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This paper is a continuation of a study already carried out on the use of the reactive-telegraph equation to 

analyse problems of population dynamics based on a formulation of the boundary element method (BEM). 

In this paper, the numerical model simulates the evolution of a tumour as a problem of population density 

of cancer cells from different reactive terms coupled to the reactive-telegraph equation to describe the 

growth and distribution of the population, similar to the two-dimensional in vitro tumour growth 

experiment. The mathematical model developed is called D-BEM, uses a time independent fundamental 

solution and the finite difference method is combined with BEM to approximate the time derivative terms 

and the Gaussian quadrature is used to calculate the domain integrals. The solution of the system nonlinear 

of equations is based on the Gaussian elimination method and the stability of the proposed formulation was 

verified. As the telegraph equation has a wave behaviour, a phase change phenomenon that can lead to the 

appearance of negative population density may occur, an algorithm was developed to guarantee the 

solution's positivity. Important results were obtained and demonstrate the effect of the delay parameter on 

tumour growth. In one of the tested cases, the results indicated an oscillatory behaviour in the tumour 

growth when the delay parameter assumed increasing values. The results of numerical simulations that 

sought to represent tumour growth, as well as the entire formulation of the boundary elements are presented 

below. 
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Um segundo estudo de invasão populacional dinâmica a partir da equação do telégrafo reativo e formu-

lação de elementos de contorno - Um ensaio sobre o crescimento tumoral in vitro. 

Este artigo é a continuação de um estudo já realizado sobre o uso da equação do telégrafo reativo para 

analisar problemas de dinâmica populacional a partir de uma formulação do método dos elementos de con-

torno (BEM). Neste artigo, o modelo numérico simula a evolução de um tumor como um problema de 

densidade populacional de células cancerosas a partir de diferentes termos reativos acoplados à equação do 

telégrafo reativo para descrever o crescimento e distribuição da população, semelhante ao experimento de 

crescimento do tumor in vitro. O modelo matemático desenvolvido é denominado D-BEM, usa uma solução 

fundamental independente do tempo e o método das diferenças finitas é combinado com o BEM para apro-

ximar os termos de tempo derivativos e a quadratura Gaussiana é usada para calcular as integrais de domí-

nio. A solução do sistema de equações é baseada no método de eliminação gaussiana e foi verificada a 

estabilidade da formulação proposta. Como a equação do telégrafo possui comportamento ondulatório, 

pode ocorrer um fenômeno de mudança de fase que pode levar ao aparecimento de densidade populacional 

negativa, para tanto, foi desenvolvido um algoritmo que garantir a positividade da solução. Resultados 

importantes foram obtidos e demonstram o efeito do parâmetro de atraso no crescimento do tumor. Em um 

dos casos testados, os resultados indicaram um comportamento oscilatório no crescimento tumoral quando 

o parâmetro de retardo assumiu valores crescentes. O importante resultado dessa antítese para o crescimento 

do tumor, bem como toda a formulação dos elementos de contorno são apresentados a seguir. 
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INTRODUCTION 

In the last four decades, several therapeutic 
approaches to cancer treatment have been studied 
and the corresponding mathematical models of 
tumour growth have been developed (Byrne and 
Chaplain, 1995; Tao and Guo, 2006). Traditional 
tumour growth models are based on the diffusion 
equation (Preziosi, 2003; Swanson et al., 2003; Ko-
nukoglu et al., 2010; Painter and Hillen, 2013), as 
in heat diffusion problems, thermal conduction and 
dispersion of pollutants represented by the Fourier 
parabolic linear equation, which basically 
propagates information through space instantly 
with infinite velocity (Lurie and Belov, 2020). 
However, this equation has some shortcomings as 
it does not describe inertial effects and there are 
experimental evidences that the diffusive process 
takes place with finite velocity (Mittal and Dahiya, 
2015). This behaviour is known as the ‘Heat 
Conduction Paradox’ and contradicts the so-called 
principle of causality, which states that information 
cannot travel faster than a finite velocity 
(Schwarzwälder, 2015). 

In the case of a cancer evolution, using the 
diffusion equation to model the growth of a tumour 
is the equivalent of saying that every tissue or organ 
has cancer cells since the beginning of the 
oncological process, when in fact, the tumour can 
develop in nodules in a localized manner with 
limited morphology or in a progressive process. 
The tumour microenvironment is very complex in 
nature due to several simultaneous molecular 
mechanisms and simple diffusion can be a very 
simplified technique and may not represent the 
tumour microenvironment in detail (Sadhukhan 
and Basu, 2020). 

L. Onsager in 1931, described that the Fourier’s 
model was in contradiction with the principle of 
microscopic reversibility (Onsager, 1931), writing 
that this contradiction “is removed when we 
recognize that is only an approximate description 
of the process of conduction, neglecting the time 
needed for acceleration of the heat flow”. 

According to (Schwarzwälder, 2015), the Italian 
mathematician Carlo Cattaneo tried to overcome 
the problem of the infinite velocity of heat 
propagation by deriving a new equation to relate the 
heat flow Q and the temperature U, and therefore 
replace the Fourier law. Cattaneo introduced the 
characteristic thermal relaxation time 𝜏, which is 
interpreted by Chandrasekharaiah as “the time 
interval required to establish constant heat 
conduction in a volume element, since a 
temperature gradient has been imposed on it” 
(Chandrasekharaiah, 1998)., that is, the time 
required to achieve thermodynamic stability. 
Therefore, the relaxation time introduces the idea 

of finite velocity of heat propagation, and it was 
first noticed by Maxwell (Maxwell, 1867). 

Several attempts have been made to develop a 
precise mathematical model for heat, and perhaps 
two of the best known are the Maxwell-Cattaneo 
and Guyer-Krumhansl equations. The first 
introduces a relaxation time in the heat expression 
that has the effect of changing the governing 
equation to a form of wave equation, more 
preciously, the telegraph equation, which then 
exhibits a behaviour significantly different from the 
standard heat equation. Here, the most important 
related phenomenon is the so-called second sound, 
when temperature disturbance propagates like 
damped waves (Zhukovsky, 2016). 

The second introduces non-local effects that 
incorporate interesting new phenomena, such as 
Cattaneo's Law of thermal viscosity and the 
hyperbolic heat equation. It is well adapted to the 
description of phonon gases where heat transport is 
not only governed by diffusion (like in Fourier’s 
description) and second sound (like in Cattaneo’s 
model in 1958) but in addition by ballistic 
transport, which is not the subject of this paper. For 
more details about Guyer-Krumhansl equation see 
(Zhukovsky, 2016). 

In many references, these equations are also 
known as Maxwell-Cattaneo-Vernotte equations in 
honour of the French mathematician Pierre 
Vernotte, who derived the same equations almost at 
the same time (Vernotte, 1958). 

In biological sciences, the telegraph equation can 
be used in studies of dispersal of species and/or 
populations in homogeneous environments in a 
probabilistic way, as in the work presented by 
Godoi (2021), by Malinzi (2021) about a model for 
oncolytic virus spread using the telegraph equation 
and also by Pettres (2021), in that the author present 
a variation of the telegraph equation, called the 
reaction-telegraph equation to simulate a problem 
of population invasion in a two-dimensional 
domain, making an analogy with the process of 
tumour growth in healthy tissue. 

About tumour growth, the invasion model used 
to model the evolution of cancer indicates that once 
the tumour has grown to a certain size, it begins to 
actively invade healthy tissue (Hillen et al., 2015). 
An area of tissue can be considered as a ‘cellular 
community’ comprises ‘species’ of mesenchymal 
and epithelial cells in dynamic equilibrium with the 
environment and with each other (Gatenby and 
Vincent, 2003). A few tumour cells produced by 
successive non-lethal mutations begin to interact 
with the community of normal cells and are not 
recognized by this community, thus triggering the 
acquisition of space and the vital resources of the 
existing community, causing the growth of the 
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tumour that may occur in two forms; active 
movement to nearby sites (invasion) or passive 
transport through the blood or lymphatic system 
(metastasis). 

The tumour growth of few types of tumours are 
modelled by the exponential model (Johnson et al., 
2019) given by equation (1), 

 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝐾1𝑢(𝑡)                                       (1) 

 
where u is the density of the cancer cells 

population and the parameter K1 defines the per 
capita growth rate or proliferation rate. Although 
exponential growth is a common initial assumption 
used to develop more complex models of tumour 
progression, few models strictly interested in 
characterizing tumour growth prescribe a fixed 
birth and death rate over time and population size 
(Johnson et al., 2019). 

In the case of tumour dynamic saturation in the 
growth of various types of tumours is not well 
modelled by the exponential model. For this reason, 
this model applies only to avascular tumours, i.e., 
when angiogenesis has not occurred (Kerbel, 
2000). 

Indeed, tumour cells compete for oxygen and 
vital resources that is the reason why the logistic 
model presented by equation (2), tradtfits well in 
several cases  

 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝐾1𝑢(𝑡) (1 −

𝑢(𝑡)

𝐾2
)                                       (2) 

 
where the parameter K2 is the carrying capacity. 

In the literature, one realizes that tumour growth 
does not follow a universal law (Varalta, 2014), 
however, according to (Gatenby and Vincent, 
2003), two of the most used models are the 
generalized logistic model is given by, 

 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝐾1𝑢(𝑡) (1 −

𝑢(𝑡)

𝐾2
)

𝐾3
                            (3) 

 
that describe well the growth of breast cancer 
(Spratt et al., 1996), and which the parameter K3 is 
the exponential decrease rate that represents an 
accelerated population degrowth when positive 
increasing values are used, and the Gompertz 
model given by, 
 
𝑑𝑢(𝑡)

𝑑𝑡
= −𝐾1𝑢(𝑡) 𝑙𝑛 (

𝑢(𝑡)

𝐾2
)              (4) 

 
where K1, K2 and K3 are constants (variables u, K1, 
K2 and K3 are all positive). 

The Gompertz model, while it does model the 
behaviour as a tumour increases in size, it is not an 

empirical model. The model has too many variables 
to consider, such as types of cancers as well as 
environmental conditions. These may even vary 
considerably for patients with the same types of 
cancers (Yorke et al., 1993). This model is the best 
to describe the volumetric growth in vivo 
(Michelson et al., 1987). For more details about 
mathematical models to study the various phases of 
cancer progression, see (Lowengrub et al., 2010). 

One disadvantage of all the usual models is that 
they go to the carrying support faster than what is 
expected (Varalta, 2014). This is one of the 
advantages of the telegraphic model proposed by 
(Pettres, 2021), and it is here that this paper seeks 
to contribute with the theme, continuing the 
research based on a probabilistic model of an 
avascular-tumour growth in vitro simulating a 
tissue healthy (Ward and King, 1997), as well as a 
phenomenon of population invasion, under a more 
complete approach in relation to the model 
proposed by (Forys and Marciniak-Czochra, 2003), 
in which the authors used a simple logistic equation 
with time delay and simulated a diffusion problem. 

For this purpose, an expanded version of the 
two-dimensional formulation of the boundary 
element called D-BEM presented by this author in 
(Pettres, 2021) is used, which is now presented as a 
continuation of the study already carried out on the 
telegraphic-diffusive phenomenon, here applied to 
tumour growth in vitro from different reactive 
terms defined by four growth models in the 
formulation. 

D-BEM formulation used in this paper, widely 
deduced and explored in (Pettres, 2021), uses a 
time-independent fundamental solution to the 
potential problem in 2D combined with a time-
advance scheme based on the finite difference for 
the diffusion term (first derivative) and the wave 
term (second derivative) to solve the telegraph 
equation. This formulation reached a correlation 
level higher than 0.9 measured at the R2 coefficient 
and with an average percentage error of 
approximately 8 per cent as described in (Pettres, 
2021) from two problems with known analytical 
solutions. D-BEM formulation appears as a good 
option for the development of a hybrid numerical 
method, with the possibility of inserting different 
reactive terms in a simple way. 

It is desired with this study, whose numerical 
results are reliable and can, indirectly, be used to 
evaluate the morphology of the tumour and the 
growth dynamics, explore an explicit threshold of 
the intensity of the immune response to control the 
tumour and to investigate the effects of the delay of 
reaction-telegraph equation in this new tumour 
growth model, with aims to contribute to the 
treatment of this complex disease, simulating from 
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the first carcinogenic stimulus to the onset of 
neoplasia. 

 
In vitro experiment and geometric model – 
tissue 
 

The in vitro experiment is an important tool in 
cancer research, enabling the identification of 
carcinogens, the development of cancer therapies, 
drug screening, and providing insight into the 
molecular mechanisms of tumour growth and 
metastasis. Controlled simulations are described in 
(Ludwig, 1983), in which the authors use 
interferons to stimulate the tumour growth process 
from an in vitro assay. 

Some models have been developed to provide 
mechanistic insight into tumour 
growth/proliferation, migration, invasion, matrix 
remodelling, dormancy, intravasation, 
extravasation, angiogenesis, and drug delivery. The 
model variables include cell sources (patient cells, 
commercially available cell lines, stem cells, 
stromal cells, immune cells, i.a.), biophysical 
properties (oxygen partial pressure, pH, interstitial 
flow, i.a.), extracellular matrix (ECM) (stiffness, 
architecture, i.a.), and biochemical cues 
(chemoattractants, angiogenic factors, i.a.). 

The complexity of the model is largely 
dependent on the objectives. For example, 
preliminary screening of anticancer drugs can be 
performed in cell culture. Studies of invasion and 
motility of tumour cells can be performed with cells 

embedded in an ECM (Katt et al., 2016). For mode 
details about in vitro model see (Katt et al., 2016). 

The growth takes place in vitro in order to 
eliminate the complexities due to vascularization 
and immunological responses, as noted in 
(Sutherland and Durand, 1973). 

It is considered that there are nutrients such as 
sufficient oxygen and glucose available to all cells 
in the colony and possible declines in tumour 
growth will be considered as the result of chemicals 
produced by the eventual lysis of the cells due to 
the insertion of a specific treatment or drug from 
the parameter delay. Inhibition effects such as those 
that occur soon after the establishment of necrosis 
are neglected, as very little is known about this 
phenomenon, but Bertalanffy, cited by (Burkowski, 
1977) estimates that, if such an effect is present, it 
is very likely insignificant compared to the 
inhibitory effect of chemicals from necrotic debris 
and therefore, it is chosen to ignore any inhibitory 
effects arising from viable cell metabolism. 

In the Invasion assays in vitro, a thin layer in 

thickness up to 1 mm of ECM is deposited on the 

porous membrane to model the basement 

membrane of the vasculature, typically in Matrigel 

although collagen and laminin are also used (Katt 

et al., 2016). For these reason, as an approximation, 

the geometric model used is a square tissue with 

two-dimensional domain 𝛺 = 𝑋, 𝑋(𝑥, 𝑦),0 ≤ 𝑥 ≤
1𝑐𝑚, 0 ≤ 𝑦 ≤ 1𝑐𝑚, illustrated in Figure 1, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 - Square tissue measuring 1 cm2, (A) – a monolayer grown in matrigel and (B) geometric model with 
40 boundary elements 
 
where the domain boundary is defined as  and it is 
subdivided in boundary elements n , simulating a 
two-dimensional in vitro experiment environment. 
Assuming that each cancer cell occupies an area of 
1×10-6 cm2, then the geometric model will contain 
a maximum of 1×106 cells. 

The portion of cancer cells inserted in the 

experiment may vary according to the intended 
analysis. In the numerical tests that will be 
performed, cancer cells will be inserted into healthy 
tissue from a source geometrically represented by a 
Dirac delta function. If there is no growth-
inhibiting agent and there are also unlimited 
supplies, the transformation of the cancer will keep 
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the number of cancer cells continuing to increase 
without limit. It is in this context that the telegraph 
equation, whose wavefront behaviour describes the 
population scattering or population invasion 
phenomenon, associated with a reactive term that 
contains in itself variables such as the growth rate 
or proliferation rate, carrying capacity and decrease 
rate can be useful to more realistically represent the 
growth dynamics of a tumour. 

MATERIAL AND METHODS 

Reactive-telegraph equation 
 

According to (Cirilo, 2019), equation (5) can be 
used to represent population evolution in a 
restricted domain, thus, the variable u represents 
population density and F(u) is a reactive term that 
describes the population growth. In this study F(u) 
is given by exponential model, logistic model, 
generalized logistic and Gompetz model presents in 
the equations (1), (2), (3) and (4), respectively. 

The reactive-telegraph equation is deduced from 
the continuity equation and the constitutive 
equation of Cattaneo’s (Méndez et al., 2010) in a 
probabilistic way (Godoi, 2021), taking the 
following form: 
 

𝛼2𝛻2𝑢(𝑋, 𝑡) + 𝐹(𝑢) = [1 − 𝜏
𝑑𝐹(𝑢)

𝑑𝑢
]

𝜕𝑢(𝑋,𝑡)

𝜕𝑡
+ 𝜏

𝜕2𝑢(𝑋,𝑡)

𝜕𝑡2                                                                              (5) 

𝑋 ∈ 𝛺, 𝑋 = (𝑥, 𝑦) 

 
In this paper, using a variation of the reactive-

telegraph equation presented by (Pettres, 2021), in 
which the author represents the beginning and 
reproduction of cancer cells in healthy tissue 
including a punctual source term in equation (5), 

the study on the growth of the tumour from 
equation (6) and is called the equation of the 
reactive-telegraph equation with generation 
(RTEG), as follows 
 

 

𝛼2𝛻2𝑢(𝑋, 𝑡) + 𝐹(𝑢) + 𝐹𝑠(𝑋, 𝑡) = [1 − 𝜏
𝑑𝐹(𝑢)

𝑑𝑢
]

𝜕𝑢(𝑋,𝑡)

𝜕𝑡
+ 𝜏

𝜕2𝑢(𝑋,𝑡)

𝜕𝑡2                                                            (6) 

𝑋 ∈ 𝛺, 𝑋 = (𝑥, 𝑦) 
 

where 𝛼2 =
𝛾2

2𝜆
 is the diffusion coefficient that 

explains the tumour invasiveness or measure of 

how quickly the organism/cancer cells disperse, 𝛾  

is the organism’s finite velocity and 𝜆 is the 

organism’s rate of changing direction (Holmes, 

1993), 
𝜕𝑢(𝑋,𝑡)

𝜕𝑡
 is the velocity cellular proliferation 

or time variation of population, 𝜏 is the relaxation 

time or delay time that produces a retard at 

solution, 
𝜕2𝑢(𝑋,𝑡)

𝜕𝑡2  is the term that allows to describe 

the proliferation effect in form of a travelling wave 

and Fs given by, 

 

𝐹𝑠(𝑋, 𝑡) = 𝑠𝛿(𝑋
__

)             (7) 

 

where 𝛿(𝑋
__

) is a Dirac’s delta, 𝑋
__

 and 𝑠 are the 

localization and magnitude of source, respectively, 

represents the beginning and reproduction of the 

cancer cells in an empty domain, or healthy tissue, 

for example. Particularly, if 𝜏 = 0 it is found the 

diffusion equation with dissipative term and heat 

generation that was studied by (Pettres et al., 2015). 
Assuming the essential and natural boundary 

conditions prescribed for equations (8) and (9), 
respectively: 

 

𝑢(𝑋, 𝑡) = 𝑢 (𝑋, 𝑡)            𝑋 ∈ 𝛤𝑢                        (8) 

 

𝑞(𝑋, 𝑡) =
𝜕𝑢(𝑋,𝑡)

𝜕𝑛(𝑋)
= 𝑞

__
(𝑋, 𝑡)        𝑋 ∈ 𝛤𝑞               (9) 

 

where boundary functions 𝑢
__

(𝑋, 𝑡) and 𝑞
__

(𝑋, 𝑡) in 

physical interpretation represent the population 

density and the invasion in the normal direction on 

the boundary 𝛤, respectively. 𝛤𝑢represents the part 

of the boundary of 𝛤 where the boundary condition 

𝑢 is imposed, 𝛤𝑞 it is the part of the boundary of 𝛤 

which is imposed the boundary condition q, where 

𝛤 = 𝛤𝑢 𝑈 𝛤𝑞. 

The initial condition at t = t0 given by (10).  
 

𝑢0(𝑋, 𝑡) = 𝑢(𝑋, 𝑡0)         𝑋 ∈ 𝛺           (10) 
 
D-BEM formulation 
 

Considering the boundary value problem 
described by the equation (6) in 2D defined on 
domain Ω bounded by boundary 𝛤. The integral 
equation of the BEM formulation for the RTEG 
equation can be written as follows,  
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𝐶(𝜉)𝑢(𝜉, 𝑡) = ∫𝑢 ∗ (𝜉, 𝑋)𝑞(𝑋, 𝑡)
𝛤

𝑑𝛤 − ∫𝑞 ∗ (𝜉, 𝑋)𝑢(𝑋, 𝑡)
𝛤

𝑑𝛤 

+
1

𝛼2 ∫ 𝐹(𝑢)
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 −
1

𝛼2 ∫ [1 − 𝜏
𝑑𝐹(𝑢)

𝑑𝑢
]

𝜕𝑢(𝑋,𝑡)

𝜕𝑡𝛺
𝑢 ∗ (𝜉, 𝑋)𝑑𝛺                                                           (11) 

−
1

𝛼2
𝜏 ∫

𝜕2𝑢(𝑋, 𝑡)

𝜕𝑡2
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 +
1

𝛼2
∫ 𝐹𝑠(𝑋, 𝑡)

𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 

 

where 𝐶(𝜉) is a geometric coefficient (12) at the 

collocation point 𝜉 , given by 

 

𝐶(𝜉) = {

0, 𝑖𝑓𝜉 ∉ 𝛺
1

2
, 𝑖𝑓𝜉 ∈ 𝛤

1, 𝑖𝑓𝜉 ∈ 𝛺

                                              (12) 

 
In this formulation of boundary elements, the 

fundamental solution of the Laplacian operator was 
chosen, and, being a solution of a static problem, 
the terms that depend on time in the integral 
equation for the RTEG equation are approximated 
using a time-advance scheme based on finite 
differences. This choice allows to insert different 
reactive terms into the formulation in a simple way, 
making D-BEM a hybrid numerical method. Thus, 
the time independent fundamental solution  used in 
this D-BEM formulation is given by (Pettres, 

2020), 

𝑢 ∗ (𝜉, 𝑋) =
1

2𝜋
𝑙𝑛 (

1

𝑟
)                                       (13) 

 

where r=X - 𝜉 is the distance between field and 

collocation points. 
The derivative of the fundamental solution with 

respect to the normal direction to the boundary is 
given by, 
 

𝑞 ∗ (𝜉, 𝑋) =
𝜕𝑢∗

𝜕𝑟

𝑑𝑟

𝑑𝑛
= −

1

2𝜋𝑟

𝑑𝑟

𝑑𝑛
                           (14) 

 
where n is the outward direction normal to the 
boundary. 

For simplicity, the time derivative presented in 
equation (11) is approximated by the backward 
finite difference formula (15) and (16) (Morton and 
Mayers, 1994), 
 

 
𝜕𝑢(𝑋,𝑡)

𝜕𝑡
=

𝑢(𝑋,𝑡+𝛥𝑡)−𝑢(𝑋,𝑡)

𝛥𝑡
          (15) 

 
𝜕2𝑢(𝑋,𝑡)

𝜕𝑡2 =
𝑢(𝑋,𝑡+𝛥𝑡)−2𝑢(𝑋,𝑡)+𝑢(𝑋,𝑡−𝛥𝑡)

𝛥𝑡2          (16) 

 

Replacing equations (15) and (16) in equation (11) and grouping terms conveniently, one has 
 

𝐶(𝜉)𝑢(𝜉, 𝑡 + 𝛥𝑡) = ∫𝑢 ∗ (𝜉, 𝑋)𝑞(𝑋, 𝑡 + 𝛥𝑡)
𝛤

𝑑𝛤 − ∫𝑞 ∗ (𝜉, 𝑋)𝑢(𝑋, 𝑡 + 𝛥𝑡)
𝛤

𝑑𝛤 + 

−
1

𝛼2𝛥𝑡
[∫ [1 − 𝜏

𝑑𝐹(𝑢)

𝑑𝑢
] 𝑢(𝑋, 𝑡 + 𝛥𝑡)

𝛺
𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 − ∫ [1 − 𝜏

𝑑𝐹(𝑢)

𝑑𝑢
] 𝑢(𝑋, 𝑡)

𝛺
𝑢 ∗ (𝜉, 𝑋)𝑑𝛺] +     (17) 

−
1

𝛼2𝛥𝑡2
𝜏 [∫ 𝑢(𝑋, 𝑡 + 𝛥𝑡)

𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 − 2 ∫ 𝑢(𝑋, 𝑡)
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 + ∫ 𝑢(𝑋, 𝑡 − 𝛥𝑡)
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺] + 

1

𝛼2
∫ 𝐹(𝑢)

𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 +
1

𝛼2
∫ 𝐹𝑠(𝑋, 𝑡)

𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 

 

Assuming that the external source acts on the entire Ω domain and applying equation (17) to all boundary 

nodes and internal points, the following system of equations is obtained: 
 

[
𝑯𝑏𝑏 0

𝑯𝑑𝑏 𝑰
] [

𝒖𝑏

𝒖𝑑 ]
𝑇+1

= [
𝑮𝑏𝑏

𝑮𝑑𝑏] [𝒒𝑏 ]
𝑇+1

−
1

𝛼2𝛥𝑡
[
𝑴𝑏𝑑

𝑴𝑑𝑑] {[𝒖𝑑 ]
𝑇+1

− [𝒖𝑑 ]
𝑇

} + 

+
𝜏

𝛼2𝛥𝑡
[
𝑴𝐹

𝑏𝑑

𝑴𝐹
𝑑𝑑] {[𝒖𝑑 ]

𝑇+1
− [𝒖𝑑 ]

𝑇
} −

𝜏

𝛼2𝛥𝑡2 [
𝑴𝑏𝑑

𝑴𝑑𝑑] {[𝒖𝑑 ]
𝑇+1

− 2[𝒖𝑑 ]
𝑇

+ [𝒖𝑑 ]
𝑇−1

} +    (18) 

+
1

𝛼2
[
𝑭𝑏𝑑

𝑭𝑑𝑑]
𝑇+1

+
1

𝛼2
[
𝑭𝑠

𝑏𝑑

𝑭𝑠
𝑑𝑑]

𝑇+1
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where Hbb and Gbb

 
are submatrices which result 

from the boundary integrals; the submatrices Hdb, 

Gdb, Mdb and Mdd are matrices resulting from the 

domain integration, and 𝑴𝐹
𝑑𝑑 are matrices resulting 

from the domain integration with derivatie of reac-

tive term , Fbd and Fdd are matrices resulting 

from reactive term in the domain integration, 𝑭𝑠
𝑏𝑑  

and 𝑭𝑠
𝑑𝑑  are matrices resulting from source term in 

the domain integration and I is an identity subma-

trix. The first superindex indicates the position of 

the collocation point and the second one the posi-

tion of the field point, with b meaning boundary 

and d meaning domain. The subindex T+1 indi-

cates the time  ( +1) , the subindex T the 

time  and the subindex  indicates 

the time  ( 1) . In this work a constant 

value is assumed for the time step , estimated 

according to (Wrobel, 1981) given by equation 

Erro! Fonte de referência não encontrada., 

 

𝛥𝑡𝑐 ≤
𝐿𝑗

2

2𝛼
         (19) 

 
where 𝐿𝑗 is the boundary element size. 
 

By grouping similar terms of the system of equation Erro! Fonte de referência não encontrada., one obtains: 

[
𝑯𝑏𝑏 0

𝑯𝑑𝑏 𝑰
] [

𝒖𝑏

𝒖𝑑 ]
𝑇+1

= [
𝑮𝑏𝑏

𝑮𝑑𝑏] [𝒒𝑏 ]
𝑇+1

+ 

+ (−
1

𝛼2𝛥𝑡
[
𝑴𝑏𝑑

𝑴𝑑𝑑] +
𝜏

𝛼2𝛥𝑡
[
𝑴𝐹

𝑏𝑑

𝑴𝐹
𝑑𝑑] −

𝜏

𝛼2𝛥𝑡2 [
𝑴𝑏𝑑

𝑴𝑑𝑑]) [𝒖𝑑 ]
𝑇+1

+       (20) 

+ (
1

𝛼2𝛥𝑡
[
𝑴𝑏𝑑

𝑴𝑑𝑑] −
𝜏

𝛼2𝛥𝑡
[
𝑴𝐹

𝑏𝑑

𝑴𝐹
𝑑𝑑] +

2𝜏

𝛼2𝛥𝑡2
[
𝑴𝑏𝑑

𝑴𝑑𝑑]) [𝒖𝑑 ]
𝑇

−
𝜏

𝛼2𝛥𝑡2
[
𝑴𝑏𝑑

𝑴𝑑𝑑] [𝒖𝑑 ]
𝑇−1

+ 

+
1

𝛼2
[
𝑭𝑏𝑑

𝑭𝑑𝑑]

𝑇+1

+
1

𝛼2
[
𝑭𝑠

𝑏𝑑

𝑭𝑠
𝑑𝑑]

𝑇+1

 

 
Transferring the column coefficients of the matrices on the right-hand corresponding to the unknowns, to 

the left-hand side of the equation, one has: 

[
𝑯𝑏𝑏 1

𝛼2𝛥𝑡
(𝑴𝑏𝑑 − 𝜏𝑴𝐹

𝑏𝑑 +
𝜏

𝛥𝑡
𝑴𝑏𝑑)

𝑯𝑑𝑏 𝑰 +
1

𝛼2𝛥𝑡
(𝑴𝑑𝑑 − 𝜏𝑴𝐹

𝑑𝑑 +
𝜏

𝛥𝑡
𝑴𝑑𝑑)

] [
𝒖𝑏

𝒖𝑑 ]
𝑇+1

= [
𝑮𝑏𝑏

𝑮𝑑𝑏] [𝒒𝑏 ]
𝑇+1

+ 

 

+
1

𝛼2𝛥𝑡
([

𝑴𝑏𝑑

𝑴𝑑𝑑] − 𝜏 [
𝑴𝐹

𝑏𝑑

𝑴𝐹
𝑑𝑑] +

2𝜏

𝛥𝑡
[
𝑴𝑏𝑑

𝑴𝑑𝑑]) [𝒖𝑑 ]
𝑇

+        (21) 

−
𝜏

𝛼2𝛥𝑡2
[
𝑴𝑏𝑑

𝑴𝑑𝑑] [𝒖𝑑 ]
𝑇−1

+
1

𝛼2
[
𝑭𝑏𝑑

𝑭𝑑𝑑]
𝑇+1

+
1

𝛼2
[
𝑭𝑠

𝑏𝑑

𝑭𝑠
𝑑𝑑]

𝑇+1

 

 
Equation (21) can be rearranged as equation (20) 

and solved with the same time marching scheme 
used previously. 

After imposing the initial and boundary 
conditions, the system of equations (21) is solved 
and the unknown u and q values at the boundary 
nodes and u values at the internal points are 
determined at the time tT+1 . The u values are 
updated and the problem solution continues, 
recursively. 

In general, after imposing the boundary 
conditions, one has.  

 

𝑨𝑥𝑇+1 = 𝑦𝑇+1 + 𝑦𝑇 + 𝑦𝑇−1            (22) 
 

where T  0 and: 

• 𝑥𝑇+1 is the vector of unknown nodal values at 

time tT+1; 
• A is the coefficient matrix that contains terms 
relating to H, G and M; 
• 𝑦𝑇+1 is a vector that represents contribution from 
the known values at the time tT+1, 
• 𝑦𝑇 the contribution from the previous time tT and 
• 𝑦𝑇−1 represents the contribution from the past 
time tT-1. 

In the following cases, the solution of (21) was 
found with the Gaussian elimination, whose 
solutions produced residues in the order of the 
machine's precision, in addition to being a well-
posedness mathematical formulation. As for the 
convergence of the iterative system of equations, it 
is a sufficient condition of convergence that the 

du

udF )(

=+1Tt T t

=Tt T t 1−T

=−1Tt −T t

t
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matrix is strictly diagonal dominant, ensuring the 
convergence of the succession of the generated 
values to the exact solution of the system. For more 
details, see (Mahooti, 2020). 

Comment on the singular integrations – same as 
in the classical 2D BEM formulation. For more 
details, see (Pettres et al., 2015). The domain 
integrals were calculated using the two-
dimensional Gauss quadrature method as described 
in (Pettres, 2021) and illustrate by Figure 2 that 
represent the location of a triangular cell and some 
Gaussian points and weights. 

Figure 2 - Illustration of a generic cell and location 
of Gaussian points and weights in two dimensions 
Font: (Pettres, 2021). 

 
In the four cases simulated with D-BEM 

formulation, that will be presented in section 3.4, a 
square edge domain equal to 1 (x = y = 1), 40 linear 
boundary elements, 328 domain cells (Figure 3) 
and 2952 Gaussian points (Figure 4) were adopted. 

Figure 3 - Illustration of the geometric model and 
discretization of the boundary and domain. Font: 
(Pettres, 2021). 

 
 
 
 

 Figure 4 - Illustration of the geometric model, 
discretization and Gauss points. Font: (Pettres, 
2021). 

 
Control of the phase change phenomenon - 
Sufficient condition of the solution 
positivityequation 

 
The telegraph equation has a wave behaviour, 

there is a phenomenon of phase change that leads 
to the appearance of negative population density, 
which in this type of application has no physical 
significance. In (Cirilo et al., 2019) it was presented 
that the existence of negative solutions also 
depends on the parameters adopted, especially 
when using a constant value for the time delay 
parameter, with a high possibility of negative 
population density. 

An alternative presented in (Alharbi and 
Petrovskii, 2018) and (Cirilo et al., 2019) to avoid 
this problem is the use of the so-called cut-off 
condition, establishing a null value for population 
density, whenever negative values for population 
density arise. Another alternative presented by 
(Oliveira, 2020) is to update the delay parameter 
whenever negative values for population density 
arise. This update takes into account the probability 
p=1-h, for h representing a one-dimensional 
segment, of an animal moving in a certain direction. 
As already defined,  is the organism’s rate of 
changing direction or rate of reversal of direction. 
This probability of reversing direction in a given 
period of time is known as a Poisson process with 
intensity  (Chiu et al., 2013). 

A Poisson process meets the following criteria 
(in reality many phenomena modelled as Poisson 
processes don’t meet these exactly): 

i) Events are independent of each other; 
ii) the occurrence of one event does not affect 

the probability another event will occur; 
iii) the average rate (events per time period) is 

constant and  
iv) two events cannot occur at the same time. 
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When memory effects are taken into account, 
successive movements of the dispersive population 
are not mutually independent, so that there is a 
correlation between successive steps (Fort and 
Méndez, 2002). According to (Tilles and 
Petrovskii, 2019), for that the results obtained with 
the reaction telegraph equation or the Cattaneo-
reaction system to be positive and for the boundary 
conditions to describe a physically sensitive 
situation and preserve positivity, the boundary 
conditions must be of the Neumann type or Robin-
type subject to trigonometric transformation, 
making the problem well posed. However, for an 
initial condition of the reaction-Cattaneo system 
given by a discontinuous function, the question of 
its positivity, strictly speaking, remains open and an 
analytical proof remains a challenge. 

In these three alternatives, when using the so-
called cut-off condition when there is a negative 
population density, in the first, when defining a null 
value for this population density, a fraction of the 
mass of the system and/or of the total population is 
disregarded. In the second alternative, by adopting 
a variable time delay parameter, the telegraphic 
phenomenon is considerably reduced and the 
diffusive phenomenon is accentuated and events 
are not mutually independent. In the third 

alternative, the guarantee of the positivity of the 
solution is made by changing the boundary 
conditions of the problem and also depends on the 
initial condition. Basically, the first alternative 
alters the mass of the system, the second alters the 
velocity of dispersion and the third alters the 
boundary conditions of the problem, violating the 
original problem in relation to the issue of 
biological mobility. 

In this paper, it is proposed the use of the 
principle of mass conservation maintaining the 
velocity of dispersion without alters the boundary 
conditions of the problem, in which, occurring a 
negative population density at a certain instant in 
the interval of analysis, these values are taken in 
module and prorated among all other points of the 
domain with non-null population as a collective cell 
migration in tumours of highly differentiated 
tissues (e.g. lobular breast cancer and epithelial 
prostate cancer, where invasion by individual 
cancer cells is rarely detected) (Friedl and Wolf. 
2003). 

Figure 5 illustrates how the total mass or 
population density of the system is conserved 
maintaining the dispersion velocity and boundary 
conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 - Illustration of proportional population reallocation. 
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The graphs in the Figure 5 show some negative 
values on the blue line and the positivity adjustment 
on the red line, conserving the total number of the 
population even using a constant value for the 
relaxation time coefficient. During the iterative 
solution of the system of equations (21), at various 
times there is no need to use the positivity 
adjustment, as shown in Figure 6. 

 

Figure 6 - Telegraph solution without positivity 
adjustment. 

 
Solving D-BEM formulations for the two-
dimensional in vitro tumour model  

 

All tumours follow a standard growth pattern, 

growing fastest in the beginning and eventually 

reaching a maximum size. A key component of any 

in vitro tumour model is a source of cancer cells, 

which in this paper are represented using boundary 

conditions q, as an invasion flow from adjacent 

structures and as a source term in the last example 

of each case. Four examples were studied for each 

of the reactive terms F1, F2, F3 and F4, representing 

different types of tumour growth, adopting = 

0.0013 cm2/day, for diffusion coefficient that 

explains the tumour invasiveness or measure of 

how quickly the organism/cancer cells disperse,  

k1=0.012 cells/day for the tumour cell proliferation 

rate (Friedl and Wolf, 2003; Swanson, 1999) and  

relaxation time coefficient τ = 0, 5, 10, 20, 50 and 

100 measured in days, representing some treatment 

or medication that slows down tumour growth, 

resembling transwell method (Katt et al., 2016), 

which are used to assay multiple parameters, such 

as the relative invasiveness of different cells and 

the effect of drugs or gene manipulation on 

motility. 
The first case to be analysed is the following: 

Case 1 – Considering the exponential growth for 
the reactive (reproductive) process, has 
 

𝐹1(𝑢) = 𝐾1𝑢(𝑋, 𝑡)          (23) 

 

The solutions of the equations systems were 

based on the Gaussian elimination method, whose 

results for D-BEM showed stability. Results of the 

formulation D-BEM for reactive-telegraph 

equation are illustrated below. 
Example 1.1 – Beginning and reproduction of 
cancer cells in the centre of healthy tissue in which 
cells do not invade neighbouring structures for the 
exponetial growth. 

In the first example, the punctual source term in 
the domain   is considered constant along time 
mensure in  , given by: 

 

 
𝐹𝑠(𝑋𝑠,𝑡)

𝛼2 = 𝛿(𝑋𝑠) = 28186                     𝑋𝑠 = (0.5,0.5), 𝑋𝑠 ∈ 𝛺, 0 < 𝑡 < ∞      (24) 

 
The value adopted for this production function is 

related to the maximum capacity of occupation of 
cells in the area defined in the experiment, 106 per 
cm2, with 𝜏 = 0 for an analysis period of up to 100 
days. 

The use of this function is strongly related to the 
existence of a problem in the cellular apoptosis 
system, which is the programmed death of the 
cellular connection. Normally, a cell that has 
passed through its life cycle dies. In its place, a new 
subpopulation of the cell cycle develops over time. 
But with the transformation of cancer, this natural 
mechanism is disrupted, as a result of which that 
cell does not die, but continues to grow and 
function in the body. 

It is this internal mechanism that is the basic 

basis of tumour formation, which has a tendency to 
uncontrolled and unlimited growth. That is, in fact, 
this type of cellular structure is a cell that is not 
capable of death and has unlimited growth, 
assuming that the cells don’t change their 
proliferation kinetics when implanted in the group 
of cells of the same cell line. 

To solve the RTEG model, proper initial and 
boundary conditions are required. The initial 
condition is given by equation (26) representing 
null population density and null population 
variation only at the beginning of the reaction in the 
domain and the micro-environment is full of 
nutrients and the necrotic cells are not found in the 
domain of interest initially. 
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𝑢(𝑋, 𝑡0) = 0           (25) 
𝑑𝑢

𝑑𝑡
(𝑋, 𝑡0) = 0          𝑋 ∈ 𝛺 

 
The boundary conditions are given by equation 

(27), 
 

𝑞(𝑥, 0, 𝑡) = 0 

𝑞(𝑥, 1, 𝑡) = 0            (26) 

𝑞(0, 𝑦, 𝑡) = 0 

𝑞(1, 𝑦, 𝑡) = 0                 𝑋 ∈ 𝛤 

 

representing null mobility at the border, indicating 

that the population generated by remains in the 

domain and also does not allow populations who 

may come from the vicinity of the domain to 

invade the tissue. This case represents a benign 

tumour, in which this tumour kind is well-defined 

local masses, whose cells do not invade 

neighbouring structures or spread at a distance 

through the blood and/or lymphatic stream, so that 

they do not form metastases. 

 

 

The D-BEM results for this example are illustrated below. 

Figure 7 - D-BEM results for Case 1 – Example 1.1. 
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The source term leads to a considerable increase 
in population density in a short period of time and 
has unlimited growth due to the capacity of 
replication in the proposed system and the absence 
of the delay factor (τ = 0) in the analysis, as 
illustrated in the first image of the sequence in 
Figure 7. 

In cases with 𝜏 ≠ 0, the concentration of cells 
started to show decreasing values when using 
increasing values for the relaxation coefficient t. It 
is important to highlight the effect of the delay in 
the concentration of cells observed in the graph to 
the right of each test in this example. 

With the use of increasing values for the τ 
parameter, it is possible to note that there is a delay 
in the population growth and an oscillatory 
behaviour, as illustrated in Figure 7 with τ equal to 
5, 10, 20, 50 and 100. From the theory of delay 
differential equations, (Forys and Marciniak-
Czochra, 2003) state that for one equation with 

delay, an oscillatory behaviour is possible even if 
for the same equation without delay there are no 
oscillations, as in the purely diffusive case. 

This is a very important result, as it illustrates 
two phenomena, one of which is the origin of 
cancer cells that are constantly produced in the 
tissue according to an exponential growth and the 
effect of the delay parameter in expansion of 
number of these tumour cells. Depending on the 
type of cancerous evolution, a certain delay factor 
can be dimensioned so that there is enough time for 
the tissue to regenerate or even, to keep the tumour 
at a stable size, through continuous medication. 
Typically, very aggressive tumours take an average 
of 60 days to double your size and 100 days for non-
aggressive tumours. 

Analysing the concentration of cancer cells per 
cm2 for each τ at certain times in time up to the limit 
of 100 days, the following table is presented. 

 
 

Table 1 - Concentration of cancer cells/cm2. 

 5 days 10 days 25 days 50 days 75 days 100 days 

 

16060.77 45863.97 153586.24 371598.49 645466.03 1000000.04 

 

3387.63 21107.03 107011.29 277042.02 508725.70 822074.01 

 

1882.63 13199.76 80217.78 234676.63 453835.93 749837.58 

 

996.55 7499.34 52511.64 177781.45 370898.03 636293.27 

 

413.11 3258.30 25458.91 99925.30 230956.25 423902.97 

 

209.09 1676.51 13655.51 57146.77 139245.91 266536.77 

 
Table 1 shows the rapid growth in the value of 

the concentration of cancer cells per cm2 in the 
reaction-diffusive case (τ = 0), with a homogeneous 
distribution through out the tissue in the interval of 
up to 100 days. With the use of increasing values 
for the delay parameter, there is a decrease in the 

rate of growth of the concentration of cancer cells, 
as illustrated in Figure 8, when we compare the 
cases with τ equal to 0, 5, 10, 20, 50 and 100, 
respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8 - D-BEM comparative results for Case 1 – Example 1.1. 

 

0=

5=

10=

20=

50=

100=
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Still in the first image of the sequence of Figure 
7, it is possible to verify that all the tissue perceived 
the effect of the source of cancer cell generation 
since the beginning of the reaction instantly, 

showing the effect of the infinite speed of 
population growth caused by the use of the 
diffusion equation, better illustrated by Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 - D-BEM results for the start of the growth. 
 
In Figure 9, when using τ = 0 all points u(x, y, t) 

in the domain, they are changed instantly (diffusion 
equation - infinite velocity), however, when using  
τ ≠ 0, in this case, τ = 5 and τ = 10, respectively, the 
points in the domain furthest from the source of 
cancer cells gradually perceive their effect as a 

moving with delay in space over time and the 
density of infected cells increases in the radial 
direction due to the symmetrical geometric model, 
as illustrated by Figure 10. 

 

 
 
 
 
 
 
 
 
 

Figure 10 - D-BEM results for the start of the growth in radial form. 
 
The results obtained with the RTEG model are 

similar to the in vitro experimental results 
performed by (Jiang et al., 2014) illustrated by 
Figure 11, whose cell culture invasion assay 

provided a physiological approach to assess tumour 
invasion and offered a visual component that can be 
quantified through image analysis. 

 
 
 
 
 
 
 
 
 
Figure 11 - Real in vitro experiment described by (Swanson, 2000) - (a) 1st day, (b) 2nd day, (c) 3rd day, and 
(d) 4th day. 
Font: Adapted from (Jiang et al., 2014). 
 

Figure 11 shows representative images of cells 
in culture growing in up to 4 days, spreading out 

with a smooth diffusion front gradually closed like 
an expanding wave. 
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In Figure 12, a geometric analysis was 
performed, defining four circumferences with 
radius r1, r2, r3 and r4, repectively, which were 
used to compare the space occupied by the 
population of cancer cells in the numerical model 

and in the in vitro experiment. It is possible to 
observe that the numerical results provide a good 
approximation of population growth and spread, 
similar to the real experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 - Comparing the scattering geometry of the cancer cell population in numerical and real cases for (a) 
1st day, (b) 2nd day, (c) 3rd day, and (d) 4th day. 
 

Note that with the use of the telegraph equation, 
the tumour growth process can be significantly 
represented and that the delay coefficient can be 
scaled depending on the type of cancer. At this 
moment, it is possible to afirmate that, biologically, 
the delay coefficient has effects on the tumour 
growth and on the spatio-temporal distributions of 
tumour cells and telegraph model to tumour growth 
shows is promising. 

Deepening the analysis of Figure 7, an important 
and unexpected behaviour in tumour growth is 
revealed after the fiftieth day, approximately, in 
which a great growth is observed in all cases with τ 
≠ 0 , predicting that the tumour growth may 
significantly accelerate its process of cell invasion. 
Table 2 shows how the number of cancer cells 
grows from the previous period.  

 
 

Table 2 - Growth of the concentration of cancer cells / cm2 in relation to the previous period. 

 
10 days/ 

5 days 

25 days/ 

10days 

50 days/ 

25 days 

75 days/ 

50days 

100 days/ 

75 days 

0=  2.86 3.35 2.42 1.74 1.55 

 

6.23 5.07 2.59 1.84 1.62 

 

7.01 6.08 2.93 1.93 1.65 

 

7.53 7.00 3.39 2.09 1.72 

 

7.89 7.81 3.92 2.31 1.84 

 

8.02 8.15 4.18 2.44 1.91 

 

In Table 2, despite the density of cancer cells 
growing up to 8 times between 5 and 10 days, in 
this period there is still a few invaded cells and any 
growth represents a rapid growth, however, 

between 50 and 75 days, when there is already a 
significant number of invaded cells, in a period of 
approximately 25 days the number of cancer cells 
is between 1.74 and 2.44 times greater than in the 

5=

10=

20=

50=

100=
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previous period, representing on average more than 
twice (2.06) their population replication. 

In complementary analyses done by changing 
the position of the FS (XS, t) cancer cell source 
located at the point XS= (0.75, 0.75), results were 
obtained similar to those obtained in this example, 
with a small difference of less than 1% in the 
population density values per cm2. 
Case 2 – Considering the logistic model for the 
reactive (reproductive) process, has 
 

𝐹2(𝑢) = 𝐾1𝑢(𝑋, 𝑡) (1 −
𝑢(𝑋,𝑡)

𝐾2
)            (27) 

 
This modelfor population growth was first 

proposed by Verhulst in 1838 (Bacaer, 2011). The 
dynamics are modelled by the first order ODE, 
wherethe parameter k1  = 0.012 cells/day defines the 
per capita growth rate or proliferation rate and 

parameter k2 = 106 cells/cm2 is the carrying capacity 
defined for the in vitro model based on the diffusion 
model obtained for 100 days in the case 1. For u ≪ 
K2 the growth rate is K1, but as u increases a 
quadratic nonlinearity kicks in and the rate vanishes 
for u = K2 and is negative for u > K2. The 
nonlinearity models the effects of competition 
between the organisms for food, shelter, or other 
resources. There are two fixed points, one at u = 0, 
which is unstable f′(0) = K1 > 0. 

The derivative of the reactive term in this 
example is: 

 
𝑑𝐹2(𝑢)

𝑑𝑢
= 𝐾1 − 2

𝐾1

𝐾2
𝑢(𝑋, 𝑡)            (28) 

 
From equation (17), D-BEM formulation for the 

logistic model is given by, 
 

 

𝐶(𝜉)𝑢(𝜉, 𝑡 + 𝛥𝑡) = ∫𝑢 ∗ (𝜉, 𝑋)𝑞(𝑋, 𝑡 + 𝛥𝑡)
𝛤

𝑑𝛤 − ∫𝑞 ∗ (𝜉, 𝑋)𝑢(𝑋, 𝑡 + 𝛥𝑡)
𝛤

𝑑𝛤 + 

−
1

𝛼2𝛥𝑡
(1 − 𝐾1𝜏) ∫ 𝑢(𝑋, 𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 +

2𝐾1𝜏

𝐾2𝛼2
∫ 𝑢2(𝑋, 𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺

𝛺𝛺

+ 

+
1

𝛼2𝛥𝑡
(1 − 𝐾1𝜏) ∫ 𝑢(𝑋, 𝑡 − 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 +

2𝐾1𝜏

𝐾2𝛼2 ∫ 𝑢2(𝑋, 𝑡 − 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺
𝛺𝛺

+            (29) 

−
1

𝛼2𝛥𝑡2
𝜏 [∫ 𝑢 (𝑋, 𝑡 + 𝛥𝑡)

𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 − 2 ∫ 𝑢 (𝑋, 𝑡)
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 + ∫ 𝑢 (𝑋, 𝑡 − 𝛥𝑡)
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺] + 

+
1

𝛼2
∫ 𝐾1𝑢(𝑋, 𝑡) (1 −

𝑢(𝑋, 𝑡)

𝐾2

)
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 +
1

𝛼2
∫ 𝐹𝑠(𝑋, 𝑡 + 𝛥𝑡)

𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 

 
Note that in equation (29) there are terms of the 

form 𝑢2(𝑋, 𝑡) , which in this study was chosen to 
start them in the iterative process at t and 𝑡 − 𝛥𝑡, as 
variables known in previous times. The matrix 
system of equations is similar to equation (21). In 
the next step, the study for the logistic model as a 
reactive term begins. 
Example 2.1 – Beginning and reproduction of 
cancer cells in the centre of healthy tissue in which 

cells do not invade neighbouring structures for the 
logistic growth 

In the second example, the punctual source term 
in the domain Ω is defined as equation (25), initial 
conditions (26), boundary conditions (27) and τ 
equal to 0, 5, 10, 20, 50,and 100. The D-BEM 
results for this example are illustrated below.  
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Figure 13 - D-BEM results for Case 2 - Example 2.1. 
 
In the first analysis with τ = 0, it is possible to 

verify that there is no wave behaviour, only 
diffusion with reation. In analyses performed with 
τ ≠ 0 illustrated by Figure 13, results were obtained 
similar to the results obtained with the exponential 
reactive term explored in Case 1 (Figure 7). Figure 

14 compares the D-BEM results for Case 1 and 
Case 2 with τ = 50 and K2 =106 cells/cm2, where it 
is possible to verify the similarity between the two 
tested cases, for example. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 - D-BEM comparative results for Case 1 and Case 2 with τ = 50 and K2 =106 cells/cm2. 
 
In a complementary analysis presented in Table 3, values 100 times lower than K2 and 100 times higher than 

K2 were used for the carrying capacity coefficient. 
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Table 3 - Concentration of cancer cells/cm2using = 50. 
K2 5 days 10 days 25 days 50 days 75 days 100 days 

10000.00 730.19 4204.92 27308.50 103317.93 231335.95 399288.46 

100000.00 730.24 4206.62 27357.10 104036.47 236754.87 421303.77 

1000000.00 730.24 4206.79 27361.97 104109.00 237313.55 423665.67 

10000000.00 730.24 4206.81 27362.46 104116.26 237369.59 423903.58 

100000000.00 730.24 4206.81 27362.51 104116.99 237375.20 423927.39 

 
Comparing the values in Table 1 (τ = 50 and K2 

=106 cells/cm2) with the values in Table 3 (K2 =106 

cells/cm2), it can be seen that the variation between 
the population density values after 10 days is 
approximately 1%, indicating that, although 
different coefficients that represent the carrying 
capacity present in the logistic model that is used as 
a reactive term, the results are similar to the case 
with an exponential reactive term with τ equal to 
50. These results indicate that the resulting 
estimation of the carrying capacity K2 is 
biologically irrelevant, and it can be reaffirmed 
that, based on the simulated conditions, the logistic 
model resembles the exponential growth model. 

Case 3 – Considering the generalized logistic 
model for the reactive (reproductive) process, has 
 

𝐹3(𝑢) = 𝐾1𝑢(𝑋, 𝑡) (1 −
𝑢(𝑋,𝑡)

𝐾2
)

𝐾3
          (30) 

According to (Aviv-Sharon and Aharoni, 2020), 
a little more than half a century ago, an extension 
of the classic logistic model, allowing for more 
flexible curvature of the S shape where the growth 
curve is asymmetrical, was introduced, establishing 
the so-called Richards curve or generalized logistic 
model proposed by Richards in 1959 (Richards, 
1959). Inspired by population biology, this model 
assumes an initial phase of exponential growth that 
saturates as the number of cells reaches the capacity 
of space and available nutrients. 

Again adopting K1 = 0.012 cells/day for the 
tumour cell proliferation rate, K2 = 106 cells/cm2 for 
the carrying capacity, relaxation time coefficient τ 
= 0, 5, 10, 20, 50 and 100 measured in days and K3 
= 2.5 for the exponential decrease rate. The 
derivative of the reactive term in this example is: 

 

 
𝑑𝐹3(𝑢)

𝑑𝑢
= 𝐾1 (1 −

𝑢(𝑋,𝑡)

𝐾2
)

𝐾3
−

𝐾1𝐾3

𝐾2
𝑢(𝑋, 𝑡) (1 −

𝑢(𝑋,𝑡)

𝐾2
)

𝐾3−1
      (31) 

 
From equation (17), D-BEM formulation for the generalized logistic model is given by, 
 

𝐶(𝜉)𝑢(𝜉, 𝑡 + 𝛥𝑡) = ∫ 𝑢 ∗ (𝜉, 𝑋)𝑞(𝑋, 𝑡 + 𝛥𝑡)
𝛤

𝑑𝛤 − ∫ 𝑞 ∗ (𝜉, 𝑋)𝑢(𝑋, 𝑡 + 𝛥𝑡)
𝛤

𝑑𝛤 +   

−
1

𝛼2𝛥𝑡
[∫ {1 − 𝜏 [𝐾1 (1 −

𝑢(𝑋,𝑡)

𝐾2
)

𝐾3
−

𝐾1𝐾3

𝐾2
𝑢(𝑋, 𝑡) (1 −

𝑢(𝑋,𝑡)

𝐾2
)

𝐾3−1
]}

𝛺
𝑢(𝑋, 𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺] +   

+
1

𝛼2𝛥𝑡
[∫ {1 − 𝜏 [𝐾1 (1 −

𝑢(𝑋,𝑡−𝛥𝑡)

𝐾2
)

𝐾3

]}
𝛺

𝑢(𝑋, 𝑡 − 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺] +     (32) 

+
1

𝛼2𝛥𝑡
[∫ {1 − 𝜏 [−

𝐾1𝐾3

𝐾2
𝑢(𝑋, 𝑡 − 𝛥𝑡) (1 −

𝑢(𝑋,𝑡−𝛥𝑡)

𝐾2
)

𝐾3−1
]}

𝛺
𝑢(𝑋, 𝑡 − 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺] +   

−
1

𝛼2𝛥𝑡2 𝜏[∫ 𝑢(𝑋, 𝑡 + 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 − 2 ∫ 𝑢(𝑋, 𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺
𝛺

+
𝛺 ∫ 𝑢(𝑋, 𝑡 − 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺

𝛺
] +  

+
1

𝛼2 ∫ 𝐾1𝑢(𝑋, 𝑡 − 𝛥𝑡) (1 −
𝑢(𝑋,𝑡−𝛥𝑡)

𝐾2
)

𝑘3

𝛺
𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 +

1

𝛼2 ∫ 𝐹𝑠(𝑋, 𝑡)
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺  

 
Note that in equation (32) there are terms of the 

variable u in which, when the multiplication present 
in some domain integrals is performed, they result 
in terms of the shape uK

3 (X,t) and uK
3
+1(X,t), which 

leads to this stage of the study considering a 
population growth based on fractional telegraphic 
reaction, which in this study was chosen to start 
them in the iterative process at 𝑡 and 𝑡 − 𝛥𝑡 , as 
variables known in previous times. Equation (32) 
can be reorganizedin a matrix system of equations 
similar to equation (21), the results of which are 

presented in example 3.1. 
Example 3.1 –Beginning and reproduction of 

cancer cells in the center of healthy tissue in which 
cells do not invade neighboring structures for the 
generalized logistic growth 

In the third example, the punctual source term in 
the domain Ω is defined as equation (25), initial 
conditions (26), boundary conditions (27) and τ 
equal to 0, 5, 10, 20, 50 and 100. The D-BEM 
results for this example are illustrated below. 

 
 


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Figure 15 - D-BEM results for Case 3 - Example 3.1. 
 
In the first analysis with τ = 0, only the diffusive 

behaviour with generation in population growth is 
perceived. However, in the rest of the analyses 
performed with τ ≠ 0, like illustrated by Figure 15, 
results were obtained similar to the results obtained 

with the exponential reactive term explored in Case 
1 (Figure 7). In a complementary analysis presented 
in Table 4, was used K3= 1, 1.5, 2, 2.5, 4, 5.5 and 7, 
for the exponential decrease rate. 
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Table 4 - Concentration of cancer cells/cm2using = 50. 

K3 5 days 10 days 25 days 50 days 75 days 100 days 

1.00 721.68 4158.08 27053.22 102967.42 234724.24 418983.87 

1.50 721.68 4158.07 27052.97 102963.87 234687.65 418874.58 

2.00 721.68 4158.06 27052.73 102960.32 234671.08 418765.44 

2.50 721.68 4158.05 27052.48 102956.77 234644.52 418656.44 

4.00 721.68 4158.03 27051.75 102946.13 234564.97 418330.32 

5.50 721.68 4158.00 27051.01 102935.50 234485.57 418005.50 

7.00 721.68 4157.97 27050.27 102924.88 234406.33 417681.96 

 

Comparing the values in Table 4 to different K3, 
it can be seen that the maximum variation between 
the population density values is approximately 
0.03% (for K3 = 1 and 7 in 100 days), indicating 
that, although different coefficients are used to 
represent the exponential decrease rate, present in 
the generalized logistic model, the results are 
similar to the case with an exponential reactive term 
with τ equal to 50. These results indicate that the 
resulting estimation of the exponential decrease 
rate K3, when K3 is between 1 and 7, is practically 
irrelevant for a period of time up to 100 days. 
Case 4 – Considering the Gompertz model for the reac-

tive (reproductive) process, has 

 

𝐹4(𝑢) = −𝐾1𝑢(𝑋, 𝑡) 𝑙𝑛 (
𝑢(𝑋,𝑡)

𝐾2
)                  (33) 

 

The Gompertz model is characterized by an 
exponential decrease of the specific growth rate 
with the rate denoted here by K1, which is a constant 
related to the proliferative ability of the cells. K2 is 
the carrying capacity. 

According to (Vaghi, 2019), the tumour growth 
is not entirely exponential, provided it is observed 
over a long enough time frame (100 to 1000 folds 

of increase) and the specific growth rate slows 
down and this deceleration can be particularly well 
captured by the Gompertz model. Despite its 
abillity, the initial rate of tumour growth is difficult 
to predetermine given the varying microcosms 
present with a patient, or varying environmental 
factors in the case of population biology. In cancer 
patients, factors such as age, diet, ethnicity, genetic 
pre-dispositions, metabolism, lifestyle and origin of 
metastasis play a role in determining the tumour 
growth rate. The carrying capacity is also expected 
to change based on these factors, and so describing 
such phenomena is difficult. However, in this paper 
K1 and K2 are defined as constant, that is, k1 = 0.012 
cells/day and k2 = 106 cells/cm2, in order to compare 
the results with the values obtained in cases 1, 2 and 
3, because during the preliminary tests it was found 
that the growth based on the Gompertz model is 
highly sensitive to variations in the carrying 
capacity coefficient. 

The derivative of the reactive term in this 
example is: 

 
𝑑𝐹4(𝑢)

𝑑𝑢
= −𝐾1 [𝑙𝑛 (

𝑢(𝑋,𝑡)

𝐾2
) + 1]            (34) 

 

 
 
From equation (17), D-BEM formulation for the Gompertz model is given by, 
 

𝐶(𝜉)𝑢(𝜉, 𝑡 + 𝛥𝑡) = ∫ 𝑢 ∗ (𝜉, 𝑋)𝑞(𝑋, 𝑡 + 𝛥𝑡)
𝛤

𝑑𝛤 − ∫ 𝑞 ∗ (𝜉, 𝑋)𝑢(𝑋, 𝑡 + 𝛥𝑡)
𝛤

𝑑𝛤 +  

−
1

𝛼2𝛥𝑡
[∫ {1 + 𝜏𝐾1 [𝑙𝑛 (

𝑢(𝑋,𝑡)

𝐾2
) + 1]}

𝛺
𝑢(𝑋, 𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺] +  

 

+
1

𝛼2𝛥𝑡
[∫ {1 + 𝜏𝐾1 [𝑙𝑛 (

𝑢(𝑋,𝑡−𝛥𝑡)

𝐾2
) + 1]}

𝛺
𝑢(𝑋, 𝑡 − 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺] +           (35) 

−
1

𝛼2𝛥𝑡
𝜏[∫ 𝑢(𝑋, 𝑡 + 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 − 2 ∫ 𝑢(𝑋, 𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺

𝛺
+

𝛺 ∫ 𝑢(𝑋, 𝑡 − 𝛥𝑡)𝑢 ∗ (𝜉, 𝑋)𝑑𝛺
𝛺

] +  

−
1

𝛼2 ∫ 𝐾1𝑢(𝑋, 𝑡 − 𝛥𝑡) 𝑙𝑛 (
𝑢(𝑋,𝑡−𝛥𝑡)

𝐾2
)

𝛺
𝑢 ∗ (𝜉, 𝑋)𝑑𝛺 +

1

𝛼2 ∫ 𝐹𝑠(𝑋, 𝑡)
𝛺

𝑢 ∗ (𝜉, 𝑋)𝑑𝛺  

 
Using the equation (35) can be building a matrix 

system of equations similar to equation (21) and the 
iterative process is done as in Cases 2 and 3.The 
analysis made with the D-BEM formulation for the 
Gompertz model is presented in the following 
examples. 

Example 4.1 – Beginning and reproduction of 
cancer cells in the centre of healthy tissue in which 
cells do not invade neighbouring structures for the 
Gompertz growth 


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In the fourth and last Case, the punctual source 
term in the domain Ω is defined as equation (25), 
initial conditions (26), boundary conditions (27) 

and τ equal to 0, 5, 10, 20, 50 and 100. The D-BEM 
results for this example are illustrated below. 

 

 

 

Figure 16 - D-BEM results for Case 3 - results for Case 4 - Example 4.1.  
 
In the first analysis shown in Figure 16 with τ = 

0, the population growth behavior resembles an 
exponential curve, reaching a slightly smaller 
amount of cancer cells, when compared to the cases 
with the reactive terms F1, F2 and F3 with null τ. 

In tests with τ different from zero, a logarithmic 
behaviour is perceived, differently from the 
behaviour presented for the other three cases. In 

this analysis, an increase in the number of cancer 
cells can be seen similar to an S-shaped curved 
growth (sigmoid curve), common in logistic 
models that take into account the carrying capacity 
K2. 

Furthermore, in the rest of the analyses 
performed with, as shown in Figure 14, results were 
obtained that are not similar to the results obtained 
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with the reactive terms F1, F2 and F3, reaching 
lower values for the same time interval. 

In two complementary analyses presented in 
Table 5 and 6, values 1000 times lower than K2 and 
1000 times higher than K2 were used for the 

carrying capacity coefficient assuming τ = 50 and 
in the second analysis, the results shown in Figure 
16 are presented in detail. 

 
 

 

Table 5 - Concentration of cancer cells/cm2 using τ = 50. 

K2 5 days 10 days 25 days 50 days 75 days 100 days 

103 1.27 7.47 126.11 461.49 273.38 365.51 

104 1.38 9.72 349.96 4102.36 3133.76 3136.73 

105 1.50 12.58 903.59 29812.05 37874.46 27997.79 

106 1.62 16.18 2200.92 187520.84 431439.34 267490.10 

107 1.76 20.68 5108.54 1056260.69 4518402.85 2757181.26 

108 1.90 26.28 11383.24 5443836.94 43474285.84 30082102.16 

109 2.05 33.21 24486.93 26050689.64 386558492.15 336938311.80 

 

Table 6 - Concentration of cancer cells/cm2. 

 5 days 10 days 25 days 50 days 75 days 100 days 

 

24632.30 50694.52 139020.94 326889.59 580946.32 908685.05 

 

10.66 64.87 2106.18 59786.80 243324.63 364422.08 

 

6.52 49.01 2858.28 118770.71 366206.88 372046.45 

 

3.69 32.16 2893.39 165988.20 415010.40 323274.84 

 

1.62 16.18 2200.92 187520.64 431439.34 267490.10 

 

0.85 9.13 1585.37 180081.63 441319.66 238825.65 

 
Using the reactive term based on the Gompertz 

growth model, the effect of the carrying capacity is 
perceived as shown in Table 5, in which, the growth 
is highly influenced by the carrying capacity, 
growing at a higher rate and reaching very high 
values after 50 days approximately.  

Table 6 presents the cancer cell counts from the 
tests performed in this section. Results with the 
parameter τ different from zero show a slow growth 
until the 25th day, however, after the 50th day, 
there is a rapid increase in cell count, but on the 

100th day, they present values lower than Cases 1, 
2 and 3. This result is explained by the effective 
effect of the carrying capacity parameter. 

Important information contained in the graphs in 
Figure 16 is that, as the growth curve occurs in a 
logarithmic way, the population density tends to 
remain constant after a certain period of time, 
reaching a plateau. This affirmation was proven by 
simulating the same problem over a longer period 
of time, 365 days, as shown in the Figure 17 below. 

 
 

 
 

0=

5=

10=

20=

50=

100=
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Figure 17 - D-BEM results for Case 4 with t = 365 days. 
 
In Figure 17, the effect of the delay parameter τ 

is evident, causing the cancer cell population count 
to oscillate over time, converging to a limited 
amount, unlike the case with τ = 0 in which growth 
occurs almost exponentially reaching values of the 
order of 107. In this analysis, convergence to a 
limited value is observed with a time interval less 
than 150 days for cases with τ = 5 and τ = 10. For 
cases with τ = 20 and τ = 50, convergence was 
observed after approximately 200 days and for the 
last case, with τ = 100, the amount of cancer cells 
stabilized after 300 days. The red dashed line is 
used to highlight the value to which the population 
converges, reaching lower population values when 
increasing values are used for the parameter τ. 

Using the reactive term based on the Gompertz 
growth model, it is observed that the growth is 
smooth at the beginning of the reaction, reaches a 
maximum value, starts to decrease due to the 
carrying capacity, returns with growth and then 
stabilizes forming a plateau. 

This is an important result and differs from the 
three cases tested previously, because in cases 1, 2 
and 3, what was noticed was that the telegraph 
equation delayed population growth and here, with 
the Gompertz model, in addition to the delay, also 
population regrowth, resembling a real organism 

undergoing treatment, in which growth is inhibited 
by some physical, chemical or biological agent 
(radiotherapy, chemotherapy or hormonal therapy). 
This agent may be related to the delay parameter τ, 
in addition to being useful in tissue recovery 
analysis, which would give enough time for new 
cells to be generated and replace invaded tissues, 
for example, or lead to surgical eradication, without 
causing damage to surrounding tissues in the case 
of benign tumors and the use of radiotherapy, 
chemotherapy and hormone therapy in malignant 
tumors, which can be used to alleviate signs and 
symptoms and try to prevent cancer recurrence. 

 
General comments 

 
To reinforce the claims made in this paper about 

the use of RTEG to model the dynamics of a tumour 
in vitro, in (Jiang et al., 2014) the authors have 
identified different migratory patterns from the 
clinical images of the tumours, which were 
collected in Sun Yat-sen University Cancer Center. 
They have observed that the invasive liver tumour 
spread in faster rate (characteristic of super-
diffusion or even ballistic diffusion) than the 
adrenal tumour (characteristic of sub-diffusion). 
From this phenomenon, they have concluded that 

https://doi.org/10.20873/jbb.uft.cemaf.v10n2.pettres


 Pettres et al. / Journal of Biotechnology and Biodiversity / v.10 n.2 (2022) 111-136 

 

© 2022 Journal of Biotechnology and Biodiversity 
ISSN: 2179-4804 

DOI: https://doi.org/10.20873/jbb.uft.cemaf.v10n2.pettres 

133 

the rate of tumour expansion is varied rapidly 
depending upon its niche. So, the simple diffusion 
is not suitable to model these types of phenomena 
as it converges quickly, and this way, is here that 
which this paper can contribute, when considering 
the use of the telegraph model in tumour growth. 

If the reactive-telegraph equation with 
generation were used to model the evolution of 
cancer cell reproduction, for example, the use of the 
reactive terms F1, F2 and F3 show similar results 
and, in a way, would be it is convenient to use the 
exponential growth model (F1), as it is the easiest 
to implement computationally. However, the tests 
carried out with the Gompertz model presented 
possibilities not observed in the other growth 
models studied in this work, highlighting the 
possibility to simulate a fast growth, a decrease, and 
a stabilization of the population density of cancer 
cells. This decrease and stabilization of the amount 
of cancer cells can be modelled with the delay 
parameter τ, which would act as a growth-
inhibitory agent, taking into account some type of 
specific treatment or medication, which, in addition 
to being useful in the analysis of tissue recovery, 
would also provide enough time for new cells to be 
generated and to replace the invaded tissues, for 
example, avoiding the failure of some organ or 
tissue. 

The results of these four cases reveal the 
importance of this numerical study, which, by 
means of mathematical modelling, can assist in the 
understanding of cancer staging, which is very 
important because it determines the most 
appropriate treatment and is an important indicator 
of prognosis and possible complications, in 
addition to assessing the cellular physiology 
underlying a tumour and predicting invasive 
behaviours in healthy tissues and in assessing the 
response to a treatment, just by changing 
parameters in the numerical model. 

Regarding the condition of the solution 
positivity, it was not necessary to use this condition 
in the study with the reactive term based on the 
Gompertz model, revealing a curious fact regarding 
the wavefront behavior of the invasion process, 
indicating that there was no reflection of the waves 
at the domain boundary, evidenced by the 
population accumulation in this region provided by 
the Neumann-type boundary condition, which in 
the context of this application, allows tumor growth 
at a variable and decreasing rate, limited by the 
coefficient of carrying capacity. 

 
CONCLUSIONS 

In this article, the choice of the fundamental 
solution of the Laplacian operator (eq. 13) and the 

use of finite differences (eq. 15 and 16) proved to 
be a good option for the development of a hybrid 
method to solve the non-homogeneous telegraph 
equation, whose insertion of different reactive 
terms was made in a simple way in this 
mathematical formulation. 

Using the reactive-telegraph equation and of the 
D-BEM formulation, it was sought to numerically 
simulate the population growth dynamics of a 
group of cancer cells from a two-dimensional 
model that resembles a controlled assay of tumour 
growth in vitro. 

Four population growth models were used for 
the term reactive, in which, the exponential model, 
logistic and generalized logistic models, presented 
similar results. In these three cases, it was noted 
that as increasing values are used for the relaxation 
time coefficient, the effect of the second sound is 
perceived and the replication of the population's 
cells becomes slower. This damping feature can be 
dimensioned to consistently represent the growth of 
some types of cancer and, mainly, to relate it to a 
specific type of treatment or medication, which 
causes a delay in tumour growth. 

The results obtained with the fourth model 
tested, the Gompertz model, indicated that in 
addition to a delay in population growth, a decrease 
and stabilization of the population was also 
observed, strongly influenced by the use of the τ 
parameter and the coefficient of carrying capacity. 

The models developed allowed simulating 
different tumour growth scenarios and different 
delay parameters were adopted. This model was 
investigated from a phenomenological point of 
view, measuring some parameters to characterize 
the growth of the avascular tumour over time. The 
tumour micro-environment is very complex in 
nature due to several competing molecular 
mechanisms. Diffusion can be an overly simplified 
technique and does not reflect the detailed view of 
the tumour micro-environment when some type of 
treatment is inserted. In addition, as the simulation 
parameters can be modified due to different 
biochemical and/or biophysical processes, the 
model presents sensitively the variations in the 
results, guaranteeing the robustness of the model. 

As desired with this study, based on the 
developed mathematical formulation and the 
numerical results obtained, it is possible to evaluate 
the tumour morphology and the growth dynamics, 
allowing to explore the effect of the variation of 
parameters related to tumour growth, as the 
parameter K1 that defines the per capita growth rate 
or proliferation rate and K2 that defines the carrying 
capacity, present in the reactive terms of the 
equation telegraph, which may be related to a 
particular type of treatment. In this study, the 
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parameter K3, which defines the exponential decay 
rate, was not relevant in the population count.  

This can help us understand how an avascular 
tumour interacts with its micro-environment and 
what kind of changes in its growth can be seen if a 
drug or clinical treatment is administered before 
angiogenesis.  

It is recognized that, in order to understand the 
evolution of cancer, many still needs to be studied 
on first, but this paper will likely help to develop 
better mathematical models to simulate diagnoses, 
therapies and prognoses, as this formulation allows 
to simulate a real problem, taking into account the 
adjustment of the growth parameters involved, the 
control of cell proliferation and migration 
mechanisms using specific boundary conditions 
and by the frequency of growth stimulation of a 
certain type of tumour cell by adjusting the Fs 
source. 

Finally, it is emphasized that the models 
analysed are not restricted to a specific system and 
can thus be useful in the study of wave fronts in 
biophysical and chemical problems where there is 
the presence of reaction-diffusion, as in nerve 
conduction, in the growth of colonies of bacterial, 
population dispersion and tumour growth models in 
healthy tissue, as widely discussed in this paper, 
especially considering the importance of latent time 
for most pathologies. For the future, based on the 
results of this second study, it is intended to direct 
the research towards comparative applications 
taking into account real data of tumour growth in 
vitro and the results of the numerical model 
developed to model the parameter τ as a growth-
inhibiting agent, taking into account some type of 
treatment or specific medication. 

 
CONFLICT OF INTEREST STATEMENT 

The authors declare that the research was 
conducted in the absence of any commercial or 
financial relationships that could be construed as a 
potential conflict of interest. 

 
ACKNOWLEDGMENTS 

The author thanks the UFPR, CHC UFPR and 
UEL for the support to conduction of this research. 

 
BIBLIOGRAPHIC REFERENCES  

Alharbi W, Petrovskii S. Critical domain problem for the re-

action–telegraph equation model of population dynamics. 

Mathematics, v.6, n.4, p.6–59, 2018. 

https://doi.org/10.3390/math6040059 

Aviv-Sharon E, Aharoni A. Generalized logistic growth mod-

eling of the COVID-19 pandemic in Asia. Infectious Dis-

ease Modelling, v.5, p.502-509, 2020. 

https://doi.org/10.1016/j.idm.2020.07.003 

Bacaer N. Verhulst and the logistic equation (1838), A Short 

History of Mathematical Population Dynamics. Springer, 

London, p.35-39, 2011.  

https://doi.org/10.1007/978-0-85729-115-8 

Burkowski FJ. A computer simulation of the growth of a tu-

mour in vitro. Computer Programs in Biomedicine, v.7, 

n.3, p.203-210, 1977.  

https://doi.org/10.1016/0010-468X(77)90028-9 

Byrne HM, Chaplain MAJ. Growth of nonnecrotic tumors in 

the presence and absence of inhibitors. Mathematical Bio-

sciences, v.130, n.2, p.151-182, 1995. 

https://doi.org/10.1016/0025-5564(94)00117-3 

Cattaneo C. Sur uneforme de l’equation de la chaleur elimi-

nant le paradoxed’une propagation instantanee. Comptes 

Rendus de l'Académiedes Sciences, v.247, p.431-433, 

1958. 

Chandrasekharaiah DS. Hyperbolic thermoelasticity: a re-

view of recent literature. Applied Mechanics Reviews, 

v.51, n.12, p.705-729, 1998. 

https://doi.org/10.1115/1.3098984 

Chiu SN, Stoyan D, Kendall WS, Mecke J. Stochastic geom-

etry and its applications. John Wiley & Sons, 2013. 

https://doi.org/10.1002/bimj.4710390510 

Cirilo ER, Petrovskii S, Romeiro N, Natti P. Investigation 

into the Critical Domain Problemfor the Reaction-tele-

graph equation Using Advanced Numerical Algorithms. 

International Journal of Applied and Computational Math-

ematics, v.5, n.54, 2019.  

https://doi.org/10.1007/s40819-019-0633-z 

Fort J, Méndez V. Wavefronts in time-delayed reaction-diffu-

sion systems. Theory and Comparison to Experiment. Re-

ports on Progress in Physics, v. 65, p. 895, 2002. 

Forys U, Marciniak-Czochra A. Logistic equations in tumour 

growth modelling. International Journal of Applied Mathe-

matics and Computer Science, v.13, n.3, p.317-325, 2003. 

Friedl P, Wolf, A. Tumor cell invasion and migration: diver-

sity and escape mechanisms. Nature Reviews Cancer, v.3, 

n.5, p.362–374, 2003. 

https://doi.org/10.1038/nrc1075 

Gatenby RA, Vincent TL. Application of quantitative models 

from population biology and evolutionary game theory to 

tumour therapeutic strategies. American Association for 

Cancer Research, v.2, n.9, p.919-927, 2003. 

Godoi PHV. Mathematical modeling of two-dimensional bio-

logical invasion via telegraph equation. Master's Thesis in 

Applied and Computational Mathematics, State University 

of Londrina, Londrina, 2021. 

Hillen T, Gatenby R, Hinow P. Partial Differential Equations 

in Cancer Modelling. Banff International Research Station 

for mathematiclal Innovation and Discovery. Workshopin 

February, p.2-6, 2015. 

Holmes EE. Are Diffusion Models Too Simple? A Compari-

son with Telegraph Models of Invasion. American Natural-

ist, v.142, n.5, p.779-795, 1993. 

https://doi.org/10.20873/jbb.uft.cemaf.v10n2.pettres
https://doi.org/10.3390/math6040059
https://doi.org/10.1016/j.idm.2020.07.003
https://doi.org/10.1007/978-0-85729-115-8
https://doi.org/10.1016/0010-468X(77)90028-9
https://doi.org/10.1016/0025-5564(94)00117-3
https://doi.org/10.1115/1.3098984
https://doi.org/10.1002/bimj.4710390510
https://doi.org/10.1007/s40819-019-0633-z
https://doi.org/10.1038/nrc1075


 Pettres et al. / Journal of Biotechnology and Biodiversity / v.10 n.2 (2022) 111-136 

 

© 2022 Journal of Biotechnology and Biodiversity 
ISSN: 2179-4804 

DOI: https://doi.org/10.20873/jbb.uft.cemaf.v10n2.pettres 

135 

Jiang C, Cui C, Li L, Shao Y. The anomalous diffusion of a 

tumor invading with different surrounding tissues. PLoS 

One, v.9, n.10, 2014.  

https://doi.org/10.1371/journal.pone.0109784 

Johnson KE, Howard G, Mo W, Strasser MK, Lima EABF, 

Huang S, Brock A. Cancer cell population growth kinetics 

at low densities deviate from the exponential growth model 

and suggest an Allee effect. PLoS Biology, v.17 n.8, 

e3000399, 2019. 

https://doi.org/10.1371/journal.pbio.3000399 

Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In 

Vitro Tumour Models: Advantages, Disadvantages, Varia-

bles, and Selecting the Right Platform. Frontiers in bioen-

gineering and biotechnology, v.4, n.12, 2016. 

https://doi.org/10.3389/fbioe.2016.00012 

Kerbel RS. Tumour angiogenesis: past, present and the near 

future. Carcinogenesis, v.21, n.3, p.505-515, 2000. 

https://doi.org/10.1093/carcin/21.3.505 

Konukoglu E, Clatz O, Bondiau PY, Delignette H, Ayache 

N. Extrapolation glioma invasion margin in brain magnetic 

resonance images: Suggesting new irradiation margins. 

Medical Image Analysis, v.14, n.2, p.111-125, 2010. 

https://doi.org/10.1016/j.media.2009.11.005 

Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Mack-

lin P, Wise SM, Cristini V. Nonlinear modelling of cancer: 

bridging the gap between cells and tumours. Nonlinearity, 

v.23, n.1, 2010.  

https://doi:10.1088/0951-7715/23/1/r01 

Ludwig CU, Durie BG, Salmon SE, Moon TE. Tumor 

growth stimulation in vitro by interferons. European Jour-

nal of Cancer and Clinical Oncology, v.19, n.11, p.1625-

32, 1983.  

https://doi.org/10.1016/0277-5379(83)90095-0  

Lurie SA, Belov PA. On the nature of the relaxation time, the 

Maxwell–Cattaneo and Fourier law in the thermodynamics 

of a continuous medium, and the scale effects in thermal 

conductivity. Continuum Mechanics and Thermodynamics, 

v.32, p.709-728, 2020.  

https://doi.org/10.1007/s00161-018-0718-7 

Mahooti, M. Gaussian Elimination(https://www.math-

works.com/matlabcentral/fileexchange/73485-gaussian-

elimination), MATLAB Central File Exchange. Retrieved 

July 5, 2020. 

Malinzi J. A mathematical model for oncolytic virus spread 

using the telegraph equation. Communications in Nonlin-

ear Science and Numerical Simulation, v.102, p.1-16, 

2021.  

https://doi.org/10.1016/j.cnsns.2021.105944 

Maxwell JC. On the Dynamical Theory of Gases. The Philo-

sophical Transactions of the Royal Society, v.157, n.49, 

p.49-88, 1867. 

Méndez V, Fedotov S, Horsthemke W. Reactions and 

transport: diffusion, inertia, and subdiffusion.In: Reaction-

Transport Systems. Springer Series in Synergetics. 

Springer, Berlin, p.33-54, 2010. 

https://doi.org/10.1007/978-3-642-11443-4_2 

Michelson S, Glicksman SA, Leith JT. Growth in solid heter-

ogeneous human colon adenocarcinomas: comparison of 

simple logistical models. Cell Proliferation, v.20, p.343-

355, 1987.  

https://doi.org/10.1111/j.1365-2184.1987.tb01316.x 

Mittal RC, Dahiya S. Numerical simulation on hyperbolic 

diffusion equations using modified cubic B-spline differen-

tial quadrature methods. Computers & Mathematics with 

Applications, v.70, n.5, p.737-749, 2015. 

https://doi.org/10.1016/j.camwa.2015.04.022 

Morton KW, Mayers DF. Numerical Solutions of Partial Dif-

ferential Equations.  Cambridge University Press, New 

York, 1994.  

https://doi.org/10.1002/zamm.19950750904 

Oliveira TF. Mathematical modeling and numeric analysis of 

relaxation time for reactive-diffusive-telegraph equation. 

2020. Master's Dissertation in Applied and Computational 

Mathematics - State University of Londrina, Londrina, 

Brazil. 

Onsager L. Reciprocal relations in irreversible processes. 

Physical Review journals, v.37, 119p., 1931. 

https://doi.org/10.1103/PhysRev.37.405 

Painter KJ, Hillen T. Mathematical modelling of glioma 

growth: The use of Diffusion Tensor Imaging (DTI) data to 

predict the anisotropic pathways of cancer invasion. Jour-

nal of Theoretical Biology, v.323, n.21, p.25-39, 2013. 

https://doi.org/10.1016/j.jtbi.2013.01.014 

Pettres R, Lacerda LA, Carrer JAM. A boundary element for-

mulation for the heat equation with dissipative and heat 

generation terms. Engineering Analysis with Boundary El-

ements, v.51, p.191-198, 2015. 

https://doi.org/10.1016/j.enganabound.2014.11.005 

Pettres R. A first dynamic population invasion study from re-

active-telegraph equation and boundary element formula-

tion. Engineering Analysis with Boundary Elements, 

v.122, p.214-231, 2021.  

https://doi.org/10.1016/j.enganabound.2020.11.002 

Pettres R. An introductory course on the boundary element 

method. v.1, p.150-153, 2020. 

Preziosi L. Cancer Modelling and Simulation. Chapman 

Hall/CRC Press, 421 p. 2003. 

Richards FJ. A flexible growth function for empirical use. 

Journal of Experimental Botany, v.10, n.2, p.290-301, 

1959. 

Sadhukhan S, Basu SK. Avascular tumour growth models 

based on anomalous diffusion. Journal of Biological Phys-

ics, v.46, p.67-94, 2020.  

https://doi.org/10.1007/s10867-020-09541-w 

Schwarzwälder MC. Non-Fourier Heat Conduction. The 

Maxwell-Cattaneo Equations. Department: Matemàtica 

Aplicada I Academic, Master's Degree Thesis in Science in 

Advanced Mathematics and Mathematical Engineering. 

2015. 81p. Universitat Politècnica de Catalunya Facultat de 

Matemàtiquesi Estadística. 

Spratt JS, Meyer JS, Spratt JA. Rates of growth of human ne-

oplasms: part II. Journal of Surgical Oncology, v.61, p.68-

73, 1996.  

https://doi.org/10.1002/1096-9098(199601)61:1<68::AID-

JSO2930610102>3.0.CO;2-E 

https://doi.org/10.20873/jbb.uft.cemaf.v10n2.pettres
https://doi.org/10.1371/journal.pone.0109784
https://doi.org/10.1371/journal.pbio.3000399
https://doi.org/10.3389/fbioe.2016.00012
https://doi.org/10.1093/carcin/21.3.505
https://doi.org/10.1016/j.media.2009.11.005
https://doi:10.1088/0951-7715/23/1/r01
https://doi.org/10.1016/0277-5379(83)90095-0
https://doi.org/10.1007/s00161-018-0718-7
https://doi.org/10.1016/j.cnsns.2021.105944
https://doi.org/10.1007/978-3-642-11443-4_2
https://doi.org/10.1111/j.1365-2184.1987.tb01316.x
https://doi.org/10.1016/j.camwa.2015.04.022
https://doi.org/10.1002/zamm.19950750904
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1016/j.jtbi.2013.01.014
https://doi.org/10.1016/j.enganabound.2014.11.005
https://doi.org/10.1016/j.enganabound.2020.11.002
https://doi.org/10.1007/s10867-020-09541-w
https://doi.org/10.1002/1096-9098(199601)61:1%3c68::AID-JSO2930610102%3e3.0.CO;2-E
https://doi.org/10.1002/1096-9098(199601)61:1%3c68::AID-JSO2930610102%3e3.0.CO;2-E


 Pettres et al. / Journal of Biotechnology and Biodiversity / v.10 n.2 (2022) 111-136 

 

© 2022 Journal of Biotechnology and Biodiversity 
ISSN: 2179-4804 

DOI: https://doi.org/10.20873/jbb.uft.cemaf.v10n2.pettres 

136 

Sutherland RM, Durand RE. Hypoxic cells in an in vitro 

turnout model. International Journal of Radiation Biology 

and Related Studies in Physics, Chemistry and Medicine, 

v.23, n.3, p.235-246, 1973. 

https://doi.org/10.1080/09553007314550261 

Swanson KR, Alvord Jr EC, Murray JD. A quantitative 

model for differential motility of gliomas in grey and white 

matter. Cell Proliferation, v.33, p.317-329, 2000. 

https://doi.org/10.1046/j.1365-2184.2000.00177.x 

Swanson KR, Bridge C, Murray JD, JR Alvord EC. Virtual 

and real brain tumours: using mathematical modeling to 

quantify glioma growth and invasion. Journal of the Neu-

rological Sciences, v.216, n.1, p.1-10, 2003. 

https://doi.org/10.1016/j.jns.2003.06.001 

Swanson KR. Mathematical modeling of the growth and con-

trol of tumors. 1999. Ph.D thesis, University of Washing-

ton.  

Tao Y, Guo Q. Simulation of a model of tumors with virus-

therapy. International Series of Numerical Mathematics, 

v.154, p.435-444, 2006. 

Tilles PFC, Petrovskii SV. On the Consistency of the Reac-

tion-Telegraph Process Within Finite Domains. Journal of 

Statistical Physics, v.177, p.569–587, 2019. 

https://doi.org/10.1007/s10955-019-02379-0 

Vaghi C, Rodallec A, Fanciullino R, Ciccolini J, Mochel 

JPM, Mastri M, Poignard C, Ebos J, Benzekry S. A re-

duced Gompertz model for predicting tumor age using a 

population approach. BioRxiv, p.670869, 2019. 

https://doi.org/10.1101/670869 

Varalta N, Gomes AV, Camargo RF. A prelude to the frac-

tional calculus applied to tumour dynamic. Tema, v.15, 

n.2, p.211-221, 2014. 

https://doi.org/10.5540/tema.2014.015.02.0211 

Vernotte P. Les paradoxes de lathéorie continue de l'équation 

de lachaleur. Comptes Rendus de l'Académiedes Sciences, 

v.246, n.22, p.3154-3155, 1958. 

Ward JP, King JR. Mathematical modelling of avascular-tu-

mour growth. IMA Journal of Mathematics Applied in 

Medicine and Biology, v.14, n.1, p.39-69, 1997. 

https://doi.org/10.1093/imammb/14.1.39 

Wrobel LC. Potential and Viscous Flow Problems Using the 

Boundary Element Method. 1981. U.K. Ph.D. Thesis, Uni-

versity of Southampton. 

Yorke ED, Fuks Z, Norton L, Whitmore W, Ling CC. Model-

ing the Development of Metastases from Primary and Lo-

cally Recurrent Tumours: Comparison with a Clinical Data 

Base for Prostatic Cancer. Cancer Research, v.53, n.13, 

p.2987-2993, 1993. 

Zhukovsky KV. Exact solution of Guyer–Krumhansl type 

heat equation by operational method. International Journal 

of Heat and Mass Transfer, v.96, p.132-144, 2016. 

https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.005 

https://doi.org/10.20873/jbb.uft.cemaf.v10n2.pettres
https://doi.org/10.1080/09553007314550261
https://doi.org/10.1046/j.1365-2184.2000.00177.x
https://doi.org/10.1016/j.jns.2003.06.001
https://doi.org/10.1007/s10955-019-02379-0
https://doi.org/10.1101/670869
https://doi.org/10.5540/tema.2014.015.02.0211
https://doi.org/10.1093/imammb/14.1.39
https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.005

