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ABSTRACT 

The research work described in this paper main aim to investigate the effectiveness of the Genetic Algorithm applied 

in solving a problem of Logistics Engineering. In addition, the paper presents a dense theory on the subject in order 

to contribute to researchers in this area. With this clear objectives, the composition of this paper will initially clarify 

the technical concepts used. Subsequently, the problem that will be solved as well as its modeling is presented, so 

that at the end an algorithm is presented, focusing on the construction of the logic of the algorithm, as well as the 

data obtained that prove the effectiveness tool as a way of solving the defined problem. The concepts behind the 

algorithm used here, are derived from the most recent studies on Artificial Intelligence and are based on biological 

studies of the theory of evolution and genetics. 

Keywords: Genetic Algorithm, Logistics Engineering, Evolutionary Algorithms. 

 

RESUMO 

O trabalho de pesquisa descrito neste artigo tem como objetivo principal investigar a eficácia do Algoritmo Genético 

aplicado na solução de um problema de Engenharia Logística. Além disso, o artigo apresenta uma densa teoria 

sobre o assunto a fim de contribuir com pesquisadores da área. Com estes objetivos claros, a composição deste 

artigo irá inicialmente esclarecer os conceitos técnicos utilizados. Posteriormente, é apresentado o problema que 

será resolvido bem como sua modelagem, de forma que ao final seja apresentado um algoritmo, com foco na 

construção da lógica do algoritmo, bem como os dados obtidos que comprovam a eficácia da ferramenta como uma 

forma de resolver o problema definido. Os conceitos por trás do algoritmo aqui utilizado são derivados dos estudos 

mais recentes em Inteligência Artificial e são baseados em estudos biológicos da teoria da evolução e da genética. 

Palavras-chave: Algoritmo Genético, Engenharia Logística, Algoritmos Evolutivos. 

 

RESUMEN 

El trabajo de investigación descrito en este artículo tiene como objetivo principal investigar la efectividad del 

Algoritmo Genético aplicado en la resolución de un problema de Ingeniería Logística. Además, el artículo presenta 

una teoría densa sobre el tema con el fin de contribuir a los investigadores en esta área. Con estos objetivos claros, 

la composición de este trabajo permitirá aclarar inicialmente los conceptos técnicos utilizados. Posteriormente se 

presenta el problema que se resolverá así como su modelado, de manera que al final se presenta un algoritmo, 

enfocándose en la construcción de la lógica del algoritmo, así como los datos obtenidos que comprueban la 

efectividad de la herramienta como herramienta. forma de resolver el problema definido. Los conceptos detrás del 

algoritmo utilizado aquí, se derivan de los estudios más recientes sobre Inteligencia Artificial y se basan en estudios 

biológicos de la teoría de la evolución y la genética. 

Descriptores: Algoritmo genético, Ingeniería logística, Algoritmos evolutivos. 
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INTRODUCTION 

The development of science has accompanied 

mankind since its first rupestrian records and the 

advent of fire and, since then, it has never ceased 

motivated by the interest in new discoveries and the 

desire to be able to control the world around it. So 

many ages have passed and man's scientific thinking 

has gained more space and recognition from society, 

and his willingness to modify and understand the 

environment in which he lives has made him achieve 

very important advances in several areas. 

After many years of study, science has enabled 

the creation and use of tools that help humanity to 

solve specific problems, such as: performing 

mathematical calculations (calculators), observing the 

stars in the sky (telescopes), perceiving organisms not 

visible to the naked eye (microscopes), and so on. 

These equipments were created in order to fulfill, a 

task that the human body and intellect would not be 

able to achieve, at least not in a short time. With the 

passing of the ages, the instrument relationship 

between man and machine gained new concepts, the 

objective of such tools became more complex 

becoming an object of study for the development of 

something that, now, no longer operates simply by 

developing some skill human, but acting like a human 

being in solving a problem.  

In this context, any and all algorithms created 

to date can be conceptualized, however, the ones that 

come closest to this objectification are the 

evolutionary algorithms, more specifically the genetic 

ones. According to Linden, R. (2012), Genetic 

Algorithms (GAs) are a branch of evolutionary 

algorithms, and as such, they can be defined as a search 

technique based on a metaphor of the biological 

process of natural evolution. Through this tool, the 

solution of intractable problems gained a new form of 

resolution. Intractable problems are thus named due to 

the time needed to solve them, such problems 

comprise fundamental issues of some technologies 

currently used, such as search sites, logistics system 

managers, geolocation software, among others. Such 

tools have become important pieces in the execution 

and functioning, of several areas of the society, as the 

researchers who use the GA of the search sites or the 

food distribution companies that use GA to optimize 

their logistic network. 

Thus, the purpose of this paper is based on the 

need to optimize processes related to logistics, using 

heuristic techniques that have a potential for global 

optimization and with the potential to find a solution 

considered optimal for the problem. In this context, the 

simple process of cargo transportation can be 

thoroughly analyzed so that an optimization solution 

can be designed and implemented in order to save time 

and resources. In addition, this paper also seeks to 

provide a broad theoretical foundation on GAs in order 

to provide conceptualization to researchers who 

perhaps consider GA as a solution tool for defined 

problems. 

Therefore, this paper proposes the use of GAs 

as a tool to solve the problems faced by the logistics 

sector, which are apparently simple, however, a great 

effort is needed to determine, for example, the best 

location of a distribution center that has a number of 

locations to be served, with specific routes 

configurations. The perception of the complexity that 

the problem takes when working with a large number 

of locations, if an attempt is made to use an exact 

solution, makes GA considered one of the best 

solutions to the problem, bringing an answer in 

acceptable, efficient and optimized time to the 

problem. Thus, this paper presents the development 

and use of a computational tool, through the Python 

programming language, using GA applied in the 

solution of the Knapsack Problem (KP), with the 

necessary adaptations in order to become a problem 

involving the loading of a truck. This application aims 
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to optimize the logistics processes, in order to save 

time and financial resources in a situation that 

simulates a real case. So this article aims to provide an 

important contribution to the scientific community and 

to companies through the following specific 

objectives: 

▪ Demonstration of the functioning of a basic GA, in 

addition to its application to the NP-Hard problem 

of the KP where more refined knowledge will be 

used. 

▪ Present the composition of the tool in a current 

programming language. 

▪ Generate a solution that will be useful when applied 

in real situations, and 

▪ Contribute to the development of process 

optimization in the engineering areas. 

In order to achieve the specific purposes, this 

paper is structured as follows. In this section, the 

context that justifies the work was presented, 

theoretically presenting the problem and the tool used 

as a solution. In the next section will present the NP-

Hard problem of the KP which is analogous to the 

problem that will be modeled. The elucidation of all 

concepts regarding GA's is presented in section titled 

as: Genetic Algorithm. Posteriorly, will discuss the 

order of the processes that will lead to the making of 

the algorithm. Then, the tests and results are presented, 

and in the finally section are presents the conclusion 

and suggestions for future work. 

 

THE KNAPSACK PROBLEM 

Initial Considerations  

Intractable or too complex problems, due to its 

enormous amount of data, are common in nature and 

areas of society. Problems of this nature can be 

classified into two main types defined as (LODI and 

MONACI, 1990): 

▪ Easy Problems (EP): when the solution to problem 

can be found using polynomial algorithms. 

▪ Hard Problems (HP): these are problems where the 

only known solutions to solve them are exponential 

algorithms. 

This class of denomination indicates the 

complexity of the time required to find the solution to 

the problem. A function can be defined that determines 

the complexity for the two types of problems, being 

respectively (CROWDER et al., 1983): 

Complexity function EP = S(p(n)), (1) 

in which p(n) is a polynomial . 

For this function, it is remarkable how 

complexibility will vary in magnitude in relation to 

EPs. For any problem of this nature, the increase or 

decrease in complexity will be polynomial. 

Complexity function HP = S(mn), (2) 

in which n >1.  

As for the HP complexibility function, the 

degree of complexity of the problem will vary 

exponentially and cumulatively. The most common 

example of a problem of this nature can be cited as the 

Traveling Salesman Problem (TSP) (SHAYANFAR 

and SCHONFELD, 2019), which has a function of 

complexity equal to (S(n!)). The factorial growth of the 

complexity of this function demonstrates that the 

problem is not feasible to be solved by common 

methods (BURIOL, 2000). 

Within these classifications, made in order to 

segregate some problems of statistical nature in 

different groups, there are the classes of problems P 

(Problems), NP (Non-deterministic Problems) and 

NP-Complete. The problems classified as P are those 

whose solution can be found in polynomial time and 

are considered treatable. The NP problems are the 

problems in which the determination of the most 

adequate solution to the problem is not viable, being, 

therefore, only verifiable in polynomial time. The 

problems classified as NP-Complete have a 

characteristic that, if one of the instances of the 
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problem can be solved, then the whole problem can be 

solved in polynomial time (RAJKANTH et al., 2017). 

 

Problem Definition 

This subsection will present the concepts that 

define the problem that will be used throughout the 

work as a basis for modeling the algorithm and its 

elements. Within these concepts are its theoretical and 

mathematical definition that represent the character of 

the problem for bases that can be modeled and applied 

to real cases (SUMETTHAPIWA et al., 2020). 

 

Theoretical definition 

According to Marques (2004), KP can be 

defined through the assumption that among several 

items available, a climber should carry his Knapsack 

with some of these items, taking into account the 

maximum bearable capacity. In addition, each item has 

a utility value and the climber must select them 

seeking to maximize the total utility value. Modeling 

the KP mathematically, the following data can be 

considered (GOTTLIEB and RAID, 1999): 

o n = number of items available; 

o vi = utility value of the item, where i=1, 2, ..., n; 

o pi = weight of the item, where i = 1, 2, ..., n; 

o l = Capacity of the Knapsack. 

Based on this definition, several other 

denominations and variations arose for this same 

problem, such as the Knapsack Problem 0-1 (KP 0-

1)and the Entire Knapsack Problem (EKP), which are 

the cases that will be used as a basis for modeling the 

algorithm in this paper. According to Marques (2004), 

KP 0-1 is one of the most common cases of KP, but 

with the restriction that it is possible to select only one 

item from those available, thus, it is one of the most 

studied discrete optimization problems, due to some 

factors such as: 

1. Can be viewed as the simplest integer 

optimization problem; 

2. It appears frequently in other more complex 

problems; 

3. Can represent a wide range of real situations; 

4. Any entire linear optimization problem can be 

transformed into a KP 0-1; 

5. Application in combinatorial optimization 

problems. 

Mathematically this problem is composed of a 

decision variable, defined as xi, where if the product is 

selected for the Knapsack the variable will receive a 

value of 1, otherwise it will receive a value of 0. 

Resulting in the following notation (SHAYANFAR 

and SCHONFELD, 2019): 

𝑥𝑖 = {
1, 𝑖𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑;

  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                      
  (3) 

in which i=1, 2, …, n. 

So that, through the selection of each of the 

items, the climber can maximize the value assigned to 

the Knapsack load, he must follow the criterion of 

maximum Knapsack capacity, resulting in the 

following expressions (TORRES-ESCOBAR et al., 

2018):  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑏𝑒 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑: 𝜃 = ∑ 𝑣𝑖, 𝑥𝑖

𝑛

𝑖=1

 (4) 

𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓: 𝜃 = ∑ 𝑙𝑖. 𝑥𝑖 ≤ 𝐿

𝑛

𝑖=1

 
(5) 

in which  𝑥𝑖 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝑖 = 1, 2, … , 𝑛 (6) 

The mathematical modeling of the problem 

turns it into a summation of the product of the item's 

utility values by the choice variable, returning the total 

utility value assigned to the Knapsack. This sum, 

however, must comply with the conditions of not 

exceeding the maximum capacity of the Knapsack, 

represented by equation (5) as well as following the 

conditions of limitation in which the element xi can 

only assume value 0 or 1, and that the variable i will 
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from 1 to the number of items available (TENG and 

TZENG, 1996). 

The second variation of the problem, 

resembles the example that will be used as a problem 

in this paper. Its definition is the one that best 

represents the problem in general, because there are no 

limitations on the number of items that is selected. 

This feature makes it possible to select more than the 

same element that is available, making it closer to a 

real case of positioning a certain cargo in a truck of 

available space L. Mathematically defining the 

problem, there will be, as in the previous case, a 

variable considered as the decision variable 

(SUMETTHAPIWAT et al., 2020): 

𝑥𝑖 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒  𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑝𝑎𝑐𝑒 𝑖 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  (7) 

in which i = 1, 2 ,..., n 

Using the expression of the variable in (7), the 

function that defines the functioning of the problem 

and the search for its solution can be modeled, 

considering equations (4), (5) and (8): 

𝑖𝑛 𝑤ℎ𝑖𝑐ℎ  𝑥𝑖 ≥ 0 𝑎𝑛𝑑 𝑒𝑛𝑡𝑖𝑟𝑒, 𝑖 =  1, 2, . . . , 𝑛  (8) 

Equations 4, 5 and 8 demonstrate the complete 

expression for EKP. The sum in 4 represents the utility 

value of the whole Knapsack at the end of the choice 

of items, following the conditions imposed in 5 and 8, 

which, unlike the previous case, now allow the loading 

of more than a single item of the same nature in the 

Knapsack, the amount of which is now represented by 

xi which can take on any positive integer value (PINO 

et al., 2011). Therefore, using the concepts of NP, the 

KP fits as an NP-Complete problem and the problem, 

cannot be solved using just a polynomial algorithm, 

requiring the use of another non-deterministic 

methodology, such as the heuristic methods of 

evolutionary algorithms, that will be used to solve the 

problem covered in the Tests and Results section. 

 

 

Genetic Algorithm 

The purpose of this section is to provide the 

reader with a basis for the importance of studying GA, 

as well as the origin of the technique used in this work, 

which will be Evolutionary Algorithms. Furthermore, 

this section will provide the reader with support for 

studies related to the Computational Definition of GA, 

the Characteristics of GA, the Basic Elements of GA, 

the Processing of GA and finally, the Genetic 

Convergence and Mutation Operator (AZAD and 

HASIN, 2019; NAZIF and LEE, 2012). 

 

Initial Considerations 

The reproduction of concepts found in nature, 

through scientific studies for the creation of 

technologies that help in solving problems, is an old 

and common practice in society. When analyzing the 

phenomena related to genetics, through a 

mathematical and logical look, it is possible to absorb 

from the processes of crossing and genetic mutation a 

powerful scanning tool for solving problems, which 

have a basis in combinatorial analysis. According to 

Linden, R. (2012) GAs are a branch of evolutionary 

algorithms and as such can be defined as a search tool 

that uses a metaphor for the biological process of 

natural evolution. This use therefore generates tools 

that can be applied to the most diverse stochastic 

problems. 

 

Evolutionary Algorithms 

The analogy to the evolution process, arising 

from the theory of evolution, at the level of genetics is 

present in the production of the logic of the algorithms, 

since it acts on elements called individuals or 

chromosomes, which represent the elements of the 

problem to be addressed. These, in turn, are contained 

within the sample space of the problem, called 

population. To these structures are applied genetic 

operators, such as recombination and mutation, which 

will be responsible for making the necessary changes 
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on the individuals that are distributed in the sample 

space creating new individuals. An evaluation is 

applied to each individual that will quantify the quality 

of the individual as a solution to the problem. The 

process is then repeated with the action of the genetic 

operators until the solution found is satisfactory 

(PRINS, 2004). 

As it is a system that works in a loop feature, 

each new repetition of the algorithm is given the name 

of generation. The association again is analogous to its 

equivalent in real life, since it is up to the system the 

analogy of two “Parents” elements, that will combine 

and generate “Sons” elements, as well as the elements 

"Sons" will combine with other elements to continue 

the process (ARDJMAND, 2020). 

 

Computational Definition of GA 

Within the concepts of evolutionary 

algorithm, another branch was born, inspired by Neo-

Darwinian theories, which is the combination of three 

natural phenomena: species evolution, natural 

selection and genetic inheritance. Within this theory, 

the concept of evolution is inherent in the way life 

continues, so that it undergoes the action of some 

processes at the moment of the combination of two 

individuals of a population, which cause variations, 

namely: reproduction, mutation, competition and 

selection (FOGEL, 1995). Based on these foundations, 

studies on the computational modeling of these 

phenomena were formally initiated in the 1970s. The 

definition absolved through these studies, classifies 

GAs as a search method based on the fundamentals of 

natural biological evolution of species and as heuristic 

methods (MATEO and ALBERTO, 2018). 

Computationally, GAs have as their search 

method the best solution to a specific problem, based 

on a logical computational cycle, composed of a 

population (sample universe), on which genetic 

operators (mutation and crossover) act, who perform 

combinations among individuals on whom an 

assessment will be imposed based on what would be 

the best solution to the target problem until the 

moment when a solution is evaluated as good (YAZDI 

et al., 2020). 

 

Characteristics of GA 

GAs have a specific set of characteristics, the 

probabilistic character being one of the main 

characteristics, in contrast to other deterministic 

methods, which have fixed solutions to a given 

problem. Unlike these methods, given an initial 

population and the same set of parameters, GAs return 

a different solution each time they are executed, 

bringing great advantages over conventional 

deterministic methods, factor makes them extremely 

applicable to real problems (AZAD and HASI, 2019). 

Another important feature of GAs is that they 

work with a large number of points, further reinforcing 

their applicability in real problems. This characteristic 

also differentiates them from deterministic methods, as 

their research region will concentrate throughout the 

process in a small part of the sample space, sweeping 

only a subset of the universe of available solutions 

(ALI et al., 2013). 

 

Basic Elements of GA 

Some elements are common to all GA’s, 

regardless of their application, which are (AZAD and 

HASIN, 2019; HAUPT and HAUPT, 1998): 

▪ Individuals: They are compositions generated by 

the code that carry information about the problem 

with it and that represent to the algorithm the 

possible solutions to the problem. These 

individuals are composed of chromosomes that 

represent the characters that make up the solution. 

In addition to the information brought by the 

chromosomes, there are attributes that define more 

fully the possible solutions to the problem such as: 

identifications, values, indicators, among others. 
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For example, with the TSP case, chromosomes 

would indicate which cities and in which order the 

salesman should go.  

▪ Rating (fitness): The evaluation element, known as 

fitness, carries an important function of classifying 

possible solutions (individuals) according to some 

criteria, using data provided by these individuals 

and his evaluation method imposed, this element 

will therefore be the selectivity of the entire 

algorithm, returning at the end of the processing 

what he evaluated as the best answer to the 

problem.  

▪ Crossover operators: Crossover operators are 

responsible for crossing the chromosomes of two 

individuals selected in order to generate sons and, 

through successive combinations, generate 

increasingly better solutions. 

 

GA processing 

The first stage of the GA process is performed 

on a specific group of individuals called of population, 

where information will be coded for the universe of 

binary data. The individuals represent the elements 

that make up the basis of the problem, (as is the case 

of this work, the NP-complete problem). These 

elements are very numerous, but they have certain 

characteristics shared among themselves, and when 

they are efficiently encoded, result in an increase in the 

efficiency of the solution, saving time and processing.  

The next step in coding the population is the 

action of the operators, who took charge of combining 

possible solutions to the problem, guided by the 

character of the evaluation function. Within this 

process, the concept of genetic convergence or loss of 

diversity is of paramount importance for the 

construction of operators as an algorithm and has a 

great impact on the quality of the solution found 

(WANG and WANG, 2019). 

 

Genetic Convergence and Mutation Operator 

According to Linden, R. (2012) genetic 

convergence is the character of a population with low 

genetic diversity, which, due to having similar genes, 

cannot evolve, except for the occurrence of positive 

mutations and, however, the loss of diversity can be 

defined as being the number of individuals who are 

never chosen by the parent selection method. These 

elements are from the sample space that receives a low 

evaluation and, therefore, tend not to be selected by 

genetic operators for the creation of a new individual 

(BEASLEY, 1996).  

To overcome this factor, mutation operators 

are used. These operators are responsible for 

modulating mutations that occasionally occur in nature 

and for providing characteristics that make certain 

individuals more capable of surviving than others 

(AZAD and HASIN, 2019). 

 

METHODOLOGY 

In this section, all the processes that will lead 

to the solution of the proposed problem will be 

presented. The research begins with the elaboration of 

the proposed problem, as well as the presentation of 

the concepts necessary for the understanding of the 

problem and its solution. After that, necessary 

concepts are presented for the structuring and 

foundation of the specialized research of GA, and 

finally, the methodology used to solve the proposed 

problem. 

 

Introduction to the problem and the tool 

The presentation of the concepts that involve 

the NP-complete problems and the KP were necessary 

because the problem to be treated, using the GA 

method, is analogous to those topics that were 

referenced in theory, and some parameters and 

conditions will be changed in the real case to be 

evaluated during this work. 

In order to clarify the process and the structure that 

will compose the body of the created algorithm, a 
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basic scheme of the GA tool, is shown in Figure 1 

(LINDEN, 2012). This structure will be replicated for 

the construction of the GA applied in this paper, and 

the concepts already presented will be translated into 

certain operations within the programming language 

chosen for the creation of the tool that was Python. 

 

Figure 1. Scheme of a genetic algorithm. 

 

 

Source: Adapted from Linden (2012). 

 

The choice of using the Python tool was 

motivated by the facilities that this programming 

language has, for being a free and open source 

software, and has been gaining a lot space in the 

specialized academic community (SHEPPARD, 2016; 

POLI et al., 2008). 

 

The problem to be treated 

It is important to clarify the nature and 

conceptualization of the problem to be addressed. And 

in the case of this work is to solve a logistics problem, 

which has the following description: a driver wants to 

allocate a certain load of products, where each product 

has a certain value in dollars ($) and volume in meters 

cubic meters (m3), in a truck with total volume of L 

cubic meters. The driver's objective is to allocate a 

load of the highest possible value inside the truck, 

using as little space as possible, thus maximizing its 

loading efficiency. 

The problem requires that product data, such 

as values and volumes, be reported by the operator, as 

well as the total capacity of the truck. These data will 

be crucial for the algorithm since these are the criteria 

that it will use to define the best solution to the 

problem. 

In order to make the system more dynamic and 

close to reality, in this paper two different variations 

will be made, where in one of the tests the load 

available to be located inside the truck will contain 

only one unit of each available product, and in the 

second test, it will be made available different 

quantities of each product to be worked. Thus, the 

objective of GA will be to determine the best possible 

solution for loading the L-volume truck, with the 
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products that are informed by the operator. Finally, 

GA will generate information on what will be the best 

solution to the problem, as well as its generation, 

products that have been selected, price, occupied space 

and a graphical mapping of the development of the 

best solutions over the generations covered by the 

algorithm. 

 

Modeling 

Modeling any situation or problem in the real 

world for the language used by the machines requires 

the modeler to think strategically about the problem, 

so that the whole problem will have a structure where 

its parts are interconnected from beginning to end. The 

basis used for assembling this structure is the 

schematic shown in Figure 1, and the resulting 

algorithm passes through a satisfaction criterion that 

will evaluate each individual of the generated 

population, select them for the crossing, apply the 

genetic operators of crossing and mutation and then 

will discard the old population replacing it with the 

descendants of the previous one. This entire logical 

process is repeated as long as the stopping criterion is 

not met, and these stopping parameters are defined by 

the user. Figure 2 shows this GA scheme, called 

abstract (SUMETTHAPIWA et al., 2020). 

 

Figure 2. Abstract Genetic Algorithm. 

 

Source: Authors. 

All of these ordering of actions come from the 

logic of programming abstracted from the 

evolutionary processes arising from biology. Each of 

the steps represents a step analogous to those found in 

nature, and all of them are integrated to form a system 

that, based on the assessment of individuals present in 

the population, will perform manipulations in a 

continuous way, in order to evolve more and more the 

“species” until the stopping criteria are met (BURIOL, 

2000; BEASLEY, 1996; MATEO and ALBERTO, 

2018). 

 

Individual modeling 

The main basis for the elaboration of the 

algorithm described in this article is called Object 

Oriented Programming (OOP) (MILLIKEN, 2020), 

which aims to model real-world tasks for computer 

language. The use of OOP to perform these tasks 

consists of assigning to the given class (which 

represents the object to be modeled) the necessary 

attributes so that the algorithm can understand what 

this class can store, execute and assign, as shown in 

Figure 3. In it, the class is represented with its proper 

attributes, which will be used and manipulated during 

the execution of GA by other classes or functions. 

As it represents the first element of the 

problem, the modeling started by representing a truck 

and its possible loads. To represent this set, it is 

necessary to first model the items for the algorithm, 

represented by the Product class shown in the abstract 

algorithm of Figure 3. 

 

Figure 3. Defining the Product class (Abstraction). 

 

Source: Authors. 
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Therefore, the class created in the algorithm 

that represents the items must receive the assignments 

of each item that can be allocated inside the truck, and 

receive characteristics of the value and volume, which 

are factors that later on the algorithm will use to 

evaluate each of the products and their inclusion or not 

in the truck.  

After defining the objects that make up the 

problem data (Products), it is necessary to model the 

individual, which will be the exact representation of 

the solution possibilities for the problem, applied to 

each of the situations addressed. For the case, from the 

allocation of several products in a limited space, the 

modeling of individuals (solutions) is summarized in a 

binary distribution, which has as many elements as 

available products, with each product being assigned a 

number in that distribution, and that represents, 

literally, if a certain product will be taken or not. For 

this binary distribution, the products to which the 

number “0” is assigned will not be taken in the truck 

and those that receive the number “1” will be taken 

(TENG and TZENG, 1996). 

The archetype of each individual or solution 

will have this binary distribution format, since, given 

a certain number of items, the pattern of the solutions 

will maintain the pattern of binary sequences, which 

make an analogy to the individual's “chromosome” 

modeled for the problem. This association helps in 

modeling the individual within the algorithm as well 

as its manipulation by the crossing and mutation 

operators (SHAYANFAR and SCHONFELD, 2019). 

Furthermore, as shown in Figure 4, the class 

created for each individual must receive certain 

parameters that allow the algorithm to recognize and 

operate the values of each product in order to find the 

best answer. 

 

 

 

 

Figure 4. Defining the Product class (Abstraction) 

 

Source: Authors. 

 

The class defined in Figure 4 brings with it all 

the information that the GA will need from the 

individual who is trained through it. Each of the 

characteristics shown are defined in order to fully 

model the load that will be carried in a truck of 

capacity to be defined by the user. This class is 

composed of some information that is necessary for 

the GA to carry out the evaluation of the individual 

generated, the verification of the possibility of that 

individual being a viable answer, in addition to being 

able to perform operations such as crossing and 

mutating this individual with others generated in order 

to find the best possible answer.  

Finally, the individual class has as its attribute 

its primordial composition, which is the chromosome, 

represented by a single row matrix and several 

columns, with zero and one elements. The term 

chromosome derived from biology translates in an 

analogous way what this element represents for GA, 

which would be the expressed characteristics 

themselves, inherent only to that individual, and which 

can be combined with others, or mutate, generating 

descendants. 

 

Evaluation modeling (Fitness) 

Through the assessment of the individual GA 

will be able to select the best individuals, in order to 

make the crossing operators act on them, in an attempt 

to find even better results. The GA evaluation can be 

done through several methods, and in this work it was 
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made based on the Elitist Method, which defines the 

best solutions based on the “rating” parameter, ranking 

the solutions with the highest rating for the that has the 

smallest. 

Figure 5 shows the abstraction of the 

evaluation function, which is responsible for the 

evaluation within the algorithm and performs the sum 

of the utility values of the Individual's items and at the 

end it will verify if it corresponds to a viable solution 

for the problem through the condition imposed by the 

space limit of the truck. So that non-viable solutions 

have no value as good solutions within the sample 

space, whenever an Individual exceeds the space limit 

defined by the truck's available limit, this solution 

receives a low grade, defined for this work as being of 

unit value, that individual therefore, it will not be 

excluded from the population, but it will have minimal 

chances of being selected to generate descendants 

(AZAD, 2019). 

 

Figure 5. Function Evaluation (Abstraction). 

 

Source: Authors. 

 

Crossing operator modeling 

The crossing operator will be the GA method 

responsible for ordering the crossing of the 

chromosomes of the two Individuals selected as 

parents. The crossing of two “parents” tends to 

generate descendants characterized as more apt 

solutions and, with the advancement of generations, 

the population tends to evolve in quality of solution 

(SHI et al., 2020). For this work, the use of the one-

point crossing method was defined, where, 

considering the chromosome of each individual, a 

random point is selected so that the crossing occurs in 

an alternate symmetrical way, as shown in Figure 6. 

 

Figure 6. One-point crossing. 

 

Source: Adapted from Granatyr (2018). 

 

Therefore, after selecting a randomly defined 

point in the chromosome chain, the operator performs 

the genetic exchange between the Parents' genes to 

generate the descendants. As shown in Figure 6, Son 1 

receives the first three genes from Parent 1 and the 

remaining genes from Parent 2. In the formation of 

Son 2, it receives the first three genes from Parent 2 

and the genes remaining from Parent 1 (SHI et al., 

2020). 

 

Mutation operator modeling 

Modeling what would be the mutation process 

that occurs in nature is quite different in the field of 

algorithms, since this method is performed on the 

individual's chromosomes and any alterations in 

genes, greatly affect the solutions represented by the 

individuals. 

The process shown in Figure 7, literally 

illustrates the process that occurs within the mutation 

operator used to compose the GA of this work. The 

operator acts on the genes of the chromosome by 

inverting them, therefore, for the genes of value “0”, 

their value will be changed to “1” and vice versa. This 

operator is linked to an occurrence rate defined by the 

user, which is usually pre-determined between 0.5% 

and 1%, influenced by the good results obtained in 

previous works (SHI et al., 2020; SHI et al., 2018). 
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This rate will define the frequency of action of this 

operator on individuals in the population, more 

specifically on the children of a given generation, 

which will be when the mutation operators will come 

into action. 

  

Figure 7. Mutation Operator. 

 

Source: Authors. 

 

It is worth mentioning that for greater 

efficiency, the ideal is that tests be carried out to find 

the best mutation rate applied to each problem. 

Construction of the algorithm 

Having elucidated all the elements, the GA 

needs to unite them so that, through a continuous 

process and within the generated sample space, it is 

able to seek the best solution to the problem. 

Thus, in this work, GA was organized in a 

certain order of action as in the scheme shown in 

Figure 1, where GA was formed by an algorithm that 

uses all the elements previously modeled, placed in a 

conditional loop that will have a stop condition the 

number of generations determined by the user. 

Essentially, the algorithm must generate a population 

of solutions and, after that, evaluate these solutions 

and then apply the operators on that population in 

order to direct it to the best possible optimization, 

repeating the cycle until the stop condition. 

 

Select parents method 

This method is the function within the 

algorithm responsible for the selection of individuals 

within the population, which will be those whose 

descendants will replace the old one, on the pretension 

of being better solutions to the problem. Although the 

purpose of the algorithm is always to search for better 

solutions, as there are randomized processes within the 

algorithm, the descendants of these individuals will 

not always be better solutions to the problem, 

however, GA must be able to use these individuals to 

generate even better solutions. to the problem as it 

passes through processing. The basis for building the 

method that selects parents will be that of addicted 

roulette, which consists of selecting individuals based 

on their rating. This methodology aims to reproduce 

the method of natural selection that acts on species in 

nature, where more able parents generate descendants 

more often than less able parents, making the 

characteristic of the best individuals predominate in 

the new population formed by the descendants 

(MUSTAFI and SAHOO, 2019). 

 

GA abstraction 

The code was assembled in Python language, 

using the OOP methodology for its construction. Then 

a class called “Genetic Algorithm” was created that 

will carry with it all the necessary functions for the 

execution of the logic shown in Figure 8 and with the 

intention of performing the following steps: 

1° Initialize the population. 

2° Sort the population by rating (in descending order). 

3° Define the best Individual in the current generation. 

4° Perform the sum of the evaluation scores of 

individuals in the population. 

5° Select the parents using the addicted roulette 

method. 

6° Performs the crossing process through the crossing 

operators. 

7° If determined, perform the mutation process 

through the operator. 

8° Replaces the old population with the new one. 

9° Evaluates the new individuals of the population. 

10° Orders the population based on the elitist method. 
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11° Allocates the best individual in the first position of 

the population. 

12° Displays the current generation stating: the best 

individual, his total utility value and his total space 

occupied. 

The algorithm follows in its execution this 

logical sequence, where with each new action of the 

crossing and mutation operators, it is possible to 

visualize the best solution found by them. The results 

will be displayed through graphs according to the 

progress of the population count that will serve as an 

evaluation of the performance of the algorithm. 

In Figure 8, it is possible to visualize the union 

of all methods, organized in the process chain, which 

results in the main set of the problem solving tool in 

this paper. The abstraction of the GA shown is 

intended to clarify the cycle of steps covered by the 

algorithm in search of the solution to the problem. 

 

Figure 8. Scope of the Genetic Algorithm used 

(Abstraction). 

 

Source: Authors. 

 

The user defines the “population size” data 

received by the GA, which stores it for use within the 

function that generates the initial population. This 

variable will define the number of individuals that the 

populations will have throughout the processing of the 

GA. With the initial population generated, the ranking 

of the best individuals is made, even if they do not 

correspond to viable solutions, so that the sum of the 

evaluation of each individual can then be made. The 

next step of the algorithm consists of applying the 

methodologies, where the addicted roulette method 

will be applied to select the parents, in addition to the 

action of the crossing operators to perform the 

combination of these parents, and, if determined by the 

mutation rate, the action will occur of the mutation 

operator on the descendants generated. This process of 

generating a new population is followed by its 

ordering and evaluation based on elitism followed by 

its display on the user's screen, thus ending a 

generation of the algorithm. Bearing in mind that the 

execution cycle lasts as long as the algorithm does not 

match the stop condition, which is represented by the 

number of generations determined by the user. 

 

TESTS AND RESULTS 

The use of GA as a solution tool for the 

proposed problem, due to its stochastic nature derived 

from the random combinations made by the algorithm 

in order to find the best answer, presents different 

results in repeated runs that may or may not turn out to 

be considered optimal solutions. to the problem. Due 

to this characteristic, the results were evaluated 

according to their utility values and occupied space, 

and the purpose of the experiments carried out with the 

algorithm was to bring these values closer and closer 

to the best possible conditions. Therefore, the 

objective is that the utility values are maximized and 

the space occupied by the best solution found is as 

optimized as possible. 

The machine on which the GA experiments 

were carried out has a Processor: Intel® CoreTM i3-
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2100 CPU@3.10GHz 3.10GHz, Memory (RAM): 

4.00 GB, System type: 64-bit Operating System and 

Python Version: 3.7 64-bit. 

 

Tests Preparation 

The conditions imposed on the algorithm, such 

as population size, space limit supported by the truck, 

number of generations, mutation rate, and the 

characteristics of the items with which the algorithm 

will have to work were defined based on the nature of 

the experiments carried out. The aim is to adapt the 

characteristics of the algorithm in the best possible 

way according to the nature of the problem being 

treated. 

As proof of the method's effectiveness, 

applications were initially made for GA implemented 

over data sets available online and which are regulated 

by the GNU LGPL license (open access databases). 

These applications range from problems related to 

combinatorial analyzes, to those involving NP-

difficult and NP-complete problems. The purpose of 

using these databases is to assess the efficiency of the 

developed algorithm while acting on one of the chosen 

cases, so that, later on, the algorithm can be applied in 

situations created and adapted to real cases of the 

logistics of transport companies. 

 

Problem P01 

In the first experimentation with the algorithm 

presented, the database chosen was P01, present in the 

Data for the 01 Knapsack Problem, that brings with it 

the characteristics of Table 1. 

The sampling of data shown, simulates a 

certain sampling of items, which need to be arranged 

in a space limit of value 165 (Truck Limit). The nature 

of the measures involved in the problem does not 

necessarily need to be defined, that is, it is understood 

that the Limit value will have the same unit of 

measurement as the weight or space occupied by the 

items, plus the utility values of each item indicate only 

the assignment that each one adds to being taken in the 

“truck”. 

 

Table 1. Problem Description P01 

PROBLEM P01 

Truck Limit 165 

Item Weight/Space occupied Utility Value 

1 23 92 

2 32 57 

3 29 49 

4 44 68 

5 53 60 

6 38 43 

7 63 67 

8 85 84 

9 89 87 

10 82 72 

Source: Authors. 

 

The best ideal solution defined by the database 

for this problem has the following form: 

 

Table 2. Parameters used for P01. 

IDEAL SOLUTION PROBLEM P01 

Chromosome [1 1 1 1 0 1 0 0 0 0] 

Total Weight/Occupied Space 165 

Utility value 309 

Source: Authors. 

 

It is important to note that the database used 

here informs the best solution to the problem P01, 

which is the allocation of items 1, 2, 3, 4 and 6 in the 

truck. This solution provides the highest utility value 

for the load in the most optimized weight or space 

used. The intention is that the constructed algorithm is, 

therefore, capable of reaching this solution or 

approaching with little variation of the described 

values.  

 

Test 1 

The parameters used initially to run the 

algorithm on the problem were: 

 

TEST 1 

Population Size = 20 

Mutation rate = 0.01 

Number of Generations = 100 
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Using these parameters of problem P01 for 

processing the algorithm, after repeating the same 

execution for a low number of attempts, GA returns 

the best solution to the problem. Figure 10 shows the 

results of the best solution found after its execution, 

informing the number of the generation in which it was 

found, the total utility value of that individual, the 

space it occupies, the representation of its 

chromosome, the description of the chosen items for 

that solution and the time it takes for GA to process 

this answer. 

Figure 10. Solution for case P01 found by GA. 

 

Source: Authors. 

 

The graph represented in Figure 11 shows the 

development of the solutions, using the utility values 

of the best solution found in each generation over the 

generations. Through it, it is possible to observe the 

behavior of the algorithm throughout its processing in 

its search for the best possible solution to the problem. 

 

Figure 11. Graph of the solution for the case P01 found by 

the GA. 

 

Source: Authors. 

 

As can be seen in Figure 11, the test 

parameters presented here resulted in the ideal 

response, that is, the same response informed by the 

database itself (P01 Knapsack Problem) as being the 

ideal response. 

 

Test 2 

So in order to bring more dynamism to the 

tests, the parameters of the algorithm were changed to: 

 

TEST 2 

Population Size = 20 

Mutation rate = 0.02 

Number of Generations = 100 
 

Through this change in the parameters, it was 

possible to observe that by varying the number of 

generations to be processed by GA, the ideal response 

is still obtained at a higher frequency than in the 

previous experiment, thus reducing the number of 

repetitions necessary for an ideal response to be found 

for the problem. However, this change causes, as 

expected, an increase in processing time, however GA 

continues to work in less than 1 second. The results 

obtained by the algorithm are shown in Figures 12 and 

13. 

 

Figure 12. Solution for case P01 found by GA. 

 

Source: Authors. 

 

As can be seen in Figure 12, after changing the 

parameters, GA also returned the result considered 

ideal. As well as the graph shown in Figure 11, the 

graph represented in Figure 13 shows the development 

of the solutions, making it possible to observe the 

behavior of the algorithm throughout its processing, in 
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search of the best possible solution to the problem. The 

heuristic behavior of the algorithm in these two 

solutions is remarkable, where, for both cases, the best 

solution was found in a low order generation as a 

function of the whole. For the first case, the best 

individual was found in generation 11 of 100 and for 

the second experiment, it was found in generation 294 

of 1000. 

 

Figure 13. Graph of the solution for the case P01 found by 

the GA. 

 

Source: Authors. 

 

 

Truck Loading 

Once you have gauged the effectiveness of the 

algorithm built with an example provided by Data for 

the 01 Knapsack Problem, it is possible to apply GA 

in a real situation, to analyze the behavior and results 

obtained by the tool under certain conditions. The case 

to be studied is the loading of cargo in a truck of 

available volume L. 

The situation has as its only definition of 

parameters, a list of products shown in Table 3, with 

different utility value and occupied space 

characteristics, and the total available space of the 

truck that will be defined within the algorithm. 

In this Table 3, we list all the products that are 

available to be taken in the space/weight limit truck 

equal to 100. Some of the products are repeated to also 

simulate the case of the Knapsack problem, where the 

quantity of each of the available items it also varies, 

which brings a representation to the actual loading 

cases of the transport companies. Several tests were 

carried out on the situation set up in order to obtain the 

best possible result for the problem, therefore, the 

parameters of population size, mutation rate and 

number of generations were changed several times. 

 

Table 3. Truck Loading. 

SITUATION - TRUCK LOADING 

Truck limit 100 

Item Weight/Space occupied Utility Value 

43" LED TV 9.1 1799 

Air conditioning 31 1038 

Coffee machine 3.6 260 

Computer 12 1646 

Computer 12 1646 

Cooker 32 999 

Microwave  16                     648 

Washing 

machine  
34                     1254 

Ventilator                           4.1                    169 

Vacuum Cleaner                       5.9                    389 

Blender                              1.8                    139 

Blender                              1.8                    139 

Fridge                               58                     2399 

Fridge                               58                     2399 

Video game                           4.35                   1535 

Video game                           4.35                   1535 

Video game                           4.35                   1535 

Notebook 1.95    2008 

Smartphone 0.2 2649 

Smartphone 0.2 2649 

Source: Authors. 

 

Test 3 

  The parameters used to execute the problem 

algorithm proposed for the first case were: 

 

TEST 3 

Population Size = 20 

Mutation rate = 0.01 

Number of Generations = 100 
 

The results obtained through the tests as well 

as the simulation graph are shown in Figures 14 and 

15. 
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Figure 14. Solution for the Truck Loading case. 

 

Source: Authors. 

 

Using the parameters for test 3 (Truck 

Loading) after executing the algorithm (similarly as it 

was done for the execution of tests 1 and 2), GA 

returns the best solution to the problem. Figure 15 

shows the results of the best solution found after its 

execution, informing the number of the generation in 

which it was found, the total utility value of that 

individual, the space it occupies, the representation of 

its chromosome, the description of the items chosen 

for this solution as well as its value and the time 

required for GA to process that response.  

Through the graph shown in Figure 15, it is 

possible to observe the development of the solutions, 

using the utility values of the best solution found in 

each generation over the generations. 

 

Figure 15. Graph of the solution for the Truck Loading case. 

 

Source: Authors. 

 

The tests done with these parameters (test 3) 

showed that GA has a high capacity to solve problems 

inherent to transportation companies. In this first test 

it can be observed that the algorithm was executed 

with extreme speed (time of 0.044264 seconds). It is 

also observed that the value of the cargo allocated is 

16178 dollars. Despite these relevant results for a first 

test, there was still a 2.9 space left on the truck. In the 

next subsection, the parameters will be changed in 

order to obtain an optimization of space and value. 

 

Test 4  

The parameters used to execute the algorithm 

in this test on the problem, in a second attempt were: 

 

TEST 4 

Population Size = 20 

Mutation rate = 0.02 

Number of Generations = 1000 
 

Figure 16 shows the results obtained through 

the tests and Figure 17 shows the graph of the 

respective simulation. 

 

Figure 16. Solution for the Truck Loading case 

 

Source: Authors. 

 

The results shown in Figures 16 and 17 are 

quite explicit in relation to the proximity of the 

solutions, which indicates that the algorithm has a 

certain tendency to always obtain the most optimized 

result possible, however, there are other details present 

in the simulations that are notable for the objectives of 
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this work. When analyzing some repetitions of the 

algorithm execution in the configurations previously 

exposed, where there was a difference in the 

population size from 100 (test 3) to 10000 (test 4), and 

it can be noticed that when increasing this value of the 

algorithm, being provided with a space of repetitions 

and greater search attempts, excels in finding the best 

answer to the problem. 

 

Figure 17. Graph of the solution for the Truck Loading case 

 

Source: Authors. 

 

For this case, the best response after tests was 

shown in Figures 16 and 17, where it was observed that 

it was possible to load 3 more products in the truck, 

resulting in an individual's total utility value of 16703, 

so there was an increase of $525. Now, the occupied 

space/weight is 99.4999 showing an optimization of 

space in 82.76%. This solution can be obtained in tests 

with a smaller population size, however, it appears 

after a few executions of the algorithm, but the same 

does not occur when increasing the value of the 

population size. Although the greatness of this number 

caused the algorithm to finish the process in a 

considerably longer time compared to the population 

size experiment equal to 100, the time in which it was 

performed (Duration 5.1941 seconds) is considerably 

fast, once the process ends up returning what would be 

the best possible solution using this technique, in a 

much larger range of assertiveness as evidenced by the 

results. 

 

Comments 

In this chapter, the tests and results obtained 

through the application of the proposal were presented 

and shown in section The Knapsack Problem together 

with the technological strategy of the Genetic 

Algorithm and the methodology presented. The 

objective of these tests was to evaluate which is the 

best KP solution, with the necessary adaptations in 

order to become a problem involving the truck 

Loading. 

Through the analysis of the behavior of the 

graphs in Figures 11, 13, 15 and especially in Figure 

17, it is possible to notice that with the processing of 

the algorithm, the system reproduces in a similar way 

the process of natural evolution, that is, the variation 

shown has character increasing and denotes a search 

for continuous evolution of the algorithm until the end 

of processing. It is also possible to notice through the 

graphs shown in Figures 13 and 15, that due to the 

smoothness of the data, when the GAs faced the 

individuals corresponding to the ideal solution to the 

problem, there were some unsuccessful attempts to 

search for even better solutions, as shown by the 

variations by the alternating peaks. This characteristic 

is beneficial for the algorithm because it denotes its 

statistical capacity to continuously search for better 

solutions through the use of crossing and mutation 

operators. 

 

CONCLUSION 

The Genetic Algorithm proved to be a 

powerful tool in solving combinatorial problems 

impossible by common methods, which further 

elevates its value as a methodology, since large parts 

of the logistical, transport and industrial processes 

problems have permeated in their nature combinatorial 
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problems. The quick solution of the problem described 

here, also allows to classify the modeled tool as 

effective not only for the case set up for study, but also 

for similar application examples. Through the results 

shown, it was possible to achieve one of the main 

objectives of this paper, which was to investigate the 

effectiveness of the genetic algorithm applied in 

solving a problem in logistics engineering. 

 

Future works 

The text of this paper brought a theoretical 

foundation to the researchers in order to enable the 

implementation of GA in other problems or even to 

improve the problem exposed here. As a suggestion for 

future work, using the tool and its application 

demonstrated in this work, we can mention the 

application of the algorithm in the solution of a 

complete logistics problem, where the entire process 

of cargo transportation, goods flow, delivery control, 

among other similar processes, GA would be 

responsible for deciding the most efficient path to be 

taken among the various possibilities present in these 

processes. The tool shown here can also be increased 

with the advent of several technical elements, since, if 

provided and modeled correctly the data, GA will find 

an optimal solution for any combinatorial problem. 

Another suggestion would be to develop a mobile app 

of the algorithm in order to make it a more intuitive 

and illustrative tool, adding to its operation a clear and 

direct interface so that any user can operate as well as 

manipulate the display of results. 

As noted, the application of GAs is not limited 

to just one Engineering or one type of problem. Thus, 

it is essential to expand your study in all directions, 

allowing great contributions to society, a fundamental 

role of the scientific community. 
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