodo', 'joao@email.com', '123456789');

Neste exemplo, estamos inserindo um novo cliente na tabela Clientes com os valores 'Jodo),
'joao@email.com' e 123456789 nas colunas nome, email e telefone, respectivamente.

Para inserir multiplas linhas de uma sé vez, vocé pode utilizar uma Unica instrucdo INSERT com
vdrias listas de valores separadas por virgulas:

Unset
INSERT INTO Clientes (nome, email, telefone)
VALUES ('Maria’, 'maria@email.com', '987654321'),

('José', 'jose@email.com', '555555555');

Neste caso, estamos inserindo dois novos clientes na tabela Clientes de uma vez sé. Essa
abordagem é util para aumentar a eficiéncia quando se trata de inserir varios registros ao mesmo

tempo.

Vocé pode inserir dados em uma tabela a partir de outra tabela existente usando um comando
INSERT com uma subconsulta:

200

Unset

INSERT INTO Pedidos (id_cliente, data, total)
SELECT id_cliente, '2024-06-15', 150.00

FROM Clientes

WHERE nome = 'Joao';

Neste exemplo, estamos inserindo um novo pedido na tabela Pedidos para o cliente cujo nome é
Jodo' A subconsulta SELECT id_cliente FROM Clientes WHERE nome = 'Jodo' retorna o
id_cliente do cliente especificado, que é entdo inserido na coluna id_cliente da tabela Pedidos.
As consultas SQL serdo vistas com mais detalhes no préximo capitulo.

Em alguns casos, vocé pode querer inserir valores padrdo para algumas colunas ou inserir dados
apenas se certas condi¢cdes forem atendidas. Por exemplo:

Unset
INSERT INTO Produtos (IDProduto, Nome, Categoria, Preco)

VALUES (4, 'Boné', 'Acessorios', DEFAULT);

Aqui, DEFAULT é usado para inserir o valor padrdo definido para a coluna Preco se ndo
fornecermos um valor especifico.

No MySQlL, vocé pode utilizar varidveis para inserir dados, o que é Util em scripts complexos ou
ao inserir dados dinamicamente:

Unset

SET @nome = 'Pedro’;

SET @email = 'pedro@email.com';

201

SET @telefone = '123456789"';

INSERT INTO Clientes (nome, email, telefone)

VALUES (@nome, @email, @telefone);

Neste exemplo, utilizamos varidveis para armazenar os valores antes de inseri-los na tabela
Clientes. O comando INSERT é essencial para adicionar novos dados as tabelas de um banco de
dados MySQL. Ele permite inserir tanto uma unica linha como varias linhas de uma so6 vez, além
de possibilitar a insercdo de dados provenientes de outras tabelas através de subconsultas. Com
o INSERT, é possivel manter e atualizar continuamente os dados em seu banco de dados de
forma eficiente e organizada.

Nos capitulos seguintes, continuaremos a explorar os comandos DML, incluindo UPDATE e
DELETE, fornecendo exemplos praticos de como utiliza-los para manipular os dados em seu
banco de dados.

Secao 7.3: Comando UPDATE

No contexto da Linguagem de Manipulagdo de Dados (DML), o comando UPDATE desempenha
um papel crucial na modificacdo de registros existentes em uma tabela de banco de dados. Ele
permite que vocé atualize uma ou mais colunas de uma ou varias linhas com base em condi¢des
especificas, mantendo assim a integridade e atualidade dos dados. Este capitulo abordara a
estrutura e a aplicagdo pratica do comando UPDATE no MySQL, proporcionando uma
compreensdo aprofundada de suas funcionalidades.

A estrutura basica do comando UPDATE é a seguinte:

Unset

UPDATE table_name

SET column1 = valuel, column2 = value2,

202

WHERE condition;

e table_name: Nome da tabela onde os dados serdo atualizados.

e columni = valuel, column2 = value2, ...: Lista das colunas a serem atualizadas com seus
novos valores.

e WHERE condition: Condicdo opcional que especifica quais registros devem ser
atualizados. Se ndo especificada, todos os registros da tabela serdo atualizados.

Para atualizar uma ou mais colunas de uma tabela, vocé deve listar as colunas e seus novos
valores apods a palavra-chave SET. Vejamos um exemplo préatico:

Unset
UPDATE Clientes
SET telefone = '999999999'

WHERE nome = 'Joao';

Neste exemplo, estamos atualizando o nimero de telefone do cliente cujo nome é 'Jodo' para
'999999999.". Isso demonstra como modificar um campo especifico para um registro que atende
a uma condicao.

A clausula WHERE é fundamental para especificar quais registros serdo atualizados. Ela permite
filtrar os registros com base em uma ou mais condi¢clGes, garantindo que apenas os dados
desejados sejam modificados:

203

Unset
UPDATE Pedidos
SET total = 200.00

WHERE id_cliente = 1 AND data >= '2024-06-01":;

Neste exemplo, estamos atualizando o campo total da tabela Pedidos para 200.00 onde o
id_cliente é 1 e a data do pedido € maior ou igual a '2024-06-01'. Esta abordagem ¢ Uutil para

atualizacdes seletivas que envolvem multiplas condicdes.

Em certos cenarios, pode ser necessario atualizar varias linhas de uma sé vez. Isso pode ser feito
utilizando o comando UPDATE com uma condicdo mais ampla ou sem a cldusula WHERE para
atualizar todos os registros da tabela:

Unset

UPDATE Produtos

SET preco = preco * 1.1;

Neste exemplo, estamos aumentando o preco de todos os produtos multiplicando o valor atual
da coluna preco por 11, ou seja, aplicando um aumento de 10% em todos os precos. Este tipo de
atualizacdo em massa é Uutil para ajustes globais em precos, saldrios, ou outros valores
nuMEricos.

Ao utilizar o comando UPDATE, é importante considerar aspectos de seguranca e eficiéncia:

1. Backups Regulares: Antes de realizar atualizagdes significativas, é recomendavel fazer
backups dos dados para prevenir perdas em caso de erros.

2. Teste em Ambiente de Desenvolvimento: Execute comandos de atualizagdo em um
ambiente de teste para assegurar que os resultados sdo os esperados.

3. Indices: O uso de indices nas colunas mencionadas na cldusula WHERE pode melhorar
significativamente a performance das operacdes de atualizagdo.

204

O comando UPDATE é essencial para a manutencdo e a modificacdo dos dados em tabelas de
um banco de dados MySQL. Ele proporciona a flexibilidade necessaria para atualizar uma Unica
coluna ou vaérias colunas simultaneamente, usando condicdes para especificar quais registros
devem ser alterados. Compreender e utilizar o UPDATE de maneira eficiente é fundamental para
garantir a integridade e a precisdo dos dados, permitindo que o banco de dados reflita
corretamente as mudangas no sistema ou nas necessidades dos usudrios. Nos préoximos
capitulos, exploraremos outros comandos DML, como DELETE, aprofundando ainda mais nosso
conhecimento sobre a manipulacdo de dados em bancos de dados.

Secdo 7.4: Comando DELETE

O comando DELETE na linguagem SQL é uma ferramenta crucial para a administracdo de dados
em um banco de dados. Ele permite remover registros de uma tabela especifica com base em
condicbes definidas ou, se necessdrio, excluir todos os registros da tabela. Neste capitulo,
abordaremos a estrutura e a aplicagdo pratica do comando DELETE no MySQL, detalhando suas
funcionalidades e precaucdes para uso eficiente e seguro.

A estrutura basica do comando DELETE é a seguinte:

Unset
DELETE FROM table_name

WHERE condition;

e table_name: Nome da tabela da qual os registros serdo excluidos.

e WHERE condition: Condicdo opcional que especifica quais registros devem ser excluidos.
Se ndo especificada, todos os registros da tabela serdo excluidos.

Exclusdo de Linhas Especificas

Para excluir linhas especificas de uma tabela, vocé utiliza a cldusula WHERE para especificar as
condicdes. Veja o exemplo a seguir:

205

Unset
DELETE FROM Clientes

WHERE id_cliente = 2;

Neste exemplo, estamos excluindo o cliente cujo id_cliente é 2 da tabela Clientes. Isso
demonstra como remover um registro especifico baseado em uma condigao.

O uso da cldusula WHERE é essencial para filtrar os registros que serdo excluidos. Ele permite
especificar critérios detalhados para a exclusao:

Unset
DELETE FROM Pedidos

WHERE id_cliente = 1 AND data_pedido < '2024-06-01";

Neste caso, estamos excluindo os pedidos do cliente com id_cliente igual a 1 e com data_pedido
anterior a '2024-06-01. Esta abordagem ¢é Util para remocdes seletivas, garantindo que apenas

0s registros que atendem a todas as condi¢cBes sejam excluidos.

Vocé pode excluir todos os registros de uma tabela utilizando o DELETE sem a clausula WHERE.
Esta operacdo é particularmente Util para reiniciar uma tabela ou remover todos os dados antes

de uma nova carga de dados:

Unset

DELETE FROM Produtos;

206

Este comando ird excluir todos os registros da tabela Produtos. E uma operacdo potente e deve
ser usada com cautela, pois remove todos os dados da tabela, sem a possibilidade de
recuperacdo direta.

Ao utilizar o comando DELETE, é importante considerar alguns aspectos de seguranca e
eficiéncia:

1. Backups Regulares: Faca backups regulares dos dados antes de realizar operacdes de
exclusao significativas para prevenir perdas acidentais.

2. Testes em Ambiente de Desenvolvimento: Execute comandos DELETE em um ambiente
de teste antes de aplicad-los no banco de dados de producdo para garantir que o
comportamento é o esperado.

3. Uso Adequado da Clausula WHERE: Sempre verifique a cldusula WHERE para evitar
exclusdes acidentais de registros importantes. Uma cldusula WHERE omissa ou incorreta
pode levar a remocao de todos os registros da tabela.

4. indices: Utilize indices nas colunas mencionadas na cldusula WHERE para melhorar a
performance das operagdes de exclusdo, especialmente em tabelas grandes.

O comando DELETE é uma ferramenta essencial para a manutencdo e administracdo de dados
em tabelas de um banco de dados MySQL. Ele proporciona a flexibilidade necessaria para
excluir registros especificos ou remover todos os registros de uma tabela de uma sé vez. A
utilizacdo correta e segura do DELETE é fundamental para manter a integridade e a precisdo dos
dados, prevenindo exclusdes acidentais e garantindo a operacdo eficiente do banco de dados.
Nos proximos capitulos, continuaremos a explorar outros aspectos da DML e suas aplicacdes
praticas no gerenciamento de bancos de dados.

Secao 7.5: Introducao as Consultas SQL

Nesta secdo, vamos explorar consultas SQL simples utilizando o comando SELECT e suas
variacOes, como DISTINCT, para recuperar e manipular dados de bancos de dados relacionais.
As consultas SQL sdo fundamentais para a extracdo de informacdes de tabelas, permitindo
desde a selecdo de colunas especificas até a recuperacdo de valores Unicos.

O comando SELECT é a principal ferramenta para recuperar dados de tabelas em um banco de
dados. Ele permite selecionar tanto colunas especificas quanto todas as colunas de uma tabela.

Para selecionar todas as colunas de uma tabela, utiliza-se o asterisco (*):

207

Unset

SELECT * FROM Clientes;

Este comando retorna todas as colunas da tabela Clientes. E uma maneira rédpida de obter uma
visdo completa dos dados armazenados. Para selecionar colunas especificas, listamos os nomes

das colunas separados por virgula:

Unset

SELECT id_cliente, nome, email FROM Clientes;

Este comando retorna apenas as colunas id_cliente, nome e email da tabela Clientes. E dtil
quando se necessita apenas de uma parte dos dados disponiveis.

O operador DISTINCT ¢é utilizado para retornar apenas valores distintos (Unicos) de uma coluna

ou combinacado de colunas:

Unset

SELECT DISTINCT categoria FROM Produtos;

Este exemplo retorna todas as categorias Unicas da tabela Produtos, eliminando duplicatas.

Quando se trabalha com duas tabelas relacionadas, o DISTINCT pode ser usado para selecionar

valores Unicos de uma coluna presente em ambas as tabelas:

Unset

SELECT DISTINCT p.id_cliente, c.nome

208

FROM Pedidos p

JOIN Clientes ¢ ON p.id_cliente = c.id_cliente;

Este comando retorna os IDs Unicos de clientes e seus nomes, combinando informacdes das
tabelas Pedidos e Clientes.

1. Entendimento da Necessidade: Use DISTINCT apenas quando precisar de valores Unicos
de uma coluna. Evite seu uso em colunas que ja sdo naturalmente (nicas, como chaves
primarias.

2. Comparacdo com GROUP BY: Escolha entre DISTINCT e GROUP BY com base na
necessidade especifica da consulta e no desempenho esperado. DISTINCT é mais
simples e direto, enquanto GROUP BY é mais poderoso, permitindo agregacdes.

3. Atencdo a Performance: Evite consultas complexas e com muitas tabelas, pois podem
impactar negativamente o desempenho da consulta. O uso excessivo de DISTINCT pode
aumentar o tempo de processamento.

4. Compatibilidade com Bancos de Dados: Verifique a sintaxe e o suporte ao DISTINCT no
banco de dados especifico que vocé esta utilizando, pois pode haver variagGes entre
diferentes sistemas de gerenciamento de banco de dados.

O comando DISTINCT é uma ferramenta poderosa para retornar valores Unicos de colunas em
consultas SQL. Ele facilita a obtencdo de dados distintos de maneira eficiente e € amplamente
utilizado em diversas aplicacdes que requerem manipulacdo de dados em bancos relacionais. Ao
aplicar corretamente o DISTINCT, vocé garante resultados precisos e eficientes em suas
consultas SQL.

A compreensdo e o uso adequado de consultas simples, como o SELECT e suas variacdes, sdo
fundamentais para qualquer profissional que trabalha com bancos de dados. Estas ferramentas
fornecem a base para consultas mais complexas e andlises detalhadas dos dados armazenados.

Secao 7.6: Funcoes de Agregacao Basicas

As funcBes de agregagao sao ferramentas poderosas em SQL, utilizadas para calcular valores
agregados em um conjunto de resultados. Elas sdo fundamentais para realizar anélises

209

estatisticas e sumarizacdes dos dados armazenados
em bancos de dados relacionais. Nesta secdo,
exploraremos as funcdes de agregacdo basicas
detalhadamente, com exemplos praticos para
melhor compreensao.

1. COUNT

A funcdo COUNT é usada para contar o nimero de
linhas retornadas por uma consulta. E
particularmente Util para determinar quantas
entradas existem em uma tabela ou quantas
correspondem a uma determinada condicdo.

Unset

SELECT COUNT(*) AS total_clientes FROM Clientes;

Este comando retorna o nimero total de clientes na tabela Clientes.
2. SUM

A funcdo SUM calcula a soma dos valores de uma coluna numérica. E frequentemente usada
para obter o total de vendas, somar valores financeiros, entre outras aplicagcdes.

Unset

SELECT SUM(preco) AS total_vendas FROM Pedidos;

Este comando retorna o total das vendas (soma dos precos) registradas na tabela Pedidos.
3. AVG

A funcéo AVG calcula a média dos valores de uma coluna numérica. E Gtil para encontrar o valor
médio de uma série de dados, como precos, saldrios, etc.

210

Unset

SELECT AVG(preco) AS media_preco FROM Produtos;

Este comando retorna a média dos precos dos produtos na tabela Produtos.
4, MAX

A funcdao MAX retorna o valor maximo de uma coluna. Pode ser usada para identificar o maior
valor em um conjunto de dados, como o maior salario, a maior idade, etc.

Unset

SELECT MAX(salario) AS maior_salario FROM Funcionarios;

Este comando retorna o maior saldrio registrado na tabela Funcionarios.
5. MIN

A funcéo MIN retorna o valor minimo de uma coluna. E utilizada para encontrar o menor valor em
um conjunto de dados, como a menor idade, o menor preco, etc.

Unset

SELECT MIN(idade) AS menor_idade FROM Clientes;

Este comando retorna a menor idade registrada na tabela Clientes.

Para ilustrar a aplicacdao pratica das funcdes de agregacdo, considere o seguinte exemplo que
combina varias dessas funcdes em uma Unica consulta:

211

Unset

SELECT COUNT(*) AS total_pedidos,
SUM(valor_total) AS total_vendas,
AVG(valor_total) AS media_vendas,
MAX(valor_total) AS maior_venda,
MIN(valor_total) AS menor_venda

FROM Pedidos;

Neste exemplo, a consulta calcula:

e Total de Pedidos: O ndimero total de registros na tabela Pedidos.

Total de Vendas: A soma dos valores totais de todos os pedidos.

e Média de Vendas: A média dos valores totais dos pedidos.
e Maior Venda: O maior valor de venda registrado na tabela.
e Menor Venda: O menor valor de venda registrado na tabela.

Abaixo, temos a explicacdo detalhada de cada funcao:

1. COUNT(*): Conta o numero total de registros em Pedidos, retornando como
total_pedidos.

N

SUM(valor_total): Soma os valores da coluna valor_total de todos os pedidos, retornando
como total_vendas.

3. AVG(valor_total): Calcula a média dos valores da coluna valor_total, retornando como
media_vendas.

4. MAX(valor_total): Encontra o maior valor na coluna valor_total, retornando como
maior_venda.
5. MIN(valor_total): Encontra o menor valor na coluna valor_total, retornando como

menor_venda.

212

As funcdes de agregacdo sdo fundamentais para a andlise e o resumo de dados em SQL. Elas
permitem a obtencdo de insights importantes através da contagem, soma, média, e
determinacdo dos valores maximos e minimos em um conjunto de dados. Compreender e utilizar
corretamente essas funcdes € essencial para qualquer profissional que trabalha com bancos de
dados, facilitando a realizacdo de andlises complexas e a geracdo de relatdrios precisos.

Secao 7.7: Comando GROUP BY

O comando GROUP BY ¢ usado para agrupar registros que tém valores iguais em uma ou mais
colunas. Isso permite aplicar funcdes de agregacdo em cada grupo separadamente.

Suponha que queremos saber o total de vendas por cliente na tabela Pedidos:

Unset
SELECT id_cliente, SUM(valor_total) AS total_vendas
FROM Pedidos

GROUP BY id_cliente;

Neste exemplo, id_cliente é a coluna pela qual estamos agrupando os dados. A funcdo SUM
calcula o total de vendas para cada cliente separadamente.

O GROUP BY e o DISTINCT sdo usados para obter resultados distintos, e tém propdsitos
diferentes:

e DISTINCT retorna valores unicos de uma coluna ou combinacdo de colunas, eliminando

duplicatas.

e GROUP BY agrupa linhas que tém os mesmos valores em uma ou mais colunas e permite
aplicar fungdes de agregagdo como SUM, COUNT, AVG, entre outras, para cada grupo de

dados.

Unset

SELECT DISTINCT categoria FROM Produtos;

213

Este comando retorna todas as categorias Unicas da tabela Produtos. As funcdes de agregacao e
o comando GROUP BY sdo fundamentais para realizar calculos complexos e resumos de dados
em consultas SQL. Saber quando e como aplicar esses recursos permite obter informacdes
valiosas de grandes conjuntos de dados de maneira eficiente e precisa.

Secao 7.8: Um Exemplo Pratico Completo

Na conclusdo de cada capitulo e ao término dos préoximos maddulos, aplicaremos as funcdes que
aprendemos em exemplos praticos completos. Essa abordagem pratica foi inspirada pelo
professor Tihomir Babic e seu método inovador de ensino, conforme descrito em seu artigo
disponivel em
https://learnsgl.com.br/blog/pratica-de-consulta-sqgl-basica-on-line-20-exercicios-para-iniciantes/.
Utilizaremos um conjunto de dados detalhando finais de competicGes de corrida de pista em
eventos importantes de atletismo, como os Jogos Olimpicos do Rio de Janeiro em 2016, o
Campeonato Mundial de Atletismo da IAAF em Londres em 2017, e o Campeonato Mundial de
Atletismo da IAAF em Doha em 2019.

Os dados sdao armazenados em seis tabelas: competition, event, discipline, final_result, athlete, e
nationality. A seguir, detalharemos a estrutura dessas tabelas e realizaremos consultas SQL
exemplificando o uso de funcdes de agregacao.

214

competition
id integer PK
name varchar(128)
start_date date
end_date date
year integer
location varchar(128)
event discipline
id integer PK id integer PK
competition_id integer FK name varchar(128)
discipline_id integer FK is_men boolean
final_date date N distance integer
wind numeric(6,2) N
final_result
event_id integer PKFK
athlete_id integer PK FK
result time N
place integer N
is_dsq boolean
is_dns boolean
is_dnf boolean
athlete nationality
id integer PK id integer PK
first_name varchar(128) =0 country_name varchar(128)
last_name varchar(128) country_abbr varchar(3)
nationality_id integer FK
birth_date date
A tabela competition armazena informacdes sobre as competicdes:
e id: ID da competicdo e chave primaria.
e name: Nome da competicao.
e start_date: Data de inicio da competicdo.
e end_date: Data de término da competicao.
e year: Ano em que a competicdo ocorreu.
e |ocation: Local da competicdo.
Dados da tabela competition:
id name start_date | end_date | year | location

215

709374 | Jogos Olimpicos do Rio | 2016-08-1 | 2016-08- | 201 | Estadio Olimpico, Rio de

7 de Janeiro 2 21 6 Janeiro (BRA)
709374 | Campeonato Mundial de | 2017-08-0 | 2017-08-1 | 201 | Estadio Olimpico,
0 Atletismo de Londres 4 3 7 Londres (GBR)

712536 | Campeonato Mundial de | 2019-09-2 | 2019-10-0 | 201 | Estadio Internacional
5 Atletismo de Doha 7 6 9 Khalifa, Doha (QAT)

A tabela discipline contém informacdes sobre as modalidades de corrida:
e id: ID da disciplina e chave primaria.
e name: Nome da disciplina.
e is_men: TRUE se for uma disciplina masculina, FALSE se for feminina.

e distance: Distancia da disciplina, em metros.

id name is_men distance
1 100m Masculino TRUE 100

2 200m Masculino TRUE 200

3 400m Masculino TRUE 400

4 800m Masculino TRUE 800

5 1500m Masculino TRUE 1500

A tabela event armazena informacdes sobre cada evento especifico:
e id: ID do evento e chave primdria.
e competition_id: Vincula o evento a uma competicao.
e discipline_id: Vincula o evento a uma disciplina.
e final_date: Data da final do evento.
e wind: Pontuacdo do vento durante a final.

Dados da tabela event:

216

—
id competition_id discipline_id final_date wind
1 7093747 1 2016-08-14 0.2
2 7093747 2 2016-08-18 -0.5
3 7093747 3 2016-08-14 0
4 7093747 4 2016-08-15 0
5 7093747 5 2016-08-20 0

A tabela athlete contém dados sobre cada atleta:

e id: ID do atleta e chave primaria.

e first_name: Primeiro nome do atleta.

e |ast_name: Sobrenome do atleta.

e nationality_id: Nacionalidade do atleta.

e Dirth_date: Data de nascimento do atleta.

Dados da tabela athlete:

id first_name last_name nationality_id birth_date
14201847 Usain BOLT 1 1986-08-21
14238562 Justin GATLIN 2 1982-02-10
14535607 André DE GRASSE 3 1994-11-10

14201842 Yohan BLAKE 1 1989-12-26

Tabela nationality

A tabela nationality contém informagdes sobre os paises:
e id: ID do pais e chave primaria.
e country_name: Nome do pais.
e country_abbr: Abreviacdo de trés letras do pais.

Dados da tabela nationality:

217

—
id country_name country_abbr
1 Jamaica JAM
2 Estados Unidos USA
3 Canada CAN
4 Africa do Sul RSA
5 Costa do Marfim CIv

Tabela final_result

A tabela final_result contém informacdes sobre os resultados dos atletas em cada evento:

e event_id: ID do evento.

e athlete_id: ID do atleta.

e result: Tempo/pontuacado do atleta (pode ser NULL).

e place: Colocacado do atleta (pode ser NULL).

e is_dsqg: TRUE se o atleta foi desqualificado.

e is_dnf: TRUE se o atleta ndo terminou a corrida.

e is_dns: TRUE se o atleta ndo iniciou a corrida.

Dados da tabela final_result:

event_id athlete_id result place is_dsq is_dnf is_dns
1 14201847 0:00:10 1 FALSE FALSE FALSE
1 14238562 0:00:10 2 FALSE FALSE FALSE
1 14535607 0:00:10 3 FALSE FALSE FALSE
1 14201842 0:00:10 4 FALSE FALSE FALSE
1 14417763 0:00:10 5 FALSE FALSE FALSE

218

Vamos criar e popular as tabelas competition, discipline, event, athlete, nationality, e final_result
com os valores dos exemplos fornecidos.

Tabela competition

Unset

CREATE TABLE competition (
id INT PRIMARY KEY,
name VARCHAR(255),
start_date DATE,
end_date DATE,
year INT,

location VARCHAR(255)

INSERT INTO competition (id, name, start_date, end_date, year,
location) VALUES

(7093747, 'Jogos O0limpicos do Rio de Janeiro', '2016-08-12",
'2016-08-21', 2016, 'Estddio Olimpico, Rio de Janeiro (BRA)'),
(70937480, 'Campeonato Mundial de Atletismo de Londres',
'2017-08-04', '2017-08-13', 2017, 'Estadio Olimpico, Londres
(GBR) "),

(7125365, ‘Campeonato Mundial de Atletismo de Doha',

'2019-09-27"', '2019-10-06', 2019, 'Estadio Internacional Khalifa,
Doha (QAT)');

Tabela discipline

219

Unset

CREATE TABLE discipline (
id INT PRIMARY KEY,
name VARCHAR(255),
is_men BOOLEAN,

distance INT

INSERT INTO discipline (id, name, is_men, distance) VALUES
(1, '106m Masculino', TRUE, 1600),
(2, '200m Masculino', TRUE, 2090),
(3, '400m Masculino', TRUE, 460),
(4, '8006m Masculino', TRUE, 860),

(5, '1500m Masculino', TRUE, 1500);

Tabela event

Unset

CREATE TABLE event (
id INT PRIMARY KEY,
competition_id INT,

discipline_id INT,

220

INSERT INTO event (id, competition_id, discipline_id, final_date,
wind) VALUES

(1,
(2,
(3,
(4,

(5,

final_date DATE,

wind FLOAT,

FOREIGN KEY (competition_id) REFERENCES competition(id),

FOREIGN KEY (discipline_id) REFERENCES discipline(id)

7093747,
7093747,
7093747,
7093747,

7093747,

Tabela athlete

Unset

1,
2,
3,
4,

5,

'2016-08-14",
'2016-08-18",
'2016-08-14",
'2016-08-15",

'2016-08-20",

CREATE TABLE athlete (

id INT PRIMARY KEY,

first_name VARCHAR(255),

last_name VARCHAR(255),

nationality_id INT,

0.2),
-0.5),
6),
@),

),

221

birth_date DATE,

FOREIGN KEY (nationality_id) REFERENCES nationality(id)

INSERT INTO athlete (id, first_name, last_name, nationality_id,
birth_date) VALUES

(14201847, 'Usain', 'BOLT', 1, '1986-08-21"),
(14238562, 'Justin', 'GATLIN', 2, '1982-02-10'),
(14535607, 'André', 'DE GRASSE', 3, '1994-11-10'),

(14201842, 'Yohan', 'BLAKE', 1, '1989-12-26");

Tabela nationality

Unset

CREATE TABLE nationality (
id INT PRIMARY KEY,
country_name VARCHAR(255),

country_abbr VARCHAR(3)

INSERT INTO nationality (id, country_name, country_abbr) VALUES

(1, 'Jamaica', 'JAM'),

222

(2, 'Estados Unidos', 'USA'),
(3, 'Canada’, 'CAN'),
(4, 'Africa do Sul', 'RSA'),

(5, 'Costa do Marfim', 'CIV');

Tabela final_result

Unset
CREATE TABLE final_result (
event_id INT,
athlete_id INT,
result TIME,
place INT,
is_dsq BOOLEAN,
is_dnf BOOLEAN,
is_dns BOOLEAN,
PRIMARY KEY (event_id, athlete_id),
FOREIGN KEY (event_id) REFERENCES event(id),

FOREIGN KEY (athlete_id) REFERENCES athlete(id)

INSERT INTO final_result (event_id, athlete_id, result, place,
is_dsq, is_dnf, is_dns) VALUES

223

(1, 14201847, '00:00:10', 1, FALSE, FALSE, FALSE),
(1, 14238562, '00:00:10', 2, FALSE, FALSE, FALSE),
(1, 14535607, '00:00:10', 3, FALSE, FALSE, FALSE),
(1, 14201842, '00:00:10', 4, FALSE, FALSE, FALSE),

(1, 14417763, '00:00:10', 5, FALSE, FALSE, FALSE);

Com esses comandos SQL, criamos as tabelas e inserimos os dados exemplificados. Essa
estrutura é fundamental para executar consultas que utilizem funcdes de agregacdo e para
realizar andlises detalhadas dos dados de competicdes de atletismo. Sugiro que vocé
implemente esse dados e verifique as tabelas resultantes no SQL Fiddle conforme ensinamos
nos capitulos anteriores.

Agora vamos criar um exercicio de consulta que utiliza COUNT e GROUP BY nas tabelas
fornecidas. Neste caso, vamos contar o nimero de eventos por tipo de disciplina masculina e

feminina em cada competicdo.

Unset

-- Contagem de eventos por tipo de disciplina masculina e
feminina em cada competicgao

SELECT c.name AS competition_name,
d.is_men AS is_male_discipline,
COUNT(e.id) AS event_count

FROM competition c, event e, discipline d

WHERE c.id = e.competition_id

AND e.discipline_id = d.id

224

GROUP BY c.name, d.is_men;

Nesta consulta:

e Utilizamos COUNT(e.id) para contar o nimero de eventos (registros na tabela event)
agrupados por cada competicdo (competition_id) e tipo de disciplina (is_men).

e O GROUP BY agrupa os resultados pelo nome da competicdo (c.name) e pelo tipo de
disciplina (d.is_men).

Isso permite obter um resumo do numero de eventos masculinos e femininos em cada
competicdo. Sugiro que vocé implemente esse cdédigo no SQL Fiddle e verifique se as tabelas
resultantes fazem sentido com o que vocé gostaria de buscar.

Vamos criar um exercicio de consulta que utiliza AVG e GROUP BY nas tabelas fornecidas. Neste
caso, vamos calcular a média de idade dos atletas por nacionalidade.

Unset

-- Média de idade dos atletas por nacionalidade

SELECT n.country_name,

AVG(YEAR(CURRENT_DATE) - VYEAR(a.birth_date)) AS
average_age

FROM athlete a, nationality n
WHERE a.nationality_id = n.id

GROUP BY n.country_name;

Nesta consulta:

225

e Utilizamos AVG(YEAR(CURRENT_DATE) - YEAR(a.birth_date)) para calcular a média de
idade dos atletas, convertendo a data de nascimento (birth_date) em anos e subtraindo
do ano atual (CURRENT_DATE).

e O GROUP BY agrupa os resultados pela nacionalidade (n.country_name).

Isso permite calcular e exibir a média de idade dos atletas agrupados por cada pais na tabela de
nacionalidades.

Vamos criar um exercicio de consulta utilizando DISTINCT nas tabelas fornecidas. Neste caso,
podemos listar todas as disciplinas Unicas que foram realizadas nos eventos registrados.

Unset

-- Disciplinas unicas realizadas nos eventos

SELECT DISTINCT d.name AS discipline_name
FROM event e, discipline d

WHERE e.discipline_id = d.id;

Nesta consulta:
e Utilizamos DISTINCT d.name para garantir que apenas disciplinas Unicas sejam listadas.

e Nao usamos JOIN explicito, mas sim uma cldusula WHERE para relacionar as tabelas
event e discipline através dos seus IDs correspondentes (e.discipline_id = d.id).

Isso retorna uma lista de todas as disciplinas Unicas que foram realizadas nos eventos
registrados na tabela event.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

Nesta secdo, vamos explorar como o ChatGPT pode ajudar vocé a aprender e aprimorar suas
habilidades em consultas SQL, baseadas nas se¢des anteriores deste capitulo sobre Linguagem
de Manipulacdo de Dados (DML).

Como o ChatGPT pode ajudar na criagdo de consultas SQL?

226

1. Criacdo de Consultas Baseadas em Tabelas:

o Utilizando as tabelas Clientes, Produtos, Pedidos e ItensPedido que criamos, ou
com as Tabelas dos Jogos da Ultima secdo o ChatGPT pode ajudar a formular
consultas SQL para obter informacdes especificas dessas tabelas.

o Exemplos: Como escrever uma consulta para listar todos os clientes que fizeram
pedidos, calcular o total de vendas por cliente, ou encontrar produtos de uma
categoria especifica com maior preco médio.

2. Exploracdo de Diferentes Abordagens:

o Além de fornecer consultas diretas, o ChatGPT pode sugerir diferentes
abordagens para resolver um problema SQL. Isso inclui otimizacdo de consultas,
uso adequado de funcdes de agregacado e técnicas para melhorar o desempenho
das consultas.

3. Melhoria na Légica de Programacdo de Consultas:

o Ao interagir com o ChatGPT, vocé pode aprender melhores praticas na escrita de
consultas SQL. Isso envolve entender como estruturar cldusulas SELECT, FROM,
WHERE, GROUP BY e ORDER BY de maneira eficiente e compreender a légica
por trds das operacdes de banco de dados.

Outras formas de geragdo de consultas com o ChatGPT:
1. Exemplos e Explicacdes Detalhadas:

o Peca ao ChatGPT para explicar cada parte de uma consulta SQL. Isso inclui como
usar corretamente as funcdes de agregacdo, como filtrar dados com WHERE e
como usar GROUP BY para sumarizar resultados.

2. Otimizacdo e Melhoria de Consultas:

o Solicite ao ChatGPT para otimizar uma consulta existente. Ele pode sugerir indices
adicionais, reescrever a légica da consulta para melhorar o desempenho ou
simplificar consultas complexas.

3. Consulta de Documentacdo e Referéncias:

o O ChatGPT pode ajudar a encontrar documentacdo relevante sobre funcdes SQL
especificas, tipos de dados, ou até mesmo sobre o banco de dados que vocé esta

227

utilizando (como MySQL). Isso é util para entender melhor as capacidades do
sistema de gerenciamento de banco de dados.

Aprendizado continuo e aprimoramento:
1. Desenvolvimento de Habilidades Analiticas:

o Ao trabalhar com o ChatGPT para formular e entender consultas SQL, vocé
desenvolve habilidades analiticas para manipular e interpretar grandes conjuntos
de dados.

2. Resolucdo de Problemas Complexos:

o Pratique a resolucdo de problemas complexos de dados, incluindo juncdes de
tabelas, consultas mais avancadas com subconsultas e a aplicacdo de ldgica

condicional nas consultas.
3. Feedback e Melhoria Continua:

o Use o ChatGPT para receber feedback sobre suas consultas SQL. Isso pode
ajuda-lo a identificar areas de melhoria, corrigir erros comuns e explorar novas
técnicas de consulta.

Com esses prompts, vocé pode explorar mais profundamente o mundo das consultas SQL e
utilizar o ChatGPT como um recurso valioso para melhorar suas habilidades praticas e tedricas

nessa area.
EXERCICIOS DE FIXACAO

Agora vamos praticar com exemplos de consultas utilizando funcdes de agregacdo basicas
(COUNT, SUM, AVG, MAX, MIN) e GROUP BY para cada um dos cendrios propostos nos
exercicios de fixacdo dos capitulos anteriores. Antes de cada exercicio, relembraremos as
tabelas disponiveis para consulta em cada caso de uso.

1. Modelagem de Dados de Vendas
Tabelas Disponiveis:
e Pedidos (orders):
o order_id: ID do pedido (chave primaria)
o customer_id: ID do cliente que fez o pedido

o order_date: Data do pedido

228

o total_amount: Valor total do pedido
e C(Clientes (customers):
o customer_id: ID do cliente (chave primaria)
o customer_name: Nome do cliente
o city: Cidade do cliente
o country: Pais do cliente

Exercicio 1: Calcule o numero total de pedidos realizados.

Exercicio 2: Obtenha a soma total dos valores de todos os pedidos.

Exercicio 3: Encontre a média do valor dos pedidos por cliente.

Exercicio 4: Descubra qual foi o maior valor de pedido realizado.

Exercicio 5: Identifique a menor quantidade de pedidos realizados por cidade.

2. Sistema de Gerenciamento de Eventos
Tabelas Disponiveis:
e Eventos (events):
o event_id: ID do evento (chave primaria)
o event_name: Nome do evento
o event_date: Data do evento
o location: Local do evento
e Inscricdes (registrations):
o registration_id: ID da inscricdo (chave primaria)
o event_id: ID do evento inscrito
o participant_id: ID do participante
o registration_date: Data da inscricdo

Exercicio 6: Conte o nidmero de eventos registrados no sistema.

229

Exercicio 7: Calcule a média de participantes por evento.

Exercicio 8: Encontre a data do evento mais recente registrado.

Exercicio 9: Descubra quantos participantes estao registrados para cada evento.

Exercicio 10: Identifique o evento com o maior nidmero de inscricdes.
3. Aplicativo de Rede Social
Tabelas Disponiveis:
e Usuarios (users):
o user_id: ID do usuario (chave priméria)
o username: Nome de usuario
o birthdate: Data de nascimento do usuario
o city: Cidade do usuario
e Postagens (posts):
o post_id: ID da postagem (chave primaria)
o user_id: ID do usudrio que fez a postagem
o post_date: Data da postagem
o likes: Niumero de curtidas na postagem
Exercicio 11: Calcule quantos usudrios estdo registrados no aplicativo.
Exercicio 12: Obtenha a média de idade dos usuarios.
Exercicio 13: Encontre a data da postagem mais antiga.
Exercicio 14: Descubra quantas postagens foram feitas por cada usudrio.
Exercicio 15: Identifique a postagem com o maior nimero de curtidas.
4. Sistema de Reservas de Hotel
Tabelas Disponiveis:

e Reservas (reservations):

230

o reservation_id: ID da reserva (chave primaria)

o guest_id: ID do hospede que fez a reserva

o check_in_date: Data de entrada na reserva

o check_out_date: Data de saida da reserva

e Hodspedes (guests):

o guest_id: ID do héspede (chave priméria)

o guest_name: Nome do héspede

o country: Pais de origem do héspede

o age: Idade do hdéspede
Exercicio 16: Conte o numero total de reservas feitas no sistema.
Exercicio 17: Calcule a média de dias de permanéncia por reserva.
Exercicio 18: Encontre a data da reserva mais recente.
Exercicio 19: Descubra quantas reservas foram feitas por cada héspede.
Exercicio 20: Identifique a reserva com a maior duracdo de permanéncia.

Estes exercicios cobrem uma variedade de consultas simples utilizando funcdes de agregacado e
GROUP BY em diferentes cendrios de aplicacao.

231

Capitulo 8 - Consultas
Avancadas e Manipulacao de
Dados

"A informagdGo € o petroleo do século XXI, e a andlise € o motor de combustdo.” -

Peter Sondergaard

232

No mundo dos bancos de dados relacionais, a capacidade de escrever consultas eficientes e
poderosas € essencial para manipular dados de forma precisa e eficaz. Neste capitulo,
exploraremos técnicas avancadas de consulta e manipulacdo de dados que permitirdo a vocé
extrair insights significativos e realizar operagdes complexas em suas bases de dados.

Comecaremos abordando a filtragem de grupos utilizando a clausula HAVING, que permite
restringir grupos de linhas retornadas
por funcdes de agregacdo como
COUNT, SUM e AVG. Em seguida,
mergulharemos nas juncdes (JOINS),
incluindo INNER JOIN, LEFT JOIN,
RIGHT JOIN e FULL OUTER JOIN, que
sdo fundamentais para combinar dados
de midltiplas tabelas com base em
relacionamentos definidos.

Vocé aprenderd sobre subconsultas
(Subqueries), uma poderosa técnica
para aninhar consultas dentro de outras
consultas, permitindo resultados mais
precisos e complexos. Exploraremos
subconsultas em cldusulas SELECT e
WHERE, além de subconsultas

correlacionadas, que sdo executadas
repetidamente para cada linha
retornada pela consulta principal.

Em seguida, discutiremos operadores e condicdes avancadas, incluindo operadores légicos
(AND, OR, NOT) e operadores de comparacao (>, <, =, LIKE, IN, BETWEEN), que sdo fundamentais
para criar condices complexas em suas consultas SQL.

Vocé também serd introduzido a manipulacdo de strings e datas, explorando funcdes como
CONCAT, SUBSTRING, DATEADD, DATEDIFF, entre outras. Essas funcdes sdao essenciais para
manipular e formatar dados de texto e datas de maneira precisa.

Finalmente, abordaremos o conceito de views (Vistas), que sdo consultas SQL armazenadas e
pré-compiladas que podem ser tratadas como tabelas virtuais. Vocé aprenderd a criar views,
usad-las para simplificar consultas complexas e até mesmo atualizar dados através delas,
proporcionando uma camada adicional de abstracdo e seguranca na manipulacdo dos seus
dados. Prepare-se para mergulhar em técnicas avancadas de consulta SQL que o capacitardo a

233

explorar e extrair informacdes valiosas de seus bancos de dados de maneira eficiente e
estruturada.

Secao 8.1: Filtragem de Grupos com HAVING

A cladusula HAVING é utilizada em consultas SQL para filtrar grupos de registros retornados por
funcdes de agregacdo, como COUNT, SUM, AVG, MAX e MIN. Ela opera de forma semelhante a
cldusula WHERE, porém é aplicada apds a agrupamento de dados especificado pela cldusula
GROUP BY.

A principal funcdo da clausula HAVING é permitir que vocé aplique condicdes de filtro a grupos
de linhas, baseadas em valores agregados. Isso significa que vocé pode restringir quais grupos
serdo incluidos no resultado final da consulta com base nos resultados das funcles de
agregacao.

Esse comando funciona da seguinte forma:

1. Agrupamento de Dados: Primeiro, vocé especifica a cldusula GROUP BY para agrupar os
dados com base em uma ou mais colunas.

2. Aplicacdo das Funcoes de Agregacdo: Em seguida, vocé aplica funcbes de agregacado
como COUNT, SUM, AVG, etc., para calcular valores agregados para cada grupo.

3. Filtragem com HAVING: Apds o agrupamento e a aplicacdo das funcdes de agregacdo, a
cldusula HAVING é utilizada para filtrar os grupos de acordo com condicBes especificas.

Vamos utilizar as tabelas Pedidos e ItensPedido como exemplo para demonstrar como a cldusula
HAVING pode ser aplicada.

Considere a seguinte estrutura simplificada das tabelas:

Tabela Pedidos:

Unset

CREATE TABLE Pedidos (
IDPedido INT PRIMARY KEY,
IDCliente INT,
DataPedido DATE,

Total DECIMAL(18, 2)

234

INSERT INTO Pedidos (IDPedido, IDCliente, DataPedido, Total)
VALUES

(1, 1, '2024-06-081', 129.80),

(2, 2, '2024-06-02', 219.80),

(3, 3, '2024-06-03', 169.90);

Unset

Tabela ItensPedido:

CREATE TABLE ItensPedido (
IDItem INT PRIMARY KEY,
IDPedido INT,

IDProduto INT,

Quantidade INT

INSERT INTO ItensPedido (IDItem, IDPedido, IDProduto, Quantidade)

VALUES
(1u 11 15 2);
(2, 1, 3, 1),

235

(31 2: 1: 3):

(4, 3, 3, 1);

Agora, imagine que queremos encontrar os pedidos cujo valor total € maior que 200. Podemos
utilizar a clausula HAVING para isso:

Unset

SELECT IDPedido, SUM(Total) AS ValorTotal
FROM Pedidos

GROUP BY IDPedido

HAVING SUM(Total) > 200;

Neste exemplo:
e A cldusula GROUP BY IDPedido agrupa os registros da tabela Pedidos por IDPedido.
e SUM(Total) calcula o valor total de cada pedido.

e HAVING SUM(Total) > 200 filtra os grupos onde a soma dos totais dos pedidos é maior
que 200.

Este comando SQL retornara os pedidos cujo valor total seja superior a 200. Baseados nisso,
podemos fazer algumas consideracdes sobre o Uso da Cldusula HAVING:

e Aplicacdo apds GROUP BY: A cldusula HAVING s6 pode ser utilizada apds a clausula
GROUP BY.

e Condicdes de Agregacdo: Ela permite condicGes baseadas em funcldes de agregacao
como SUM, COUNT, AVG, MAX e MIN.

236

e Restrices de Performance: E importante utilizar HAVING com moderacdo para evitar
impactos negativos na performance, especialmente em consultas que envolvem grandes
volumes de dados.

Com a cldusula HAVING, vocé pode filtrar e controlar quais grupos de dados serdo retornados
em consultas complexas, adicionando uma camada de controle sobre os resultados agregados
obtidos nas consultas SQL.

Secao 8.2: Teoria de Conjuntos Aplicada a Bancos de Dados

Para realizar consultas mais complexas em bancos de dados, é essencial entender como aplicar
a teoria de conjuntos. Analogamente, podemos pensar em bancos de dados como cole¢des de
conjuntos de dados organizados em tabelas. Cada tabela representa um conjunto cujos
elementos sdo as linhas de dados. As operacdes basicas de conjuntos podem ser aplicadas para
manipular e acessar dados de forma eficiente.

Vamos explorar as principais operacdes da teoria de conjuntos e como elas se relacionam com
bancos de dados:

1. Unido de Conjuntos

A unido de dois conjuntos A e B consiste em todos os elementos presentes em A, em B, ou em
ambos simultaneamente. Em um contexto de banco de dados:

Exemplo: Imagine que temos dois conjuntos definidos:
e A: Fornecedores que receberam pedidos nos ultimos seis meses.
e B: Fornecedores que atenderam aos pedidos em até uma semana.

A unido desses conjuntos resultaria na lista combinada de fornecedores que receberam pedidos
nos ultimos seis meses ou atenderam pedidos em até uma semana.

237

2. Intersecdo de Conjuntos

A intersecdo de dois conjuntos A e B consiste apenas nos elementos que sdo comuns a ambos
A e B. Por exemplo:

Exemplo:
e A: Materiais com estoque zerado.
e B: Materiais com demanda atual.

A intersecdo desses conjuntos forneceria a lista de materiais que estdo com estoque zerado e
também tém demanda atual.

3. Diferenca de Conjuntos

A diferenca entre dois conjuntos A e B resulta nos elementos que estdo em A, mas ndo estdo em
B. Por exemplo:

238

Exemplo:
e A: Lista de clientes ativos.
e B: Lista de clientes inativos.

A diferenca A - B seria a lista de clientes que estdo ativos, excluindo aqueles que estdo inativos.

)

4. Produto Cartesiano de Conjuntos

O produto cartesiano de dois conjuntos A e B é o conjunto de todos os pares ordenados (a, b)
onde 'a' pertence a A e 'b' pertence a B. Isso é (til para combinar todas as possiveis
combinacdes entre os elementos de dois conjuntos. Por exemplo:

Exemplo:
e A: Regides geograficas.
e B: Produtos disponiveis.

O produto cartesiano de A por B resultaria em todos os pares possiveis de regides geograficas e
produtos disponiveis.

239

X

A B
N)
A |
d |8
/)

5. Relacado de Pertinéncia

A relacdo de pertinéncia verifica se um conjunto esta contido em outro. Um conjunto A esta
contido em um conjunto B se todos os elementos de A também estiverem em B. Por exemplo:

Exemplo:
e A: Clientes que compraram produtos na Ultima semana.
e B: Todos os clientes registrados.

Se A esta contido em B, entdo todos os clientes que compraram produtos na ultima semana
também sdo clientes registrados.

A compreensdo da teoria de conjuntos € crucial para operacdes avancadas em bancos de
dados, permitindo consultas eficientes e precisas. Ao aplicar esses conceitos, os profissionais
podem estruturar consultas de forma organizada, lidando eficazmente com conjuntos de dados
distintos em ambientes de bancos de dados.

As juncbes sdo uma ferramenta essencial em SQL para combinar dados de duas ou mais tabelas
relacionadas com base em colunas compartilhadas. Esse recurso permite recuperar informacdes
de multiplas fontes de dados em uma Unica consulta, facilitando a analise e a manipulacdo de
dados inter-relacionados.

240

Existem diversos tipos de juncdes em SQL, cada um determinando como os dados serao
combinados e quais registros serdo incluidos no resultado final da consulta. Os principais tipos

de juncdes sdo:
Secao 8.3: Comando INNER JOIN

O INNER JOIN retorna registros quando ha pelo menos uma correspondéncia nas colunas das
duas tabelas envolvidas na juncdo. Suponha que temos duas tabelas, Clientes e Pedidos, e
queremos recuperar todos os pedidos feitos pelos clientes.

Unset
SELECT c.IDCliente, c.Nome, p.IDPedido, p.DataPedido
FROM Clientes c

INNER JOIN Pedidos p ON c.IDCliente = p.IDCliente;

O INNER JOIN combina registros da tabela Clientes com registros correspondentes na tabela
Pedidos onde o ID do cliente € o mesmo, retornando apenas registros que tém correspondéncia
em ambas as tabelas.

INNER JOIN

Imagine que vocé estd trabalhando em um sistema de gerenciamento de vendas onde precisa
recuperar informacdes detalhadas sobre os clientes e seus pedidos. Vamos explorar como usar
o INNER JOIN para obter esses dados de maneira eficiente:

Descricdo das Tabelas:
e C(Clientes:

o IDCliente: Identificador Unico do cliente.

241

I
o Nome: Nome do cliente.
o Email: Endereco de email do cliente.
o Telefone: Numero de telefone do cliente.
e Pedidos:

o IDPedido: Identificador Gnico do pedido.

o |IDCliente: Chave estrangeira que referencia o cliente que fez o pedido.
o DataPedido: Data em que o pedido foi realizado.

o Total: Valor total do pedido.

Suponha que queremos recuperar uma lista de todos os clientes que fizeram pedidos
recentemente, junto com os detalhes desses pedidos, como data e valor total.

Unset

SELECT c.IDCliente, c.Nome AS NomeCliente, c.Email, c.Telefone,
p.IDPedido, p.DataPedido, p.Total

FROM Clientes c

INNER JOIN Pedidos p ON c.IDCliente = p.IDCliente

WHERE p.DataPedido >= DATE_SUB(NOW(), INTERVAL 3 MONTH)

ORDER BY p.DataPedido DESC;

Neste exemplo, estamos usando o INNER JOIN para combinar os registros das tabelas Clientes e
Pedidos com base no ID do cliente. Aqui estd o que cada parte da consulta faz:

e SELECT c.IDCliente, c.Nome AS NomeCliente, c.Email, c.Telefone, p.IDPedido,
p.DataPedido, p.Total: Seleciona os campos que queremos retornar na consulta, incluindo
informacdes dos clientes (IDCliente, Nome, Email, Telefone) e detalhes dos pedidos
(IDPedido, DataPedido, Total).

242

e FROM Clientes ¢ INNER JOIN Pedidos p ON c.IDCliente = p.IDCliente: Especifica as
tabelas que estamos consultando e como elas estdo sendo unidas. O INNER JOIN
combina apenas os registros onde ha correspondéncia entre o ID do cliente nas duas
tabelas (Clientes e Pedidos).

e WHERE p.DataPedido >= DATE_SUB(NOW(), INTERVAL 3 MONTH): Filtra os resultados
para incluir apenas os pedidos feitos nos ultimos 3 meses. Isso garante que estamos
lidando apenas com pedidos recentes.

e ORDER BY p.DataPedido DESC: Ordena os resultados com base na Data do Pedido em
ordem decrescente, mostrando os pedidos mais recentes primeiro.

Ao usar o INNER JOIN neste contexto, conseguimos obter uma visdo completa dos clientes que
fizeram pedidos recentes, juntamente com os detalhes especificos desses pedidos. Isso nos
permite realizar andlises detalhadas e tomar decisGes informadas com base nos dados
combinados de multiplas fontes.

Este exemplo ilustra como as jungles sdo fundamentais para integrar dados relacionados de
maneira eficiente, facilitando a andlise e manipulacdo de informacdes em sistemas de banco de
dados.

INNER JOIN

KEY
VAL_X
VAL_Y

SELECT
<SELECT LIST>
FROM TABLE_A A Y1
INNER JOIN TABLE_B B
ON A.KEY = B.KEY
Y2

Secao 8.4: Comando LEFT JOIN

O LEFT JOIN retorna todos os registros da tabela a esquerda da juncdo (tabela da esquerda),
junto com os registros correspondentes da tabela a direita da juncado (tabela da direita). Se ndo
houver correspondéncia, retorna NULL para os campos da tabela da direita. Por exemplo,
queremos listar todos os clientes e seus pedidos, mesmo que alguns clientes ndo tenham feito
pedidos.

243

Unset
SELECT c.IDCliente, c.Nome, p.IDPedido, p.DataPedido
FROM Clientes c¢

LEFT JOIN Pedidos p ON c.IDCliente = p.IDCliente;

Explicacdo: O LEFT JOIN combina todos os registros da tabela Clientes com registros
correspondentes na tabela Pedidos, retornando todos os clientes, inclusive aqueles que ndo tém
pedidos (onde os campos de Pedidos serdo NULL).

LEFT JOIN

Vamos explorar um exemplo mais criativo utilizando o LEFT JOIN entre as tabelas Clientes e
Pedidos para analisar o comportamento de compra dos clientes em um periodo especifico.
Suponha que queremos analisar quantos clientes cadastrados em um determinado periodo
fizeram pelo menos um pedido. Vamos listar todos os clientes que se cadastraram no Ultimo ano
e mostrar detalhes dos pedidos, se houver, para esses clientes.

Unset

SELECT «c¢.IDCliente, <c.Nome AS NomeCliente, c.DataCadastro,
c.Cidade,

p.IDPedido, p.DataPedido, p.Total
FROM Clientes c

LEFT JOIN Pedidos p ON c.IDCliente = p.IDCliente

244

WHERE c.DataCadastro >= DATE_SUB(CURDATE(), INTERVAL 1 YEAR)

ORDER BY c.DataCadastro DESC;

Neste exemplo, estamos utilizando o LEFT JOIN para unir as tabelas Clientes e Pedidos com

base no ID do cliente. Aqui estd o que cada parte da consulta realiza:

SELECT c.IDCliente, c.Nome AS NomeCliente, c.DataCadastro, c.Cidade, p.IDPedido,
p.DataPedido, p.Total: Seleciona os campos que queremos retornar na consulta, incluindo
informacdes dos clientes (IDCliente, Nome, DataCadastro, Cidade) e detalhes dos
pedidos (IDPedido, DataPedido, Total).

FROM Clientes ¢ LEFT JOIN Pedidos p ON c.IDCliente = p.IDCliente: Define as tabelas
que estamos consultando e como elas estdo sendo unidas. O LEFT JOIN garante que
todos os clientes da tabela da esquerda (Clientes) sejam incluidos, independentemente
de terem registros correspondentes na tabela da direita (Pedidos). Se um cliente nao tiver
pedidos correspondentes, os campos relacionados aos pedidos serdao NULL.

WHERE c.DataCadastro >= DATE_SUB(CURDATE(), INTERVAL 1 YEAR): Filtra os clientes
que se cadastraram nos Ultimos 12 meses, utilizando a funcdo DATE_SUB para subtrair
um ano da data atual (CURDATE()).

ORDER BY c.DataCadastro DESC: Ordena os resultados com base na Data de Cadastro
dos clientes em ordem decrescente, para visualizar os clientes mais recentes primeiro.

Este exemplo permite analisar o comportamento de compra dos clientes recentes, identificando

quantos deles fizeram pelo menos um pedido desde o cadastro. Essa informacdo pode ser

valiosa para estratégias de marketing direcionadas ou para entender a taxa de conversdo de

novos clientes em compradores ativos.

Ao utilizar o LEFT JOIN de forma criativa e estratégica, podemos explorar relacionamentos de

dados complexos de maneira eficaz, agregando valor as andlises e tomadas de decisdo

baseadas em dados.

245

LEFT JOIN

SELECT

<SELECT LIST>
FROM TABLE_A A X1 Y1
LEFT JOIN TABLE_B B

ON A.KEY = B.KEY 2 xz Y2

Secao 8.5: Comando RIGHT JOIN

O RIGHT JOIN ¢é o oposto do LEFT JOIN. Ele retorna todos os registros da tabela a direita da
juncdo (tabela da direita), junto com os registros correspondentes da tabela a esquerda da
juncao (tabela da esquerda). Se ndo houver correspondéncia, retorna NULL para os campos da

tabela da esquerda.

Exemplo Pratico: Queremos listar todos os pedidos e seus clientes, mesmo que alguns pedidos

nao tenham clientes correspondentes.

Unset
SELECT c.IDCliente, c.Nome, p.IDPedido, p.DataPedido
FROM Clientes c¢

RIGHT JOIN Pedidos p ON c.IDCliente = p.IDCliente;

O RIGHT JOIN combina todos os registros da tabela Pedidos com registros correspondentes na
tabela Clientes, retornando todos os pedidos, inclusive aqueles sem cliente correspondente
(onde os campos de Clientes serdo NULL). Para um exemplo e pratico do uso do RIGHT JOIN
entre as tabelas Clientes e Pedidos, vamos explorar uma situacdo onde desejamos analisar o
comportamento de compra de clientes e verificar a influéncia das campanhas de marketing.

246

Suponha que uma empresa deseja analisar o impacto de uma nova campanha de marketing na

conversdo de vendas, incluindo todos os clientes, mesmo aqueles que ainda ndo fizeram

pedidos desde o inicio da campanha.

Unset

SELECT «c¢.IDCliente, <c.Nome AS NomeCliente, c.DataCadastro,
c.Cidade,

p.IDPedido, p.DataPedido, p.Total

FROM Clientes c

RIGHT JOIN Pedidos p ON c.IDCliente = p.IDCliente

WHERE p.DataPedido >= '20624-01-01' -- Supondo que a campanha
comegou em 2024

OR p.IDPedido IS NULL; -- Inclui clientes sem

pedidos desde o inicio da campanha

Neste exemplo, estamos utilizando o RIGHT JOIN para unir as tabelas Clientes e Pedidos,
garantindo que todos os clientes sejam listados, independentemente de terem feito pedidos

desde o inicio da campanha de marketing.

SELECT c.IDCliente, c.Nome AS NomeCliente, c.DataCadastro, c.Cidade, p.IDPedido,
p.DataPedido, p.Total: Seleciona os campos que queremos retornar na consulta, incluindo
informacdes dos clientes (IDCliente, Nome, DataCadastro, Cidade) e detalhes dos
pedidos (IDPedido, DataPedido, Total).

247

e FROM Clientes ¢ RIGHT JOIN Pedidos p ON c.IDCliente = p.IDCliente: Define as tabelas
que estamos consultando e como elas estdo sendo unidas. O RIGHT JOIN garante que
todos os pedidos da tabela da direita (Pedidos) sejam incluidos, mesmo que ndo haja
registros correspondentes na tabela da esquerda (Clientes). Isso significa que todos os
clientes serdo listados, e os campos relacionados aos pedidos serdo NULL para os
clientes que ndo fizeram pedidos desde o inicio da campanha.

e WHERE p.DataPedido >= '2024-01-01' OR p.IDPedido IS NULL;: Filtra os resultados para
incluir apenas pedidos realizados desde o inicio da campanha de marketing (supondo
que comecou em 2024) ou clientes sem pedidos registrados desde entdo.

Este exemplo permite a empresa analisar o impacto direto da campanha de marketing na
conversao de vendas, identificando clientes que responderam a campanha e aqueles que ainda
nao foram convertidos. Além disso, ao utilizar o RIGHT JOIN, garantimos que todos os clientes
sejam incluidos na analise, mesmo que nao tenham registros de pedidos recentes.

Ao explorar e compreender o uso de juncdes como RIGHT JOIN em situacdes praticas como
esta, € possivel obter insights valiosos para otimizar estratégias de marketing, melhorar a

retencdo de clientes e impulsionar o crescimento do negdcio.

RIGHT JOIN
><[>'l
> - =
8|8
SELECT

qu“SELEnTk:fEA A E X1 Vi

RIGHT JOIN TABLE_B B
ON A.KEY = B.KEY 2 X2 Y2
- nuLL| Y3

Secdao 8.6: Comando FULL OUTER JOIN

O FULL OUTER JOIN retorna todos os registros quando héd uma correspondéncia nas colunas da
esquerda ou da direita. Retorna NULL em ambos os lados quando ndo ha correspondéncia. Por
exemplo, queremos listar todos os clientes e todos os pedidos, combinando-os onde houver

correspondéncia.

248

Unset
SELECT c.IDCliente, c.Nome, p.IDPedido, p.DataPedido
FROM Clientes c

FULL OUTER JOIN Pedidos p ON c.IDCliente = p.IDCliente;

FULL OUTER JOIN

O FULL OUTER JOIN combina todos os registros da tabela Clientes com todos os registros da
tabela Pedidos, retornando todos os clientes e todos os pedidos, combinando-os onde houver
correspondéncia. Se ndo houver correspondéncia, os campos do lado oposto serdo NULL.
Vamos explorar um exemplo interessante onde o uso do FULL OUTER JOIN entre as tabelas
Clientes e Pedidos pode revelar informacdes Uteis sobre a interacdo dos clientes com a
plataforma de vendas, incluindo andlises de comportamento de compra e tendéncias de
mercado. Suponha que queremos analisar como os clientes novos, que se cadastraram
recentemente na plataforma, interagem com os pedidos realizados. Também queremos
identificar clientes antigos que ndo fizeram pedidos recentes.

Unset

SELECT «c¢.IDCliente, <c.Nome AS NomeCliente, c.DataCadastro,
c.Cidade,

p.IDPedido, p.DataPedido, p.Total
FROM Clientes c

FULL OUTER JOIN Pedidos p ON c.IDCliente = p.IDCliente

249

|
WHERE c.DataCadastro >= '2023-061-01"' OR p.DataPedido »>=
'2023-01-01";

Neste exemplo, estamos utilizando o FULL OUTER JOIN para unir as tabelas Clientes e Pedidos,

garantindo que todos os registros de ambas as tabelas sejam incluidos na consulta final. Em

seguida, aplicamos uma condicdo WHERE para filtrar os resultados:

SELECT c.IDCliente, c.Nome AS NomeCliente, c.DataCadastro, c.Cidade, p.IDPedido,
p.DataPedido, p.Total: Seleciona os campos que queremos retornar na consulta, incluindo
informacdes dos clientes (IDCliente, Nome, DataCadastro, Cidade) e detalhes dos
pedidos (IDPedido, DataPedido, Total).

FROM Clientes ¢ FULL OUTER JOIN Pedidos p ON c.IDCliente = p.IDCliente: Define as
tabelas que estamos consultando e como elas estdo sendo unidas. O FULL OUTER JOIN
garante que todos os registros de ambas as tabelas (Clientes e Pedidos) sejam incluidos
na saida final da consulta.

WHERE c.DataCadastro >= '2023-01-01" OR p.DataPedido >= '2023-01-01": Esta clausula
WHERE filtra os resultados para incluir apenas clientes que se cadastraram na plataforma
desde o inicio de 2023 OU pedidos realizados desde o inicio de 2023. Isso nos permite
focar na interacdo dos clientes novos e antigos com a plataforma e com os pedidos feitos
recentemente.

Ao usar o FULL OUTER JOIN neste contexto, podemos:

1.

Analisar Comportamentos de Clientes Novos e Antigos: Identificar como os clientes
recentemente cadastrados estdo interagindo com os pedidos, bem como detectar
clientes antigos que ndo realizaram pedidos recentemente.

Ajustar Estratégias de Marketing: Basear as estratégias de marketing e vendas em
insights sobre o comportamento dos clientes novos e antigos, melhorando a
segmentacdo e personalizacdo das campanhas.

Melhorar a Experiéncia do Cliente: Usar dados obtidos para oferecer promocoes
direcionadas e experiéncias personalizadas, aumentando a satisfacdo e fidelidade dos
clientes.

O FULL OUTER JOIN é uma ferramenta poderosa para analisar conjuntos de dados complexos

em bancos de dados SQL. Ele permite uma visdo abrangente das interag8es entre clientes e

250

pedidos, facilitando decisdes estratégicas informadas para melhorar o desempenho e a eficacia

das operacdes de vendas e marketing.

FULL OUTER JOIN

KEY
VAL_X
VAL_Y

SELECT

<SELECT LIST> Y1
FROM TABLE_A A
FULL OUTER JOIN TABLE_B B Y2
ON A.KEY = B.KEY
X3 |NULL
NULL| Y3

Secado 8.7: Comando CROSS JOIN

O CROSS JOIN produz o produto cartesiano de duas tabelas, ou seja, combina cada linha da
tabela a esquerda com cada linha da tabela a direita. Por exemplo, queremos listar todas as

combinacdes possiveis entre clientes e produtos.

Unset
SELECT c.Nome AS Cliente, p.Nome AS Produto
FROM Clientes c

CROSS JOIN Produtos p;

O CROSS JOIN combina cada registro da tabela Clientes com cada registro da tabela Produtos,
retornando todas as combinacdes possiveis entre clientes e produtos. Vamos explorar um
exemplo mais criativo do uso do CROSS JOIN entre as tabelas Clientes e Pedidos para uma
aplicacdo pratica e educativa. Suponha que estamos desenvolvendo uma aplicacdo de andlise
de perfil de compra para uma rede de lojas de esportes. Queremos explorar todas as possiveis
combinacdes entre clientes e pedidos para entender melhor o comportamento de compra dos

clientes em diferentes faixas etarias e cidades.

251

CROSS JOIN

Unset

SELECT c.Nome AS Cliente, c.Idade, c.Cidade, p.IDPedido,
p.DataPedido, p.Total, p.Status

FROM Clientes c

CROSS JOIN Pedidos p;

Neste exemplo, utilizamos o CROSS JOIN para combinar cada registro da tabela Clientes com
cada registro da tabela Pedidos, resultando em uma tabela expandida que mostra todas as
combinagdes possiveis entre clientes e pedidos.

e SELECT c.Nome AS Cliente, c.ldade, c.Cidade, p.IDPedido, p.DataPedido, p.Total, p.Status:
Selecionamos 0s campos que queremos retornar na consulta, incluindo informacdes
detalhadas sobre o cliente (home, idade, cidade) e informacdes especificas do pedido (ID,
data, total, status).

e FROM Clientes ¢ CROSS JOIN Pedidos p: Definimos as tabelas que estamos consultando
e como elas estdao sendo combinadas. O CROSS JOIN nado requer uma condicdo de
juncdo explicita, o que significa que cada linha da tabela Clientes é combinada com todas
as linhas da tabela Pedidos.

Ao usar o CROSS JOIN neste contexto especifico, podemos:

1. Analisar o Comportamento de Compra por Faixa Etaria e Localizacdo: Ao combinar
clientes com pedidos, podemos visualizar como diferentes grupos etérios e clientes em
diversas cidades interagem com os produtos e servicos oferecidos pela loja de esportes.

252

2. ldentificar Tendéncias de Consumo: Observar padroes de compra, como clientes mais
jovens de determinada cidade preferem certos produtos ou como pedidos variam ao
longo do tempo em diferentes localizacdes.

3. Planejar Estratégias de Marketing Direcionadas: Usar os insights obtidos para
desenvolver campanhas de marketing personalizadas que atendam melhor as
necessidades e preferéncias especificas dos clientes em diferentes segmentos

demogréficos e geograficos.

O CROSS JOIN é uma ferramenta poderosa para explorar e entender as relagdes entre
conjuntos de dados em bancos de dados SQL. No contexto de uma aplicacdo de analise de
perfil de compra para uma rede de lojas de esportes, ele nos permite obter insights valiosos
sobre o comportamento dos clientes e otimizar estratégias de negdcios para impulsionar o
crescimento e a satisfacdo do cliente.

As juncoes sdo fundamentais para consultas eficientes em SQL, permitindo combinar dados de
multiplas tabelas de maneira estruturada e organizada. Cada tipo de juncdo possui um propdsito
especifico que pode ser aplicado conforme as necessidades de recuperar dados relacionados
de forma precisa e eficiente. A escolha do tipo correto de juncdo depende dos requisitos da

consulta e das relacdes entre as tabelas envolvidas.

Products
Product = Product Image g Prod = Employee g
r
Mouse § @
Keyboard gg.g 6
Mouse Pad E "

Employees

5§ Employee Image g oo

lin Necesario ﬁ E
John Doe ﬁ% E
.

Eric Doe E

Secao 8.8: Subconsultas (Subqueries) Exploradas

Al B 3o |l |5 mo| 1] | Bo o

As subconsultas sdo uma técnica avancada em SQL que permite incorporar consultas aninhadas
dentro de consultas principais, ampliando significativamente a capacidade de manipulagdo e

253

extracdo de dados de bancos de dados relacionais. Elas podem ser aplicadas em diversas
cldusulas SQL, como SELECT, WHERE, FROM e UPDATE, oferecendo flexibilidade e precisdo na
recuperacdo de informacdes conforme as necessidades do usudrio.

Na clausula SELECT, as subconsultas possibilitam a inclusdo de dados calculados ou filtrados de
outras tabelas diretamente dentro dos resultados da consulta principal. Este recurso é
particularmente (til para enriquecer os dados exibidos com informacdes de tabelas relacionadas.

Vamos usar as seguintes tabelas para descrever alguns exemplos de subconsulta de uma loja de
material de construcdo:

1. Materiais:
o cod_material: Identificador Unico do material.
o nome: Nome do material.
o cod_fornecedor: Chave estrangeira que referencia o fornecedor do material.
o quant_estoque_min: Quantidade minima aceitdvel em estoque para o material.
2. ltens_Pedidos:
o num_pedido: Ndmero Unico do pedido.
o cod_material: Chave estrangeira que referencia o material pedido.
o quant_pedida: Quantidade solicitada do material no pedido.
3. Fornecedores:
o cod_fornecedor: Identificador Unico do fornecedor.

o nome: Nome do fornecedor.

Essas descricdes fornecem uma visdo geral das tabelas e dos campos envolvidos nos exemplos
de consultas SQL com subconsultas. Agora, para ilustrar, consideremos a necessidade de listar
todos os materiais juntamente com o nome do fornecedor de cada material:

Unset

SELECT cod_material, nome,

254

(SELECT nome FROM Fornecedores WHERE cod_fornecedor =
Materiais.cod_fornecedor) AS nome_fornecedor

FROM Materiais;

Neste exemplo, a subconsulta (SELECT nome FROM Fornecedores WHERE cod_fornecedor =
Materiais.cod_fornecedor) é utilizada dinamicamente para buscar e incluir o nome do fornecedor
correspondente a cada material na tabela Materiais.

As subconsultas na cldusula WHERE permitem filtrar os resultados da consulta principal com
base em condicdes calculadas em uma consulta interna. Essa técnica € essencial para aplicar
filtros complexos e condicionais aos dados recuperados. Suponha que desejamos encontrar
todos os pedidos onde a quantidade pedida de um material € superior ao estoque minimo
disponivel:

Unset
SELECT num_pedido, cod_material, quant_pedida
FROM Itens_Pedidos

WHERE quant_pedida > (SELECT quant_estoque_min FROM Materiais
WHERE cod_material = Itens_Pedidos.cod_material);

Neste caso, a subconsulta (SELECT quant_estoque_min FROM Materiais WHERE cod_material =
ltens_Pedidos.cod_material) € empregada para comparar dinamicamente a quantidade pedida
com o estoque minimo disponivel para cada material em cada pedido.

As subconsultas correlacionadas sdo aquelas onde a subconsulta depende dos valores da
consulta principal. E comum usar um alias para referenciar a tabela da consulta principal dentro
da subconsulta, facilitando a correlacdo dos dados.

Para exemplificar, vamos encontrar todos os fornecedores que possuem materiais com estoque
abaixo do minimo:

255

Unset
SELECT cod_fornecedor, nome
FROM Fornecedores f
WHERE EXISTS (
SELECT 1
FROM Materiais m
WHERE m.cod_fornecedor = f.cod_fornecedor

AND m.quant_estoque < m.quant_estoque_min

);

Neste exemplo, a subconsulta (SELECT 1 FROM Materiais m WHERE m.cod_fornecedor =
f.cod_fornecedor AND m.quant_estoque < m.quant_estoque_min) estd correlacionada com a
tabela de fornecedores (utilizando o alias f), verificando se existe pelo menos um material de
cada fornecedor cujo estoque estd abaixo do minimo.

As subconsultas correlacionadas também sdo aplicaveis em instrucbes de UPDATE para
modificar registros com base em condicdes de outras tabelas, proporcionando flexibilidade
adicional na manipulagcdo de dados. As subconsultas sdo uma ferramenta poderosa em SQL,
permitindo consultas mais sofisticadas e eficientes ao banco de dados. Ao dominar o uso de
subconsultas em diferentes contextos, os profissionais de banco de dados podem realizar
andlises detalhadas e manipular dados de maneira mais flexivel e precisa, adaptando-se as
exigéncias especificas de cada aplicacdo e ambiente de banco de dados.

Secao 8.9: Operadores e Condicoes Avancadas em SQL

Nesta secdo, exploraremos os operadores Iégicos e de comparagdo avangados no contexto de
consultas SQL. Vamos abordar como utilizar esses operadores para criar condi¢des complexas
que atendam as necessidades especificas das consultas. Este capitulo é fundamental para
estudantes que buscam um entendimento profundo das capacidades do SQL para a analise e
manipulacdo de dados.

1. Utilizacdo de Operadores Logicos (AND, OR, NOT)

256

Os operadores logicos sdo essenciais para combinar multiplas condicdes em consultas SQL,
permitindo a construcao de légica condicional avancada para a recuperacdo de dados. Aqui
estdo os principais operadores ldgicos:

e AND: Retorna registros onde todas as condicdes especificadas sdo verdadeiras.
e OR: Retorna registros onde pelo menos uma das condi¢des especificadas € verdadeira.

s

e NOT: Inverte o resultado de uma condicdo. Por exemplo, NOT TRUE é FALSE e
vice-versa.

Exemplo Pratico: Suponha que queremos selecionar materiais que tém estoque abaixo do
minimo e ndo pertencem a categoria "Eletronicos":

Unset

SELECT *

FROM Materiais

WHERE quant_estoque < quant_estoque_min

AND categoria <> 'Eletronicos’;

Neste exemplo:
e quant_estoque < quant_estoque_min: Verifica se o estoque estd abaixo do minimo.
e categoria <> 'Eletrénicos': Verifica se 0 material ndo pertence a categoria "Eletrénicos".

e O operador AND combina essas duas condicdes, retornando materiais que atendem a
ambos os critérios.
2. Operadores de Comparacdao (>, <, =, LIKE, IN, BETWEEN)

Os operadores de comparacdo sdo usados para comparar valores em expressdes SQL,
permitindo aplicar condicdes especificas as consultas. Aqui estdo alguns operadores comuns:

e > (maior que), < (menor que), = (igual a): Comparacao direta entre valores.

e LIKE: Usado para comparar um valor a um padrdo usando caracteres curinga (% para
qualquer string, _ para um Unico caractere).

257

e IN: Verifica se um valor estd presente em uma lista de valores.
e BETWEEN: Verifica se um valor esta dentro de um intervalo especificado.

Exemplo Pratico: Vamos selecionar pedidos com valor total entre $50 e $100:

Unset
SELECT *
FROM Pedidos

WHERE valor_total BETWEEN 50 AND 100;

Neste exemplo, o operador BETWEEN 50 AND 100 seleciona pedidos com valor_total dentro do
intervalo de $50 a $100.

3. Condicées Compostas

Crias condicdes compostas combinando multiplas condicdes utilizando operadores I6gicos para
refinar os resultados das consultas. Essas condi¢cdes podem ser complexas e envolver multiplos
critérios de filtragem.

Exemplo Prético: Suponha que queremos selecionar pedidos de materiais onde a quantidade
pedida é maior que 50 unidades e o valor unitério é inferior a $1:

Unset

SELECT *

FROM Itens_Pedidos
WHERE quant_pedida > 50

AND valor_unitario < 1;

Neste exemplo:

258

e quant_pedida > 50: Verifica se a quantidade pedida é superior a 50 unidades.
e valor_unitario < 1: Verifica se o valor unitario é inferior a $1.

e O operador AND combina as duas condicbes para retornar itens de pedidos que
atendem a ambos os critérios.

Os operadores légicos e de comparacdo avancados sao ferramentas essenciais para formular
consultas SQL poderosas e precisas. Eles permitem construir condicGes complexas para filtrar
dados com base em multiplos critérios. Ao dominar esses conceitos, vocé poderd realizar
consultas mais sofisticadas e eficientes em seus bancos de dados, aprimorando
significativamente sua capacidade de andlise e manipulacdo de dados. Este conhecimento é
crucial para qualquer profissional que trabalhe com bancos de dados e deseja maximizar a
utilidade e eficiéncia das suas consultas SQL.

Vamos fazer um exemplo um pouco mais complexo para ilustrar as subconsultas. Nesse caso,
queremos encontrar materiais que tenham sido pedidos em quantidades superiores a média de
pedidos por fornecedor.

Passos para Elaboracdo da Consulta:
1. Calcular a Média de Pedidos por Fornecedor:

o Primeiro, precisamos calcular a média de pedidos para cada fornecedor. Isso
envolve unir as tabelas Fornecedores e Pedidos para obter o nimero médio de
pedidos por fornecedor.

2. Selecionar Materiais com Quantidades Superiores a Média:

o Em seguida, vamos comparar a quantidade de cada material pedida com a média
calculada na etapa anterior. Para isso, precisamos unir as tabelas Materiais,
Pedidos e Fornecedores para obter a informagdo necesséria.

A consulta sera estruturada em duas partes principais: uma subconsulta para calcular a média de
pedidos por fornecedor e outra para selecionar materiais que tenham sido pedidos em
quantidades superiores a média calculada.

259

Unset

SELECT

m.cod_material, m.nome AS nome_material, m.descricao,

ip.quant_pedida

FROM Materiais m

JOIN Itens_Pedidos ip ON m.cod_material = ip.cod_material

WHERE ip.quant_pedida > (

SELECT AVG(p.quant_itens)

FROM Pedidos p

JOIN Fornecedores f ON p.cod_fornecedor = f.cod_fornecedor

WHERE f.cod_fornecedor = m.cod_fornecedor

)

Explicagdo da Consulta:

1. Subconsulta para Calcular a Média:

O

SELECT AVG(p.quant_itens) FROM Pedidos p JOIN Fornecedores f ON
p.cod_fornecedor = f.cod_fornecedor WHERE f.cod_fornecedor =
m.cod_fornecedor: Esta subconsulta calcula a média de quant_itens (quantidade
de itens pedidos) para cada fornecedor. Ela é correlacionada com a consulta
principal pelo cédigo do fornecedor (m.cod_fornecedor).

2. Consulta Principal:

o

SELECT m.cod_material, m.nome AS nome_material, m.descricao,
ip.quant_pedida FROM Materiais m JOIN ltens_Pedidos ip ON m.cod_material =
ip.cod_material WHERE ip.quant_pedida > (...); A consulta principal seleciona os
materiais (Materiais m) e suas respectivas quantidades pedidas (ltens_Pedidos ip).
Ela usa a subconsulta como um critério de filtro, selecionando apenas os materiais
onde a quantidade pedida (ip.quant_pedida) é maior que a média de pedidos por
fornecedor calculada na subconsulta.

Resultado Esperado:

260

Esperamos obter uma lista de materiais que foram pedidos em quantidades superiores a média
de pedidos por fornecedor. Isso nos ajuda a identificar quais materiais tém demanda acima do
padrdo estabelecido pelos pedidos anteriores.

As subconsultas sdo poderosas ferramentas em SQL que permitem realizar consultas complexas
e obter insights detalhados sobre os dados. Neste exemplo, utilizamos subconsultas para
calcular uma média especifica e aplicamos essa informacdo para filtrar os resultados de uma
consulta principal. Com isso, podemos extrair informacdes valiosas sobre o comportamento dos
pedidos em relacdo aos materiais fornecidos por diferentes fornecedores

Secado 8.10: Manipulacao de Strings e Datas

A manipulagdo de strings e datas é uma habilidade essencial em SQL, pois permite transformar e
formatar dados textuais e temporais de acordo com as necessidades especificas das consultas.
Esta secdo detalha as principais fungdes de string e data, fornecendo exemplos préticos de sua
aplicacao.

1. Funcgdes de String

As fungles de string sdo utilizadas para manipular e formatar dados textuais. Abaixo estdo
algumas das funcdes mais comuns e suas respectivas utilidades:

e CONCAT(str1, str2, ...): Concatena duas ou mais strings em uma Unica string.

e SUBSTRING(str, start, length): Retorna uma parte da string especificada, comecando na
posicao start e com comprimento length.

e | ENGTH(str): Retorna o comprimento da string especificada.

e UPPER(str), LOWER(str): Converte uma string para mailsculas ou minusculas,
respectivamente.

e TRIM(str): Remove espagos em branco do inicio e do fim da string.
e REPLACE(str, old, new): Substitui todas as ocorréncias de old por new na string.

Exemplo de Uso:

Unset

261

SELECT

CONCAT(nome, ' - ', descricao) AS info_completa,
SUBSTRING(nome, 1, 3) AS inicio_nome,
LENGTH(descricao) AS tamanho_descricao,
UPPER(nome) AS nome_maiusculo,

REPLACE (descricao, ‘eletrica’, ‘elétrica’) AS

descricao_corrigida

FROM Materiais;

Explicacdo:

2.

CONCAT(nome, ' - ', descricao): Concatena o nome do material com a descricdo,
separados por um hifen.

SUBSTRING(nome, 1, 3): Extrai os trés primeiros caracteres do nome.
LENGTH(descricao): Retorna o comprimento da descricdo.
UPPER(nome): Converte o nome para maiusculas.

REPLACE(descricao, 'eletrica’, 'elétrica’): Substitui todas as ocorréncias de "eletrica" por
"elétrica" na descricao.
Funcdes de Data e Hora

As funcdes de data e hora permitem manipular e calcular datas e hordrios dentro das consultas

SQL. Aqui estao algumas das fungdes mais utilizadas:

NOW(): Retorna a data e hora atuais.

DATEADD(intervalo, numero, data): Adiciona um ndmero especificado de intervalos de
tempo (por exemplo, dias, meses) a uma data.

DATEDIFF(intervalo, data1, data2): Retorna o intervalo entre duas datas.

Exemplo de Uso:

262

Unset
SELECT
num_pedido,
data_pedido,
DATEADD(day, 7, data_pedido) AS data_entrega_prevista,
DATEDIFF(day, data_pedido, data_recebimento) AS dias_entrega

FROM Pedidos;

Explicacdo:

e DATEADD(day, 7, data_pedido): Adiciona sete dias a data do pedido para calcular a data
de entrega prevista.

e DATEDIFF(day, data_pedido, data_recebimento): Calcula o numero de dias entre a data

do pedido e a data de recebimento.

3. Formatacdo de Datas e Strings

A formatacdo de datas e strings é crucial para apresentar dados de maneira legivel e
compreensivel. Algumas fun¢cdes importantes incluem:

e DATE_FORMAT(data, formato): Formata uma data de acordo com o formato especificado.

e CAST(valor AS tipo): Converte um valor para um tipo de dados especifico (por exemplo,

de string para data).

Exemplo de Uso:

Unset

SELECT

263

num_pedido,
DATE_FORMAT (data_pedido, '%d/%m/%Y') AS data_formatada,
CAST(quant_itens AS CHAR) AS quant_itens_str

FROM Pedidos;

Explicacdo:

e DATE_FORMAT(data_pedido, '%d/%m/%Y'). Formata a data do pedido no formato
dia/més/ano.

e CAST(quant_itens AS CHAR): Converte a quantidade de itens de numero para string.

As funcdes de manipulacdo de strings e datas sdo ferramentas poderosas que permitem realizar
transformacdes e apresentac8es de dados mais significativas nas consultas SQL. Com essas
funcdes, é possivel concatenar strings, extrair substrings, manipular datas e formatar dados
conforme necessadrio para relatérios e andlises. Dominar essas funcées amplia significativamente
as possibilidades de exploracado e interpretacdo dos dados armazenados no banco de dados.

Para ilustrar o uso avancado de manipulagdo de strings e datas, consideremos um cenario onde
queremos calcular o tempo médio de entrega dos pedidos em dias. Extrairemos informacdes das
tabelas de Pedidos, Materiais e Fornecedores. Este exemplo demonstra como usar subconsultas
e funcles de data para realizar uma andlise detalhada e condicional dos dados.

Passos para Elaborar a Subconsulta:
1. ldentificar os materiais que foram pedidos mais de uma vez:

o Utilizaremos a tabela Itens_Pedidos para contar quantas vezes cada material foi
pedido.

o Faremos uma subconsulta na cldusula SELECT para buscar o nimero de pedidos
de cada material.

2. Relacionar os materiais com seus fornecedores:

264

o Vamos utilizar a tabela Materiais para obter o nome do fornecedor de cada
material.

o Faremos uma subconsulta na clausula SELECT para buscar dinamicamente o
nome do fornecedor para cada material.

3. Filtrar os materiais que foram pedidos mais de uma vez:

o A condicdo de filtro sera aplicada na subconsulta WHERE para selecionar apenas
0s materiais que foram pedidos mais de uma vez.

SQL Completo:

Unset
SELECT
m.cod_material,
m.nome AS nome_material,

(SELECT nome FROM Fornecedores WHERE cod_fornecedor =
m.cod_fornecedor) AS nome_fornecedor

FROM Materiais m
WHERE (
SELECT COUNT(*)
FROM Itens_Pedidos ip
WHERE ip.cod_material = m.cod_material

) > 1;

Explicacdo Detalhada:

e Selecdo Principal (SELECT):

265

o m.cod_material, m.nome AS nome_material: Seleciona o cédigo e o nome de
cada material da tabela Materiais.

e Subconsulta para Nome do Fornecedor:

o (SELECT nome FROM Fornecedores WHERE cod_fornecedor =
m.cod_fornecedor) AS nome_fornecedor: Esta subconsulta busca dinamicamente
o nome do fornecedor (nome) da tabela Fornecedores usando o cdédigo de
fornecedor (cod_fornecedor) relacionado na tabela Materiais (m).

e Filtragem com Subconsulta (WHERE):

o WHERE (SELECT COUNT(*) FROM ltens_Pedidos ip WHERE ip.cod_material =
m.cod_material) > 1: Utiliza uma subconsulta na cldusula WHERE para contar
quantas vezes cada material (m.cod_material) aparece na tabela Itens_Pedidos
(ip). A condicdo > 1 garante que apenas os materiais pedidos mais de uma vez
sejam incluidos no resultado final.

O resultado dessa consulta serd uma lista de materiais que foram pedidos mais de uma vez,
junto com o nome do fornecedor de cada material. Isso proporciona uma visao detalhada dos
materiais que tém maior demanda e de quem sdo os fornecedores desses materiais.

As subconsultas sdo extremamente Uteis para realizar consultas complexas e condicionais em
bancos de dados SQL. Elas permitem agregar informac¢des de varias tabelas em uma Unica
consulta, facilitando andlises detalhadas e precisas dos dados. Este exemplo demonstra como
usar subconsultas de forma criativa para obter informacdes especificas e relevantes de um
conjunto de dados, aprimorando sua capacidade de realizar analises aprofundadas.

Secdo 8.11: Vistas (Views)

As vistas, ou views, sdo objetos de banco de dados que representam uma consulta SQL
armazenada. Elas permitem armazenar consultas complexas como se fossem tabelas virtuais,
facilitando o acesso aos dados de forma simplificada e segura. Nesta secdo, vamos explorar o
que sdo vistas, suas aplicagdes praticas, como sado criadas e utilizadas para simplificar consultas
complexas, além de discutir a atualizagdo de dados através delas.

As vistas sdo consultas SQL salvas no banco de dados como objetos independentes. Elas ndo
armazenam dados fisicamente, apenas definem uma visualizacdo virtual dos dados existentes
em uma ou mais tabelas. As principais caracteristicas das vistas incluem:

e Consultas Salvas: Permitem salvar consultas SQL complexas que sdo frequentemente
utilizadas.

266

Seguranca dos Dados: Podem ocultar detalhes sensiveis ou complexos dos dados
subjacentes.

Simplicidade de Acesso: Simplificam o acesso aos dados ao oferecer uma camada de
abstracdo sobre a estrutura e o esquema das tabelas.

Desempenho: Podem melhorar o desempenho ao pré-compilar a consulta e armazenar o
resultado em cache.

AplicacOes Praticas das Vistas

1.

Simplificacdo de Consultas Complexas: Permitem aos desenvolvedores e analistas
acessar dados complexos sem a necessidade de entender a légica subjacente a cada
vez que a consulta é feita.

Seguranca e Controle de Acesso: Sdo usadas para controlar quais partes dos dados sdo
acessiveis aos usuarios, mostrando apenas as informacdes relevantes para cada
contexto.

Padroniza¢do de Consultas: Promovem a reutilizacdo de Iégica de consulta padronizada
em vdrias partes de uma aplicacdo ou entre diferentes aplicativos.

Agregacao de Dados: Podem ser usadas para agregar dados de vérias tabelas em uma
visdo consolidada para andlise de negdcios.

Para criar uma vista, utilizamos a declaragdo CREATE VIEW. Vamos considerar um exemplo

pratico baseado nas tabelas de materiais, pedidos e fornecedores mencionadas anteriormente:

Unset

CREATE VIEW vw_pedidos_material AS

SELECT p.num_pedido, p.data_pedido, p.data_recebimento, m.nome AS
nome_material, m.descricao, m.quant_estoque

FROM Pedidos p

JOIN Itens_Pedidos ip ON p.num_pedido = ip.num_pedido

JOIN Materiais m ON ip.cod_material = m.cod_material;

267

Neste exemplo:

e Criamos uma vista chamada vw_pedidos_material que combina informacdes de pedidos
com detalhes dos materiais associados a cada pedido.

e A vista resultante contém os numeros de pedido, datas relevantes, nome do material,
descricdo e quantidade em estoque.

Uma vez criada, a vista vw_pedidos_material pode ser consultada da mesma forma que uma
tabela:

Unset

SELECT * FROM vw_pedidos_material WHERE quant_estoque < 10;

Isso simplifica a consulta, pois encapsula a I6gica complexa necessdria para unir as tabelas
Pedidos, Itens_Pedidos e Materiais.

Em alguns sistemas de gerenciamento de banco de dados (SGBDs), é possivel atualizar dados
através de vistas, desde que a vista satisfaca certas condi¢des, como:

e A vista deve se referir a uma Unica tabela base (ndo pode envolver juncdes complexas ou
subconsultas).

e A vista deve selecionar colunas de forma que seja possivel determinar como atualizar os
dados de maneira univoca.

Unset

UPDATE vw_pedidos_material SET quant_estoque = 15 WHERE
num_pedido = 111;

As vistas sdao ferramentas poderosas em bancos de dados relacionais, oferecendo uma camada
de abstracdo que simplifica o acesso e manipulacdo de dados complexos. Elas sdo amplamente
utilizadas para melhorar a seguranca, a eficiéncia e a simplicidade na manipulacdo de
informacdes, especialmente em ambientes com consultas complexas e requisitos de controle de

268

acesso rigorosos. Dominar o uso de vistas pode melhorar significativamente a gestdo e o
desempenho de sistemas baseados em banco de dados.

Secado 8.12: Um Exemplo Pratico Completo

Nesta secdo, exploraremos o uso de consultas SQL avangadas e subconsultas utilizando as
tabelas competition, discipline, event, athlete, nationality, e final_result mostradas no capitulo
anterior. Vamos detalhar passo a passo como formular consultas complexas que extraem
informacdes valiosas dos dados fornecidos.

Vamos mostrar Cada Pais e o Numero de Atletas que Terminaram Sem Colocacdo. Para isso
queremos listar o numero de atletas por pais que ndo terminaram suas provas (is_dnf = TRUE).

Unset
SELECT

n.country_name,

COUNT(*) AS atletas_sem_colocacao
FROM

final_result fr
JOIN

athlete a ON fr.athlete_id = a.id
JOIN

nationality n ON a.nationality_id = n.id
WHERE

fr.is_dnf = TRUE
GROUP BY

n.country_name;

269

Explicagao:

e [Esta consulta agrupa os atletas por pais e conta quantos ndo terminaram suas provas
(is_dnf = TRUE), usando joins entre final_result, athlete, e nationality.

Mais um exemplo: se quisermos mostrar os Nomes de Atletas Mais Populares. Podemos fazer
isso listando os atletas que aparecem mais de uma vez na tabela de resultados finais, indicando
popularidade.

Unset
SELECT

a.first_name,

a.last_name,

COUNT(*) AS num_participacoes
FROM

final_result fr
JOIN

athlete a ON fr.athlete_id = a.id
GROUP BY

a.first_name, a.last_name
HAVING

COUNT(*) > 1;

Explicacdo:

e Esta consulta conta o nimero de participacdes de cada atleta na tabela final_result e lista
agueles que aparecem mais de uma vez.

270

Mais um exemplo: encontrar Todos os Tempos Mais Rapidos do que a Média para Corridas de
1.500 Metros. Vamos identificar os tempos que sdo mais rdpidos que a média para a disciplina de

1500m masculino.

Unset
SELECT
fr.athlete_id,
fr.result
FROM
final_result fr
JOIN
event e ON fr.event_id = e.id
JOIN
discipline d ON e.discipline_id = d.id
WHERE
d.name = '1500m Masculino'’
AND fr.result < (
SELECT AVG(fr2.result)
FROM final_result fr2
JOIN event e2 ON fr2.event_id = e2.id
JOIN discipline d2 ON e2.discipline_id = d2.id

WHERE d2.name = '1500m Masculino'

Explicacao:

271

e A consulta principal compara os tempos dos atletas na disciplina de 1500m masculino
com a média de todos os tempos dessa disciplina, utilizando uma subconsulta para
calcular a média.

Outro exemplo: Encontrar Todos os Atletas que Participaram de Pelo Menos Dois Eventos em
uma Competicdo. Queremos listar os atletas que participaram de pelo menos dois eventos na
mesma competicdo.

Unset
SELECT

fr.athlete_id,

COUNT (DISTINCT e.id) AS num_eventos
FROM

final_result fr
JOIN

event e ON fr.event_id = e.id
GROUP BY

fr.athlete_id
HAVING

COUNT(DISTINCT e.id) >= 2;

Explicacdo:

e Esta consulta agrupa os resultados finais por atleta e conta o nimero de eventos distintos
em que cada atleta participou, listando aqueles que participaram de pelo menos dois

eventos.

Outro exemplo: Mostrar Corredores que Terminaram Apenas em Primeiro Lugar. Vamos listar os
corredores que sempre terminaram em primeiro lugar nas competicoes.

272

—
Unset
SELECT
a.first_name,
a.last_name
FROM
athlete a
JOIN
final_result fr ON a.id = fr.athlete_id
GROUP BY
a.id
HAVING
MIN(fr.place) = 1 AND MAX(fr.place) = 1;
Explicagao:

e Esta consulta agrupa os resultados finais por atleta e verifica se a posicdo minima e
maxima sdo iguais a 1, indicando que o atleta sempre terminou em primeiro lugar.

Vamos fazer dois Exemplos Mais Complexos com Subconsultas com esse mesmo problema,
dessa vez, que utilizam subconsultas envolvendo trés ou mais tabelas ao mesmo tempo. Esses
exemplos demonstrardo o poder das subconsultas em SQL para realizar andlises detalhadas e

inter-relacionadas.
Exemplo 1: Encontrar os Melhores Atletas de Cada Pais para Cada Disciplina

Este exemplo mostra como podemos usar subconsultas para identificar os melhores atletas de
cada pais para cada disciplina, considerando o melhor tempo obtido em eventos.

273

Unset
SELECT
n.country_name,
d.name AS disciplina,
a.first_name,
a.last_name,
fr.result AS melhor_tempo
FROM
final_result fr
JOIN
athlete a ON fr.athlete_id = a.id
JOIN
event e ON fr.event_id = e.id
JOIN
discipline d ON e.discipline_id = d.id
JOIN
nationality n ON a.nationality_id = n.1id
WHERE
fr.result = (
SELECT MIN(fr2.result)
FROM final_result fr2
JOIN athlete a2 ON fr2.athlete_id = a2.id

JOIN event e2 ON fr2.event_id = e2.id

274

WHERE a2.nationality_id = a.nationality_id
AND e2.discipline_id = d.id
)
ORDER BY

n.country_name, d.name;

Explicacao:

e Esta consulta seleciona o nome do pais, nome da disciplina, nome do atleta e o melhor
tempo registrado.

e A subconsulta no WHERE compara os tempos de todos os atletas de cada pais para uma
disciplina especifica, retornando o menor tempo.

Exemplo 2: Listar CompeticGes com o Maior Nimero de Participacdes em Cada Disciplina

Este exemplo identifica a competicdo que teve o maior nimero de participacbes em cada
disciplina.

Unset

SELECT
d.name AS disciplina,
c.name AS competicao,
c.year,
c.location,
num_participacoes

FROM

275

SELECT
e.discipline_id,
e.competition_id,
COUNT(fr.athlete_id) AS num_participacoes
FROM
event e
JOIN
final_result fr ON e.id = fr.event_id
GROUP BY
e.discipline_id,
e.competition_id
) AS subquery
JOIN
competition ¢ ON subquery.competition_id = c.id
JOIN
discipline d ON subquery.discipline_id = d.id
WHERE
(subquery.discipline_id, num_participacoes) IN (
SELECT
discipline_id,
MAX(num_participacoes)

FROM

276

SELECT
e.discipline_id,
e.competition_id,
COUNT(fr.athlete_id) AS num_participacoes
FROM
event e
JOIN
final_result fr ON e.id = fr.event_id
GROUP BY
e.discipline_id,
e.competition_id
) AS max_participacoes_subquery
GROUP BY
discipline_id
)
ORDER BY

d.name;

Explicagao:
e A subconsulta interna calcula o nimero de participacdes por competicao e disciplina.

e A subconsulta externa filtra as competicGes com o maior nimero de participacdes para
cada disciplina.

277

e A consulta principal junta essas informacdes com as tabelas competition e discipline para
obter os detalhes completos da competicdo.

Compreender e utilizar consultas SQL avancadas e subconsultas é fundamental para extrair
informacOes detalhadas e realizar anadlises complexas de dados. As consultas apresentadas
nesta secdo ilustram como manipular e combinar dados de multiplas tabelas para obter insights
valiosos sobre competicdes, atletas e resultados. Dominar essas técnicas € essencial para
qualquer analista de dados ou desenvolvedor que trabalha com bancos de dados relacionais.

Esses exemplos demonstram como subconsultas complexas podem ser usadas para realizar
andlises detalhadas em um banco de dados SQL. Elas permitem combinar e processar dados de
vdrias tabelas simultaneamente, proporcionando insights valiosos que seriam dificeis de obter
com consultas mais simples. Dominar essas técnicas avancadas & essencial para qualquer
profissional que trabalhe com andlise de dados e bancos de dados relacionais.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

O ChatGPT ndo é apenas uma ferramenta para interacdes basicas; ele pode ser um recurso
valioso para aprofundar seus conhecimentos em SQL e banco de dados. Aqui estdo algumas
maneiras de continuar aprendendo com o ChatGPT:

1. Exploracdo de Conceitos Avancados: Peca ao ChatGPT para explicar conceitos mais
avancados de SQL, como subconsultas correlacionadas, funcdes analiticas ou
otimizacdes de consulta. Ele pode fornecer explicacdes detalhadas e exemplos praticos
para facilitar seu entendimento.

2. Resolucdo de Problemas Complexos: Desafie o ChatGPT com problemas especificos que
vocé estd enfrentando em consultas SQL. Ele pode ajudar a identificar erros, sugerir
otimizacdes ou até mesmo propor diferentes abordagens para resolver um problema
complexo de banco de dados.

3. Geracdo de Cdédigo SQL: Peca ao ChatGPT para gerar exemplos de cédigo SQL para
diferentes tipos de consultas, como joins (INNER JOIN, LEFT JOIN, etc.), subconsultas,
operacles com datas, entre outros. Ele pode criar consultas completas com base nos
seus requisitos e explicar cada etapa do processo.

278

4. Andlise de Desempenho: Discuta com o ChatGPT sobre praticas recomendadas para

melhorar o desempenho de consultas SQL, como indices adequados, estratégias de
otimizacdo de consultas e uso eficiente de funcdes.

Estudos de Caso e Exemplos Reais: Solicite exemplos reais de casos de uso de SQL em
diferentes industrias ou cendrios especificos, como sistemas de gerenciamento de
vendas, sistemas financeiros ou analise de dados. O ChatGPT pode fornecer insights
sobre como SQL é aplicado no mundo real.

Ao trabalhar com Joins em SQL, o ChatGPT pode ser um aliado poderoso para facilitar o

desenvolvimento e o entendimento das consultas. Aqui estd como ele pode ajudar:

1.

Explicacdo de Conceitos: Peca ao ChatGPT para explicar os diferentes tipos de Joins
(INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN, CROSS JOIN). Ele pode
fornecer definicoes claras, destacar diferencas entre eles e oferecer exemplos praticos
para ilustrar cada tipo de Join.

Geracdo de Cédigo: Solicite ao ChatGPT para gerar exemplos de cédigo SQL com Joins.
Por exemplo, vocé pode pedir para ele criar uma consulta que combine dados de varias
tabelas usando diferentes tipos de Joins. Ele pode gerar o cédigo completo e explicar
cada parte do processo.

Correcdo e Otimizacdo: Peca ao ChatGPT para revisar suas consultas SQL com Joins. Ele
pode ajudar a identificar erros comuns, sugerir maneiras de otimizar suas consultas para
melhorar o desempenho e até mesmo propor alternativas mais eficientes, se necessario.

Exemplos de Casos de Uso: Explore com o ChatGPT exemplos de casos de uso onde
Joins sdo essenciais. Ele pode fornecer cendrios praticos e explicar como diferentes tipos
de Joins podem ser aplicados para obter os resultados desejados.

Para aproveitar ao méximo o ChatGPT na aprendizagem de SQL e bancos de dados:

Seja Especifico: Formule perguntas claras e especificas sobre os conceitos que vocé
deseja aprender ou problemas que vocé estd enfrentando.

Explore Diferentes Contextos: Experimente diferentes exemplos e cendrios para entender
como SQL é aplicado em diferentes situagdes.

Analise as Respostas: Ndo apenas copie o cédigo gerado pelo ChatGPT; analise como
ele foi construido, entenda as decisGes tomadas e aprenda com o processo.

279

e Interaja Regularmente: Mantenha uma interacdo regular com o ChatGPT para consolidar
seu aprendizado e explorar novos tdpicos conforme sua evolucdo.

Ao seguir essas dicas, vocé pode transformar suas interagdes com o ChatGPT em oportunidades
significativas de aprendizado e crescimento na area de SQL e banco de dados.

EXERCICIOS DE FIXAGAO

Nesta secdo, vocé praticard consultas SQL avancadas utilizando JOINs e subconsultas. Antes de
cada exercicio, revisaremos as tabelas disponiveis para consulta em cada caso de uso. Os
exercicios cobrem uma variedade de cendrios e proporcionam oportunidades praticas para
explorar joins, subconsultas, operadores e funcgdes.

Cenério e Tabelas Disponiveis
Para ajudar na resolucdo dos exercicios, aqui estd uma visdo geral das tabelas que vocé utilizara:
1. Vendas Online (Sales Data Modeling):
o Tabela customer:
m id: Identificador do cliente
m name: Nome do cliente
m email: Email do cliente
m subscription_active: Status da assinatura (TRUE/FALSE)
o Tabela order:
m id: Identificador do pedido
m customer_id: Identificador do cliente
m order_date: Data do pedido
m total_amount: Valor total do pedido
2. Sistema de Gerenciamento de Conteldo (Content Management System):
o Tabela post:
m id: Identificador do post

m title: Titulo do post

280

m content: Contelddo do post
o Tabela comment:
m id: Identificador do comentério
m post_id: Identificador do post
m comment_text: Texto do comentario
3. Sistema de Biblioteca (Library System):
o Tabela book:
m id: Identificador do livro
m title: Titulo do livro
m author: Autor do livro
o Tabela loan:
m book_id: Identificador do livro
m reader_id: Identificador do leitor
m loan_date: Data do empréstimo
m return_date: Data da devolucao
4. Sistema de Gestdo de Vendas (Sales Management System):
o Tabela transaction:
m id: Identificador da transacao
m product_id: Identificador do produto
m transaction_date: Data da transacao
m amount: Valor da transacdo
o Tabela product:
m id: Identificador do produto

m name: Nome do produto

281

m category_id: Identificador da categoria
o Tabela category:
m id: Identificador da categoria
m name: Nome da categoria
5. Sistema de Recursos Humanos (HR System):
o Tabela employee:
m id: Identificador do funcionario
m name: Nome do funcionario
m hire_date: Data de contratacdo
o Tabela performance_review:
m employee_id: Identificador do funcionario
m review_date: Data da revisdo de desempenho
6. Sistema de E-commerce (E-commerce System):
o Tabela customer: Igual a utilizada em Vendas Online.
o Tabela order: Igual a utilizada em Vendas Online.
7. Sistema de Gestao de Estoque (Inventory Management System):
o Tabela product: Igual a utilizada em Gestdo de Vendas.
o Tabela inventory:
m product_id: Identificador do produto
m stock: Quantidade em estoque
m minimum_stock: Estoque minimo
8. Sistema de CRM (Customer Relationship Management System):
o Tabela customer: Igual a utilizada em Vendas Online.

9. Sistema de Agendamento (Scheduling System):

282

—
o Tabela event:
m id: I[dentificador do evento
m event_date: Data do evento
m location: Local do evento
o Tabela participant:
m event_id: Identificador do evento
m participant_id: Identificador do participante
m confirmed: Status de confirmacdo (TRUE/FALSE)
Exercicios

Exercicio 1: INNER JOIN com Subconsulta Correlacionada

Cendrio: Vocé trabalha em uma empresa de vendas online e precisa identificar todos os clientes
que fizeram compras nos ultimos 30 dias e também possuem uma assinatura ativa.

Exercicio 2: LEFT JOIN com Operador LIKE

Cenario: Em um sistema de gerenciamento de conteudo, vocé precisa listar todos os posts e
seus respectivos comentdrios que mencionam a palavra "SQL".

Exercicio 3: RIGHT JOIN com Condicdo Composta

Cendrio: Um sistema de biblioteca necessita verificar quais livros foram emprestados e seus
respectivos leitores, mesmo que ndo tenham sido devolvidos.

Exercicio 4: FULL OUTER JOIN com BETWEEN

Cenario: Um sistema de gestdo de vendas precisa analisar todas as transac¢des realizadas em um
intervalo especifico de datas e verificar quais produtos tiveram vendas.

Exercicio 5: INNER JOIN com Subconsulta em Clausula SELECT

Cendrio: Em um sistema de andlise de mercado, vocé precisa combinar todos os produtos com
suas respectivas categorias para uma pesquisa de mercado.

Exercicio 6: Subconsulta em Cldusula SELECT com Operador Légico AND

283

Cendrio: Um sistema de RH precisa listar todos os funciondrios junto com a data de sua Ultima
revisdo de desempenho.

Exercicio 7: Subconsulta em Clausula WHERE com Operador NOT

Cendrio: Um sistema de e-commerce precisa identificar todos os clientes que nunca fizeram uma
compra.

Exercicio 8: Subconsulta Correlacionada em Clausula WHERE

Cendrio: Um sistema de gestdo de estoque precisa verificar todos os produtos que estdo abaixo
do estoque minimo.

Exercicio 9: Utilizagdo de Fungdes de String

Cendrio: Um sistema de CRM precisa listar todos os clientes cujo nome comeca com "A" e tem
mais de 10 caracteres.

Exercicio 10: Utilizacdo de Funcdes de Data e Hora

Cendrio: Um sistema de agendamento precisa listar todos os eventos agendados para o préoximo
més, com a quantidade de participantes confirmados.

Exercicio 11: Andlise de Desempenho de Vendas

Cenario: Vocé trabalha em uma empresa de vendas online e precisa identificar quais produtos
tém o maior aumento percentual nas vendas em relagdo ao més anterior.

Exercicio 12: Identificacdo de Funcionarios com Maior Tempo na Empresa

Cendrio: No sistema de RH, vocé precisa listar os funcionarios que estdo hd mais tempo na
empresa e que receberam a maior quantidade de revisdes de desempenho.

Exercicio 13: Analise de Participagdo em Eventos

Cenario: No sistema de agendamento, vocé precisa listar os eventos com a maior taxa de
participacdo confirmada e os locais onde esses eventos ocorreram.

Estes exercicios cobrem uma variedade de tépicos avancados em SQL, proporcionando
oportunidades praticas para explorar JOINs, subconsultas, operadores e fungdes. Cada exercicio
pode ser adaptado e expandido para explorar cendrios mais complexos ou especificos de
acordo com suas necessidades de aprendizado. Pratique essas consultas para reforcar suas
habilidades em SQL e melhorar sua capacidade de manipular e extrair informacdes valiosas de
bancos de dados relacionais.

284

Capitulo 9 - Linguagem de
Controle de Dados (DCL) e
Arquitetura Cliente/Servidor
em Bancos de Dados

"Os dados sdo apenas resumos de milhares de historias - conte algumas dessas historias para
ajudar a tornar os dados significativos.”

Dan Heath

285

No gerenciamento de sistemas de banco de dados, dois aspectos fundamentais se destacam: o
controle de acesso aos dados e a arquitetura utilizada para disponibilizar esses dados aos
usudrios. A Linguagem de Controle de Dados (DCL) e a arquitetura cliente/servidor sdo
componentes essenciais nesse cenario, proporcionando seguranca, eficiéncia e escalabilidade
para aplicagcdes modernas de bancos de dados.

A DCL, representada pelos comandos
GRANT e REVOKE, desempenha um
papel crucial ao permitir que
administradores de banco de dados
concedam e revoguem privilégios de
acesso a objetos do banco de dados,
como tabelas, views e procedimentos
armazenados. Esses comandos garantem
que apenas usuarios autorizados possam
visualizar, modificar ou manipular
informacdes sensiveis, protegendo assim
a integridade e a confidencialidade dos
dados.

Por outro lado, a arquitetura
cliente/servidor define a maneira pela

qual os clientes interagem com os
servidores de banco de dados. Nesse
modelo, o servidor de banco de dados é responsavel por armazenar e gerenciar os dados,
enquanto os clientes acessam esses dados através de solicitagcdes de consulta e atualizacdo.
Essa abordagem distribuida facilita a administracdo centralizada, o compartilhamento eficiente

de recursos e o suporte a multiplos usudrios simultaneamente.

Ao longo deste capitulo, exploraremos em detalhes como os comandos DCL sdo aplicados para
controlar o acesso aos dados, além de examinar os componentes essenciais da arquitetura
cliente/servidor em bancos de dados. Analisaremos as vantagens dessa abordagem, suas
limitacGes e exemplos praticos de sua implementacdao. Ao final, vocé terd uma compreensdo
soélida de como gerenciar a seguranca dos dados e como escolher a arquitetura mais adequada
para suas necessidades de aplicacdo.

Vamos agora mergulhar nos detalhes da Linguagem de Controle de Dados e da arquitetura
cliente/servidor, explorando suas funcionalidades, aplicacdes praticas e melhores praticas para
implementacdo eficaz em ambientes de banco de dados modernos.

286

Secdo 9.1: Linguagem de Controle de Dados (DCL)

A Linguagem de Controle de Dados (Data Control Language - DCL) é uma categoria de
comandos em sistemas de gerenciamento de banco de dados (SGBDs) que permite aos
administradores e usudrios controlar o acesso aos dados e recursos do banco de dados. O
principal objetivo da DCL é garantir a seguranca e a integridade dos dados, especificando quem
pode acessar quais objetos (tabelas, views, procedimentos armazenados, etc.) e quais
operacOes podem ser executadas sobre esses objetos.

No contexto do gerenciamento de seguranca de dados, a DCL desempenha vérias funcoes
criticas:

O comando GRANT permite que um administrador conceda privilégios especificos a usuarios ou
papéis de usuario sobre objetos do banco de dados. Os privilégios podem incluir permissdes
para SELECT (consulta), INSERT (insercdo), UPDATE (atualizacdo), DELETE (exclusao) e EXECUTE
(execucdo de procedimentos armazenados), entre outros. O comando REVOKE retira privilégios
anteriormente concedidos de usudrios ou papéis de usudrio sobre objetos do banco de dados.
A DCL permite especificar permissdes granulares, controlando ndo apenas quais operacdes um
usudrio pode realizar (como SELECT, INSERT, etc.), mas também quais colunas de uma tabela
especifica podem ser acessadas por esse usuario.

A Linguagem de Controle de Dados (DCL) desempenha um papel crucial na implementacdo da
politica de seguranca de dados em bancos de dados. Ao definir quem pode acessar quais
recursos e quais operacdes podem ser executadas, a DCL ajuda a garantir a integridade e a
confidencialidade dos dados armazenados, protegendo-os contra acesso ndo autorizado ou uso
indevido.

No préximo tépico, exploraremos mais detalhadamente os comandos GRANT e REVOKE, além
de discutir cendrios praticos de aplicacdo desses comandos para melhorar a compreensdo de
como eles sdo utilizados no gerenciamento de seguranca de dados.

Secdo 9.2: Comandos GRANT e REVOKE

O comando GRANT ¢ utilizado para conceder permissdes especificas a usudrios ou papéis de
usudrio sobre objetos do banco de dados, como tabelas, views, procedimentos armazenados,
entre outros. Essas permissdes determinam quais operacdes os usudrios tém permissdo para
realizar sobre os objetos especificados.

A sintaxe béasica do comando GRANT é a seguinte:

287

Unset

GRANT permissdes ON objeto TO usuario | papel;

e permissdes: Sdo as operacdes que o usudrio ou papel terd permissdo para realizar sobre
0 objeto. Exemplos comuns incluem SELECT, INSERT, UPDATE, DELETE, EXECUTE, entre
outros.

e objeto: E o objeto do banco de dados para o qual as permissdes estdo sendo
concedidas, como uma tabela, view, procedimento armazenado, etc.

e usudrio | papel: E o nome do usuério ou papel de usuério para o qual as permissdes estdo
sendo concedidas.

Vamos ilustrar alguns exemplos praticos de pso do comando GRANT.

1. Concedendo Permissdes de SELECT em uma Tabela:

Unset

GRANT SELECT ON tabela_exemplo TO usuarioil;

Neste exemplo, o comando GRANT concede ao usudrio usuariol permissdo para executar
operacles de SELECT na tabela tabela_exemplo.

2. Concedendo Permissdes de EXECUTE em um Procedimento Armazenado:

Unset

GRANT EXECUTE ON procedimento_exemplo TO papel_de_aplicacao;

Aqui, o comando GRANT concede ao papel de aplicacdo papel_de_aplicacao permissao para
executar o procedimento armazenado procedimento_exemplo.

3. Concedendo Permissdes de UPDATE em Varias Colunas de uma Tabela:

288

Unset

GRANT UPDATE (colunal, coluna2) ON tabela_dados TO usuario2;

Neste exemplo, o comando GRANT concede ao usudrio usuario2 permissdo para atualizar
apenas as colunas colunal e coluna2 na tabela tabela_dados.

O comando REVOKE é utilizado para revogar permissdes previamente concedidas a usuarios ou
papéis de usudrio sobre objetos do banco de dados. Isso é feito quando é necessario retirar ou
modificar as permissdes existentes.

A sintaxe bdasica do comando REVOKE é a seguinte:

Unset

REVOKE permissdes ON objeto FROM usuario | papel;

e permissdes: Sdo as operagdes que estdo sendo revogadas do usudrio ou papel sobre o
objeto.

e objeto: E 0 objeto do banco de dados do qual as permissdes estédo sendo revogadas.

e usudrio | papel: E o nome do usuério ou papel de usuéario do qual as permissdes estdo
sendo revogadas.

Vamos ilustrar alguns exemplos praticos de uso do comando REVOKE

1. Revogando PermissGes de INSERT em uma Tabela:

Unset

REVOKE INSERT ON tabela_dados FROM usuario3;

289

Neste exemplo, o comando REVOKE retira do usudrio usuario3 a permissao para inserir registros
na tabela tabela_dados.

2. Revogando Todas as Permissdes de um Papel de Usuério em um Esquema:

Unset

REVOKE ALL PRIVILEGES ON SCHEMA esquema_exemplo FROM
papel_administrativo;

Aqui, o comando REVOKE revoga todas as permissdes do papel papel_administrativo no
esquema esquema_exemplo.

3. Revogando Permissdes de DELETE em um Procedimento Armazenado:

Unset

REVOKE DELETE ON procedimento_exemplo FROM usuario4;

Neste exemplo, o comando REVOKE retira do usudrio usuario4 a permissdo para deletar
registros no procedimento armazenado procedimento_exemplo.

Podemos fazer alguns argumentos e considera¢des sobre esses dois comandos:

e Concessdo de Permissdes Granulares: A DCL permite conceder permissdes granulares,
especificando exatamente quais operacdes e em quais objetos os usudrios podem
realizar.

e Seguranca e Controle de Acesso: Utilizando GRANT e REVOKE de forma adequada, é
possivel garantir que apenas usuarios autorizados tenham acesso aos dados sensiveis do
banco de dados.

e Auditoria e Compliance: O uso cuidadoso de GRANT e REVOKE também ajuda na
conformidade com regulamentacdes de seguranca e auditoria, garantindo que o acesso
aos dados seja controlado e registrado conforme necessario.

Os comandos GRANT e REVOKE sao fundamentais para o gerenciamento eficaz de seguranca
em bancos de dados, permitindo que administradores controlem de maneira precisa quais

290

usuarios tém acesso a quais recursos. Ao entender e aplicar corretamente esses comandos, €
possivel assegurar a integridade e a confidencialidade dos dados armazenados, protegendo-os

contra acessos ndo autorizados e uso indevido.

Na préxima secdo, exploraremos cendrios avancados de uso desses comandos, destacando sua
aplicacdo em ambientes de banco de dados cliente/servidor e as estratégias para melhorar a
seguranca e o controle de acesso.

Secado 9.3: Controle de Acesso e Permissées em Bancos de Dados

O controle de acesso e as permissGes desempenham um papel fundamental na seguranca e na
integridade dos dados armazenados em bancos de dados. Esta secdo explora como o controle
de acesso é aplicado, destacando o gerenciamento de usudrios, permissdes e estratégias para
assegurar que apenas usuarios autorizados tenham acesso aos dados sensiveis.

O controle de acesso € um componente essencial da seguranca de um banco de dados, sendo
responsdvel por garantir que apenas usudrios autorizados possam acessar informagdes
especificas. Suas principais funcdes incluem:

e Autenticacdo: Verificar a identidade dos usuarios que tentam acessar o banco de dados.

e Autorizacdo: Determinar quais operacdes e recursos cada usudrio pode acessar apos a
autenticacdo.

e Auditoria: Registrar e monitorar as atividades dos usuarios para deteccdo de acessos ndo
autorizados ou suspeitos.

e Conformidade: Assegurar que o acesso aos dados esteja em conformidade com politicas
internas e regulamentacdes externas.

Conforme falado anteriormente, os comandos GRANT e REVOKE sdo utilizados para conceder e
revogar permissdes especificas de acesso a usudrios e papéis de usuario sobre objetos do
banco de dados. Isso inclui tabelas, views, procedimentos armazenados e outros objetos.

Além disso, podemos utilizar os conceitos de views. As views sdo objetos de banco de dados
que funcionam como consultas armazenadas, exibindo dados de uma ou mais tabelas de
maneira virtual. Elas sdo Uteis para simplificar consultas complexas e restringir o acesso aos
dados apenas as informacdes necessarias.

Criacdo de VIEW:

291

Unset

CREATE VIEW view_exemplo AS
SELECT colunal, coluna2
FROM tabelal

WHERE condigao;

Uma pratica comum é conceder permissdes de leitura apenas (read-only) através de views,
garantindo que os usudrios ndo possam modificar diretamente os dados subjacentes. Exemplo:

Unset

GRANT SELECT ON view_exemplo TO usuario3;

Além disso, podemos tragcar algumas estratégias avangadas de controle de acesso, como
mostrado a seguir:

e Papéis de Usuario: Agrupamento Iégico de permissGes para simplificar o gerenciamento
de usuarios com 0s mesmos niveis de acesso.

e Auditoria de Acesso: Implementac¢do de logs para registrar todas as atividades de acesso,
permitindo a monitoracdo continua e a deteccdo de comportamentos anémalos.

e Politicas de Seguranca: Estabelecimento de politicas que definam quais usudrios tém
acesso a quais dados e sob quais circunstancias.

O controle de acesso e as permissdes desempenham um papel crucial na protecdo dos dados
armazenados em bancos de dados, garantindo que apenas usuarios autorizados possam
acessar informacdes especificas e executar operacdes permitidas. Ao utilizar comandos como
GRANT e REVOKE de maneira eficaz e aplicar estratégias avancadas de controle de acesso, é
possivel fortalecer a seguranca do banco de dados e mitigar riscos de acesso ndo autorizado.

Na préxima secdo, exploraremos a arquitetura cliente/servidor em bancos de dados, discutindo
suas vantagens, desvantagens e exemplos de implementacdo pratica.

292

Secdao 9.4: Arquitetura Cliente/Servidor em Bancos de Dados

A arquitetura cliente/servidor € um modelo amplamente utilizado em sistemas de banco de

dados, onde os dados sdo armazenados e gerenciados centralmente em um servidor dedicado,

enquanto os clientes acessam e manipulam esses dados através de uma rede de comunicacao.

Nesta secdo, exploraremos os fundamentos, componentes principais, funcionamento do fluxo de

dados, vantagens e desvantagens dessa arquitetura.

A arquitetura cliente/servidor em bancos de dados é um modelo distribuido em que:

Cliente: Aplicacdo ou usuario final que solicita servicos ou dados ao servidor.

Servidor de Banco de Dados: Sistema de software que gerencia o acesso,
armazenamento e recuperacdo dos dados solicitados pelos clientes.

Nesse modelo, os clientes enviam solicitacdes de operacdes (como consultas SQL) ao servidor,
que processa essas solicitacdes e retorna os resultados de volta aos clientes.

Os principais componentes da arquitetura cliente/servidor incluem:

Cliente: Aplicacdo ou usuario final que interage com o sistema de banco de dados
através de consultas e atualiza¢cdes de dados.

Servidor de Banco de Dados: Software que gerencia e armazena os dados, processa
consultas, executa transagdes e gerencia conexdes de clientes.

Rede de Comunicacgdo: Infraestrutura fisica ou virtual que conecta clientes e servidores,
permitindo a troca de dados e solicitacdes.

O fluxo de dados na arquitetura cliente/servidor ocorre da seguinte maneira:

4.

Solicitacdo do Cliente: O cliente envia uma solicitacdo de operacdo (como uma consulta
SQL) ao servidor de banco de dados através da rede.

Processamento no Servidor: O servidor recebe a solicitacdo, processa-a utilizando seu
mecanismo de banco de dados (interpretando e executando a consulta) e acessa os
dados necessarios.

Retorno ao Cliente: Apds processar a solicitagcdo, o servidor retorna os resultados ou uma
confirmacdo de operacdo para o cliente através da rede.

Atualizacdo de Dados: Se a solicitacdo envolve uma atualizacdo nos dados (insercdo,
atualizacdo ou exclusdo), o servidor realiza a operacdo no banco de dados centralizado.

293

Esse tipo de arquitetura possui as seguintes vantagens e desvantagens:
Vantagens:

e Centralizacdo de Dados: Todos os dados sdo armazenados e gerenciados de forma
centralizada no servidor, o que facilita a consisténcia e a integridade dos dados.

e Gerenciamento de Concorréncia: O servidor gerencia o acesso concorrente aos dados,
evitando conflitos e garantindo transacdes seguras.

e Escalabilidade: Permite escalar verticalmente (adicionando mais capacidade ao servidor)
e horizontalmente (adicionando mais servidores) conforme a demanda cresce.

Desvantagens:

e Dependéncia de Rede: A performance do sistema depende da velocidade e
confiabilidade da rede de comunicacdo entre clientes e servidor.

e Custo de Implementacdo: Requer investimento em infraestrutura de rede e hardware
robusto para suportar o servidor de banco de dados.

e Pontos Unicos de Falha: Se o servidor falhar, todos os servicos dependentes dele
também serdo afetados, a menos que medidas de redundancia sejam implementadas.

A arquitetura cliente-servidor € amplamente aplicada na pratica em uma variedade de sistemas e
aplicacdes distribuidas. Ela oferece um modelo eficiente para gerenciar o acesso e
processamento de dados, proporcionando flexibilidade, escalabilidade e seguranca. Aqui estdo
alguns exemplos de como essa arquitetura é aplicada na pratica:

1. Aplicac6es Web

Descricdo: Muitos sites e aplicacdes web utilizam a arquitetura cliente-servidor para fornecer
conteudo dinamico e interativo aos usuarios.

e Componentes:
o Cliente: Navegador web (como Chrome, Firefox) que solicita paginas e recursos.

o Servidor: Aplicacdo web que processa solicitagdes, recupera dados do banco de
dados e gera paginas HTML dinamicas.

e Funcionamento: O cliente envia solicitacbes HTTP ao servidor, que processa essas
solicitacdes, acessa o banco de dados se necessario e retorna dados formatados
(geralmente HTML, JSON) ao cliente para exibicao.

294

e Exemplo: Sites de comércio eletrbnico, redes sociais, servicos de e-mail, plataformas de
streaming de video.
2. Aplicacdes Empresariais

Descricdo: Sistemas utilizados em empresas para gerenciar operacdes internas, colaboracdo e
processos de negécios.

e Componentes:

o Cliente: Aplicativos desktop ou web que os funciondrios usam para acessar
recursos e dados.

o Servidor: Bancos de dados, servidores de aplicativos que centralizam e
processam dados empresariais.

e Funcionamento: Os clientes acessam e atualizam dados empresariais centralizados no
servidor. O servidor garante a consisténcia e seguranca dos dados, permitindo o controle
de acesso granular.

e Exemplo: Sistemas ERP (Enterprise Resource Planning), CRM (Customer Relationship
Management), sistemas de gestdo de estoque e produgdo.
3. Jogos Online e Aplicativos Multijogador

Descrigcdo: Jogos que permitem que varios jogadores interajam em tempo real, compartilhando
informacdes e recursos.

e Componentes:
o Cliente: Aplicativo de jogo instalado em dispositivos dos jogadores.

o Servidor: Servidor de jogo que gerencia a légica do jogo, processa agles dos
jogadores e mantém o estado do jogo.

e Funcionamento: Os clientes enviam comandos e atualizacdes para o servidor, que
processa essas agles e envia informagdes atualizadas de volta aos clientes. Isso garante
que todos os jogadores vejam o0 mesmo estado do jogo.

e Exemplo: MMORPGs (Massively Multiplayer Online Role-Playing Games), jogos de tiro
online, plataformas de jogos mobile.
4. Sistemas Distribuidos e Computa¢cdo em Nuvem

Descricdo: Ambientes de computacdo distribuida onde recursos computacionais sdo
compartilhados e acessados através da rede.

295

e Componentes:
o Cliente: Maguinas ou dispositivos que acessam servicos e recursos na nuvem.

o Servidor: Infraestrutura de nuvem (servidores virtuais, armazenamento em nuvem)
que hospeda e gerencia recursos.

e Funcionamento: Os clientes acessam servicos na nuvem (armazenamento,
processamento, software) através de uma conexao de rede segura. O servidor gerencia e
aloca recursos conforme necessario.

e Exemplo: Servicos de armazenamento em nuvem (Google Drive, Dropbox), plataformas
de computacao em nuvem (AWS, Microsoft Azure), servicos de streaming de video.

A arquitetura cliente-servidor é fundamental para a operacdo eficiente de uma vasta gama de
aplicacdes modernas. Ela permite a separacdo de preocupacdes entre a Iégica do cliente e a
gestdo de dados no servidor, facilitando o desenvolvimento, manutencdo e escalabilidade dos
sistemas distribuidos. Ao utilizar essa arquitetura, empresas e desenvolvedores podem construir
aplicacdes robustas, seguras e escaldveis que atendem as necessidades dos usudrios em
diversas areas, desde o comércio eletronico até jogos online e computacdo em nuvem.

A arquitetura cliente/servidor em bancos de dados oferece uma estrutura robusta para gerenciar
e acessar dados de forma eficiente e segura. Ao centralizar o armazenamento e processamento
de dados no servidor, proporciona maior controle, seguranca e escalabilidade para aplicagdes
distribuidas. No entanto, requer cuidados com a infraestrutura de rede e a administracdo do
servidor para garantir o desempenho e a disponibilidade continua do sistema.

Na préxima secdo, discutiremos exemplos praticos de implementacdao de bancos de dados
cliente/servidor, explorando cendrios reais e suas solucdes.

Secado 9.5: Exemplos de Implementacao de Bancos de Dados Cliente/Servidor

A arquitetura cliente-servidor é amplamente utilizada em diversos cendrios para gerenciar e
acessar dados de forma eficiente e segura. Abaixo estdo dois estudos de caso complexos que
demonstram a aplicacdo prética dessa arquitetura:

Estudo de Caso 1: Sistema de Gestdo Hospitalar

Descricdo: Um hospital deseja implementar um sistema de gestdo integrado para gerenciar
pacientes, registros médicos, agendamentos e estoque de medicamentos.

e Componentes:

296

o Cliente: Aplicativos desktop para recepcionistas, médicos e enfermeiros
acessarem dados dos pacientes e agendamentos.

o Servidor: Banco de dados centralizado que armazena todas as informacdes
criticas dos pacientes, registros médicos, estoque de medicamentos e agenda
hospitalar.

Funcionamento:

o Cliente: Usuarios acessam o sistema através de interfaces especificas.
Recepcionistas agendam consultas, médicos acessam registros de pacientes e
enfermeiros atualizam dados de tratamento.

o Servidor: Centraliza e gerencia todas as operagfes de dados, garantindo
integridade, seguranca e acesso controlado conforme as permissdes concedidas.

Exemplo Pratico: Um médico consulta o histérico médico de um paciente diretamente do
sistema, enquanto o sistema verifica automaticamente a disponibilidade de
medicamentos no estoque e atualiza os registros apds cada interacdo.

Estudo de Caso 2: Sistema de Comércio Eletronico

Descricdo: Uma plataforma de comércio eletronico deseja oferecer uma experiéncia de compra

integrada para clientes, incluindo catalogo de produtos, carrinho de compras e processamento

de pedidos.

Componentes:

o Cliente: Aplicativo web e mobile para usuarios navegarem pelo catdlogo de
produtos, adicionarem itens ao carrinho e realizarem pagamentos.

o Servidor: Banco de dados que armazena informacdes de produtos, pedidos,
histérico de transacdes e perfis de clientes.

Funcionamento:

o Cliente: Usuarios acessam o site ou aplicativo, visualizam produtos, selecionam
itens para compra e finalizam o pedido.

o Servidor: Recebe e processa pedidos, atualiza estoque de produtos, gera faturas
e envia confirmacdes de pedidos aos clientes. Também gerencia autenticagao e
autorizacdo dos usuarios.

297

e Exemplo Pratico: Um cliente adiciona produtos ao carrinho de compras através do
aplicativo mével. O servidor valida a disponibilidade dos itens em estoque, calcula o valor
total da compra e atualiza o status do pedido conforme avanca no processo de envio.

A arquitetura cliente-servidor possui vantagens distintas em comparacdo com outras arquiteturas
de banco de dados, como:

e Centralizacdo e Controle: A centralizacdo dos dados em um servidor Unico facilita o
controle de acesso, garantindo seguranca e consisténcia dos dados.

e [Escalabilidade: Permite a escalabilidade vertical e horizontal, expandindo recursos de
armazenamento e processamento conforme necessario.

e Desempenho: Distribui a carga de trabalho entre clientes e servidor, otimizando o
desempenho e a resposta do sistema.

e Seguranca: Implementa camadas de seguranca robustas, como autenticacdo e
autorizacdo, para proteger dados sensiveis e prevenir acessos ndo autorizados.

Em contraste, arquiteturas como peer-to-peer (P2P) e baseadas em nuvem oferecem flexibilidade
e descentralizacdo, sendo adequadas para cendarios onde a distribuicdo geografica dos dados é
crucial ou quando h& necessidade de elasticidade na infraestrutura. No entanto, essas
arquiteturas podem enfrentar desafios adicionais em termos de seguranca e controle de acesso,
especialmente em ambientes regulamentados ou com requisitos rigidos de conformidade.

A escolha da arquitetura de banco de dados depende das necessidades especificas de cada
aplicacdo e dos requisitos de negdcio. A arquitetura cliente-servidor continua sendo uma
escolha solida para sistemas que requerem controle centralizado, seguranca robusta e
desempenho otimizado, garantindo uma experiéncia confidvel e eficiente para usudrios finais e
operadores de sistemas.

Secdo 9.6: Um Exemplo Pratico Completo

Para implementar o Estudo de Caso 1. Sistema de Gestdo Hospitalar citado nas secdes
anteriores, utilizando uma arquitetura de banco de dados cliente-servidor com foco em solucdes
open-source, podemos seguir 0s seguintes passos detalhados. Vamos abordar desde a escolha
dos componentes até a configuracdo e integracdo dos sistemas necessarios.

Passos para Implementacdo

1. Escolha do Sistema de Gerenciamento de Banco de Dados (SGBD)

298

Para este projeto, optaremos pelo MySQL, um SGBD open-source amplamente utilizado, devido
a sua robustez, desempenho e suporte a grande comunidade.

e Instalacdo do MySQL:

o Baixe e instale o MySQL Server na maquina que atuard como servidor central.
Vocé pode baixar a versdo mais recente em_MySQL Downloads.

o Siga as instrucdes de instalacdo do MySQL para seu sistema operacional
especifico.

2. Modelagem do Banco de Dados

Antes de criar as tabelas, é essencial fazer a modelagem do banco de dados para capturar todas
as entidades e relacionamentos relevantes. Para o Sistema de Gestao Hospitalar, podemos ter as
seguintes entidades principais:

e Pacientes: Informacdes pessoais, histérico médico, etc.
e Médicos: Dados profissionais, especializacdes, etc.
e Agendamentos: Consultas marcadas, salas, horarios, etc.
e Estoque de Medicamentos: Lista de medicamentos, quantidade disponivel, etc.
e Funcionarios: Informacdes dos colaboradores do hospital.
e Unidades: Informagdes sobre os diferentes setores do hospital.
3. Criacdo das Tabelas no MySQL

Vamos criar as tabelas necessdrias no MySQL para armazenar as informacdes do sistema. Os
capitulos anteriores tém todas as informacdes para construcdo dessas tabelas.

4. Configuracdo de Usudrios e Permissdes no MySQL

Para garantir a seguranga e controle de acesso aos dados, é necessdrio configurar usuarios e
suas respectivas permissdes no MySQL.

299

https://dev.mysql.com/downloads/

Unset

-- Exemplo: Criar wusuario ‘'hospital' com senha 'senhal23' e
conceder permissodes

CREATE USER 'hospital'@'localhost' IDENTIFIED BY 'senhal123';

-- Conceder todas as permissdes ao usuario 'hospital' para todas
as tabelas do banco de dados

GRANT ALL PRIVILEGES ON hospital.* TO 'hospital’'@'localhost’;

5. Desenvolvimento da Aplicacdo Cliente

Para a parte cliente do sistema, usaremos Node.js e JavaScript para criar um front-end bdésico
que se comunica com o banco de dados MySQL. A seguir, detalhamos como configurar e criar
essa aplicacdo.

Configuracdo do Ambiente Node.js

Instalacdo do Node.js e npm: Baixe e instale o Node.js e o npm (Node Package Manager) a partir
do_site oficial do Node.js.

Configuracdo do Projeto: Crie uma nova pasta para o projeto e inicialize o npm:

Unset
mkdir hospital-management
cd hospital-management

npm init -y

Instalacdo das Dependéncias: Instale as dependéncias necessdrias, como express para o
servidor web e mysqgl para a conexdo com o banco de dados:

Unset

npm install express mysql

300

https://nodejs.org/

Criagdo do Servidor Node.js

Crie um arquivo chamado server.js e configure o servidor basico com express e a conexdao com o
banco de dados MySQL:

Unset
const express = require('express');
const mysql = require('mysql’);
const app = express();
const port = 3000;
// Configuragdo da conexao com o banco de dados
const db = mysql.createConnection({
host: 'localhost',
user: 'hospital’,
password: 'senhal23',

database: 'hospital’

1)

// Conectar ao banco de dados
db.connect(err => {
if (err) {
throw err;

}

console.log('Conectado ao banco de dados MySQL');

301

1)
// Rota para testar a conexao
app.get('/pacientes', (req, res) => {
let sql = 'SELECT * FROM pacientes';
db.query(sql, (err, results) => {
if (err) {
throw err;
}
res.send(results);
1)
H);

// Iniciar o servidor
app.listen(port, () => {
console.log(Servidor rodando em http://localhost:S{port}’);

1)

6. Desenvolvimento do Front-End

Criacdo do Front-End Basico: Crie uma pasta chamada public e dentro dela, um arquivo
index.html:

302

Unset
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">

<meta name="viewport" content="width=device-width,
initial-scale=1.0">

<title>Sistema de Gestao Hospitalar</title>
</head>
<body>

<h1>Lista de Pacientes</h1>

<ul id="pacientes-lista">

<script src="script.js"></script>
</body>

</html>

Crie um arquivo script.js na pasta public para buscar dados do servidor e exibi-los na pagina:

Unset

document.addEventListener('DOMContentLoaded', () => {
fetch('/pacientes")
.then(response => response.json())

.then(data => {

303

const lista =
document.getElementById('pacientes-lista');

data.forEach(paciente => {
const 1li = document.createElement('1li');

1li.textContent = “Nome: ${paciente.nome}, Idade:
S{paciente.idade};

lista.appendChild(1li);
});
})

.catch(error => console.error('Erro ao buscar dados:',
error));

1)

Modifique o arquivo server.js para servir os arquivos estaticos do front-end:

Unset
// Servir arquivos estaticos da pasta public

app.use(express.static('public'));

Com esses passos, configuramos um exemplo pratico de um Sistema de Gestdo Hospitalar
usando uma arquitetura de banco de dados cliente-servidor com MySQL, Node.js e JavaScript.
Este exemplo cobre desde a configuracdo do banco de dados até a criacdo de um servidor e
front-end basico para interagir com os dados. Este € um ponto de partida para criar um sistema
mais complexo e robusto conforme suas necessidades de negodcio.

304

Para integrar ao Sistema de Gestao Hospitalar com seguranga e garantir que todos os dados
trafegados entre o cliente e o servidor sejam protegidos adequadamente, podemos realizar
algumas melhorias. Isso inclui o uso de protocolos de criptografia como HTTPS para aplicacdes
web e TLS para comunicacdo segura em geral. Vamos explorar como implementar essa
integracdo de forma detalhada, com exemplos de cdédigo para diferentes cenarios.

o HTTPS é o protocolo padrdo para comunicacdo segura na web, utilizando SSL/TLS para
criptografar os dados entre o cliente e o servidor. Vamos considerar um exemplo pratico usando
Node.js com Express.js para o servidor e React.js para o cliente.

Configuracdo do Servidor (Node.js com Express.js)

Unset

const express = require('express');
const https = require('https');
const fs = require('fs');

const path = require('path');

const app = express();

// Configuracao de certificados SSL/TTLS

const privateKey = fs.readFileSync(path.resolve(__dirname,
'‘certificates', 'private.key'), 'utf8');

const certificate = fs.readFileSync(path.resolve(__dirname,
'‘certificates', 'certificate.crt'), 'utf8');

const ca = fs.readFileSync(path.resolve(__dirname,
‘certificates', 'ca_bundle.crt'), 'utf8');

305

const credentials = {
key: privateKey,
cert: certificate,

ca:. Ca

// Rotas da aplicacgao
app.get('/', (req, res) => {
res.send('Pagina inicial do Sistema de Gestdo Hospitalar');

1)

// Inicializagao do servidor HTTPS

const httpsServer = https.createServer(credentials, app);

const PORT = process.env.PORT || 443;

httpsServer.listen(PORT, () => {

console.log(Servidor HTTPS rodando na porta S{PORT});

1)

Neste exemplo:

306

e Certificados SSL/TLS: Os certificados private.key, certificate.crt e ca_bundle.crt devem ser
configurados corretamente. Eles podem ser obtidos de uma autoridade de certificacao
(CA) confidvel ou gerados para fins de desenvolvimento.

Para o cliente, ao realizar requisicdes para o servidor HTTPS, ndo hd necessidade de
configuracdo especifica além de utilizar URLs que comecem com https://.

Unset

import React, { useEffect, useState } from 'react’;

function App() {

const [data, setData] = useState('');

useEffect(() => {
fetch('https://localhost:443/') // URL segura com HTTPS
.then(response => response.text())
.then(data => setData(data))

.catch(error => console.error('Erro ao buscar

dados:', error));
Yol
return (
<div>

<h1>Sistema de Gestao Hospitalar</h1>
<p>{data}</p>

</div>

307

export default App;

Neste exemplo em React.js:
e A funcdo fetch é usada para realizar uma requisicdo HTTPS para o servidor seguro.

e Certifique-se de que o certificado do servidor é valido e emitido por uma autoridade
confidvel para evitar problemas de seguranca no cliente.

Além de configurar HTTPS/TLS, considere as seguintes praticas de seguranca para integrar um
Sistema de Gestdao Hospitalar de forma segura:

1. Validacdo de Entrada: Sempre valide e sanitize os dados recebidos do cliente para
prevenir ataques de injecdo de cddigo (como SQL Injection).

2. Autenticacdo e Autorizacdo: Implemente um sistema robusto de autenticacdo e
autorizacdo para controlar o acesso aos dados sensiveis.

3. Monitoramento de Seguranca: Implemente monitoramento continuo e auditoria para
detectar e responder a possiveis violagdes de seguranca.

4. AtualizacGes e Patches: Mantenha seu software e bibliotecas atualizados para proteger
contra vulnerabilidades conhecidas.

Implementar HTTPS/TLS é um passo fundamental para garantir a segurangca na comunicacao
entre o cliente e o servidor em aplicacdes web. Essas praticas ajudam a proteger os dados
sensiveis de pacientes, médicos e outros profissionais de saude, garantindo conformidade com
regulamentagdes de protecdo de dados, como a HIPAA nos Estados Unidos ou a LGPD no Brasil.

Implementar um Sistema de Gestdo Hospitalar também envolve etapas criticas de testes e
implementacdo para garantir que o sistema seja robusto, seguro e atenda as necessidades dos
usudrios finais. Vamos explorar em detalhes como realizar essas etapas, desde os testes até a
implementacdo gradual no ambiente hospitalar.

308

Os testes sdo essenciais para verificar se o sistema desenvolvido estd funcionando
corretamente, atendendo aos requisitos funcionais, de seguranca e usabilidade esperados pelos
usuarios. Aqui estdo alguns tipos de testes que podem ser realizados:

1. Testes Funcionais

Os testes funcionais verificam se cada funcdo especifica do sistema opera conforme esperado.
No contexto de um Sistema de Gestdo Hospitalar, isso pode incluir:

e Cadastro de Pacientes: Verificar se é possivel cadastrar novos pacientes com sucesso.

e Agendamento de Consultas: Testar a funcionalidade de agendar consultas médicas,

verificando horarios disponiveis e confirmacdes.

e Gestdo de Estoque: Testar a capacidade do sistema de gerenciar estoques de
medicamentos, incluindo entradas, saidas e controle de validade.

Exemplo de teste funcional em cédigo:

Unset
describe('Cadastro de Pacientes', () => {
it('Deve permitir o cadastro de um novo paciente', () => {
// Simular o envio de dados do formulario de cadastro
const novoPaciente = {
nome: 'Jodo da Silva',
idade: 45,
sexo: 'Masculino’,

telefone: '(11) 98765-4321"'

// Chamar a fungao de cadastro de pacientes

309

I
const resultado = cadastrarPaciente(novoPaciente);
// Verificar se o paciente foi cadastrado com sucesso
expect(resultado).toEqual(true);
});
H);

2. Testes de Seguranca

Os testes de seguranca sdo fundamentais para garantir que o sistema esteja protegido contra
vulnerabilidades e ataques maliciosos. Isso inclui:

e Teste de Injecdo de SQL: Tentativas de inserir comandos SQL maliciosos através de
entradas de usuério.

e Teste de Cross-Site Scripting (XSS): Verificacdo de vulnerabilidades que permitem a
execucao de scripts ndo autorizados no lado do cliente.

e Teste de Autenticacdo e Autorizacdo: Garantir que apenas usuarios autorizados tenham
acesso a funcionalidades especificas e dados sensiveis.

Exemplo de teste de seguranca em cédigo:

Unset
describe('Teste de Injegdo de SQL', () => {

it('Nao deve permitir injecdo de SQL através do formulario de
login', () => {

// Simular tentativa de injegao de SQL

310

|
const entradaMaliciosa = "' OR '1'='1";
// Tentar fazer login com a entrada maliciosa
const resultado = fazerLogin('usuario’,
entradaMaliciosa);
// Verificar se o resultado indica falha no login
expect(resultado).toEqual(false);
});
1)

Apés a fase de testes bem-sucedidos, o sistema pode ser implementado gradualmente no
ambiente hospitalar. Aqui estdo alguns passos importantes para essa implementacdo:

1. Planejamento da Implementacdo

e Cronograma: Definir um cronograma detalhado para a implementacdao por fases ou
maodulos.

e Treinamento de Usudrios: Preparar sessdes de treinamento para os usudrios finais
(recepcionistas, médicos, enfermeiros) para familiarizagdo com o sistema.

2. Implementacdo por Fases

e Piloto: Realizar uma implementacdo piloto em uma &area especifica do hospital para
validar o funcionamento do sistema em condicdes reais.

e Feedback e Ajustes: Coletar feedback dos usuarios durante a fase piloto para realizar
ajustes necessarios antes da implementagcdo completa.

3. Monitoramento e Suporte

3N

e Monitoramento Continuo: Implementar um sistema de monitoramento para identificar
problemas e garantir a estabilidade do sistema.

e Suporte Técnico: Estabelecer uma equipe de suporte técnico para responder as duvidas
e problemas dos usudrios apds a implementacao.

A fase de testes e implementacdo € crucial para o sucesso de um Sistema de Gestao Hospitalar.
Garantir que o sistema seja testado rigorosamente e implementado de forma gradual e
controlada minimiza os riscos e garante uma transicdo suave para os usuarios finais. A seguranca
dos dados e a conformidade com regulamentacdes (como HIPAA, no caso dos EUA) devem ser
prioridades durante todo o processo de desenvolvimento e implementacao.

Vamos explorar cada um desses testes de seguranca em detalhes:
1. Teste de Injecdo de SQL

Objetivo: Detectar e prevenir tentativas de inserir comandos SQL maliciosos através de entradas
de usuario, com o objetivo de manipular o banco de dados de forma ndo autorizada.

Descri¢cdo: A injecdo de SQL é uma técnica na qual um invasor insere comandos SQL arbitrarios
em campos de entrada de um aplicativo. Isso pode ser explorado para realizar operacdes nao
autorizadas no banco de dados, como ler, modificar ou excluir dados.

Exemplo de Cenério: Suponha que um aplicativo de login permita que os usudrios insiram seu
nome de usudrio e senha. Um invasor pode tentar inserir uma entrada maliciosa no campo de
senha, como ' OR '1'='1. Se ndo houver validacdo adequada, isso poderia alterar a I6gica da
consulta SQL e permitir que o invasor faca login sem fornecer credenciais validas.

Unset
describe('Teste de Injegdo de SQL', () => {

it('Nao deve permitir injecdo de SQL através do formulario de
login', () => {

const entradaMaliciosa = OR '"1'="1"; // Tentativa de
injegcao de SQL

312

const resultado = fazerLogin('usuario’,
entradaMaliciosa); // Chamada a fungao de login

expect(resultado).toEqual(false); // Verificagdo se a
injecao de SQL foi bloqueada

1),
1)

Medidas de Prevencdo:

e Validacdo de Entrada: Garantir que todas as entradas de usudrio sejam validadas e
sanitizadas para remover caracteres especiais que possam alterar o comportamento do
SQL.

e Parametros Preparados (Prepared Statements). Utilizar consultas preparadas ou
parametrizadas para separar os dados do usudrio dos comandos SQL, evitando assim a
interpretacado incorreta de dados de entrada como comandos SQL.

2. Teste de Cross-Site Scripting (XSS)

Objetivo: Identificar e mitigar vulnerabilidades que permitem a execucdo de scripts nao
autorizados no lado do cliente, geralmente através de entradas ndo validadas.

Descricdo: Cross-Site Scripting (XSS) ocorre quando um aplicativo web permite que dados ndo
confidveis sejam injetados em paginas web como cdodigo JavaScript executdvel. Isso pode
permitir que um atacante execute scripts maliciosos no navegador de um usuario final.

Exemplo de Cenario: Um sistema de comentdrios em um portal de salde permite que os
usuarios insiram comentdrios que sdo exibidos para todos os visitantes do site. Se um usudrio
inserir um comentdrio contendo um script malicioso (por exemplo, <script>alert('’XSS'")</script>),
esse script pode ser executado nos navegadores de outros usudrios que visualizam a pagina.

313

Unset

describe('Teste de XSS', () => {

it('Ndo deve permitir a execugdo de scripts maliciosos em

comentarios', () => {

const comentarioMalicioso =

"<script>alert('XSS')</script>"; // Comentario com script
malicioso

const resultado = enviarComentario(comentarioMalicioso);

// Enviar o comentdario malicioso

expect(resultado).not.toContain('<script>'); //

Verificagao se o script foi sanitizado ou removido

1)

1)

Medidas de Prevencdo:

Codificacdo de Saida (Output Encoding): Todos os dados dinamicos que sdo inseridos
nas paginas web devem ser codificados para que qualquer cédigo JavaScript seja tratado
como dados e ndo seja executado.

Validagdo de Entrada: Assegurar que todas as entradas de usuario sejam validadas para
impedir que scripts maliciosos sejam aceitos e processados.

3. Teste de Autenticacdo e Autorizacao

Objetivo: Verificar se o sistema concede acesso apenas a usudrios autorizados para

funcionalidades especificas e dados sensiveis.

Descricdo: A autenticacdo valida a identidade de um usuario, enquanto a autorizacdo determina

quais acdes esse usudrio pode realizar com base em suas credenciais.

314

Exemplo de Cendrio: Um sistema de registros médicos deve garantir que apenas médicos e
enfermeiros autorizados possam acessar e atualizar os registros de pacientes. O teste de
autenticacao verifica se o sistema verifica corretamente as credenciais do usudrio, enquanto o

teste de autorizacdo verifica se 0 acesso € restrito conforme as funcdes do usuario.

Unset
describe('Teste de Autenticagdo e Autorizagado', () => {

it('Apenas médicos devem ter permissdo para acessar registros

médicos', () => {
const usuarioMedico = 'medicol’;

const senhaMedico = 'senhal23';

const resultadoAutenticacao = fazerlLogin(usuarioMedico,

senhaMedico) ;

expect(resultadoAutenticacao).toEqual(true);

const acessoAutorizado

verificarPermissao(usuarioMedico, 'acessarRegistrosMedicos');

expect(acessoAutorizado).toEqual(true);

1)
1)

Medidas de Prevencdo:

315

e Controle de Acesso Baseado em Funcdo (Role-Based Access Control - RBACQC):
Implementar um sistema que conceda permissdes especificas com base no papel ou
funcdo do usuario dentro do sistema.

e Revisbes de Seguranca Regulares: Realizar revisdes periddicas para garantir que as
politicas de autenticacdo e autorizacdo estejam sendo aplicadas corretamente e que ndo
haja desvios de conformidade.

Os testes de seguranca, incluindo Injecdo de SQL, Cross-Site Scripting (XSS) e
Autenticacdo/Autorizagdo, sdo fundamentais para mitigar riscos de seguranca em sistemas de
informacdo, especialmente em ambientes criticos como sistemas de gestdo hospitalar.
Implementar boas praticas de desenvolvimento seguro e realizar testes regulares ajudam a
garantir a integridade, confidencialidade e disponibilidade dos dados sensiveis dos pacientes e
operacdes hospitalares.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

O ChatGPT pode ser uma ferramenta poderosa para continuar aprendendo e aprimorando suas
habilidades em diversos aspectos de banco de dados e desenvolvimento de sistemas. Aqui
estdo algumas maneiras de aproveitar ao maximo o ChatGPT:

Aprendizado Continuo com ChatGPT

1. Exploracdo de Conceitos Complexos: Use o ChatGPT para entender conceitos avancados
de bancos de dados, como arquiteturas cliente-servidor, otimizacao de consultas SQL, e
praticas de seguranca de dados.

2. Resolucdo de Problemas Especificos: Quando estiver preso em problemas técnicos
relacionados a SQL, modelagem de dados ou implementacdo de sistemas
cliente-servidor, peca orientagdo ao ChatGPT para explorar diferentes abordagens e
solucdes.

3. Exemplos Praticos e Aplicaces: Solicite exemplos praticos de implementacdo de
consultas SQL complexas, criacdo de interfaces de usudrio para sistemas cliente-servidor,
e estratégias de seguranca de dados.

Criando um Ambiente Cliente-Servidor com Ajuda do ChatGPT

Para desenvolver um ambiente cliente-servidor eficaz com a ajuda do ChatGPT, siga estas
etapas:

1. Planejamento e Arquitetura:

316

o Consulte sobre Arquitetura Cliente-Servidor: Peca orientacbes sobre como
estruturar seu sistema cliente-servidor usando tecnologias modernas e padrdes
de projeto.

o Modelagem de Dados: Receba assisténcia para modelar adequadamente suas
entidades de dados, relacdes e fluxos de informacdes.

2. Implementacao de Interfaces de Usuario:

o Desenvolvimento de Interfaces: Use o ChatGPT para orientacdo na criacdo de
interfaces graficas (GUI) usando tecnologias como JavaFX, React Native, ou
Flutter.

o Exemplos de Aplicativos Modveis: Peca exemplos especificos de implementacao
de aplicativos méveis para acesso a sistemas cliente-servidor.

3. Seguranca de Dados:

o Protecdo contra Vulnerabilidades: Consulte sobre préaticas recomendadas para
proteger seu banco de dados contra inje¢des SQL, XSS, e outras
vulnerabilidades.

o Criptografia e Protocolos de Seguranca: Solicite orientacdes sobre o uso correto
de criptografia (como HTTPS e TLS) para proteger a comunicacdo entre cliente e
servidor.

Exemplos de como o ChatGPT pode ajudar na Protecao do Banco de Dados
1. Configuracdo de Permissdes e Controle de Acesso:

o GRANT e REVOKE: Peca exemplos detalhados de como configurar permissdes de
acesso usando comandos SQL como GRANT e REVOKE para diferentes usudrios
e roles.

2. Auditoria e Monitoramento:

o Consultas de Auditoria: Solicite exemplos de consultas SQL para monitorar
atividades suspeitas ou acessos ndao autorizados ao banco de dados.

3. Implementacdo de Medidas de Seguranca Avancadas:

o Técnicas de Criptografia: Explore métodos avancados de criptografia e hash para
proteger dados sensiveis armazenados no banco de dados.

317

Usando o ChatGPT como uma ferramenta educacional, vocé pode aprender continuamente,
resolver problemas especificos e implementar solugdes seguras e eficientes para seu ambiente
cliente-servidor e banco de dados.

EXERCICIOS DE FIXAGAO
Exercicio 1: Entendendo Comandos DCL

Pergunta: Explique a diferenca entre os comandos GRANT e REVOKE na Linguagem de Controle
de Dados (DCL). Dé um exemplo pratico de cada comando.

Exercicio 2: Pratica com o Comando GRANT

Pergunta: Vocé é um administrador de banco de dados e precisa conceder permissoes de
atualizacdo em vdrias colunas de uma tabela para um usudrio especifico. Escreva o comando
SQL necessario para conceder ao usuario "usuario2" permissdo para atualizar apenas as colunas
"colunal" e "coluna2" na tabela "tabela_dados".

Exercicio 3: Pratica com o Comando REVOKE

Pergunta: Um usudrio chamado "usuario4" tem permissdo para deletar registros em um
procedimento armazenado chamado "procedimento_exemplo". Escreva o comando SQL

necessario para revogar essa permissao.
Exercicio 4: Compreendendo a Arquitetura Cliente/Servidor

Pergunta: Descreva os componentes principais da arquitetura cliente/servidor em bancos de
dados e explique o fluxo de dados entre eles.

Exercicio 5: Vantagens e Desvantagens da Arquitetura Cliente/Servidor

Pergunta: Liste duas vantagens e duas desvantagens da arquitetura cliente/servidor em bancos
de dados.

Exercicio 6: Aplicacdo Pratica de Controle de Acesso

Pergunta: Vocé precisa criar uma view chamada "view_exemplo" que exibe apenas as colunas
"colunal" e "coluna2" da tabela "tabelal" onde a "condicdo" é atendida. Depois disso, conceda
permissdo de SELECT sobre essa view para o usudrio "usuario3". Escreva os comandos SQL

necessarios.

Exercicio 7: Estratégias de Controle de Acesso

318

Pergunta: Vocé é o administrador de um banco de dados de uma empresa e precisa implementar
uma politica de seguranca que garanta que apenas o papel de usudrio "gerente" possa realizar
operacOes de INSERT, UPDATE e DELETE em todas as tabelas do esquema "empresa". Além
disso, os usudrios com o papel "analista" devem ter apenas permissdo de SELECT nessas
tabelas. Crie os comandos SQL necessarios para implementar essa politica.

Exercicio 8: Implementacdo de Auditoria e Compliance

Pergunta: Para garantir a conformidade com regulamentacées de seguranca, vocé precisa
implementar uma auditoria que registre todas as atividades de acesso ao banco de dados por
um usudrio chamado "usuario_auditor". Primeiro, crie uma tabela chamada "auditoria_acessos"
com as colunas "usuario", "acao", "objeto" e "timestamp". Em seguida, escreva um procedimento
armazenado ‘"registrar_acesso" que insira um registro de auditoria toda vez que
"usuario_auditor" executar uma operacado. Finalmente, escreva os comandos SQL necessarios
para conceder permissdo de EXECUTE nesse procedimento ao usudrio "usuario_auditor".

319

Capitulo 10 - Otimizacao de
Consultas SQL: Praticas para
Codigo Limpo, Legivel e
Eficiente

"Nenhum dado € limpo, mas a maioria € util."

Dean Abbott

320

No mundo dos bancos de dados, a eficiéncia e a legibilidade das consultas SQL desempenham
um papel crucial no desempenho e na manutenibilidade dos sistemas. Este capitulo explora
praticas essenciais para o desenvolvimento de consultas SQL limpas, legiveis e eficientes, além
de estratégias avancgadas para otimizacdo de desempenho.

Ao escrever consultas SQL, é
fundamental ndo apenas alcancar os
resultados desejados, mas também
garantir que o coédigo seja facil de
entender, modificar e otimizar. Isso ndo
s6 facilita a manutencdo futura, mas
também contribui significativamente para

a performance do sistema como um todo.

O objetivo deste capitulo é capacitar os
desenvolvedores a escreverem consultas
SQL que ndo apenas funcionem
corretamente, mas que também sejam
eficientes em termos de desempenho e
faceis de manter. Ao adotar boas praticas

desde o desenvolvimento inicial até a

otimizacdo continua, os sistemas de
banco de dados podem operar de forma mais eficiente e escaldavel, atendendo melhor as
necessidades dos usuarios e das aplicacdes.

Nos proximos tépicos, exploraremos cada um desses aspectos em detalhes, fornecendo
exemplos praticos e diretrizes claras para melhorar suas habilidades na escrita e otimizacdo de
consultas SQL.

Para garantir a eficiéncia e a legibilidade das consultas SQL, é fundamental adotar boas praticas
de codificacdo. Nesta secdo, exploraremos diversas estratégias para escrever cédigo SQL limpo
e organizado, melhorando ndo apenas a manutencdo, mas também o desempenho das
consultas.

Secdo 10.1: Escrita de Cédigo SQL Limpo e Legivel

A qualidade do cdédigo SQL ndo se resume apenas a sua funcionalidade. Consultas bem escritas
sdo faceis de entender, modificar e otimizar. Isso ndo apenas facilita o trabalho dos
desenvolvedores, mas também contribui significativamente para o desempenho do sistema

321

como um todo. Ao seguir boas praticas desde o inicio do desenvolvimento, vocé cria uma base
soélida para um sistema de banco de dados robusto e eficiente.

A seguir, serdo listadas algumas diretrizes para criacdo de consultas claras e concisas

1. Concentre-se na Modelagem do Banco de Dados: Antes de comecar a escrever
consultas, garanta que o modelo de dados esteja bem estruturado. Isso inclui a definicdo
correta de tabelas, relacionamentos e tipos de dados. Um bom design facilita a escrita de

consultas que sao naturalmente mais claras e eficientes.

Nomenclatura Significativa: Utilize nomes descritivos para tabelas, colunas, procedimentos
armazenados e outros objetos do banco de dados. Nomes claros ajudam a entender
imediatamente o propdsito de cada elemento no coédigo. Evite abreviacdes obscuras ou
ambiguas.
Exemplo:

Unset
-- Exemplo de nomenclatura significativa
SELECT
order_id,
customer_name,
order_date
FROM
orders
WHERE

order_status = 'Shipped’;

2. Comentarios Estratégicos: Comentdrios bem colocados explicam a ldégica por trds das
consultas e facilitam a colaboracdo entre desenvolvedores. Eles sdao especialmente Uteis para
partes do cédigo que podem ndo ser ébvias a primeira vista.

Exemplo:

322

Unset
-- Seleciona os pedidos que foram enviados
SELECT
order_id,
customer_name,
order_date
FROM
orders
WHERE

order_status = 'Shipped’;

3. Formatacdo e Indentacdo: Mantenha um estilo consistente de formatacdo e indentacao. Isso
melhora a legibilidade do cédigo e facilita a identificagao de blocos légicos dentro das consultas.
Exemplo:

Unset

-- Exemplo de formatagao e indentacao
SELECT

customer_id,

customer_name,

SUM(order_total) AS total_spent
FROM

customers

323

INNER JOIN
orders ON customers.customer_id = orders.customer_id
WHERE
order_date >= '2023-01-01'
GROUP BY
customer_id,
customer_name
ORDER BY

total_spent DESC;

Aqui estd maisum exemplo de como a formatacado e a indentacdo podem melhorar a legibilidade
de uma consulta complexa:

Unset
-- Exemplo de consulta com formatacao e indentacao
SELECT
customer_id,
customer_name,
SUM(order_total) AS total_spent
FROM
customers

INNER JOIN

324

orders ON customers.customer_id = orders.customer_id
WHERE

order_date >= '2023-01-01'
GROUP BY

customer_id,

customer_name
ORDER BY

total_spent DESC;

A escrita de consultas SQL limpas e legiveis € uma habilidade essencial para qualquer
desenvolvedor de banco de dados. Ao adotar boas praticas como nomenclatura clara,
comentarios informativos e formatacdo consistente, vocé ndo apenas torna seu cédigo mais facil
de entender e manter, mas também contribui para um desempenho otimizado do sistema.
Investir tempo na criacdo de consultas bem estruturadas desde o inicio do desenvolvimento
resultard em beneficios significativos ao longo do ciclo de vida do projeto.

Secdo 10.2: Convencoes de Nomenclatura em Bancos de Dados

A adocdo de convencdes de nomenclatura é crucial para a clareza e organizacao dos objetos
em um banco de dados. Este principio ndo apenas melhora a legibilidade do cédigo SQL, mas
também facilita a manutencdo e colaboracdo entre desenvolvedores. Nesta secdo, exploraremos
padrdes recomendados para nomes de tabelas, colunas, procedimentos armazenados e outros
objetos, destacando a importadncia de escolher nomes que reflitam claramente o propdsito de
cada elemento.

Padrdes Recomendados

1. Clareza e Objetividade: Os nomes de objetos no banco de dados devem ser claros e
objetivos. Um nome bem escolhido deve transmitir imediatamente o propdsito do objeto
sem a necessidade de explicacdes adicionais.

325

Utilizacdo de Prefixos: Utilizar prefixos € uma pratica comum para diferenciar tipos de
objetos no banco de dados. Por exemplo, prefixos como "tbl_" para tabelas ou "sp_" para
stored procedures ajudam a identificar rapidamente o tipo de objeto.

Evitar Abreviacbes Obscuras: Evite abreviacbes que ndo sejam amplamente
reconhecidas ou que possam causar ambiguidade. Prefira nomes completos e
descritivos.

Exemplos de Boas Préticas

1.

Tabelas: Nomeie suas tabelas de forma que o nome indique claramente o contelido ou a
entidade representada. Evite nomes genéricos como "dados" ou "informacdes".
Exemplo:

Unset

CREATE TABLE tbl_customer (

customer_id INT PRIMARY KEY,
customer_name VARCHAR(100),

email_address VARCHAR(255)

)

2. Colunas: As colunas devem ser nomeadas de maneira consistente e descritiva. Utilize
nomes que descrevam o tipo de dados que armazenam.
Exemplo:

Unset

CREATE TABLE orders (

order_id INT PRIMARY KEY,

order_date DATE,

326

customer_id INT,

total_amount DECIMAL(10, 2)

Procedures e Funcdes: Nomeie stored procedures e funcdes de forma a indicar claramente sua
funcionalidade ou objetivo.
Exemplo:

Unset

CREATE PROCEDURE sp_get_customer_orders
@customer_id INT
AS
BEGIN
SELECT * FROM orders WHERE customer_id = @customer_id;

END;

Regras e Consideracdes

e Respeito as Limitagbes do SGBD: Cada sistema de gerenciamento de banco de dados
(SGBD) possui suas proprias limitacdes para nomes de objetos. Respeite essas restricdes
para garantir compatibilidade e portabilidade.

e Consisténcia: Mantenha a consisténcia ao longo de todo o banco de dados. A adocado de
um padrdo uniforme facilita a manutencdo e evita confusdes.

e Documentacdo: Quando necessario, complemente os nomes de objetos com
comentdrios explicativos. Isso ajuda ndo apenas na compreensdo imediata, mas também

na manutencao futura.

327

A padronizacdo de nomenclatura em bancos de dados ndo apenas melhora a organizacao e
legibilidade do cddigo SQL, mas também reflete o nivel de maturidade e profissionalismo da
equipe de desenvolvimento. Ao seguir diretrizes simples, como escolher nomes significativos e
utilizar prefixos adequados, vocé facilita o entendimento do banco de dados por todos os
envolvidos no projeto. Investir tempo na definicdo de convencles de nomenclatura traz
beneficios significativos a longo prazo, reduzindo a complexidade e aumentando a eficiéncia na
administracdo e desenvolvimento do banco de dados.

Secdo 10.3: Comentarios no Codigo SQL

Comentar o cédigo SQL é uma prética fundamental para garantir a compreensdo, manutencao e
colaboracdo eficaz entre desenvolvedores. Nesta secdo, exploraremos o papel dos comentérios
na documentacdo do cédigo SQL, além de apresentar melhores praticas para inserir comentarios
que sejam informativos e Uteis.

Os comentérios desempenham um papel crucial na documentacdo do cédigo SQL, fornecendo
informacdes adicionais que ndo sdo imediatamente dbvias pela leitura das consultas. Eles sdo
especialmente (teis em consultas complexas, procedimentos armazenados extensos ou em
situacOes onde a légica de negdcios precisa ser explicada.

e Explicacdo de Ldogica: Comentdrios sdo Uteis para explicar a intencdo por trds de certas
decisGes no cédigo, como escolha de joins, condicdes de filtro ou ordenacao.

e Documentacdo de Processos: Quando o cédigo executa etapas especificas de um
processo de negdcio, os comentdrios ajudam a mapear essas etapas para facilitar o
entendimento.

e Anotacdes de Ajustes: Se uma consulta passou por ajustes ou otimizacdes especificas,
comentdrios podem registrar essas mudancas para referéncia futura.

Melhores Praticas para Inserir Comentarios

1. Clareza e Objetividade: Comentarios devem ser claros e concisos, evitando
ambiguidades. Use linguagem simples e direta para comunicar a informacao.

2. Localizacdo Estratégica: Coloque comentarios préximos ao cédigo que estdo explicando,
preferencialmente antes de blocos complexos ou linhas criticas.

3. Documentacdo de Cdédigo SQL: Ao documentar blocos de cdédigo extensos, use
comentdrios para dividir o cédigo em sec¢des légicas e explicar cada secdo.

328

4. Evite Comentdrios Obvios: Comentérios devem adicionar valor ao cédigo. Evite comentar
0 6bvio ou o que ja estd implicitamente claro no cédigo.

5. Manutengdo Atualizada: Mantenha os comentarios atualizados conforme o codigo evolui.
Comentdrios desatualizados podem confundir mais do que ajudar.

Exemplos Praticos

Aqui estdo alguns exemplos praticos de como vocé pode usar comentarios efetivamente no seu
codigo SQL:

Unset

-- Exemplo de comentario explicando a 1ldégica de uma consulta
complexa

/*

Este bloco de codigo realiza uma jungao entre a tabela
'pedidos' e 'clientes’

para obter informagdes completas dos pedidos feitos por cada
cliente.

Utiliza-se o LEFT JOIN para incluir clientes sem pedidos e a
clausula WHERE

para filtrar pedidos feitos apdés uma determinada data.
*/
SELECT c.nome, p.numero_pedido, p.data_pedido
FROM clientes c
LEFT JOIN pedidos p ON c.cliente_id = p.cliente_id

WHERE p.data_pedido >= '2023-01-01";

329

Unset
-- Exemplo de documentagao de procedimento armazenado
/*

PROCEDURE sp_get_customer_orders

Esta stored procedure retorna todos os pedidos feitos por um
cliente especifico.

Parametros:

@customer_id - ID do cliente para o qual os pedidos serao
recuperados.

v/
CREATE PROCEDURE sp_get_customer_orders

@customer_id INT

AS
BEGIN
-- Seleciona os pedidos associados ao cliente especificado
SELECT *
FROM pedidos
WHERE cliente_id = @customer_id;
END;

Em resumo, a pratica de inserir comentarios no cédigo SQL ndo apenas melhora a legibilidade e
a manutencdo, mas também promove uma melhor compreensdo da légica de negdcios

incorporada nas consultas e procedimentos armazenados. Adotar boas praticas de comentdarios,

330

como ser claro, objetivo e atualizado, contribui significativamente para um desenvolvimento mais
eficiente e colaborativo em projetos de banco de dados

Secado 10:4: Otimizacao de Consultas SQL

O tempo passa, novas técnicas, linguagens e ferramentas de ingestdo de dados surgem, mas é
uma verdade universal. SQL nunca sai de moda!

Nesta secdo, abordaremos varias sugestdes para otimizar instru¢gdes SQL, garantindo eficiéncia
e desempenho superiores.

Estratégias para Melhorar o Desempenho das Consultas SQL
1. Selecionar Campos Especificos

Evite usar SELECT * para consultar o SQL. Em vez disso, selecione campos especificos que
realmente precisa. Exemplo:

Unset
-- Exemplo positivo:

SELECT id, nome FROM funcionario;

Justificativa: Reduz a sobrecarga de rede e melhora a eficiéncia, evitando a leitura de colunas
desnecessarias.

2. Uso Eficiente de LIMIT 1

Quando vocé espera apenas um resultado, utilize LIMIT 1 para otimizar a consulta. Exemplo:

Unset
-- Exemplo positivo:

SELECT id, nome FROM funciondario WHERE LOWER(nome) = ‘'maria’
LIMIT 1;

331

Justificativa: Evita varreduras desnecessdrias apds encontrar um resultado, melhorando a

eficiéncia.
3. Evitar OR em Condicdes

Preferencialmente, ndo utilize OR para combinar condicdes em consultas. Use UNION ALL ou
consultas separadas. Exemplo:

Unset

-- Exemplo positivo:

SELECT * FROM usuario WHERE userid = 1
UNION ALL

SELECT * FROM usuario WHERE idade = 18;

Justificativa: O uso de OR pode invalidar indices, exigindo varreduras completas da tabela.
4. Otimizacao de Declaracodes LIKE

Para consultas com LIKE, otimize o padrdo para usar indices. Exemplo:

Unset
-- Exemplo positivo:

SELECT userId, nome FROM usuario WHERE userId LIKE '123%';

Justificativa: LIKE '%123' invalida indices, enquanto LIKE '123%' pode aproveitar indices existentes.
5. Evitar = ou <> na Cldusula WHERE

Substitua = ou <> por condi¢cdes que permitam o uso de indices. Exemplo:

332

Unset
-- Exemplo positivo:

SELECT idade, nome FROM usuario WHERE idade < 18;

Justificativa: I= ou <> pode invalidar indices, resultando em varreduras completas da tabela.
6. Uso Cauteloso de DISTINCT

Limite o uso de DISTINCT a campos necessarios para evitar impactos na performance. Exemplo:

Unset
-- Exemplo positivo:

SELECT DISTINCT nome FROM usuario;

Justificativa: DISTINCT consome mais recursos comparado a consultas simples, especialmente
com muitos campos.

7. Remocéo de indices Redundantes

Elimine indices redundantes que ndo agregam valor a otimizacdo de consultas. Exemplo:

Unset
-- Exemplo positivo:

DROP INDEX idx_userId;

Justificativa: Indices duplicados podem afetar negativamente o desempenho do otimizador de
consultas.

333

8. Otimizacdo de Operacdes de DELETE
Para grandes quantidades de dados, execute operagcdes de DELETE em lotes para evitar
bloqueios e uso excessivo de CPU. Exemplo:

Unset

-- Exemplo positivo:

DELETE FROM usuario WHERE id BETWEEN 1 AND 500;

Justificativa: Operac8es em lote reduzem o tempo de bloqueio e melhoram a disponibilidade do
banco de dados.

9. Considerar Valores Padrdao em Vez de NULL
Substitua NULL por valores padrao sempre que possivel para permitir a indexacdo e melhorar a
clareza da expressao. Exemplo:

Unset

-- Exemplo positivo:

SELECT * FROM usuario WHERE idade > ©;

Justificativa: NULL pode complicar o uso de indices e requer tratamento especial na légica da
consulta.

10. Preferir UNION ALL sobre UNION
Use UNION ALL se os resultados da consulta ndo contém duplicatas para evitar a sobrecarga de
ordenacdo e distincdo. Exemplo:

Unset

-- Exemplo positivo:

334

SELECT * FROM usuario WHERE userid = 1
UNION ALL

SELECT * FROM usuario WHERE idade = 10;

Justificativa: UNION ALL é mais eficiente quando a distingdo de resultados ndo é necessaria.

Ao otimizar consultas SQL, é crucial analisar os planos de execucdo para identificar gargalos de
desempenho. Utilize ferramentas como EXPLAIN para entender como o banco de dados executa
suas consultas e ajuste conforme necessario para melhorar o desempenho.

Otimizar consultas SQL ndo apenas melhora o desempenho, mas também contribui
significativamente para a eficiéncia operacional e a escalabilidade do sistema. Adotar essas
estratégias e melhores praticas garantird consultas mais rapidas, menor uso de recursos € uma
melhor experiéncia geral para os usudrios do banco de dados.

Com essas diretrizes, vocé estarda bem equipado para enfrentar desafios de desempenho em
projetos SQL e obter resultados mais eficazes.

Secdo 10.5: Otimizacdo de Indices

Otimizar Indices também é uma tarefa fundamental para melhorar o desempenho das consultas
em bancos de dados, especialmente em tabelas grandes. Eles sdo estruturas de dados
associadas a tabelas ou views que permitem uma recuperacao mais rapida das linhas, agilizando
assim as operacdes de busca. A escolha e criagcdo adequada de indices sdo essenciais para
otimizar consultas especificas de maneira eficiente.

1. indices Clusterizados:

o Ordenam e armazenam fisicamente os dados da tabela com base na chave de
indice. Uma tabela pode ter apenas um indice clusterizado, pois define a ordem
fisica dos dados na prépria tabela.

o Sdo ideais para campos frequentemente usados em operacdes de busca
ordenada, como datas ou sequéncias numéricas.

2. Indices N&o Clusterizados:

335

|
o Armazenam os dados do indice e um ponteiro para as linhas da tabela onde
esses dados estdo armazenados. Permitem mudltiplos indices ndo clusterizados
por tabela.
o Sdo recomendados para campos que ndo sdo frequentemente atualizados, mas
sdo usados com frequéncia em operacdes de busca, juncdo ou classificacdo.
3. Views Indexadas:

o Sado views que possuem indices associados para melhorar o desempenho de
consultas frequentes.

o Podem ser Uteis em consultas complexas que envolvem vdrias tabelas e
operacdes de jungdo, pois o otimizador de consulta pode escolher usar os indices
da view para acelerar 0 acesso aos dados.

Ao decidir sobre os indices a serem criados para uma tabela ou view, considere os seguintes

pontos:

Padrées de Acesso aos Dados: Identifique as colunas frequentemente usadas em
cldusulas WHERE, JOIN e ORDER BY nas suas consultas. Essas colunas sdo candidatas
ideais para indices.

Seletividade: Prefira colunas com alta seletividade, ou seja, colunas que tém valores
Unicos ou distintos em comparagdo com o ndmero total de linhas na tabela. Isso ajuda a
reduzir o nimero de linhas acessadas pelo indice.

Tamanho do Indice: Considere o impacto do tamanho do indice no desempenho geral do
sistema. Indices menores tendem a ser mais eficientes, mas o equilibrio entre o tamanho
e a cobertura das consultas é crucial.

Monitoramento e Ajuste: Apds a criagcdo dos indices, monitore o desempenho das
consultas para ajustar ou adicionar indices conforme necessario. Mudangas nos padroes
de acesso ou na estrutura das consultas podem exigir novos indices ou modificagdes nos
existentes.

Em resumo, o uso estratégico de indices em bancos de dados pode transformar o desempenho

das consultas, proporcionando respostas mais rdpidas e eficientes. A escolha dos tipos corretos

de indices e sua criacdo cuidadosa sdo cruciais para garantir que as consultas sejam executadas

de maneira otimizada, refletindo diretamente na experiéncia do usudrio e na eficiéncia

operacional dos sistemas de informacdo.

336

Secdo 10.6: Otimizacao de Planos de Execucao

A andlise e otimizacdo dos planos de execucdo no SQL Server sdo fundamentais para garantir

um desempenho eficiente e rapido das consultas em bancos de dados. O plano de execucdo é

responsavel por determinar como o SQL Server vai processar uma consulta, escolhendo as

melhores estratégias de acesso aos dados e operacdes para retornar os resultados solicitados.

Aqui estdo alguns pontos cruciais sobre como interpretar, analisar e otimizar os planos de

execucdao:

Otimizar o plano de execucao é crucial por vérias razdes:

Melhoria do Desempenho das Consultas: Um plano de execucdo otimizado permite que o
SQL Server execute consultas de forma mais eficiente, reduzindo o tempo necessario
para recuperar e processar os dados. Isso é especialmente relevante em bancos de
dados com grandes volumes de dados e consultas complexas.

Reducdo do Consumo de Recursos: Planos de execucdo ndo otimizados podem resultar
em maior consumo de recursos do sistema, como CPU e memodria, devido a operagoes
desnecesséarias ou ineficientes de E/S de disco. Otimizar o plano de execugdo pode

minimizar esse impacto, melhorando o desempenho geral do sistema.

Escalabilidade Aprimorada: Consultas mais eficientes significam que o SQL Server pode
lidar melhor com cargas de trabalho elevadas e um maior nimero de usudrios
simultdneos, mantendo um desempenho consistente e responsivo em ambientes

exigentes.

Para identificar problemas no plano de execucdo do SQL Server, consideramos algumas técnicas

e ferramentas Uteis:

SQL Server Management Studio (SSMS). Utilize o SSMS para visualizar o plano de
execucdo das consultas. Isso permite identificar operacdes custosas, como scans de
tabelas inteiras ou operacdes de ordenacdo, que podem indicar dreas para otimizacdo.

Andlise do Tempo de Execucdo: Consultas que apresentam tempos de execucdo
elevados podem indicar problemas no plano de execucdo. A andlise desses tempos pode
revelar consultas que precisam de ajustes para melhorar o desempenho.

Verificacdo de indices: indices ausentes ou mal projetados podem afetar negativamente
o plano de execucdo. Certifique-se de que os indices apropriados estdo presentes e sdo
utilizados eficientemente pelo SQL Server.

337

Comando SET STATISTICS 10 ON: Esse comando fornece informacdes detalhadas sobre
operacOes de E/S realizadas pelo plano de execucdo. Analisar essas informacdes pode
revelar operacdes de E/S desnecessarias que precisam ser otimizadas.

Para melhorar o desempenho por meio da otimizacdo do plano de execucdo no SQL Server,

considere as seguintes estratégias:

Atualizacdo de Estatisticas: Estatisticas atualizadas permitem ao SQL Server fazer
escolhas mais precisas ao criar planos de execucdo. Mantenha as estatisticas atualizadas
regularmente para garantir a eficiéncia das consultas.

Criacdo de indices Adequados: indices bem projetados podem significativamente
melhorar o desempenho das consultas. Identifique consultas frequentes e crie indices
adequados nas colunas relevantes para otimizar o acesso aos dados.

Uso de Dicas de Consulta: Em casos especificos, dicas de consulta podem ser usadas
para influenciar o plano de execucgao. Elas permitem especificar diretivas ao SQL Server
sobre como executar a consulta de forma mais eficiente.

Monitoramento Continuo: Monitore regularmente o desempenho das consultas e o
comportamento do plano de execucdo. ldentifique consultas que estdo apresentando
problemas e analise o plano de execucdo para ajustes necessarios.

Além das estratégias especificas, algumas melhores praticas adicionais podem ajudar na

otimizacdo continua do plano de execucdo:

Evite consultas ad hoc sempre que possivel, preferindo consultas parametrizadas que
podem ser reutilizadas e beneficiadas pelo cache de plano.

Ajuste os parametros de configuracdo do SQL Server conforme necessario para otimizar
o desempenho do plano de execugdo em seu ambiente especifico.

Realize testes de desempenho regulares para validar as melhorias implementadas e
identificar novas oportunidades de otimizacdo.

Otimizar o plano de execucdo no SQL Server ndo é apenas uma pratica recomendada, mas

essencial para garantir um desempenho eficiente e escaldvel do banco de dados. Ao

implementar estratégias eficazes e seguir melhores praticas, vocé pode maximizar o

desempenho das consultas e melhorar significativamente a experiéncia do usudrio com seu

aplicativo ou sistema baseado em banco de dados SQL Server.

338

Para otimizar consultas que operam em grandes conjuntos de dados, € essencial empregar
estratégias avancadas que visem melhorar tanto a eficiéncia quanto o desempenho das
operacdes. Abaixo estdao algumas técnicas-chave que podem ser utilizadas:

Secao 10.7: Otimizacao do Particionamento de Tabelas

O particionamento de tabelas é uma técnica que divide fisicamente grandes conjuntos de dados
em partes menores chamadas particdes. Cada particdo pode ser tratada separadamente, o que
melhora significativamente o desempenho ao reduzir a quantidade de dados processados por
cada consulta. Isso é particularmente Util em bancos de dados distribuidos e sistemas de Big
Data, onde os dados estdo distribuidos entre vérios nos.

Exemplo:

e Particionamento por Faixa de Valores: Dividir uma tabela de transacdes por meses, onde
cada particdo armazena dados de um més especifico, facilitando a andlise temporal.

O caching envolve armazenar temporariamente os resultados de consultas frequentes na
memodria, para que possam ser recuperados rapidamente sem a necessidade de repetir o
processamento. Isso é especialmente eficaz para consultas que envolvem grandes volumes de
dados ou operagles complexas.

Exemplo:

e Cache de Consultas Agregadas: Armazenar em cache resultados de consultas agregadas
como médias mensais de vendas, permitindo acesso rdpido a esses dados para relatérios
frequentes.

A pré-agregacdo envolve o célculo antecipado de totais, médias e outras operagdes agregadas
antes da execucdo de consultas. Isso reduz o tempo de resposta das consultas ao minimizar a
quantidade de dados processados durante a execucado da consulta final.

Exemplo:

e Tabelas de Resumo: Manter tabelas separadas que armazenam dados agregados como
total de vendas didrias ou nimero de transacodes por cliente por més.

Os indices compostos sdo criados em multiplas colunas de uma tabela para melhorar a eficiéncia
das consultas que envolvem condicdes complexas. Isso permite que o banco de dados localize
0s registros relevantes mais rapidamente, evitando a necessidade de percorrer grandes volumes
de dados.

339

Exemplo:

e Indices em Colunas Chave: Criar indices compostos em colunas como (data,
tipo_transacao) para consultas frequentes que filtram transacdes por data e tipo.

Implementar ferramentas de monitoramento de desempenho para identificar gargalos e
problemas de desempenho em consultas SQL. Isso permite ajustes proativos nas consultas e
indices conforme necessario, garantindo que o sistema continue a operar de maneira eficiente a
medida que os volumes de dados crescem.

Exemplo:

e Anadlise de Planos de Execugao: Monitorar regularmente os planos de execucdo das
consultas para identificar areas de melhoria, como a adi¢do de indices ausentes ou ajuste
de estratégias de particionamento.

A aplicacdo dessas técnicas ndo apenas melhora o desempenho das consultas em grandes
conjuntos de dados, mas também ajuda a otimizar os recursos de hardware e minimizar os
custos operacionais associados ao processamento de dados em larga escala. Ao combinar
estratégias de particionamento, caching, pré-agregacdo e otimizacdo de indices, as operacdes
de andlise de dados se tornam mais eficientes e responsivas, capacitando as organizagdes a
extrair insights valiosos de seus dados de forma rapida e eficaz.

PROMPTS PARA APRENDER MAIS COM O CHATGPT

O capitulo 10 abordou praticas essenciais para otimizar consultas SQL, garantindo que sejam
eficientes, legiveis e faceis de manter. A seguir, sdo sugeridos alguns prompts que vocé pode
utilizar no ChatGPT para aprofundar seu conhecimento sobre os tépicos discutidos no capitulo.

Prompts Sugeridos
1. Escrita de Cédigo SQL Limpo e Legivel

e Qual é aimportancia de um cédigo SQL limpo e legivel?
"Explique por que é importante manter um cédigo SQL limpo e legivel e quais sdo os
beneficios para a manutencdo e desempenho do sistema."

e Como posso melhorar a legibilidade do meu cédigo SQL?
"Quais sdo as melhores praticas para melhorar a legibilidade de consultas SQL

complexas?"

340

Pode fornecer um exemplo de consulta SQL bem formatada e comentada?
"Mostre um exemplo de consulta SQL complexa, incluindo boas praticas de formatacado e
comentdrios estratégicos."

2. Convencgdes de Nomenclatura em Bancos de Dados

Quais sdo as melhores praticas para nomear tabelas e colunas em um banco de dados?
"Explique algumas convencgdes de nomenclatura recomendadas para tabelas e colunas
em um banco de dados."

Como a consisténcia na nomenclatura pode afetar a manutencdo do banco de dados?
"Discuta a importancia da consisténcia na nomenclatura de objetos do banco de dados
para a manutencao a longo prazo."

Pode dar exemplos de nomes significativos para tabelas e colunas?
"Forneca exemplos de nomes significativos para tabelas e colunas que melhoram a
clareza e a compreensdo do banco de dados."

3. Comentérios no Cdédigo SQL

Qual é o papel dos comentdrios no cédigo SQL e como eles podem ser utilizados
eficazmente?

"Descreva o papel dos comentdrios no cdédigo SQL e forneca diretrizes para usa-los de
maneira eficaz."

Pode mostrar um exemplo de consulta SQL bem documentada?
"Demonstre como adicionar comentdrios Uteis em uma consulta SQL complexa para
explicar sua légica."

4. Otimizacdo de Consultas SQL

Quais sdo as técnicas mais eficazes para otimizar consultas SQL?
"Liste e explique algumas das técnicas mais eficazes para otimizar consultas SQL para
melhorar o desempenho.”

Como posso usar o comando EXPLAIN para analisar o desempenho de uma consulta
sQL?

"Mostre como utilizar o comando EXPLAIN para analisar e otimizar o desempenho de
uma consulta SQL."

341

Pode fornecer exemplos praticos de otimizacdo de consultas?
"Apresente exemplos praticos de consultas SQL otimizadas e explique as melhorias de
desempenho obtidas."

5. Otimizacé&o de indices

Qual é a diferenca entre indices clusterizados e ndo clusterizados?
"Explique a diferenca entre indices clusterizados e nao clusterizados e quando utilizar
cada tipo."

Como escolher os indices apropriados para uma tabela?
"Quais fatores devo considerar ao escolher indices para uma tabela para otimizar
consultas SQL?"

Pode fornecer exemplos de criacdo de indices eficientes?
"Mostre exemplos de criacdo de indices eficientes para tabelas com grandes volumes de
dados."

6. Otimizacdo de Planos de Execucao

Por que é importante analisar planos de execugao de consultas SQL?
"Explique a importancia de analisar planos de execugdo de consultas SQL para identificar
e resolver gargalos de desempenho."

Como identificar e corrigir problemas em planos de execucdo?
"Quais sdo os passos para identificar e corrigir problemas comuns em planos de
execucao de consultas SQL?"

Pode demonstrar como ajustar um plano de execucdo para melhorar o desempenho?
"Demonstre, com exemplos praticos, como ajustar planos de execucdo para melhorar o
desempenho de consultas SQL."

7. Estratégias Avancadas de Otimizacdo

O que é particionamento de tabelas e como ele pode melhorar o desempenho das
consultas?

"Descreva o particionamento de tabelas e expliqgue como ele pode ser utilizado para
melhorar o desempenho das consultas em grandes conjuntos de dados."

Como o caching pode ser usado para otimizar consultas SQL?
"Expliqgue como o caching pode ser implementado para otimizar consultas SQL que
envolvem grandes volumes de dados ou operagdes complexas.”

342

e Pode fornecer exemplos de pré-agregacdo e como ela pode ajudar na otimizacdo?
"Demonstre com exemplos como a pré-agregacdo pode ser utilizada para otimizar
consultas SQL, reduzindo o tempo de resposta.”

Conclusdo

Utilizando esses prompts, vocé pode explorar e aprofundar seu entendimento sobre as praticas
de otimizacdo de consultas SQL discutidas no capitulo 10. Eles ajudardo a consolidar o
conhecimento e a aplicar as técnicas de maneira eficiente em seus préprios projetos de banco
de dados.

EXERCICIOS DE FIXACAO

Aqui estdo seis exercicios baseados no Capitulo 10 - Otimizacdo de Consultas SQL: Praticas para
Caodigo Limpo, Legivel e Eficiente.

Exercicio 1: Escrevendo Consultas SQL Limpa e Legivel

Descricdo: Escreva uma consulta SQL que selecione os nomes dos clientes e a soma total dos
seus pedidos. Use boas praticas de nomenclatura, comentarios e formatacdo.

Requisitos:

e Tabela: clientes (colunas: cliente_id, nome_cliente)

e Tabela: pedidos (colunas: pedido_id, cliente_id, valor_total)
Exercicio 2: Convengdes de Nomenclatura em Bancos de Dados

Descricdo: Crie uma tabela e uma stored procedure usando convencdes de nomenclatura claras
e significativas.

Requisitos:
e Nome da tabela: tbl_orders
e Colunas: order_id, order_date, customer_id, total_amount
e Nome da stored procedure: sp_get_orders_by_customer

Exercicio 3: Comentdrios no Cédigo SQL

343

Descricdo: Adicione comentdrios explicativos em uma consulta complexa que realiza juncdo
entre duas tabelas para obter informacdes detalhadas sobre pedidos e clientes.

Requisitos:

e Tabela: clientes (colunas: cliente_id, nome_cliente)

e Tabela: pedidos (colunas: pedido_id, cliente_id, valor_total)
Exercicio 4: Otimizacdo de Consultas SQL

Descricdo: Reescreva uma consulta SQL para selecionar apenas os campos necessarios e utilize
LIMIT 1 para otimizacao.

Requisitos:
e Tabela: funcionarios (colunas: id, nome, departamento, salario)
Exercicio 5: Otimizac&o de indices
Descricdo: Crie indices para otimizar consultas frequentes em uma tabela de transacdes.
Requisitos:

e Tabela: transacoes (colunas: transacao_id, data_transacao, tipo_transacao,
valor_transacao)

Exercicio 6: Andlise de Planos de Execucdo

Descrigao: Utilize a ferramenta EXPLAIN para analisar o plano de execug¢do de uma consulta SQL

complexa.
Requisitos:

e Tabela: clientes (colunas: cliente_id, nome_cliente)

e Tabela: pedidos (colunas: pedido_id, cliente_.id, valor_total)
Exercicio 7: Otimizacdo de Subconsultas e CTEs

Descricdo: Dado um banco de dados de e-commerce com as tabelas clientes, pedidos,
itens_pedido, e produtos, escreva uma consulta otimizada que utilize Common Table
Expressions (CTEs) para encontrar os cinco clientes que mais gastaram em um periodo
especifico. A consulta deve incluir os nomes dos clientes e o valor total gasto.

344

Requisitos:
e Tabela: clientes (colunas: cliente_id, nome_cliente)
e Tabela: pedidos (colunas: pedido_id, cliente_id, data_pedido)
e Tabela: itens_pedido (colunas: item_id, pedido_id, produto_id, quantidade, preco)
e Tabela: produtos (colunas: produto_id, nome_produto, preco)
Tarefa:
1. Crie uma CTE para calcular o valor total de cada pedido.
2. Use uma segunda CTE para agregar os valores dos pedidos por cliente.
3. Filtre os resultados para um periodo especifico.
4. Selecione os cinco clientes que mais gastaram.
Exercicio 8: Otimizacdo de Consultas com Janelas de Tempo e indices

Descricdo: Em um sistema de monitoramento de rede, temos as tabelas dispositivos, logs, e
alertas. Escreva uma consulta otimizada para identificar os dispositivos que geraram mais alertas
em um periodo especifico, utilizando funcdes de janela e criando indices apropriados para
otimizacdo. A consulta deve incluir o ID do dispositivo, o nome do dispositivo, o nimero total de
alertas e o timestamp do Ultimo alerta gerado.

Requisitos:
e Tabela: dispositivos (colunas: dispositivo_id, nome_dispositivo)
e Tabela: logs (colunas: log_id, dispositivo_id, mensagem, timestamp)
e Tabela: alertas (colunas: alerta_id, log_.id, tipo_alerta, timestamp)
Tarefa:
1. Crie indices apropriados nas tabelas.
2. Utilize funcdes de janela para calcular o nimero de alertas por dispositivo.
3. Inclua na consulta o timestamp do dltimo alerta gerado por cada dispositivo.

Esses exercicios abordam diferentes aspectos do capitulo, incluindo a escrita de consultas
limpas e legiveis, a adocdo de convengdes de nomenclatura, a inclusdo de comentarios Uteis, a

345

|

otimizacdo de consultas e indices, e a andlise de planos de execucdo. Os dois ultimos exercicios
abordam aspectos mais avancados da otimizacdo de consultas SQL, incluindo o uso de CTEs,
funcdes de janela e indices, desafiando a compreensdo e a aplicacdo de técnicas de otimizacdo

em cendrios mais complexos.

346

Consideracoes Finais

"Codificar € um processo intermindvel de tentativa e erro, de tentar colocar o comando certo no
lugar certo, onde as vezes apenas um ponto e virgula faz a diferenca entre o sucesso e o
fracasso. O codigo falha e entdo se desintegra, e muitas vezes sdo necessdrias muitas, muitas
tentativas até o momento mdgico em que o que vocé estd tentando construir ganha vida."

Reshma Saujani

347

A jornada através deste livro nos levou por uma exploracdo abrangente do universo das bases
de dados e da linguagem SQL. Comecamos com os fundamentos, desde a definicdo de bancos
de dados relacionais até a criacdo de tabelas e insercdo de dados. A medida que avancamos,
nos aprofundamos em consultas bdasicas e complexas, manipulando dados com DML e
gerenciando estruturas de banco de dados com DDL.

Nos capitulos iniciais, cobrimos a
esséncia da SQL, aprendendo sobre os
tipos de dados, operadores e como
estruturar consultas basicas. A
compreensdo desses fundamentos é
crucial para qualquer trabalho posterior
com SQL, fornecendo a base sdlida
sobre a qual todas as outras habilidades
sdo construidas.

Exploramos consultas simples, como
SELECT, WHERE, e ORDER BY, antes de
nos aventurarmos em consultas mais
complexas que envolvem JOIN,
subconsultas e agregagdes com GROUP

BY. O dominio dessas técnicas permite

que vocé extraia insights valiosos dos
dados e responda a perguntas de negdécios importantes.

Discutimos extensivamente sobre como inserir (INSERT), atualizar (UPDATE) e excluir (DELETE)
dados de forma eficiente. Além disso, abordamos o gerenciamento de esquemas de banco de
dados, incluindo a criacdo e alteracdo de tabelas e a implementacdo de restricbes de integridade
referencial.

As funcgles de agregacdo, como SUM, AVG, MAX e MIN, sdo essenciais para resumir dados,
enquanto as funcdes de janela (OVER) permitem calculos mais sofisticados em subconjuntos de
dados. Compreender como e quando usar essas funcdes pode transformar grandes volumes de
dados em informacdes acionaveis.

Um dos tépicos mais desafiadores e importantes que cobrimos foi a otimizacdo de consultas.
Aprendemos sobre a importancia dos indices, a analise de planos de execucdo e a reescrita de
consultas para melhorar o desempenho. Esses conhecimentos sao vitais para garantir que os
sistemas de banco de dados possam escalar e atender as necessidades de desempenho.

348

As bases de dados sdo a espinha dorsal da era digital. Elas alimentam sistemas criticos em todos
os setores, desde financas e salde até comércio eletronico e redes sociais. O dominio do SQL e
a compreensdo profunda de como gerenciar e otimizar bancos de dados sdo habilidades
inestimaveis no mercado de trabalho atual.

Embora este livro ofereca uma base sdlida em SQL e gerenciamento de bancos de dados, a
aprendizagem ndo termina aqui. O campo dos bancos de dados esta em constante evolugdo,
com novas tecnologias, técnicas e melhores praticas emergindo regularmente. Recomenda-se
continuar explorando tépicos avancados, como bancos de dados NoSQL, processamento de
grandes volumes de dados com Hadoop e Spark, e a integracdo de inteligéncia artificial com
bases de dados.

A conclusado deste livro marca o fim de uma etapa, mas também o comeco de um vasto caminho
de descobertas e aprofundamento no mundo da programacado e das bases de dados. Existem
muitos outros tépicos e dreas de conhecimento que vocé pode explorar para continuar
expandindo seu aprendizado. A seguir, oferecemos algumas sugestdes e dicas para vocé seguir
em frente.

1. Bancos de Dados Avancados
Bancos de Dados NoSQL

Além dos bancos de dados relacionais, os bancos de dados NoSQL oferecem solucdes para
diferentes tipos de necessidades:

e MongoDB: Um banco de dados orientado a documentos que ¢ ideal para dados
semiestruturados.

e Cassandra: Um banco de dados distribuido para grandes volumes de dados.

e Redis: Um banco de dados em memdria que pode ser usado como cache para melhorar
0 desempenho.

Big Data e Data Warehousing

e Hadoop: Uma plataforma de software que permite o processamento distribuido de
grandes conjuntos de dados.

e Apache Spark: Um motor de andlise unificado que oferece suporte a andlise de dados em
larga escala.

349

e Amazon Redshift e Google BigQuery: Solucbes de data warehousing na nuvem para
andlise de grandes volumes de dados.

2. Data Science e Machine Learning

O campo da ciéncia de dados estd em crescimento e oferece muitas oportunidades para aplicar
suas habilidades de SQL e programacdo:

e Python e R: Linguagens de programacdo amplamente usadas para andlise de dados e
machine learning.

e Pandas e NumPy: Bibliotecas Python para manipulacdo de dados e calculo cientifico.
e Scikit-learn: Uma biblioteca de machine learning em Python.
e TensorFlow e PyTorch: Frameworks para deep learning.

3. Desenvolvimento Web e Mobile

Backend Development

e Node.js: Um ambiente de execucdo JavaScript que permite o desenvolvimento de
servidores rapidos e escalaveis.

e Django e Flask: Frameworks web em Python.

e Ruby on Rails: Um framework web em Ruby.
Frontend Development

e React e Vue.js: Bibliotecas JavaScript para a construcao de interfaces de usuério.

e Angular: Um framework JavaScript para desenvolvimento de aplicativos web dinamicos.
Mobile Development

e React Native: Uma biblioteca JavaScript para criar aplicativos méveis usando React.

e Flutter: Um framework da Google para construir aplicativos nativos para iOS e Android
usando Dart.

4. Seguranca da Informacado

Com o crescente nimero de ameacas cibernéticas, a seguranca da informacdo é uma area

crucial:

350

e OWASP: Um projeto de seguranca de software que oferece recursos e ferramentas para
proteger aplicacoes.

e Pentest e ethical hacking: Técnicas para testar e proteger sistemas contra
vulnerabilidades.

5. DevOps e Infraestrutura como Cdédigo

A integracao continua e a entrega continua (CI/CD) sdo praticas essenciais no desenvolvimento
de software moderno:

e Docker e Kubernetes: Ferramentas para contéineres e orquestracdo de contéineres.
e Terraform: Uma ferramenta para definir e provisionar infraestrutura de forma declarativa.
e Ansible e Chef: Ferramentas para automacao de configuragao.

6. Desenvolvimento de Habilidades Pessoais

Comunicacado e Colaboracdo

e Trabalho em equipe: Aprenda a colaborar efetivamente com outros desenvolvedores e
equipes de diferentes areas.

e Metodologias Ageis: Praticas como Scrum e Kanban ajudam a gerenciar projetos de
forma eficiente.

Pensamento Critico e Resolu¢do de Problemas

e Algoritmos e Estruturas de Dados: O dominio desses conceitos é essencial para resolver
problemas de forma eficiente.

e Design Patterns: Padrdes de projeto que ajudam a solucionar problemas recorrentes no
desenvolvimento de software.

7. Participacdo em Comunidades e Eventos

e Meetups e Conferéncias: Participar de eventos locais ou internacionais pode expandir
sua rede e manté-lo atualizado com as ultimas tendéncias.

e Hackathons: Competicbes de programacdo que sdo 6timas para praticar e aprender
novas habilidades.

e Contribuicdo para Projetos Open Source: Contribuir para projetos de cddigo aberto pode
proporcionar uma valiosa experiéncia pratica e exposicdo.

351

Gostariamos de expressar nossa gratiddo a todos os leitores que se dedicaram a estudar este
material. A sua busca continua por conhecimento € o que impulsiona a inovacdo e o progresso
em nossa sociedade. Agradecemos também aos colaboradores que revisaram e contribuiram
para este livro, garantindo que ele seja um recurso valioso e atualizado.

Em conclusdo, o SQL é uma ferramenta poderosa e versatil que, quando usada corretamente,
pode transformar dados brutos em insights valiosos e decisdes informadas. Esperamos que este
livro tenha fornecido a vocé as habilidades e o conhecimento necessarios para se tornar
proficiente em SQL e gerenciamento de bancos de dados. Continue explorando,
experimentando e aprendendo, e vocé estard bem preparado para enfrentar qualquer desafio de
dados que encontrar.

Boa sorte em sua jornada continua no mundo das bases de dados!

352

Referéncias

O conteldo deste livro foi criado com o auxilio do modelo de linguagem GPT-3.5 (Generative Pre-trained
Transformer 3.5), desenvolvido pela OpenAl.

As imagens presentes neste livro foram geradas pela IA DALL-E 3.0, desenvolvida pela OpenAl.

353

Sobre o Autor

O Dr. Eduardo Ferreira Ribeiro é Professor Adjunto Ill no curso de
Ciéncia da Computacdo da Universidade Federal do Tocantins (UFT),
onde atua desde 2010. Também é Professor Bolsista do curso de
Licenciatura em Computacado - EAD na Universidade Aberta do Brasil
(UAB/UFT).

Realizou Estagio Pés-Doutoral no Instituto de Informdatica da
Universidade Federal do Rio Grande do Sul (UFRGS) em 2023 e
obteve seu Doutorado em Ciéncias Técnicas com énfase em

Informatica Aplicada pela Universidade de Salzburg, Austria, em
2018. Possui Mestrado em Ciéncia da Computacdo pela Universidade
Federal de Uberlandia (2008) e graduacdo em Ciéncia da Computacdo pela Universidade
Federal de Goias (2006).

Com vasta experiéncia na area de Ciéncia da Computacdo, suas principais areas de
atuacdo incluem Redes Neurais Artificiais, Processamento de Imagens, Inteligéncia Artificial,
Aprendizado de Maquina e Deep Learning.

354

