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The association between the use of synthetic insecticides and the appearance of resistant insects, human 
poisoning and the environment contamination generated the need to develop new forms to pest control, 
and essential oils stand out as an alternative. However, due to their volatility and instability, their use in 
native form is unfeasible. It is possible to circumvent these problems by their encapsulation, and the use 
of polymeric nanoparticles for this purpose has many advantages, since these systems prevent the oil 
degradation, and control its release. The first in vivo trials of chitosan nanoparticles containing essential 
oils with insecticidal activity were published in the late 2010s. Considering the growing interest in this 
subject, as can be seen from the increase in the number of publications, this review aimed to gather all the 
papers that presented biological assays using essential oils encapsulated in chitosan nanoparticles against 
insects. Further, the techniques used to prepare these nanoparticles are also discussed. It was possible to 
note that the technique called complex coacervation led to smaller particles and most articles describing 
in vivo tests of chitosan nanoparticles containing essential oils assess their larvicidal activity. Among the 
tested nanoparticles, the one that had the best larvicidal activity in acute toxicity tests were those obtained 
by complexing of chitosan with cashew gum and those with the best residual activity were the cross-
linked with glutaraldehyde. Chitosan nanoparticles containing essential oils also increased their 
insecticidal activity in toxicity tests against adult beetles. 
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Potencial aplicação de nanopartículas a base de quitosana contendo óleos essenciais contra mosquitos, 
mariposas e besouros 
A associação entre o uso de inseticidas sintéticos e o surgimento de insetos resistentes, intoxicações hu-
manas e contaminação do meio ambiente gerou a necessidade do desenvolvimento de novas formas de 
controle de pragas, e os óleos essenciais se destacam como alternativa. Porém, devido à sua volatilidade 
e instabilidade, seu uso na forma nativa é inviável. É possível contornar esses problemas por meio do seu 
encapsulamento, e o uso de nanopartículas poliméricas para esse fim apresenta vantagens, pois esses sis-
temas evitam a degradação do óleo e controlam sua liberação. Os primeiros ensaios in vivo de nanopartí-
culas de quitosana contendo óleos essenciais com atividade inseticida foram publicados no final da década 
de 2010. Considerando o interesse crescente neste assunto, como pode-se observar pelo aumento no nú-
mero de publicações, esta revisão teve como objetivo reunir todos os trabalhos que apresentaram ensaios 
biológicos utilizando óleos essenciais encapsulados em nanopartículas de quitosana contra insetos. Além 
disso, as técnicas usadas para preparar essas nanopartículas também são discutidas. Foi possível notar que 
a técnica denominada coacervação complexa gerou partículas menores e a maioria dos artigos que des-
creve testes in vivo de nanopartículas de quitosana contendo óleos essenciais avaliam sua atividade larvi-
cida. Dentre as nanopartículas testadas, as que apresentaram melhor atividade larvicida em testes de toxi-
cidade aguda foram as obtidas por complexação da quitosana com goma do cajueiro e as com melhor 
atividade residual foram as reticulados com glutaraldeído. Nanopartículas de quitosana contendo óleos 
essenciais também aumentaram a atividade inseticida destes em testes de toxicidade contra besouros adul-
tos.  
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INTRODUCTION 
Insects are a class of highly specialized animals 

(Engel, 2015) and most of them are beneficial to 
mankind, whether by participating in pollination of 
plants, providing products of commercial interest, 
such as silk and honey or simply by their 
participation in the environmental balance (You et 
al., 2005; Rader et al., 2016). However, the 
alteration of their natural habitats and other human 
actions can lead to greater contact between them 
and humanity, which can result in damage to 
agriculture (Bradshaw et al., 2016); breeding 
animals, because insects can act as vectors of 
diseases and their feeding can cause animal 
annoyance and distress (Kamut e Jezierski, 2014; 
Bartlow et al., 2019; Barlaam et al., 2020); and 
ecosystems, for example, by the introduction of 
invasive insect species that damage forests or 
compete with wild insect species, contributing to 
the loss of biodiversity (Canelles et al., 2021; 
Evans, 2021; Russo et al., 2021) as well as being of 
great epidemiological importance, due to several 
insect-borne diseases, such as malaria, Chagas' 
disease, dengue, West Nile fever, chikungunya and 
zika (Bradshaw et al., 2016; WHO, 2020). 

The use of synthetic insecticides proved to be of 
great importance for the control of insect-borne 
diseases and agricultural pests, which allowed an 
increase in the quality and productivity of several 
crops and brought many benefits for mankind 
(Cooper e Dobson, 2007; Aktar et al., 2009; Assey, 
Mgohamwende, Malasi, 2021; Tudi et al., 2021). 
However, the use of these pesticides is also 
associated with several problems, including the 
selection of pesticide resistant insects (Sparks et al., 
2019), making it difficult to control vectors of 
pathogenic organisms and leading to the emergence 
or re-emergence of mosquito-borne diseases 
(Dahmana, Mediannikov, 2020); effects on non-
target species, negatively affecting parameters such 
as survival, reproduction and growth (Gustone et 
al., 2021); and cases of humans’ intoxication, for 
example, it is estimated that poisoning by 
organophosphate insecticides causes two million 
hospitalizations per year (Eddleston, 2020).  

These results indicate a great need for the 
development of new strategies to combat insects 
that act as pests, and several researches have been 
developed with the aim of finding substitutes for 
synthetic insecticides, such as the application of 
suppression and replacement of the insect 
population (Leftwich et al., 2016) or the use of 
biopesticides, e.g. products of microbiological 
origin and botanical insecticides (Glare et al., 2012; 
Miresmailli e Isman, 2014).  

Botanic insecticides are natural products derived 
from plants used for pest control (Isman et al., 

2011; FAO and WHO, 2017) and among the 
botanical insecticides most studied for the control 
of insect pests are the essential oils (Regnault-
Roger et al., 2012; Ootani et al., 2013; Miresmailli 
e Isman, 2014). Brazil, thanks to its diverse flora, 
has a vast field for its exploration, being one of the 
countries that lead research in this area (Miresmailli 
e Isman, 2014; Isman, 2015). 

In recent years, several publications have 
described nanometric systems based on chitosan 
and essential oils with insecticidal activity. 
However, although the number of articles 
describing the preparation and characterization of 
these nanoparticles is significant, it was observed 
that the number of publications reporting in vivo 
insecticidal tests with essential oils loaded chitosan 
nanoparticles is small, being focused on the control 
of mosquito larvae (Paula et al., 2010; Abreu et al., 
2012; González et al., 2017; Ferreira et al., 2019; 
Wong et al., 2020), adult beetles (Ziaee et al. 
2014a; Ziaee et al. 2014b; Upadhyay et al., 2019; 
Rajkumar, et al. 2020a; Rajkumar, et al. 2020b) and 
moth larvae (Campos et al., 2018). 

The aim of this review was to present all in vivo 
tests carried out to evaluate the insecticidal activity 
of chitosan-based nanoparticles and essential oils, 
published in scientific articles. The search was 
carried out in the Scopus database combining the 
terms “chitosan”, “nanoparticle”, “essential oil”, 
“insect*”, “larv*” and “pest*”, and only articles 
describing in vivo toxicity test against insects, using 
chitosan-based nanoparticles with essential oils or 
their isolated components, were selected. For a 
better understanding, the discussion of the results 
extracted from the selected articles was preceded 
by a brief comment on essential oils and chitosan. 

 
ESSENTIAL OILS 

Essential oils are volatile oils of complex 
composition obtained from plant by 
hydrodistillation, steam distillation, dry distillation 
or cold pressing (Regnault-Roger et al., 2012; 
Asbahani et al., 2015; Pavela, 2015) and find 
applications in various industrial sectors, such as 
food industries (Calo et al., 2015), medicines (Raut 
e Karuppayil, 2014) and cosmetics (Abelan et al., 
2021; Sharmeen et al., 2021). They have many 
characteristics which give them great potential for 
use as insecticides, since, with rare exceptions, 
essential oils and their main constituents are 
relatively non-toxic to mammals, with acute oral 
LD50 values in rodents higher than 2,000 mg kg-1 
for the pure compounds and 5,000 mg kg-1 for 
formulated products (Isman et al., 2011; Regnault-
Roger et al., 2012; Upadhyay et al., 2019). 

Their composition consists of a mixture of 
secondary metabolites that have several 
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mechanisms of action and act in a synergistic way, 
making difficult the appearance of resistant insects 
(Rattan, 2010; Regnault-Roger et al., 2012). And 
their half-lives in the environment are shorter than 
24 h (Isman et al., 2011; Regnault-Roger et al., 
2012). This high volatility is due to its chemical 
composition, formed mostly by terpenes and 
terpenoids (Lammari et al., 2021; Sharmeen et al., 
2021; Sharma et al., 2021). 

Essential oils can also be used for pest control in 
stored products (Yang et al., 2009; Melo et al., 
2011; González et al., 2014) and insects responsible 
for the transmission of various diseases, including 
Aedes aegypti, responsible for the transmission of 
dengue, zika and chicungunha, Culex 
quinquefasciatus, responsible for the transmission 
of West Nile fever and filariasis, and Anopheles 
gambiae, responsible for the transmission of 
malaria (Tchoumbougnang et al., 2009; Aguiar et 
al., 2015; Pavela, 2015; Govindarajan e Benelli, 
2016; Mendes et al. 2017). Here it is worth noting 
that a survey carried out in 2016 estimated that 99% 
of the costs of health problems caused by insects 
are related to dengue and Nile fever (Bradshaw et 
al., 2016). 

Although the essential oils have several 
promising characteristics, their volatility, easy 
oxidation and low thermal stability (Turek e 
Stintzing, 2013) require a high number of 
applications for pest control to occur satisfactorily. 
In addition, they can be phytotoxic if used 
improperly (Amri et al., 2013; Sarmento-Brum et 
al. 2014). However, such disadvantages can be 
solved by encapsulating the essential oils (Majeed 
et al., 2015; Pavela, 2016). 

The use of nanometric systems to encapsulate 
synthetic pesticides has already been studied and 
the benefits obtained include the increase in 
efficacy due to the higher surface area of the release 
system and better systemic activity on the target 
pest provided by the reduced particle size, besides 
the decrease toxicity due to the elimination of 
organic solvents from conventional formulations of 
pesticides (Ghormade et al., 2011; Rodrigues et al., 
2016). 

In the case of essential oils, the encapsulation in 
nanometric systems, such as lipid and polymer-
based nanocarriers (Lammari et al., 2021) avoids 
their evaporation and rapid degradation, improving 
the stability of the oils, which allows the use of a 
minimum concentration during the application. 
And the polymers are among the materials most 
described in the literature for the encapsulation of 
essential oils aiming their application as 
insecticides (Ghormade et al, 2011; Asbahani et al., 
2015; Campos et al., 2015; González et al., 2015; 
González et al., 2016). 

CHITOSAN 
The choice of material that will be used for the 

preparation of the essential oil carriers must take 
into account some information, such as the 
environment where the formulation will be applied 
and how long it must remain active. For example, 
when developing a formulation aiming at an 
insecticidal activity in an aqueous medium, it 
should improve the apparent solubility/miscibility 
of the essential oil in water. In this case, solid lipid 
nanoparticles and nanostructured lipid carriers are 
not suitable due to their intrinsically hydrophobic 
nature. 

Liposomes and nanoemulsions are suitable for 
making hydrophobic active ingredients compatible 
with an aqueous medium. However, the first ones 
have a lower load capacity for hydrophobic active 
ingredients, due to their hydrophilic core. 
Regarding nanoemulsions, the changes that occur 
in the volume and composition of their continuous 
phase, if they are used in field applications, can lead 
to changes in the interactions between the 
nanoemulsion components, destabilizing them and 
causing coalescence and Ostwald ripening 
(Nazarzadeh et al., 2013).  

For the preparation of polymeric nanoparticles, 
the techniques and materials used can be chosen to 
have a high loading capacity while maintaining 
good compatibility with the aqueous medium. 
Furthermore, the use of preparation techniques that 
explore the formation of cross-links between 
polymer chains allow to obtain systems that present 
greater stability against environmental variations. 

Among the polymers chitosan is considered a 
promising carrier due to be a natural polymer, 
biodegradable and with low cost (Campos et al., 
2015). Chitosan is a water insoluble 
polysaccharide, produced naturally by some fungi 
and obtained on large scale from chitin, the main 
component of the exoskeleton of crustaceans, being 
classified as a polycation, acquiring positive 
charges and solubilizing when in aqueous acid 
medium (Bellich, D’Agostino, Semeraro e Gamini, 
2016; Elsoud e Kady, 2019; Marques et al., 2020). 
In addition to being a biodegradable polymer, 
chitosan is biocompatible and the products 
resulting from its degradation are non-toxic, non-
immunogenic and non-carcinogenic (Canella e 
Garcia, 2001; Hamed, Ozogul e Regenstein, 2016). 

It is a copolymer formed by mers of N-acetyl-
glucosamine and glucosamine distributed 
randomly along its chains. Its segments containing 
acetylated mers can interact in a non-covalent way 
with hydrophobic molecules, which facilitates the 
incorporation of these molecules into chitosan-
based nanoparticles and gives these nanoparticles a 
high load capacity. This interaction with 
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hydrophobic molecules can be enhanced by 
modifying their amino groups, as shown in the next 
section. 

Moreover, the presence of amino groups gives 
chitosan interesting characteristics. They can be 
used to prepare crosslinked nanoparticles, which 
will also be described in the next section, thus 
obtaining more stable nanoparticles with a high 
capacity to prolong the insecticidal activity of 
essential oils, as will be shown in the discussion of 
bioassays. And these amino groups can be used to 
maintain the stability of chitosan-based 
nanoparticle colloidal suspensions during storage. 

Chitosan is also widely used together with 
polyanions to improve their properties, as chitosan-
based nanoparticles, in addition to the advantages 
of increased surface area and ease of absorption that 
occur due to the nanometric dimensions, are 
mucoadhesive (Hejjaji et al., 2018) and have the 
property of opening tight junctions, increasing 
absorption (Vllasaliu et al., 2010). 

 
CHITOSAN NANOPARTICLES 
PREPARATION 

It is possible to find in the literature articles 
describing the in vivo insecticidal activity of 
essential oils encapsulated in nanoparticles made of 
chitosan (González et al., 2017; Ferreira et al., 
2019; Upadhyay et al., 2019; Rajkumar, et al. 
2020a; Rajkumar, et al. 2020b), chitosan 
derivatives (Ziaee et al. 2014a; Ziaee et al. 2014b), 
and by combining chitosan with other 
polysaccharides (Paula et al., 2010; Abreu et al., 
2012; Campos et al., 2018; Wong et al., 2020). 

As chitosan is only soluble in an aqueous acidic 
medium, in the vast majority of cases a diluted 
solution of acetic acid is used to dissolve it. 
Usually, the essential oil is incorporated during the 
preparation of chitosan nanoparticles. For this, the 
oil is emulsified into the chitosan solution with aid 
of a surfactant, like polysorbate 80 (Paula et al., 
2010; Abreu et al., 2012; González et al., 2017; 
Campos et al., 2018; Ferreira et al., 2019; 
Upadhyay et al., 2019; Rajkumar, et al. 2020a; 
Rajkumar, et al. 2020b) or polysorbate 20 (Wong et 
al. 2020). On the other hand, there are works that 
make the incorporation of the essential oil into 
previously prepared and isolated nanoparticles 
(Ziaee et al. 2014a; Ziaee et al. 2014b). 

After formation of the nanoparticles, the 
obtained suspension can be directly used (Campos 
et al., 2018) or they can be separated from the 
medium by techniques such as centrifugation 
(Ziaee et al. 2014b; González et al., 2017; 
Upadhyay et al., 2019; Rajkumar et al. 2020a; 
Rajkumar et al. 2020b; Wong et al., 2020) or spray 
drying (Paula et al., 2010; Abreu et al., 2012; 

Ferreira et al., 2019). 
 

Complex coacervation 
In this technique, a solution of chitosan or 

chitosan derivative that maintains the characteristic 
of polycation, is mixed with a solution of an anionic 
polysaccharide, like angico gum (Paula et al., 
2010), cashew gum (Abreu et al., 2012) or arabic 
gum (Campos et al., 2018), forming complexes due 
to the interaction between opposing charges. The 
addition of the essential oil can occur before 
(Campos et al., 2018) or after (Paula et al., 2010; 
Abreu et al., 2012) the polyelectrolyte complex 
formation.  

Coacervates obtained by this technique and dried 
by spray drying provided nanoparticles with 
diameter less than 100 nm and unimodal 
distribution (Table 1). It was also observed that the 
amount of encapsulated oil can affect the size of the 
nanoparticles, the increase in the amount of 
essential oil added during preparation increases the 
size of the nanoparticles (Paula et al., 2010). 

 
Self-assembly using amphiphilic chitosan 

Nanogels were obtained by the technique of self-
assembly using chitosan modified with myristic 
acid, a saturated 14-carbon fatty acid, to obtain an 
amphiphilic chitosan that can self-associate, form-
ing micelle-like nanogels with hydrophobic core 
and hydrophilic shell (Ziaee et al., 2014a; Ziaee et 
al., 2014b). 

They were prepared by precipitation after the re-
action between chitosan and myristic acid. The es-
sential oils were added to suspensions of this nano-
gel in an aqueous acidic solution and sonicated for 
30 minutes, being incorporated into their hydropho-
bic cores. These nanogels have irregular form and 
diameter between 20 and 250 nm, depending on the 
type and concentration of encapsulated oils (Ziaee 
et al. 2014a; Ziaee et al. 2014b) (Table 1). 

 
Crosslinked chitosan 

To obtain nanoparticles using a crosslinking 
agent, a solution of chitosan is mixed with a solu-
tion of the crosslinking agent, for example, sodium 
tripolyphosphate (TPP) (González et al., 2017; 
Upadhyay et al., 2019; Rajkumar, et al. 2020a; Raj-
kumar, et al. 2020b) or glutaraldehyde (Ferreira et 
al., 2019). The essential oil is emulsified in the pol-
ymeric solution before mixing with the crosslink-
ing agent. 

Crosslinking with TPP is called ionic gelation, 
because crosslinking occurs due to interactions of 
the positively charged chitosan amino groups with 
the negatively charged phosphate groups. The pH 
of the medium affects the density of the crosslink, 
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increasing the pH decreases this density by decreas-
ing the number of protonated amino groups availa-
ble for the crosslinking (Bhumkar, Pokharkar, 
2006). 

In the case of glutaraldehyde, it reacts by form-
ing a covalent bond with the amino groups of chi-
tosan, and it is important to control the pH of the 
reaction medium between 4 and 5 in order to shift 
the balance towards the formation of the imine 
group. In both cases the crosslinking agent acts by 

making crosslinks between different parts of the 
same polymeric chain or between different chains 
(Islam, Dmour e Taha, 2019). However, Dmour 
and Taha (2017) observed that ionically cross-
linked nanoparticles were less stable at pH varia-
tions than those covalently crosslinked. This also 
was observed by Paulraj et al. (2017) when encap-
sulating PONNEM, a botanical insecticide based in 
neem and karanj oils, into chitosan nanoparticles. 

 
Table 1 - Effect of preparation conditions on the physical properties of chitosan nanoparticles loaded with 
essential oils. 

Preparation tech-
nique 

Chitosan: 
polyanion  

ratio 
(m : m) 

Polymer: essential oil ra-
tio used during prepara-

tion 
(m : m) 

Average di-
ameter (nm) PDI Zeta poten-

tial (mV) Reference 

Complex coacer- 
vation       

Chitosan / angico 
gum / spray drier 1 : 10 2.2 : 1 – 22 : 1 (Lippia si-

doides) 12 – 37 (DLS) 0.330 – 
1.000 -14 – -21 Paula et al., 

2010 
Chitosan / cashew 
gum / spray drier 1 : 10 1 : 5 (L. sidoides) 551 (DLS) 0.554 +4 Abreu et al., 

2012 
Self-assembly of 

chitosan derivatives       

Chitosan-myristic 
acid - 4.2 : 1 (Carum copticum) 133 (DLS) 

150 (SEM) 
Not deter-

mined 
Not deter-

mined 
Ziaee et al. 

2014b 
Covalent crosslink-

ing       

Chitosan / glutaral-
dehyde - 1 : 2 (Siparuna guianensis) 82 (SEM) Not deter-

mined 
Not deter-

mined 
Ferreira et 
al., 2019 

Ionic gelation       

Chitosan / TPP - 1 : 2 (Geranium macula-
tum) 439 (DLS) 0.358 Not deter-

mined 
González et 

al., 2017 

Chitosan / TPP - 1 : 2 (Citrus bergamia) 535 (DLS) 0.379 Not deter-
mined 

González et 
al., 2017 

Chitosan / TPP - 1 : 2 (Piper nigrum) 527 (DLS)  -5 Rajkumar, et 
al. 2020a 

Chitosan / TPP - 1 : 2 (Mentha X piperita) 564 (DLS)  -12 Rajkumar et 
al., 2020b 

Alginate / Ca2+ 
(core) 

Chitosan (shell) 
 50 : 1 – 150 : 1 (cinnamal-

dehyde) 
55 – 103 
(TEM)  Not deter-

mined 
Wong et al., 

2020 

PDI: Polydispersion index; DLS: Dynamic light scattering; SEM: Scanning electron microscopy; TPP: Tripolyphosphate. 
 
 
Other techniques 

Alginate nanoparticles coated with chitosan 
were prepared by emulsifying the essential oil in an 
alginate solution, followed by crosslinking the algi-
nate with Ca2+ ion and coating the nanoparticles 
formed with chitosan. The crosslinking of the algi-
nate occurs by the interaction between the negative 
charges of COO- along the alginate chains and the 
positive charges of Ca2+. Chitosan can interact with 
the negative residual charges on the surface of these 
nanoparticles, forming a coating on them (Wong et 
al., 2020). 

From the average diameter values for nanoparti-
cles obtained by various techniques and different 

proportions of essential oil in relation to the amount 
of polymer used in the preparation, it is observed 
that there is a tendency to increase the size of the 
nanoparticles when increasing the proportion of es-
sential oil during the nanoparticle preparation and 
that the technique of preparation by polyelectrolyte 
complexes is the one that produces nanoparticles 
with smaller size. This preparation technique also 
stands out for producing nanoparticles with uni-
modal size distribution (Table 1). This decrease in 
size corresponds to an increase in the total surface 
area, which increases the contact of nanoparticles 
with surfaces and facilitates their cellular uptake. 
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INSECTICIDAL ACTIVITY BIOASSAYS 
It was found that the toxicity tests described in 

the publications selected for this review evaluated 
the insecticidal activity of chitosan-based 
nanoparticles containing essential oils against 
mosquito larvae, caterpillars and adult beetles. 

 
Tests against mosquito larvae  

Bioassays against mosquito larvae, in general, 
were done by placing the larvae in containers with 
water and nanoparticles. The larvae used were from 
the third or four instars and the number of larvae 
tested varied from 5 to 25 (Table 2) (Paula et al., 
2010; Abreu et al., 2012; González et al., 2017; 
Ferreira et al., 2019; Wong et al., 2020).  

A Brazilian research group was one of the 
pioneers in the in vivo evaluation of the insecticidal 
activity of essential oils encapsulated in chitosan 
nanoparticles. They evaluated nanoparticles 
obtained by the formation of polyelectrolyte 
complexes between chitosan and polysaccharides 
with anionic charges against mosquito larvae 
(Paula et al., 2010; Abreu et al., 2012).  

Paula et al. (2010) encapsulated Lippia sidoides 
essential oil into nanoparticles of chitosan com-
plexed with angico gum (a polysaccharide with 
negative charges) and performed bioassays against 
Ae. aegypti for 3 days. They observed that, in the 
time interval analyzed, the L. sidoides essential oil 
encapsulated inside the nanoparticles maintains the 

larvicide effect and reaches mortality rates from 
52% to 92% and comments that this result is com-
patible with that obtained with pure oil, although 
the authors do not show any result with the oil 
alone, so that one can’t verify which increase in the 
half-life of the oil in solution is obtained with the 
nanoparticles.  

At first these results are disheartening. This lack 
of details and the superficial discussion found in 
this first article can be attributed to the incipience 
of researchers in the field of chemistry and materi-
als engineering when taking the first steps towards 
a biological assay. And the results of this session 
were placed in chronological order so that it is pos-
sible to observe the advances regarding the struc-
turing of research and discussion of the results as 
new research were developed at the interface be-
tween the material and biological areas. 

The same work group (Abreu et al., 2012) done 
biological assays using L. sidoides essential oil 
loaded in nanoparticles from chitosan-cashew gum 
(negatively charged polysaccharide) polyelectro-
lyte complexes against third instar Ae. aegypti lar-
vae. As expected, an increase in the proportion of 
encapsulated essential oil increased larval mortal-
ity. They obtained 100% mortality using 0.48 mg 
mL-1 of nanoparticles made with the ratio of chi-
tosan / cashew gum of 1:10, in an interval of 24 h. 
Considering the loading of this nanoparticle, this 
concentration is equivalent to an essential oil con-
centration in the medium of 39 ppm (Table 2). 

 
Table 2 - Comparison between the physicochemical properties and the larvicidal activity of chitosan nanopar-
ticles loaded with essential oils. 

Anionic polysac-
charide or cross-

linking agent / Es-
sential oil 

Insect 
Nanoparticle 
concentration 

(mg mL-1) 

Oil concen-
tration (ppm) 

Acute* test 
mortality 

(%) 

Residual** 
toxicity dura-

tion above 
80% (days) 

Reference 

Angico gum / Lippia 
sidoides 

3º instar Aedes ae-
gypti 1.00 34 – 63 85 Not determined Paula et al., 

2010 
Cashew gum / L. si-

doides 
3º instar Ae. ae-

gypti 0.48 39 100 Not determined Abreu et al., 
2012 

TPP / Geranium ma-
culatum 

4º instar Culex pi-
piens 0.19 82 100 4 González et 

al., (2017) 
TPP / Citrus berga-

mia 
4º instar Cx. pipi-

ens 0.28 87 100 4 González et 
al., (2017) 

Glutaraldehide / Si-
paruna guianensis 

3º instar Ae. ae-
gypti 0.83 – 6.67 500 – 4000 100 14 Ferreira et 

al., (2019) 
***Ca2+ / cinnamal-

dehyde 
3º instar Ae. ae-

gypti 14.28 11626 20 Not determined Wong et al., 
(2020) 

TPP: Tripolyphosphate. *Tests in which the mortality was assessed within 24 hours. **Testes in which the larvae were replaced daily and, 
at each replacement the mortality was measured. ***Alginate core revested with chitosan. 

 
It is important to note that not only the concen-

tration of materials, but also the preparation meth-
odology made difference in larval mortality. The 
sample with the greatest encapsulation efficiency 
and, consequently, the highest oil concentration in 

the medium (53 ppm) reached a mortality rate of 
only 60% in 24 h. To prepare this sample, a cashew 
gum solution with a concentration of 5% was used. 
For the sample that obtained 100% mortality in 24 
h, the same proportion between the mass of 
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chitosan and the mass of the cashew gum was main-
tained, but a 10% cashew gum solution was used 
(Abreu et al., 2012). 

One hypothesis to explain these results is that the 
viscosity of the polyanion solution positively influ-
enced the final properties of these nanoparticles, in 
order to obtain the best toxic result within 24 h. The 
article describes that their sizes were 405 ±52 nm 
(sample prepared with 5%) and 551 ±106 nm (sam-
ple prepared with 10%), but the authors did not de-
termine the morphology or zeta potential of the par-
ticles, hindering a further exploration of the rela-
tionship between mortality and physical and physi-
cal-chemical properties of nanoparticles (Abreu et 
al., 2012). 

González and co-works (2017) used four instar 
larvae of Culex pipiens in bioassays performed with 
chitosan nanoparticles crosslinked with TPP and 
loaded with Geranium maculatum or Citrus ber-
gamia essential oils. They done acute and residual 
tests and used two controls in these tests, only water 
and water plus chitosan nanoparticles without es-
sential oil. The temperature and relative humidity 
were controlled in all experiments. 

From results they calculated the LC50 and LC99, 
that were respectively 22 and 81 ppm to G. macu-
latum and 38 and 87 ppm to C. bergamia, when 
these essential oils are encapsulated in chitosan na-
noparticles, verifying that the mortality obtained in 
the first 24 h for nanoparticles was higher than the 
one observed to the pure oils. However, the nano-
particles produced in this work were only able to 
maintain the residual activity of essential oils in the 
first days (Table 2). The larvicidal activity of the 
nanoparticles declined rapidly, decreasing to less 
than 50% in one week (González et al., 2017). 

Another bioassay against third instar Ae. aegypti 
larvae was made by Ferreira et al. (2019). Using 
only Siparuna guianensis essential oil or chitosan 
nanoparticle crosslinked with glutaraldehyde added 
to the water, no death of the exposed larvae was ob-
served, while using the essential oil encapsulated 
into these nanoparticles, at the same concentration, 
100% mortality was obtained. 

When comparing mortality in an interval of 24 
h, for the same concentration of essential oil in the 
medium, but using nanoparticles prepared with 
three proportions between chitosan and essential 
oil, 2:1, 1:1 and 1:2, they observed that the increase 
in the proportion of essential oil leads to an increase 
in mortality, reaching 100% in the greatest propor-
tion (Ferreira et al., 2019). These results are in line 
with the results described earlier (Abreu et al., 
2012).  

They also evaluated the maintenance of this 
toxic effect for a period of 19 days. In this trial, 
dead larvae were counted daily and then all larvae 

(live or dead) have been replaced by new larvae, to 
check whether the residual toxicity of the nanopar-
ticles in the medium remained constant. It was pos-
sible to find that mortality remained at 100% for 
one week and declined, reaching 80% in two weeks 
(Table 2) (Ferreira et al., 2019). 

Toxicity tests of cinnamaldehyde, one of the 
components of essential cinnamon oil, encapsu-
lated in alginate nanoparticles coated with chitosan, 
were performed against Ae. aegypti larvae. In these 
tests, water and temephos were used as negative 
and positive controls, respectively. The acute tox-
icity of these nanoparticles was low (Table 2). In 
subacute toxicity tests, 100% mortality was 
achieved with a concentration of nanoparticles 
equivalent to 3,279 ppm cinnamaldehyde and 96 
hours of exposure, while this mortality rate was 
reached within 72 hours when using temephos 
(Wong et al., 2020). 

Table 2 summarizes the main results obtained for 
tests carried out with mosquito larvae. The best re-
sults in acute toxicity tests were observed for the oil 
of L. sidoides encapsulated in nanoparticles of chi-
tosan complexed with cashew gum. These particles 
had a diameter of approximately 500 nm and a zeta 
potential of +4. However, its efficiency in main-
taining the residual toxicity of essential oil for an 
extended period of time has not been evaluated. 
Among the nanoparticles that had their ability to 
maintain the residual toxicity of essential oils eval-
uated, the ones that showed the best performance 
were the chitosan nanoparticles cross-linked with 
glutaraldehyde, containing S. guianensis essential 
oil. 

In addition to testing the larvicidal activity of na-
noparticles loaded with essential oils, it would be 
important to observe the toxicity on the develop-
ment and reproduction of mosquitoes. 

  
Tests against adult beetles 

Fumigant toxicity tests were performed using 20 
to 25 beetles 4-14 days old and of mixed sex, which 
were placed into vials with lids. The tests were done 
with replicates, and with control groups that were 
exposed only to unloaded nanoparticles or acetone 
(Ziaee et al., 2014a; Ziaee et al., 2014b; Upadhyay 
et al., 2019; Rajkumar, et al. 2020a; Rajkumar, et 
al. 2020b). 

Ziaee et al. (2014a and 2014b) described bioas-
says to determine the toxicity of Cuminum 
cyminum and Carum copticum essential oils-loaded 
chitosan nanogels against adults of Sitophilus 
granarius and Tribolium confusum, two pests that 
attack cereal grains and are common in temperate 
regions. The percentage of mortality obtained for 
the encapsulated oils was higher than that of pure 
oils for all the analyzed concentrations and no 
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mortality was observed in the control group, which 
indicates that only chitosan nanogel has no 
fumigant activity. 

They also compared the persistence of pure oil 
and encapsulated oil and observed that the oil-
loaded nanogels remained effective for up to 18 
days, while the essential oil lost its insecticidal 
potential in a short period of time (Ziaee et al. 
2014a; Ziaee et al. 2014b). These results can be 
explained by the affinity of the essential oil 
components, which are hydrophobic, for the 
myristic acid grafted along the chitosan chains. In 

this way, the essential oil is slowly released from 
the chitosan-based nanogels, while the components 
of the pure oil are quickly volatilized and degraded. 
Ziaee et al. (2014b) also determined the LC50 of the 
C. copticum essential oil and the loaded nanogel 
and observed that this last has a LC50 lower than 
that of the pure essential oil for both beetles (Table 
3). This effect may be related to the components of 
the oil that remained trapped in the nanoparticles, 
as an increase in the proportion of thymol was 
observed, in relation to the other components of the 
essential oil of C. copticum. 

 
Table 3 - Lethal concentrations of essential oils (EO) and essential oils loaded nanoparticles (EOLN) after 24 
h of exposure. 

Insect pest Sample LC50 (µL L-1) Reference 

Sitophilus granarius Carum copticum EO 14 

Ziaee et al., 2014b C. copticum EOLN 4.6 

Tribolium confusum C. copticum EO 47 
C. copticum EOLN 14 

Tribolium castaneum Melissa officinalis EO 71 Upadhyay et al., 2019 M. officinalis EOLN 48 

T. castaneum Piper nigrum EO 56 

Rajkumar et al., 2020a P. nigrum EOLN 29 

Sitophilus oryzae P. nigrum EO 49 
P. nigrum EOLN 25 

T. castaneum Mentha X piperita EO 63 

Rajkumar et al., 2020b M. piperita EOLN 35 

S. oryzae M. piperita EO 56 
M. piperita EOLN 29 

 
The characteristics of the nanoparticles and the 

mortalities obtained for each oil and each species 
tested are summarized in Table 4. From the data 
shown in Table 4, it is possible to observe that the 
maintenance of residual fuming toxicity above 80% 
is not the same for the two insect species. This can 
be attributed to the sensitivity of each of the insects 
tested to the components of the essential oils that 
remain in the nanoparticles longer. 

Probably the most volatile components of these 
oils are more toxic to S. granarius. Its faster release 
leads to greater acute toxicity for this species, 
however, with the reduction of its concentration, 
the residual toxicity lasts for a few days. The 
opposite is observed for T. confusum, which was 
less sensitive to the more volatile components of 
essential oil, with less mortality in the acute toxicity 
test, but being more sensitive to less volatile 
components, which become the predominant 
components throughout the residual toxicity test. 

The fumigant toxicity and antifeedant activity of 
the Melissa officinalis essential oil encapsulated in 
chitosan nanoparticles against adults of Tribolium 
castaneum were also evaluated. This insect is a pest 
related to the deterioration of wheat flour and 

Upadhyay et al. (2019) verified that the essential oil 
of M. officinalis had a toxic effect on it, causing ox-
idative stress due to the increase in reactive oxygen 
species (ROS).  In the literature it is possible to find 
articles reporting the occurrence of cell death by the 
formation of ROS induced by the essential oil and 
by the extract of M. officinales (Queiroz et al., 
2014; Weidner et al., 2015), as well as that its es-
sential oil may also have an antioxidant activity 
(Abdellatif et al., 2021; Radulescu et al, 2021). 
These conflicting results could be due to variation 
in the composition of essential oils used in these 
studies. 

It was observed that the encapsulation of the es-
sential oil of M. officinalis in the chitosan nanopar-
ticles decreased the LC50 value (Table 3) and no 
mortality was observed in the control groups with 
water or nanoparticles without essential oil 
(Upadhyay et al., 2019). This decrease in the LC50 
value in relation to non-encapsulated oil is in line 
with what was previously observed by Ziaee et al. 
(2014b). 

The antifeedant activity was done by the flour 
disk bioassay, using the sublethal concentrations 
LC20, LC30, LC40 and LC50 determined in the 
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fumigant bioassay. It was possible to achieve a feed 
deterrence of 8%, 25%, 70% and 80%, according to 

the tested sublethal concentration (Upadhyay et al., 
2019). 

 
Table 4 – Comparison between the fumigant toxicity of chitosan nanoparticles loaded with essential oils. 

Essential 
oil 

Averange di-
ameter (nm) Insect Oil concentra-

tion (µL L-1 air) 

Acute test* 
mortality 

(%) 

Residual toxicity** 
duration above 80% 

(days) 
Reference 

Cuminum 
cyminum 20 – 70 (DLS) 

7-14 days 
Sitophilus gran-

arius 
16 97 5 

Ziaee et al. 
2014a 7-14 days 

Tribolium con-
fusum 

20 61 15 

Carum 
copticum 

133 (DLS) 
150 (SEM) 

7-14 days S. gran-
arius 18 100 3 Ziaee et al. 

2014b 7-14 days T. con-
fusum 43 90 13 

Piper 
nigrum 527 (DLS) 

4-6 days Sitophilus 
oryzae 75 100 Not determined Rajkumar et 

al., 2020a 4-6 days Tribolium 
castaneum 75 100 Not determined 

Mentha X 
piperita 564 (DLS) 

4-6 days S. oryzae 75 100 Not determined Rajkumar et 
al., 2020b 4-6 days T. casta-

neum 75 100 Not determined 

*Tests in which the mortality was assessed within 24 hours; **Testes in which the adults were replaced evey two days and, at each 
replacement the mortality was measured. 
  

Another research group found that there is an in-
crease in the fumigant toxicity of Piper nigrum and 
Mentha X piperita essential oils encapsulated in 
chitosan nanoparticles against T. castaneum and S. 
oryzae, when compared with the pure oils, with a 
reduction in the LC50 values (Table 3). The authors 
also measured the inhibition of the acetylcholines-
terase enzyme caused by nanoparticles containing 
the essential oil of P. nigrum or M. piperita in the 
fumigant toxicity tests, verifying that this inhibition 
is dose-dependent and greater than that caused by 
the pure essential oils (Rajkumar, et al. 2020a; Raj-
kumar et al., 2020b).  

The evaluation of the antifeeding activity of chi-
tosan nanoparticles loaded with the essential oil of 
P. nigrum was carried out as follows: one hundred 
adult beetles were placed into vials containing 500 
g of wheat grain and essential oil loaded nanoparti-
cles using the sublethal concentrations LC20 and 
LC50. The weight loss of wheat grains was meas-
ured after 6 months of storage. The feeding deter-
rent index were 40% and 100% for S. oryzae and 
38% and 100% for T. castaneum (Rajkumar, et al. 
2020a). 

 
Tests against moth larvae 

Campos et al. (2018) analyzed the toxicity of the 
monoterpenes carvacrol and linalool encapsulated 
in chitosan nanoparticles against larvae of 
Helicoverpa armigera. This insect is an agricultural 
pest and some authors have evaluated its 

susceptibility to essential oils (Liao et al., 2017; 
Santos et al., 2017). These monoterpenes act by 
inhibiting acetylcholinesterase and are found in the 
essential oils of Thymus vulgaris and Ocimum 
basilicum, respectively (Campos et al. 2018). 

The nanoparticles were obtained by the 
functionalization of chitosan with β-cyclodextrin 
and subsequent complexation with arabic gum 
(anionic polyssacaride). The bioassays were done 
by incubating the caterpillars with feeding discs 
containing the nanoparticles. In the tests, 5 
caterpillars were used per disk and mortality was 
analyzed on the 7th day of incubation. In the control 
group, water was used instead of nanoparticles 
(Campos et al., 2018). 

The mortality obtained with the nanoparticles 
containing both compounds for the H. armigera 
caterpillar in the 2° instar was 86%, being 
statistically higher than that obtained with an 
emulsion of these monoterpenes and also of the 
control group.  Unfortunately, these authors do not 
give information about the concentration of 
polymeric solutions used in the preparation of 
nanoparticles, nor about the ratio between the 
polymers used (Campos et al., 2018).  

They also evaluated the effect of carvacrol and 
linalool loaded into nanoparticles on the pupae of 
the surviving larvae and observed that they showed 
a significant decrease in their weight in relation to 
the control and the group that came into contact 
with the emulsified oil, showing that these 
nanoparticles have a growth regulating effect 
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(Campos et al., 2018). Another observation that 
could have been made would be to verify if these 
nanoparticles have antifeedant activity, as 
described by Paulraj et al. (2017). 

They were able to observe that the residual effect 
obtained with nanoparticles containing only 
linalool was not statistically different from the 
control group (Campos et al., 2018), probably due 
to its higher vapor pressure, which had been 
observed previously for the components with 
higher vapor pressure in the oils from C. cyminum 
and C. copticum (Ziaee et al. 2014a; Ziaee et al. 
2014b). 

 
OTHER ASSAYS 

Considering the possible applications of the chi-
tosan-based nanoparticles containing essential oils, 
the toxicity tests on non-target species and cytotox-
icity described in the articles selected for this re-
view are summarized below.  

Ferreira et al. (2019) evaluated the acute and re-
sidual toxicities of S. guianensis loaded chitosan 
nanoparticles against embryos of Danio rerio and 
adults of Poecilia reticulata.  In first case, they used 
10 eggs per concentration. The tests were initiated 
immediately after fertilization and lasted 96 h, with 
daily observation of embryos and larvae. The em-
bryos were considered dead if was observed em-
bryo coagulation, lack of somite formation, non-de-
tachment of the tail or lack of heartbeat. 

No changes were observed at concentrations less 
than 0.1 mg mL-1. 30% of mortality was reached 
with the increase in concentration to 0.45 mg mL-1 
with no dead in the control at the same concentra-
tion. 100% of mortality was observed with 0.90 mg 
mL-1 (Ferreira et al., 2019). These results indicate 
that LC50 of chitosan nanoparticles containing the 
essential oil of S. guianensis is greater than 0.1 mg 
mL-1 and that they would not be classified as mate-
rial that presents acute toxicity to the aquatic envi-
ronment. However, to confirm this indication it is 
necessary to submit the results to a statistical anal-
ysis, in order to accurately determine the LC50 
value. 

In tests with fish embryos it is important to report 
the fertilization rate, saying if it was greater than 
70%, just as it is important to use a positive control, 
and to check the hatching percentage of the con-
trols, which must be greater than or equal to 80%. 
It is also important to measure the dissolved oxygen 
concentration at the end of the test, which must be 
greater than or equal to 80%. And inform what is 
the mortality in the concentration of 0.1 mg mL-1, 
to be able to tell if the substance falls in the acute 
category 3 or not classified as acute to the aquatic 
environment. 

Considering that D. rerio embryos do not have 

all metabolic enzymes, and that some substances 
become more toxic after undergoing biotransfor-
mation, the authors also evaluated the toxicity of 
nanoparticles in adults of P. reticulata. The test 
consisted of placing two adult fish in glass bows 
containing 0.83 mg mL-1 of nanoparticles. Assess-
ments were made every 24 hours, after which the 
fish were exchanged to check the residual toxicity 
of the nanoparticles. This procedure was repeated 
for 4 days. As control, a suspension of nanoparti-
cles without essential oil was used. Twenty repli-
cates were made for each treatment (Ferreira et al., 
2019).  

The acute mortality rate in the analyzed concen-
tration was 30%. This corroborates with the results 
obtained with fish embryos, that the chitosan nano-
particles containing S. guianensis essential oil do 
not present acute toxicity to the aquatic environ-
ment. No residual toxicity was observed after 72 
hours, which may be related to the release kinetics 
and the rapid degradation of essential oil in the en-
vironment (Ferreira et al., 2019). 

Regarding the application of encapsulated essen-
tial oils for the control of agricultural pests, it is im-
portant to assess whether these nanoparticles will 
be phytotoxic. Thus, Campos and collaborators 
(2018) tested the toxicity of chitosan nanoparticles 
containing linalool and carvacrol using pre- and 
post-emergence treatments of Zea mays seedlings. 
They evaluated the lengths of shoots and roots, and 
the concentration of chlorophylls A and B, and ca-
rotenoids. It was possible to verify that the treat-
ments with the nanoparticles obtained by the com-
plexation between chitosan and arabic gum, with 
and without essential oil, caused an increase in the 
concentration of chlorophylls A and B and carote-
noids. However, the authors do not discuss what 
could be the causes of this increase.  

The lengths of shoots evaluation showed that 
only the seedlings submitted to post-emergence 
treatments showed a statistical difference in rela-
tion to the control, with a longer shoot length. The 
length of the roots was affected in the opposite way 
when the treatment was pre- or post-emergence. In 
the first case, seeds treated with oil-free nanoparti-
cles had shorter roots than the control, whereas 
plants treated after emergence with nanoparticles 
with or without essential oil had longer roots than 
the control. The authors did not discuss whether the 
components of the nanoparticles or the products 
generated by their degradation could act as modu-
lators of plant growth (Campos et al., 2018). 

Campos et al. (2018) also evaluated the cytotox-
icity of nanoparticles to fibroblasts, noting that cell 
viability decreases with increasing concentration of 
chitosan nanoparticles obtained by complexing 
with arabic gum. All tested nanoparticles led to a 
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reduction in cell viability greater than 70%, regard-
less of the cell line tested, pulmonary fibroblast 
(V79) or mouse fibroblast (Balb C-3T3). The au-
thors do not discuss whether the observed cytotox-
icity would be attributed to chitosan itself, the ara-
bic gum used for complexation or the cyclodextrin 
grafted onto chitosan. 

CONCLUSIONS 
This review provides those interested in the 

application of essential oils a summary of chitosan 
nanoparticles production techniques and the 
performance of these oils transported by 
nanocarriers, allowing an easy comparison between 
the results available in the literature. In vivo toxicity 
tests using insects show that encapsulation of 
essential oils or their isolated components 
decreases the LD50, probably because it increases 
their contact and absorption by insects. As well as 
promoting greater stability and permanence of 
these essential oils in the medium, circumventing 
problems of hydrophobicity, volatility and 
instability of their components. However, it is seen 
that the number of publications regarding toxicity 
against non-target species are still few, 
demonstrating the need for more research in this 
regard. 
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