ABSTRACT
The flavored vinegars made from wines and fruit are highlighted in the food gastronomy market. However it is not easy to have a good starter. It is easy to found acetic acid bacteria (AAB) in the natural fermentation of fruits where they are mixed with yeasts. A medium was adapted have only AAB. For test this medium overripe fruits were fermented by 3 days at room temperature and sampled as inoculum. Bacteria presenting AAB characteristics were identified in microscope. Samples with 0.5mL were placed into Petri dishes containing a modified Frateur medium composed of agar, yeast extract, alcohol, and calcium carbonate. As fungistatic were tested the gentian violet (1% methylrosanilinium chloride) and nystatin water solution (10^5 IU) both used at 0.5/1.0/1.5mL on 20mL of the medium directly placed into sterile plates. Petri dishes were incubated at 25°C for five days and AAB colonies recognized by forming a halo. The data showed that only nystatin at dose 1.0 mL controlled the wild yeasts growth. Biochemical assays (Gram staining, oxidase, catalase, indole and H2S formation) confirmed the genus Acetobacter. The data proving that the combination of Frateur medium with 1.0 mL of water solution of nystatin 10^5 IU may be a good option for isolating AAB from fermenting fruit.

Keywords: Frateur medium, acetic acid bacteria, nystatin, gentian violet, vinegar.

Prospecting of Culturable Acetic Acid Bacteria From Fermented Fruits

Vanessa Cassoni, Marney Pascoli Cereda

Prospecção de bactérias cultiváveis em ácido acético de frutas fermentadas

RESUMO
Vinagres aromáticos elaborados de vinho ou de frutas têm se destacado no mercado de alimentos especializados em gastronomia. Entretanto não é fácil conseguir inoculo de boa qualidade. É fácil encontrar bactérias do ácido acético (BAA) em frutos naturalmente fermentado onde encontram-se misturadas com leveduras. Um meio seletivo foi adaptado para isolar apenas BAA. Para testar esse meio frutas muito maduras foram fermentadas por 3 dias a temperatura ambiente e amostradas como inoculo. Bactérias que apresentavam características de BAA foram identificadas em microscópio. Aliquotas de 0.5mL foram inoculadas em placas de Petri contendo meio Frateur modificado composto de ágar, extrato de levedura, etanol e carbonato de cálcio. Como fungistaticos foram avaliados violeta de genciana (1% cloreto de metilrosanilina) e nistatina em solução aquosa (10^5 UI) ambos a 0,5/1,0/1,5mL em 20mL de meio que foi vertido em placas esterilizadas. As placas foram incubadas a 25°C por cinco dias e as colônias BAA reconhecidas pela formação de halo. Os resultados mostraram que apenas a nistatina na dose de 1,0 mL controlou o crescimento de leveduras selvagens. Ensaíos bioquímico como Gram, oxidase, catalase, indole e formação de H2S confirmaram o gênero Acetobacter. Os resultados comprovaram que a combinação de meio Frateur com 1, mL de solução aquosa de nistatina a 10^5 UI pode ser uma boa opção para isolamento de BAA de frutas fermentadas.

Palavras chaves: Meio de cultivo Frateur, bactérias acéticas, nistatina, gentian violeta, vinagre.

1Marney Pascoli Cereda- cereda@ucdb.br.
INTRODUCTION

Vinegar is worldwide used as condiment and food conserve. In addition, it has been considered an indispensable complement to the human diet due to its nutritive and bio regulatory action. The production of vinegar may use as raw material several products found in rural properties, specially the ripe fruits.

Acetic acid bacteria (AAB) are the inoculum for vinegar production but are not always available in commercial or academic collections. Commercial vinegar is pasteurized and is not sure that vinegar industries may provide strains to researchers, which makes difficult the obtaining starter material for studies. The solution used all around the world is its prospection from the environment, which may provide more suitable agents to the local conditions.

Acetic bacteria, represented by the genus Acetobacter, are easily found in nature and can be obtained from fruits, flowers, bee honey, beer, and grape wine (Sengun and Karabiyikli, 2011). In the early years, AAB were classified into two main genera but nowadays twelve genera are recognized and accommodated to the family Acetobacteraceae but these strains is rather rare in common isolation sources such as vinegar, wine, fruits and flowers (Fregapane, Rubio-Fernández and Salvador, 2006; Yamada and Yukphan, 2008; Yukphan et al., 2009, 2008).

Little is known about the ecology of the vinegar starter although there are microbiological studies focused on the production several vinegar types. The diversity and succession of microorganisms involved in fruit vinegar production, remain unstudied (Hidalgo; Mateo; Mas and Torija, 2012). The natural production of vinegar occurs in two stages. First there is the alcoholic fermentation of the sugars and then the acetylation of ethanol. The two stages may be occur simultaneously with a dynamics of microorganisms that is hard to be monitored. It is generally understood that non-Saccharomyces yeasts begin the process of spontaneous alcoholic fermentation, and S. cerevisiae eventually takes over and dominates the process. This has been described with grape wine although in fermentations that yield a low final alcohol content, Saccharomyces may not always appear (Chanprasartsuk et al., 2010). A high diversity of Non-Saccharomyces yeasts was only present throughout in the spontaneous fermentations (Hidalgo; Mateo; Mas and Torija, 2012) and these results are not surprising because inoculation with selected yeasts reduces the growth of native yeasts (Beltran et al., 2002).

In these habitats the populations of yeast and AAB need to be were monitored by plating at various times throughout the experiment. Samples were taken three times during alcoholic fermentation: at the initiation of the process, at a midway point through fermentation (when the sugar was half consumed) and at the point when the residual sugar concentration was below 2 g/l. To monitor the aceticification process the sampling may be conducted during the initial stage, at low acidity (3% (w/v) (Hidalgo; Mateo; Mas and Torija, 2012).

If acetic acid bacteria is isolated from fruits several undesirable microorganisms may be present, specially the yeast that be frequently larger than that the AAB (Sengun and Karabiyikli, 2011). In a natural fruit fermentation is common coexistence of yeasts and acetic bacteria. Hidalgo, Mateo, Mas and Torija (2012) reported that in persimmon fermentation for vinegar naturally occurring yeast populations found to number about 10^6 cells/ml, and most of them could be recovered by plating. Culturing from the inoculated alcoholic fermentations was more difficult because the yeast population reached a maximum number of >10^7 cells/ml, and only 10 e 25% were culturable. Microscopy revealed that the bacterial population was high at the beginning of aceticification and decreased at the end of the process, a reduction of 99%.

The ideal culture medium to isolate acetic bacteria has been discussed since 1868 (Mecca, Andreotti and Veronelli, 1979). Several researchers have conducted studies in order to set the ideal culture medium to isolate acetic bacteria; thus, they discovered that the different Acetobacter species have their best development in different culture media (Krieg and Holt, 1984).

Enumeration, isolation, identification and preservation of AAB are not easy. Not all the media support growth of AAB equally and they are selective for one strain to another (Gullo et al., 2006). Although there are lots of media developed for isolation and/or identification of AAB, they main consist of the same ingredients with varying proportions, which caused different reactions on the plate. Mainly used incubation condition for the growth of AAB is 30 °C for 2-5 days (Seearunruangchai et al., 2004; Yamada & Yukphan, 2008).
Same culture medium are simple as the described by Yamada & Yukphan, (2008) as GY medium, composed by 2% glucose, 1% yeast extract and 2% agar um distilled water. Calcium carbonate can be added to allow a halo formation if acetic acid is formed. The culture medium GYCis described by Gullo & Giudici, (2008) as composed by 10.0% glucose, 1.0% yeast extract, 2.0% CaCO$_3$ and 1.5% agar.

A variation of GYC medium is described by Gullo and Giudici, (2008) with the substitution of glucose for 2.5% of mannitol and including 0.5% yeast extract, 0.3% of peptone and 1.2% agar. The same culture medium with small variations is cited by Krieg and Holt(1984) have reported that the culture medium containing 1.0% yeast extract, 2.0% glucose, 2.0% mannitol, 2.5% ethanol and 0.5% acetic acid yielded good results.

Most complicated culture medium uses ethanol and acetic acid. Yamada et al., (1999) describes the AE-medium composed as glucose (0.5%), yeast extract (0.3%) and 0.9% agar. Before the sterilization and after the sample inoculation the culture medium receives 3ml of absolute ethanol and 3ml of acetic acid. A similar culture medium is described by Zahoor et al., (2006) just as Reinforced AE-medium by put more glucose (4%) and yeast extract (1.0%) and with the addition of 1% peptone, 0.15% citric acid, 2% (v/v) ethanol, 1%(v/v) acetic acid and 0.34% Na$_2$HPO$_4$, 7H$_2$O.

In 1898, researchers proved that Acetobacter species such as A. xylinum and A. ransens cannot grow in an acetic acid-ethanol medium but may present a good development when glucose, sucrose, mannitol or glycerol are added to the culture medium. Some years later, in 1950, researchers elucidated that the species A. aceti requires culture medium containing ethanol, distilled water and phosphates. Other studies with different Acetobacter species were performed to set the best culture medium (Mecca, Andreotti and Veronelli, 1979).

Although vinegar production is a growing commercial activity due to the appreciation of gourmet vinegars in the Brazilian market, the literature on the isolation of acetic bacteria for Brazilian fruits is scarce.

According to Fregapane, Rubio-Fernández and Salvador, (2001) the Frateau medium are capable of providing development for all strains of the genus Acetobacter. The Frateau medium is a variation of GY medium also composed of 1% yeast extract and 2.0% agar in distilled water, with the addition of 2.0% CaCO$_3$, with pH adjusted between 6.0 and 7.0. After the sterilization 2.0% ethanol is added. The same authors also indicate that the best carbon sources for Acetobacter growth are ethanol, glycerol and lactate. Amino acids alone cannot be used as source of nitrogen and carbon.

Due to difficulties in isolation the number of AAB recovered on plates were ever two or three orders of magnitude lower than what was observed by microscopy. The highly acidic conditions at the middle and late stages of aceticification suggest that most of the bacteria present were AAB, despite the fact that we were unable to differentiate them by microscopy (Hidalgo, Mateo, Mas and Torija, 2012).

AAB are well known for the ability to oxidize the sugars and alcohols, resulting an accumulation of organic acids as final products, but a considerable number of AAB can oxidize alcohols into sugars, mannitol into fructose, sorbitol into sorbose or erythritol into erythulose (Gonzales, 2005). The main physiological difference between the AAB genera was that Acetobacter oxidized ethanol into acetic acid, and subsequently, completed the oxidation of acetic acid into water and CO$_2$ (Gonzales, 2005). Direct oxidation metabolism pathway works only in the presence of >15 mM glucose in the culture medium (Weenk, Olijve and Harder, 1984).

In 1953 A. aceti was proven incapable of growing in a medium containing ethanol, mineral, and ammonia and nitrogen salts but no acetic acid, acetate or glucose, justifying that such compounds stimulate A. acetigrowth. The authors suggested that the presence of a reducing sugar is necessary to start the growth of acetic bacteria, which probably use ethanol as an additional source of carbon and energy by oxidizing it to acetic acid (Mecca, Andreotti and Veronelli, 1979).

The AAB isolation can may allow starters more adapted to local conditions than the agents obtained in commercial or academic collections.

In sub-Saharan Africa, the vinegar used as food condiment is obtained from the dilution of acetic acid imported from Europe, and the artisanal production is not common. Thus, researchers developed studies to isolate acetic bacteria from mango and dolo, a local beer, and then tested their ability to adapt to high temperatures in order to produce vinegar. In Senegal and Burkina Faso regions the temperature is constantly high, usually above 30° C. The ideal temperature for the good growth of acetic bacteria.
growth of acetic bacteria is known to be around 25°C. Of 17 strains, two were selected for presenting thermo tolerant properties, and vinegar of 6% acidity could be obtained by the slow process (Krieg and Holt 1984). Thermo resistant properties of AAB isolated from tropical products of Sub-Saharan Africa were studied for its advantages of these strains were reported as the considerable reduction of the coolingwater expenses and the availability of the strains for traditional vinegar fermentation (Ndoye et al., 2006).

Once isolated microorganisms is necessary to confirm that this is AAB and specifically, Acetobacter aceti.

Sengun and Karabiyikli, (2011) reports the Acetobacter spp characterization as flagellation type peritrich, with oxidation of ethanol to acetic acid, and then acetacidd and lactate to CO₂ and H₂O. Growth on 0.35% acetic acid by adding or containing in the medium. Do not growth or grows weakly in methanolD-mannitol and 30% D-glucose. Do not produces cellulose and the production of levan-like mucous substance from sucrose and ketogenesis (dihydroxyacetone) from glycerol is variable. Do not fix molecular nitrogen. The acid production fromD-Mannitol and Glycerol is variable but do not produces acid from Raffinose. The cellular fatty acid type is C18:1and the ubiquinone type is Q-9. The DNA base composition (mol% G + C) is 52-60.

Glucose Yeast Extract CaCO₃ Medium (GYC) was proposed as a medium that enabled most strains to berecovered in traditional vinegars (Gullo et al., 2006). Environment of the isolates is also important for selecting the isolation of suitable media. It is reported that isolates from cider or wine vinegar fermentations grew readily in Reinforced AE-Medium (ERAMedium) while AE-Medium proved most suitable for the cultivation of strains isolated from spirit vinegar fermentations (Sokollek et al.,1998).

Hidalgo, Mateo, Mas and Torija (2012) collected a total of 270 AAB isolates during these persimmon acetyfication by the traditional vinegar fabrication. Most of colonies produced a clear halo around when plated on media containing CaCO₃. All halo-forming colonies were Gram negative and catalase positive, which confirmed they were AAB.

In a liquid medium such as wine with high alcohol content, the presence of free SO₂ and the low availability of oxygen subjectthe microorganisms to serious stress and they probably need somerecovery before they can grow on a solid medium with a different carbon source (Millet and Lonvau-Funel, 2000). Rapid method for total, viable and non-viable AAB determination was developed by Baena-Ruano et al. (2006) as a possible option, using the direct counting in a Neubauer chamber as well as an epifluorescence staining technique, using the live/dead BacLightBacterial Viability Kit. The advantages of this method reported as follows: (i) it is a reliable, rapid, easy and yields both viable and total bacteria in only one step, (ii) samples are easy to prepare and easy to differentiate because of the high degree of contrast between the green color of the viable bacteria and the red color of the dead cells, (iii) BacLight stain does not produce background fluorescence.

Few ecological studies have analyzed the main AAB species involved in the process, while all studies have been conducted with cultivable strains only. The availability of a reliable and fast technique for AAB enumeration is very useful in the food industry, in which AAB are used as biotechnological agents or in which AAB may spoil food product (Torija, Mateo, Guillamon, Mas, 2010).

Yamada et al. (1999) were isolated sixty-four of AAB from Indonesian sources such as fruits, flowers and fermented foods. AAB were also isolated from fruits collected in Thailand. Isolates, belong to A. pasteurianus were found in fruits of apple, banana, grape, guava, jack fruit, jujube, kaffir lime, langsat, longkong, longan, mango, mangosteen, orange, papaya, peach, pineapple, passion fruit, rose apple, rambutan, rakam, sapodilla, star gooseberry, strawberry, sugar apple, tamarind, watermelon, tomato and palm juice, while Acetobacter orientalis and Gluconacetobacter liquefaciens were found in star fruits and palm juice, respectively (Seearuruangchait et al., 2004).

The use of substances inhibiting the yeasts in isolation and less common in the literature. Hidalgo, Mateo, Mas and Torija (2012) describes isolation of AAB by plating samples on GYC medium supplemented with natamicine (100 mg/l).

Others antifungal agents are cited in the literature as gentian violet is the common name of the compound methylrosaniline chloride has antifungal, although it is used as dye. Fungicidal agents, such as cetylpiridinium chloride,
hexachlorophene, iodine (in dye form), potassium permanganate, rubiazol, thimerosal, triclosan, and gentian violet, were evaluated for six Candida species (Jarvis, 1995).

Damjanovic et al., (1993) reported control of candidiasis with daily doses of 1 ml of nystatin (100,000 IU). Another study describes the use of nystatin as an inhibitor of the yeast. Johnson, Taylor and Held (1989) cited nystatin is in culture isolation of Candida spp in dose from 200,000 units, 400,000 units compared with placebo. Both dosages were shown to be effective in significantly reducing or eliminating the Candida organism during active therapy.

The aim of this study was to test a culture medium for acetic acid bacteria isolation in natural fermentation of tropical fruits by using gentian violet and nystatin as yeasts inhibitors.

MATERIAL AND METHODS

The inoculum

Mixed ripe fruits (pineapple, banana and orange) were ground and kept in covered containers at 30 °C for as described by Seearunruangchai et al., (2004) and Yamada & Yukphan, (2008). After 24h, the fruits started to present alcoholic fermentation, followed by an evident change to the acetic fermentation process. Samples from the formed fermented liquid were collected, observed under an optical microscope and stained with methylene blue as vital dye. The Gram was used to prove the presence of typical bacteria. This fermented fruit liquid (0.1 ml) was used as inoculum presenting acetic bacteria was added in triplicate to plates containing solidified Frateur medium.

Culture medium

To isolate Acetobacter spit was used the selective culture medium was that of Frateur according to Bergey’s Manual of Systematic Bacteriology from Krieg and Holt (1984).

<table>
<thead>
<tr>
<th>Components</th>
<th>Frateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast Extract, g l⁻¹</td>
<td>10</td>
</tr>
<tr>
<td>Agar, g l⁻¹</td>
<td>20</td>
</tr>
<tr>
<td>Calcium carbonate, g l⁻¹</td>
<td>20</td>
</tr>
<tr>
<td>Ethanol, g l⁻¹</td>
<td>20</td>
</tr>
<tr>
<td>Distilled Water, ml</td>
<td>1000</td>
</tr>
</tbody>
</table>

Acetic bacteria were identified based on a transparent halo around colonies, a result of CaCO₃ solubilization by the produced acids. Yeast extract was used as source of vitamin, and nicotinic acid and ethylic alcohol as sources of carbon.

To inhibit yeasts, two agents were evaluated: nystatin and gentian violet. Hydro alcoholic nystatin solution (10⁵UI/ml) was added at the following Frateur medium in the concentrations (ml⁻¹): 0.0, 0.5, 1.0 and 1.5 to each 20 ml medium. Commercial gentian violet (10 mg ml⁻¹) was added at the following Frateur medium concentrations (ml⁻¹): 0.0, 0.5, 1.0 and 1.5. Both substances were added after the medium sterilization 1.5 pounds/15 minutes.

The inverted plates were incubated at 25ºC and after five days colonies were collected for observation under an optical microscope. Colonies presenting a transparent halo were streaked for purity verification. Colonies presenting the same morphology were transferred again to Frateur medium, always by streaking, in order to maintain the isolated strain and multiply it. The isolated strains were kept at 4ºC and subjected to biochemical evaluation in triplicate, such as Gram’s Method, besides assays for oxidase, catalase and indoland H₂S formation, to identify the genus of the isolated bacteria (FERRAZZA et al., 2005).

RESULTS AND DISCUSSION

To obtain acetic inoculum from natural fermentation was based on the fact that vinegar-producing starter microorganisms are not easily available in the market either because they are part of commercial procedures in companies or because there are scarce studies on this theme. The use of the liquid from fermented fruit helps to reduce the amount of glucose that is related by Gullo & Giudici, (2008) may inhibit the growth of AAB.

The pH values of fermented fruits were near 6.0. As Gonzales et al. (2006) the optimum for the growth of AAB is 5.6-5.5 while they can grow at lower pH values between 3.0 and 4.0 (Holt, Krieg, Sneath, Staley and Williams, 1994). This pH value is near the natural pH of the fermented fruits.

This method may be evaluated by the great majority of AAB at the optical microscope analysis of the liquid obtained from fermented tropical fruits indicated microorganisms presenting morphological characteristics typical of acetic bacteria in mixture with yeasts and others.
AAB have traditionally been enumerated by quantifying viable colonies by plating in solid culture media (Gullo, Caggia, De Vero, & Giudici, 2006). Several media were used for isolation and methods based on physiological abilities were used for the AAB identification. There are some limitations for methods based on plating such as time requirement, and inability to detect viable but noncultivable (VBNC) cells. To overcome these disadvantages of culturing, new techniques have been developed using molecular approaches (Gonzalez, Guillamon, Mas, & Poblet, 2006). If molecular approaches is not available is possible to use specific mediums to inhibit the yeasts growth, which present good development under the same conditions as those for AAB. In this paper gentian violet and nystatin were evaluated. Although mentioned in literature, in the present study the yeasts found in the fermented fruits did not have their growth inhibited by the gentian violet added to the Frateur culture medium at any one of the three tested concentrations (0.5/1.0/1.5 ml for 20 ml). Halo was also not visible (Figure 1A). The acid formed by acetic bacteria dissolved the calcium carbonate and could be noticed due to the coloration change at the site of acid production.

Figure 1 – Growth in Petri dishes plates with modified Frateur medium containing yeast inhibitors: gentian violet (A) and nystatin (B).

When 0.5 ml nystatin aqueous solution at the concentration of 10^5 IU was used in 20 ml medium in a Petri dish was there possible to see a partial inhibition, with weak yeast growth (Figure 2). However, 1.0 and 1.5 ml proportions per plate completely restricted yeast growth, allowing the development of visually homogeneous colonies of acetic bacteria with a transparent halo formation. The halo (see arrow) corresponding to the beginning of the reaction involving the acid formed by acetic bacteria and calcium carbonate is shown in Figure in Petri dishes added with nystatin (Figure 1B). The halo formation that is one of the basic characteristicsthat associates a given colony to the AAB group (Cleenwerck and de Vos, 2008) and in general, AAB belonging to the genus Acetobacter have been found more frequently founded (Camu et al., 2007). Hidalgo,
Mateo, Mas and Torija (2012) describes colonies with a halo around confirmed as AAB isolation when were subjected to Gram staining and the catalase test. The authors founded 45 colonies with these characteristics from persimmon fermented for vinegar production. In this study the microorganisms collected from the colonies with halo formation in the modified Frateur medium showed negative Gram staining (Figure 2) compatible with AAB characteristics. The selected colonies had rod-shaped Gram-negative bacteria and pale colonies surrounded by a transparent halo due to their reaction with calcium carbonate. In addition to the tests for methodology certification, the performed biochemical assays yielded the following results: negative oxidase, positive catalase, no H$_2$S and indol formation, and no gelatinous liquefaction. Such morphological and biochemical characteristics agree with the description of Acetobacter sp genus mentioned in literature (FREGAPANE; RUBIO-FERNÁNDEZ and SALVADOR, 2001). Acetic acid bacteria (AAB) are gram-negative or gram-variable, aerobic, non-spore forming, ellipsoidal to rod-shaped cells that can occur single, in pairs or chains. Their sizes vary between 0.4e1 mm wide and 0.8e4.5 mm long. They are catalase positive and oxidase negative. AAB are heterogeneous assemblle, comprising both peritrichously and polarly flagellated organisms (Gonzales et al., 2006).

The taxonomy of AAB has not been fully established yet and rearrangements of the group are still in progress. The reasons for this taxonomic uncertainty are both due to the limited knowledge of the AAB phylogensis and isolation, identification and preservation difficulties of these bacterial strains (De Vero & Giudici, 2008). The identification of the isolated strains only by the colony morphology and biochemical test of cells is not secure, but by using a medium with high selectivity it will possible to provide a large number of isolates without much difficulty. It is probable that among this high number of colonies it will possible to isolate many strains of Acetobacter aceti and some of them may show a good performance.

CONCLUSION
Frateur medium adapted with yeast extract and added of 1.0 ml nystatin per Petri plate at the concentration of 105IU was efficient for the growth and isolate of acetic bacteria and the inhibition of yeast growth at 25°C.

ACKNOWLEDGEMENTS
The authors thank the CAPES Brazilian Coordination for the Improvement of Higher Education Personnel) and CNPQ (National Council for Scientific and Technological Development) for financial support.

REFERENCES

CHANPRASARTSU, O, PRAKITCHAIWATTANAA, C., SANGUANDEE KULA, R., FLEET, G. Autochthonous yeasts associated with mature pineapple fruits, freshly crushed juice and their ferments; and the chemical changes during

SEARUNRUANGCHAI, A., TANASUPAWAT, S., KEERATIPIBUL, S., THAWAI, C., INOH, T., YAMADA, Y. Identification of acetic acid bacteria isolated...

