Vol. 3, N. 4: pp. 159-165, November 2012 ISSN: 2179-4804 Journal of Biotechnology and Biodiversity

Avaliação de método convencional e digestão úmida para determinação de níveis de Fe, Mn, Ni, Cu, Co, Mg, Zn, Ca, Mo e Se em amostras secas de tomates orgânicos (Solanum lycopersicum L.) por Absorção Atômica de Chama (FAAS)

Evaluation of conventional dry ashing and wet digestionmethodsfor determination of Fe, Mn, Ni, Cu, Co, Mg, Zn, Ca, Mo e Se levelsin dried samples of organic tomatoes (Solanum lycopersicum L.) by Flame Atomic Absorption Spectrometry (FAAS)

Paulo César Cavalcante Vila Nova^{1*}, Eduardo José de Arruda², Lincoln Carlos Silva de Oliveira¹, Gemima dos Santos¹, Antonia Railda Roel³ e Jusinei Meireles Stropa¹

¹Departamento de Química, Universidade Federal de Mato Grosso do Sul, 79074-460 Campo Grande-MS, Brasil.
²Faculdade de Ciências Exatas e Tecnologia/Química, 79804-970, Dourados-MS, Brasil.
³UCDB\Mestrado em Biotecnologia - Mβiotec - Campo Grande-MS, Brasil.

ABSTRACT

The aim of this study was to investigate the effect of digestion and extraction of minerals in organic tomatoes to atomic spectrometry. Fe, Mn, Ni, Cu, Co, Mg, Zn, Ca, Mo e Se levels in seven organic samples of dried tomatoes (Solanum lycopersicum L.), were determined by flame atomic absorption spectrometry. Dissolution conditions in the wet digestion method were studied by investigating several variables, including type of acid mixture and acid volume and digestion time. Comparison with conventional dry ashing methods was also made. In order to check the element losses during digestion and the accuracy of the results, all tests were repeated with statistical analysis. The nitric-perchloric acid digestion method was efficient for Ca, Mg, Se and Zn. The extraction procedure with chloride acid was similar to the nitric-perchloric acid digestion and the nitric-perchloric acid digestion was equivalent to the conventional dry ashing for the Mn. For the Cu and Mo conventional dry ashing methods was more efficient. For the Ca conventional dry ashing methods no showed significative difference for the nitric-perchloric acid digestion. The extractions with chloride acid are promised, practical and simples, with lower riscs for the manusead and ambiental contaminations.

Key-words: Tomato, FAAS, micro and macronutrients

INTRODUÇÃO

A demanda por produtos orgânicos tem aumentado nos últimos anos. Entretanto, não está ainda claro como os diferentes conteúdos de substâncias orgânicas e/ou minerais afetam a qualidade dos produtos (Luzet al., 2010). Na produção de tomates orgânicos, a fonte de nitrogênio, macro e micronutrientes são supridas por fertilizantes

orgânicos, por exemplo, resíduos animais e vegetais e misturas compostas. O material orgânico solo é mineralizado no microrganismos e pequenas moléculas compostos nitrogenados (proteínas aminoácidos), íons amônio são liberados e nitrificados a nitratos, além dos minerais dos fertilizantes (Fernandes, 2002).

Author for correspondence: vilanovapc@gmail.com

J. Biotec. Biodivers. v. 3, N.4: pp. 159-165, Nov. 2012

Plantas são organismos sensíveis capazes de sentir flutuações transientes e mudanças sazonais de temperatura e responder a estas mudanças por ajuste ativo do seu metabolismo (Souza et al., 2011). As estações introduzem alterações por variações de temperatura na alocação de nutrientes em vários órgãos. O aumento da temperatura aumenta a captura de fósforo (P), mas não sua translocação para as partes superiores da planta, além de afetar a mobilidade de N, K,Mg e Ca (Darawsheh e Bouranis, 2006).

Os frutos são significantemente afetados pela alocação de nutrientes na planta. A concentração de cálcio em várias partes das plantas tem relação positiva com o aumento da concentração nos frutos (Drietrichet al., 2011). Comparado com outros nutrientes, Ca e K tem uma pronunciada tendência de ser transportado para as partes superiores das plantas sob altas temperaturas, como consequência, sua concentração nas partes superiores das plantas apresentam um significante aumento durante o verão (Souza et al., 2011).

Em contraste a concentração total de N e K, as concentrações de cálcio nas partes das plantas apresentam relação positiva com o aumento do conteúdo nos frutos. A concentração de cálcio e a de nitrogênio total foram sempre maiores nas folhas do que nas raízes das plantas (Cruz, 2012; Santos et al., 2002).

Sob condições de alta temperatura, P foi acumulado nas raízes em combinação com altas concentrações de Fe, Zn e Mn. De outro modo, K e N foram acumulados nas raízes durante os períodos de baixas temperaturas. Este fato sugere que a análise de concentrações extraídas de nutrientes é índice para o diagnóstico do estado mineral nutricional das plantas disponibilidade do conteúdo para o consumidor (De Pinho et al., 2010; Furuya et al., 2008). A determinação de vários elementos inorgânicos nas variedades de tomates é útil para estudos biológicos, nutricionais e toxicológicos (Schallenbergeret al., 2011). A estratégia mais comum para análises de produtos orgânicos é a aplicação de uma técnica que seja efetiva e reprodutível para o tratamento da amostra. Geralmente, a decomposição de amostras ricas em carbono é mais trabalhosa do que amostras pobre em carbono, porque a destruição da matriz orgânica requer misturas oxidantes fortes(Aleixo et al., 2000).

A espectrometria (FAAS) é uma das, senão a mais usada técnica analítica para determinação

elementar de micro e macronutrientes, e o uso de métodos estatísticos, permitem a estimação de similaridades na eficiência dos métodos de determinação e dos conteúdos de decomposição das amostras para o mesmo ou diferentesanalitos, tornando-se uma ferramenta útil na comparação crítica de vários métodos de decomposição de amostras para a determinação do conteúdo mineral (Krug, 1996).

O objetivo desse estudo foi investigar o efeito da digestão e extração de minerais em tomates orgânicos secos por espectrofotometria absorção atômica. Os níveis de Fe, Mn, Ni, Cu, Co, Mg, Zn, Ca, Mo e Se foram determinados em de tomates (7) amostras (Solanumlycopersicum L.), adquiridas na feira livre de Campo Grande no estado de Mato Grosso do Sul, por espectrometria de absorção atômica por chama (FAAS). As amostras de tomates orgânicos secas (Solanumlycopersicum L.) foram testadas para avaliação do conteúdo de metais empregando o método de digestão via úmida nitroperclórica (NP), digestão por via seca em cadinho de porcelana (CP) e digestão por via úmida em HCl 1mol.L⁻¹, para a determinação de elementos nutrientes potencialmente tóxicos (Zasousk, 1977; Miyasawa et al., 1984).

MATERIAL E MÉTODOS

Padrões analíticos

Todos os reagentes utilizados foram de grau analítico; água destilada-deionizada (Milli-Q) foi utilizada em todos os experimentos. As soluções padrão foram preparadas por diluições convenientes das soluções estoques de 1000μg.mL⁻¹ em meio de ácido nítrico ultrapuro.

Amostras de tomates orgânicos

Foram analisadas 07 amostras de frutos de tomate (*Lycopersicumesculentum L.*) comercializadas na feira livre da cidade de Campo Grande-MS para análise dos teores de metais, identificadas como PO42/06, P043/06, P044/06, P045/06, P046/06, P047/06 e P048/06. Cerca de 1Kg de material coletado foi cortado em fatias finas igualmente por quatro cortes sequenciados e previamente secos em estufa a 110°C por 02horas.

Tratamento das amostras

As amostras secas de tomate foram resfriadas em dessecador a vácuo e submetidas às

seguintesmetodologias analíticas para determinação do conteúdo mineral.

Digestão via úmida nitro-perclórica (adaptado de ZasouskeBurau, 1977). Pesou-se 0,4g (+/-0,001g) de material seco moído diretamente em tubos de Taylor (25mm x 200mm). A cada tubo, foram adicionados 7mL nítrico 25^{0} C, P.A. a ambiente deácido termostatizado. Após repouso por uma noite, os tubos foram aquecidos em bloco digestor (80°C a 100°C), em capela, por aproximadamente 03 horas e 30minutos, para evaporação do ácido utilizado para digestão.

Em seguida, foi adicionado 1mL de ácido perclórico P.A. e a temperatura foi gradativamente aumentada até atingir 200°C, procedendo-se a digestão até a dissipação de vapores emanados do tubo. Posteriormente, foram adicionados 20 mL de água deionizada à amostra mineralizada.

Digestão por via seca em cadinho de porcelana (CP)

Pesou-se 01g (+/-0,001g) de material seco e moído da amostra diretamente em cadinhos de porcelana previamente tarado. Os cadinhos foram levados a mufla ainda frio, sendo a temperatura gradativamente elevada até 700°C, na qual permaneceu por aproximadamente 03horas. Após resfriamento em dessecador, foram adicionados 05 gotas de HCl 3 mol.L⁻¹ a cada cadinho, para auxiliar a decomposição da amostra de tomate.

Em seguida, os cadinhos retornaram a mufla por mais 03 horas, para assegurar a completa dissolução do material orgânico. Após novo resfriamento, foram adicionados 10 mL de HCl 3 mol.L⁻¹ e aquecimento em placa aquecedora a 80°C por 15 minutos, para a completa solubilização das cinzas. Posteriormente, foi realizado a filtragem da solução com papel de filtro quantitativo em balões volumétricos de 100 mL, completando o volume com água deionizada.

Digestão por via úmida em HCla 1mol.L⁻¹

Pesou-se meio(0,5)g (+/-0,001g) de material seco e moído da amostra diretamente em Erlenmeyers de 125 mL. Em seguida, foram adicionados 25 mL de HCla 1mol.L⁻¹ e aquecidos por quinze(15)minutos a 800°C. Após resfriamento da amostra, foramcompletados o volume com água deionizada e levadas para agitação por 50 minutos em agitador horizontal. Em seguida, foi feita a filtragem da mistura com papel de filtro quantitativo em balões volumétricos de 100 mL e completado o volume com água deionizada.

Instrumentação

As determinações dos conteúdos de Fe, Mn, Ni, Cu, Co, Mg, Zn, Ca, Mo e Se foram feitas em um Espectrofotômetro de Emissão e Absorção Atômica modeloEspectra 250 FSVarian, lâmpada de catodo oco de cada elemento, conforme parâmetros apresentados na Tabela 1.

Tabela 1. Parâmetros instrumentais empregados na determinação de Fe, Mn, Ni, Cu, Co, Zn, Mo, Se, Mg e Ca em amostras secas de tomates orgânicos por FAAS.

Elemento	Comprimento de Onda(nm)	Intensidade da lâmpada(mA)	SlitWidth (nm)	Working range (mg.L ⁻¹)
Fe	248.3	5	0.2	0.06-15
Mn	403.1	5	0.2	0.50-60
Ni	232.0	25	0,2	0,01-20
Cu	324.7	4	0.5	0.03-10
Co	240,7	5	0,5	0.05-10
Zn	213.9	5	1.0	0.01-20
Mo	313.3	5	1.0	0.50-20
Se	196.0	15	1.0	0.50-10
Mg	202.6	4	1.0	0.15-20
Ca	239.9	10	0.2	2-800

RESULTADOS E DISCUSSÃO

Nas Tabelas 2, 3 e 4 são apresentados os resultados das análises dos conteúdos dos metais por absorção atômica de chama (FAAS) nas amostras de tomates orgânicos de Campo Grande no estado de Mato Grosso do Sul utilizando a digestão nitro-perclórica, calcinação em cadinho de porcelana e extração por HCla 1mol.L⁻¹.

Tabela 2. Resultados obtidos da análise de metais em mg.kg⁻¹ por FAAS/chama com digestão nitro-

perclórica (NP) para diferentes amostras de tomate orgânico.

<u> </u>	· 1									
Amostras	Fe	Mn	Ni	Cu	Co	Ca	Mg	Se	Zn	Mo
P042/06	0,5700	0,2250	n.d.	0,0850	n.d.	45,3700	44,4220	6,0000	0,6555	n.d.
P043/06	0,7500	0,2312	n.d.	0,0560	n.d.	63,1370	45,3750	38,7500	0,5993	n.d.
P044/06	1,4138	0,2185	n.d.	0,0200	n.d.	55,3366	45,0800	10,9280	0,6591	n.d.
P045/06	0,8487	0,1697	n.d.	0,0392	n.d.	50,0850	38,7020	34,6090	0,6033	n.d.
P046/06	0,9186	0,2355	n.d.	0,0863	n.d.	70,5401	53,5710	29,8300	0,9129	n.d.
P047/06	1,0200	0,2782	n.d.	0,0850	n.d.	72,7238	58,1990	61,0670	0,9956	n.d.
P048/06	0,8888	0,3401	n.d.	0,1160	n.d.	77,8874	49,9195	35,5580	0,8016	n.d.

n.d.=não determinado

Tabela 3. Resultados obtidos da análise de metais em mg.kg⁻¹ por FAAS/chama com calcinação em cadinho de porcelana (CP) para diferentes amostras de tomate orgânico.

Amostras	Fe	Mn	Ni	Cu	Co	Ca	Mg	Se	Zn	Mo
P042/06	0,4520	0,1520	n.d.	0,1420	n.d.	47,5820	15,8874	11,0000	0,1874	3,1400
P043/06	0,5275	0,2300	n.d.	0,1600	n.d.	70,1125	18,9722	11,5000	0,2680	1,9000
P044/06	2,4096	0,2511	n.d.	0,2040	n.d.	59,7351	21,8173	12,5580	0,1916	3,3033
P045/06	0,5719	0,1905	n.d.	0,1983	n.d.	47,0139	16,9203	10,9620	0,5290	2,8710
P046/06	0,5841	0,2574	n.d.	0,3171	n.d.	55,4367	22,5550	7,2220	0,6079	3,2970
P047/06	0,4079	0,2666	n.d.	0,3007	n.d.	70,1902	25,0690	23,8700	0,4085	1,7050
P048/06	0,5404	0,2725	n.d.	0,073	n.d.	47,6700	17,1803	17,0640	0,6320	1,4694

n.d.=não determinado

Tabela 4. Resultados obtidos da análise de metais em mg.kg⁻¹ por FAAS/chama utilizando HCl 1mol.L⁻¹ ¹ para diferentes amostras de tomate orgânico.

	Γ · · · · · · · · · · · · · · · · · · ·									
Amostras	Fe	Mn	Ni	Cu	Co	Ca	Mg	Zn		
P042/06	0,3780	0,0300	0,0040	0,0120	0,0020	12,9960	6,2720	0,1908		
P043/06	0,3825	0,0150	n.d.	n.d.	n.d.	18,6625	7,7322	0,3917		
P044/06	0,5983	0,0410	0,0027	0,0054	n.d.	20,8620	8,6805	0,3054		
P045/06	0,5640	0,0100	0,0600	0,0130	0,0235	17,4113	8,1421	0,2367		
P046/06	0,5213	0,0500	0,0750	0,0314	n.d.	22,7460	9,9393	0,3708		
P047/06	0,5346	0,0210	0,0400	0,0186	n.d.	20,1680	9,7715	0,3233		
P048/06	0,3271	n.d.	0,0071	n.d.	n.d.	11,8618	7,2787	0,1474		

n.d.=não determinado

De acordo com os dados das referidas tabelas, pode-se observar que, para o elemento Ca e Mg, os maiores valores foram obtidos após digestão nitroperclórica. No caso do elemento Fe, observou-se ainda maior valor obtido após extração com digestão nitro-perclórica semelhante ao que ocorreu com os conteúdos dos elementos citados anteriormente. A eficiência da oxidação nitroperclórica em digestões é amplamente discutida e comprovadae sua utilização só não é maior devido

às restrições na manipulação dos ácidos, principalmente do ácido perclórico, pois o mesmo possui elevado poder oxidante quando empregado na forma concentrada e a quente, podendo ocorrer explosões(Jones et. al., 1990).

A digestão utilizando HCla 1mol.L⁻¹ proporcionou os menores valores de extração para os elementos Ca e Mg, o mesmo ocorre para os resultados com os elementos Mn, Zn e Cu. A explicação sugerida para este fato pode ser devido ao menor poder de oxidação do procedimento utilizado comparado com a digestão nitro-perclórica (Perkin – Elmer, 1973). Estes aspectos, associado ao fato de ser uma metodologia de simples execução, baixo risco operacional e pequena quantidade de resíduos produzidos que podem ser facilmente tratados para posterior disponibilização no ambiente.

Na análise do Mo proporcionou melhores resultados utilizando a calcinação em cadinho de porcelana, visto que o efeito de interferência de matriz por esta metodologia é desprezível devido a digestão nitro-perclórica. Contudo, há de ressaltar que para ter uma conclusão convincente se faz necessário efetuar a análise do molibdênio por ICP-AES, pois a referida técnica apresenta maior sensibilidade para o analito em questão(Darawshehet al., 2006).

A quantificação do teor de Se nas amostras resultou melhores resultados com a digestão nitroperclórica. Isto se deve ao fato de que a partir de 200°C ocorrem expressivas perdas de Selênio por decomposição térmica empregando a calcinação em cadinho de porcelana, conforme citado por (Aleixo et al., 2000).

De acordo com a Tabela 5, são apresentados os resultados estatísticos do teste F e T. O valor calculado de F foi comparado com a tabela de distribuição F para determinar a significância dos resultados ao nível de 95% de confiança. Para avaliar a diferença estatística entre os dois métodos escolhidos para uma mesma matriz, utilizou-se o teste T. O valor calculado de T foi comparado com a tabela de distribuição T para determinar a significância dos resultados ao nível de 95% de confiança. Se o valor calculado é menor do que o valor tabelado, significa que a hipótese nulaé verdadeira(Box, 1978).

Para os resultados do teste F, não há significância na precisão das médias de análise do ferro, manganês e cobre entre os métodos calcinação/nitro-perclórico. Também é válido para as análises do ferro e zinco utilizando os métodos de digestão calcinação-HCla 1mol/L em amostras de tomates orgânicos. Isto é justificada pela elevada variância na análise do ferro do método de calcinação em relação ao método nitro-perclórico, elevada variância na análise do manganês do método nitro-perclórico em relação ao método calcinação.

Para a análise do cobre, elevada variância do método calcinação em relação ao nitro-perclórico foi observado. Com relação à análise do ferro, elevada variância do método calcinaçãofrente ao método do HCl e para o zinco, variância um pouco mais elevada do método calcinação com relação ao método nitro-perclórico. Estes resultados, porém, não são confirmados pelo teste T, onde as médias obtidas têm significância entre si, exceto para a análise do cobre com os métodos calcinação/nitro-perclórico que confirma os resultados do teste F, existência de não significância.

Não houve significância para a análise do cobre comparando os métodos calcinação com relação ao nitro-perclórico. Ocorreu significância na análise do cálcio comparando os métodos de extração por calcinação com onitro-perclórico. Isto é explicado pela elevada variância dos valores de análise para o cobre e semelhança na variância de análise para o cálcio.

De uma forma geral, a significância entre os resultados de análise dos metais depende do método de análise em questão. Porém, os métodos de digestão clássicos como a calcinação e o nitroperclórico para a análise do cálcio foram os mais significativos, comparado com a digestão utilizando HCl. Cabe ressaltar que a extração com HCla 1mol/L é promissora, pois em comparação com os outros métodos é uma técnica de extrema simplicidade, proporciona análises rápidas, minimizando OS gastos com reagentes e diminuindo o impacto ambiental (Box, 1978).

Tabela 5. Comparação entre as metodologias de extração (teste F e T).

Metodologia	_ ,	este F	Sa*	Teste T		
	calculad	o tabela ⁸		calcula	ido tabela ⁸	
(Ferro)calcinação-NP	7,5628	4,28	0,5411	0,4505	2,447	
(Manganês)calcinação-NP	1435,52	4,28	1,1955	0,0175	2,447	
(Cobre)calcinação-NP	6,9294	4,28	0,0653	3,7163	2,447	
(Cálcio)calcinação-NP	1,2319	4,28	11,6850	0,2364	2,447	
(Magnésio)calcinação-NP	3,6304	4,28	5,1892	10,1394	2,447	
(Zinco)calcinação-NP	1,4541	4,28	0,1755	3,6599	2,447	
(Ferro)calcinação-HCl	45,3700	4,28	0,5141	1,1400	2,447	
(Zinco)calcinação-HCl	4,3300	4,28	0,1498	1,5325	2,447	

Sa*=estimativa do desvio padrão agregado

CONCLUSÕES

Há diferenças significativas de conteúdos de micro e macroelementos extraídos pelas técnicas propostas e entre as amostras de tomates orgânicos analisados. Dos elementos estudados, a digestão nitro-perclórica mostrou-se mais eficiente na extração do Ca, Mg, Se e Zn;

O processo de extração com HCl equivaleu ao poder de extração da digestão nitro-perclórica para o Fe:

A digestão nitro-perclórica equivaleu a calcinação para a análise do Mn;

Para a análise de Cu e Mo, o método por calcinação em cadinho de porcelana mostrou-se mais eficiente;

Na análise do Ca, a digestão nitro-perclórica em relação ao método de calcinação mostrou-se não ter diferença significativa nos resultados apresentados;

As extrações dos conteúdos minerais utilizando HCl mostraram ser a mais promissora, pela rapidez e simplicidade, aliados ao baixo nível de risco no manuseio e contaminação ambiental.

RESUMO

Os níveis de Fe, Mn, Ni, Cu, Co, Mg, Zn, Ca, Mo e Se em sete (7) amostras de tomates orgânicos secos (Solanumlycopersicum L.), foram determinados por espectrofotometria de absorção atômica por chama (FAAS). As condições de dissoluções foram obtidas por métodos de digestão via úmida e o estudo realizado por investigação de variáveis, que incluem o tipo de mistura ácida, volume do ácido e tempo de digestão. A comparação com um método convencional de calcinação também foi realizado para avaliar as perdas dos elementos durante a digestão e a precisão dos resultados, todos os testes foram repetidos com análise estatística. Os métodos de digestão utilizados foram o método de digestão via úmida nitro-perclórica (NP), digestão convencional por via seca em cadinho deporcelana (CP) e digestão por via úmida em HCl 1 mol.L⁻¹. Os resultados mostraram que o método de digestão nítrico-perclórico foi eficiente para a determinação de Ca, Mg, Se e Zn. As extrações com ácido clorídrico foi similar a digestão via ácido nitrico-perclórico e por calcinação para o Mn. Para a determinação de Cu e Mo a calcinação foi mais eficiente. Para o Ca a calcinação não mostrou diferenças significantes para a digestão nitro-perclórica. Neste contexto as extrações realizadas com ácido clorídrico (HCl) são promissoras, práticas e simples, com baixos riscos ao manuseio e à contaminação ambiental.

Palavras-Chave: tomates, FAAS, micro emacronutrientes

AGRADECIMENTOS

Ao CNPq pelo apoio financeiro.

REFERÊNCIAS

Aleixo, P. C.; Nóbrega, J. A; Junior, D. S.; Muller, R. C. S. (2000), Determinação direta de selênio em água de coco e em leite de coco utilizando Espectrometria de Absorção Atômica com determinação eletrotérmica em forno de grafite. *Química Nova*, **23**, 310-312.

Box, G. E. P.; Hunter, W. G.; Hunter, J. S. (1978), Statistics for experimenters: in introduction to design, data analysis and model building. New York, John Wiley, 631-638p.

Cruz, P. M. F.; Braga, G.C.; Grandi, A. M. (2012). Composição química, cor e qualidade sensorial do tomate seco adiferentes temperaturas. *Semina: Ciências Agrárias*, **33**, p. 1475-1486.

Darawsheh, M.K.; Zeiva, G.; Bouranis, D.L. (2006). Season-Dependent Fruit Loading: Effect on Nutrienteomeostasis of Tomato Plants. *Journal of Plant Nutrition*, **29**, 505-519.

De Pinho, G. P.; Silvério, F. O.; Neves, A. A.; Queiroz, M. E. L. R.; Starling, M. A. V. M.

(2010). Influência dos constituintes químicos dos extratos de diferentes matrizes na resposta cromatográfica de agrotóxicos. *Química Nova*, **33**, 909-913.

Dietrich, F.; Strohschoen, A. P. G.; Schultz, G.; Rempel, A.D.S.C. Utilização de inseticidas botânicos na agricultura orgânica de Arroio do Meio/RS. (2011). *Revista Brasileira de Agrociência*, **17**, 251-255.

Fernandes, A.L.T. eTestezlaf, R. (2002), Fertirrigação na cultura do melão em ambiente protegido, utilizando-se fertilizantes organominerais e químicos. *Revista Brasileira de Engenharia Agrícola e Ambiental*, **6**, 45-50.

Furuya, W. M.; Sales, P. J. P.; Santos, L. D.; Silva, L. C. R.; Silva, T. C. S.; Furuya, V. R. B. (2008). Composição química e coeficientes de digestibilidade aparente dos subproduto desidratados das polpas de tomate e goiaba para tilápia do Nilo (*Oreochromisniloticus*). *B. Inst. Pesca*, São Paulo, **34**, 505 – 510.

Krug, F.J. (1996), Pré-tratamento de amostras. I Workshop on methods of sample decomposition. CENA-USP, Piracicaba, 22-24.

Luz, J. M. Q.; Bittar, C. A.; Queiroz, A. A.; Carreon, R. (2010), Produtividade de tomate 'Débora Pto' sob adubaçãoorganomineral via foliar e gotejamento. *Horticultura Brasileira*, **28**, 489-494.

and pasture grass leaf tissues by a HCl extraction method. *Communities Soil Science and Plant Analysis*, **15**, 141-147.

Perkin-Elmer(1973), Analytical methods for atomic absorption espetrophotometry.Norwalk. Perkin-Elmer corporation, não paginado.

Santos, F. S.; Sobrinho, N. M. B. A.; Mazur, N. (2002), Influência de diferentes manejos agrícolas na distribuição de metais pesados no solo e em plantas de tomate. *Revista Brasileira de Ciência do Solo*, **26**, 535-543.

Schallenberger, E.; Rebelo, J.A.; Mauch, C.R.; Ternes, M.; Stuker, H.; Pegoraro, R. A. (2011). Viabilização de sistema orgânico de produção de tomate por meio de abrigos de cultivo. *Revista Brasileira de Agrociência*, **17**, 25-31.

Souza, E. P.; Da Silva, I. F.; Ferreira, L. E. (2011), Mecanismos de tolerâncias a estresses por metais pesados em plantas. *Revista Brasileira de Agrociência*, **17**, 167-173.

Zasousk, R. J. eBurau, R. G. (1977). A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. *Communications in Soil Science and Plant Analysis*, **8**, p. 425-436.

Miyasawa, M.; Pava, M.A.; Block, M. F. M.(1984), Determination of Ca, Mg, K, Mn, Cu, Zn, Fe and P in coffee, soybean, corn, sunflower,