

2023 Volume 4 Issue 1

Academic Journal on Computing, Engineering and Applied Mathematics

ISSN: 2675-3588

Universidade Federal do Tocantins

Reitor Prof. Dr. Luís Eduardo Bovolato

Vice-Reitor Prof. Dr. Marcelo Leineker Costa

Pró-Reitoria de Graduação Prof. Dr. Eduardo José Cezari

Pró-Reitoria de Pesquisa e Pós-Graduação Prof. Dr. Raphael Sanzio Pimenta

Pró-Reitoria de Extensão e Cultura Profa. Dra. Maria Santana Ferreira dos Santos

Pró-Reitoria de Administração e Finanças Me. Carlos Alberto Moreira de Araújo Júnior

Pró-Reitoria de Assuntos Estudantis e Comunitários Prof. Dr. Kherlley Caxias Batista Barbosa

Pró-Reitoria de Avaliação e Planejamento Prof. Dr. Eduardo Andrea Lemus Erasmo

Pró-reitoria de Gestão e Desenvolvimento de Pessoas Profa. Dra. Vânia Maria de Araújo Passos

Pró-Reitoria de Tecnologia da Informação e Comunicação Prof. Dr. Ary Henrique Morais Oliveira

> **Direção do Campus de Palmas** Prof. Dr. Moisés de Souza Arantes Neto

Coordenação do Curso de Ciência da Computação Prof. Dr. Tanilson Dias dos Santos

Dados Internacionais de Catalogação na Publicação (CIP)

Academic Journal on Computing, Engineering and Applied Mathematics (AJCEAM) [recurso eletrônico] / Universidade Federal do Tocantins, Curso de Ciência da Computação. – vol. 04, n. 01 ([outubro/março], 2024) – Palmas - TO, UFT, 2024. ISSN nº 2675-3588.

Quadrimestral no primeiro ano de publicação 2020 Semestral. Disponível em: https://sistemas.uft.edu.br/periodicos/index.php/AJCEAM/index

1. Ciência da Computação - periódico. 2. Matemática Aplicada. 3. Computação Aplicada. 4. Engenharias. 5. Ciências Exatas. I. Universidade Federal do Tocantins.

CDD 22.ed. 004

Expediente

Editor-Chefe

Dr. Warley Gramacho da Silva (UFT), Brasil

Editores

Dr. Edeilson Milhomem Silva (UFT), Brasil Dr. Marcos Antônio Estremeto (ETEC-SP), Brasil Dr. Rafael Lima de Carvalho (UFT), Brasil Me. Tiago da Silva Almeida (UFT), Brasil Dr. Warley Gramacho da Silva (UFT), Brasil

Realização

Fundação Universidade Federal do Tocantins (UFT) Quadra 109 Norte, Avenida NS-15, ALCNO-14 | Bloco III | sala 214 |Plano Diretor Norte | 77001-090 | Palmas / TO | Brasil

Periodicidade

Este periódico possui periodicidade semestral e utiliza a Licença Creative Commons 4.0 - CC BY-NC 4.0. Contudo, a publicação dos artigos em modalidade avançada ou ahead of print, ou seja, tão logo os manuscritos aprovados sejam editados para publicação, é possível. O AJCEAM não possui taxas de publicação, tanto pouco de submissão de manuscritos, sendo totalmente gratuita para autores e leitores.

Indexadores

Google Acadêmico, desde 9 de maio de 2020 International Standard Serial Number – ISSN, desde 28 de maio de 2020 Crossref, desde 7 de junho de 2020 Revistas de Livre Acesso – LivRe, desde 24 de junho de 2020 Diretório das revistas científicas eletrônicas brasileiras – Miguilim, desde novembro de 2022

Sumário

1 Split B2-EPG Graphs

MARINHO, SILVA AND DOS SANTOS

v

Grafos B2-EPG Split

Split B2-EPG Graphs

Luis Fernando dos Santos Marinho¹, Kedson Alves Silva¹ e Tanilson Dias dos Santos¹

¹ Universidade Federal do Tocantins, Curso de Ciência da Computação, Palmas, Tocantins, Brasil

Data de recebimento do manuscrito: 05/11/2022 Data de aceitação do manuscrito: 09/12/2022 Data de publicação: 10/12/2022

Resumo— Nesta pesquisa estudamos os grafos EPG, em particular, estamos interessados em investigar a interseção entre a classe de grafos split com a classe de grafos B_2 -EPG. Não há mapeamento na literatura para a pesquisa de grafos B_2 -EPG Split. Neste trabalho manipulamos também grafos bipartidos e apresentamos uma representação para alguns grafos bipartidos em B_2 -EPG. Construímos um algoritmo que cria uma representação B_2 -EPG para qualquer grafo split cujo grau dos vértices do conjunto independente é menor ou igual a 2. Além disso, também propomos um algoritmo que constrói uma representação em uma grade $Q_{w\times(2y+1)}$ para qualquer grafo split. Resultados gerais sobre representações EPG também suplementam esta pesquisa.

Palavras-chave—B2-EPG, Teoria dos Grafos, Grafos de Interseção, Grafos Split, Representação EPG

Abstract— On this research we study EPG graphs, in particular, we are interested on investigate the intersection between split and B_2 -EPG graph classes. There is no mapping in the literature for research of Split B_2 -EPG graphs. In this work we also manipulate bipartite graphs and we present representation for some bipartite graphs in B_2 -EPG. We build an algorithm that create a Split B_2 -EPG representation for any split graph whose degree of vertices on independent set is less than or equal to 2. Furthermore, also we present an algorithm that builds a representation on a grid $Q_{w\times(2y+1)}$ for any split graph. General results on EPG representations also supplement this research.

Keywords—B2-EPG, Graphs Theory, Intersection Graphs, Split Graphs, EPG Representation

I. INTRODUÇÃO

A palavra EPG representa um acrônimo para Edgeintersection Graphs of Paths on a Grid, que em sua tradução literal significa grafos de aresta-interseção de caminhos sobre uma grade. A classe dos grafos EPG foi definida por [1], e consiste de grafos cujos vértices podem ser representados por caminhos sobre uma grade retangular, de modo que, dois vértices de um grafo são adjacentes se, e somente se, compartilham pelos menos uma aresta sobre a grade.

Além disso, [1] definiu uma hierarquia que classifica os grafos EPG de acordo com a quantidade máxima de dobras que cada caminho da representação possui. Um grafo G é dito ser B_k -EPG quando existe uma representação EPG para G em que cada caminho da representação possui no máximo k dobras, i.e. k mudanças de direção. O *bend number de um grafo G* é o menor número inteiro k para o qual G possui uma representação B_k -EPG. De forma análoga o *bend number de uma classe de grafos* é o menor número inteiro k para o qual os grafos desta classe possuem uma representação B_k -EPG.

Dados de contato: Luis Fernando dos Santos Marinho, fernando.marinho@uft.edu.br Uma motivação prática para o estudo de grafos EPG é o problema de otimização de *layout* de circuitos digitais [1], problema este trabalhado em outros tipos de grafos de interseção por [2], [3] e [4]. Um problema clássico relacionado ao desenho industrial de circuitos é o de minimização da área de impressão na placa de circuito impresso, o que afeta diretamente o custo de produção de um microchip, por exemplo. Outro problema que surge, naturalmente, neste contexto, é o de impor restrição ao número de dobras que cada caminho (trilhas) do circuito pode possuir.

Observe que, no problema de desenho de circuito industrial, em particular, reduzir a área do circuito é equivalente a reduzir a área da representação EPG associada, da mesma forma impor restrições à quantidade de vezes que uma trilha pode dobrar é equivalente a reconhecer se o grafo associado possui uma representação B_k -EPG. Dessa forma, é intuitivo perceber que há alguma relação entre o problema de *design* de circuitos digitais e o problema de modelagem de grafos EPG.

O campo de pesquisa relacionado a grafos EPG é bastante movimentado apesar de novo [1], [5], [6], [7], [8]. Um resultado já conhecido é que a classe de grafos B_0 -EPG é equivalente à classe de grafos de intervalo. Todavia, os principais trabalhos da área geralmente são relacionados aos grafos B_1 -EPG, [9], [10], [11], [12], [13]. Se por um lado é fácil encon-

Classe do grafo	b(G)	Referência
Grafos de Intervalo	0	[1]
Florestas e Ciclos	1	[15]
Outerplanar	2	[6]
Planar	∈ [3,4]	[6]
Bipartido Planar	2	[16]
Grafo de Linha	2	[16]
Degenerescência(G) $\leq k$	2k - 1	[6]
Treewidth(G) $\leq k$	2k-2	[6]
$Grau \leq \Delta$	$\in \left[\left\lceil \frac{\Delta}{2} \right\rceil, \Delta\right]$	[6]
Arco-circular	3	[17]
Arco-circular Normal	2	[17]
Grafos Halin	2	[18]
Grafos Split com $ K \ge 3$	1	[9]
Grafos Split com $ S \ge 3$	1	[9]
k-sun	2	[19]

TABELA 1: CLASSES DE GRAFOS E O SEU b	oend number
---------------------------------------	-------------

trar pesquisas sobre grafos B_1 -EPG, por outro lado a classe B_2 -EPG já não é tão explorada assim, tendo sido estudada em poucos trabalhos, [14], [8]. A título de exemplo a Tabela 1 ilustra o *bend number* de algumas classes de grafos conhecidas, denotado por b(G).

Os grafos EPG split são citados nos artigos de [9, 10, 11, 13], que estudam, em particular, a classe B_1 -EPG Split. Não foram encontrados na literatura resultados para grafos B2-EPG Split.

Neste artigo, estudamos os grafos B_2 -EPG Split e apresentamos alguns resultados para subclasses de B_2 -EPG Split e sobre a área de grade necessária para representar qualquer grafo split. Além disso também apresentamos resultados gerais para grafos B_2 -EPG e para grafos threshold.

A seção a seguir apresenta as definições básicas necessárias ao entendimento deste trabalho.

II. PRELIMINARES

Um grafo é definido como par ordenado G = (V, E), onde V(G) é um conjunto finito não-vazio de vértices e E(G) é um conjunto de pares não-ordenados (v_i, v_j) , chamados de *arestas*, sendo $v_i, v_j \in V(G)$.

Dizemos que dois vértices são *adjacentes* se existe uma aresta entre eles. De forma similar, uma aresta é *incidente* aos vértices $v_i e v_j$, se ela conecta os dois vértices. Podemos então definir o *grau de um vértice* v_i , denotado por $d(v_i)$, como o número de arestas incidentes em v_i . A *cardinalidade* de um conjunto de vértices e arestas é denotada por |V(G)| = n e |E(G)| = m. Definimos a *vizinhança* de um vértice $v_i \in V(G)$ como o conjunto de vértices adjacentes a v_i , que denotamos por $N(v_i) = \{u \in V(G) | (v_i, u) \in E(G)\}$

Chamamos de *grade* o espaço Euclidiano formado por coordenadas inteiras ortogonais, no qual cada par de coordenada de inteiros representa um ponto ou vértice da grade, e dois pontos da grade são adjacentes se estão à uma unidade de distância.

A sigla *EPG* denota a classe de grafos de aresta-interseção de caminhos sobre uma grade. Uma *representação* de um grafo EPG é um modelo de aresta-interseção de caminhos sobre uma grade. Denotaremos por \mathcal{P} a *coleção de caminhos* de uma representação EPG. Em uma representação EPG de um grafo *G* cada vértice $v_i \in V(G)$ corresponde a um caminho $P_{v_i} \in \mathscr{P}$ sobre a grade; e dois vértices v_i, v_j são adjacentes em *G* se e somente se os caminhos correspondentes P_{v_i} e P_{v_i} compartilham pelo menos uma aresta da representação.

O *caminho sobre a grade* ou ainda *caminho na representação*, de tamanho *m*, é definido como uma sequência finita de arestas (e não de vértices) consecutivas $e_1 = (v_1, v_2), e_2 =$ $(v_2, v_3), e_3 = (v_3, v_4), \dots, e_i = (v_i, v_{i+1}), \dots, e_m = (v_m, v_{m+1}),$ tal que, $e_i \neq e_j$ para todo $i \neq j$. Uma *dobra no caminho* é denotada como um par de arestas consecutivas, que possuem direções diferentes na grade. Se o caminho não possui dobras ele é chamado de *segmento*.

Dizemos que um grafo G possui uma representação B_k -EPG quando existe um modelo de aresta-interseção de caminhos que é equivalente ao grafo G, e cada caminho desse modelo possui no máximo k-dobras, i.e. k mudanças de direção. A Figura 1(a) ilustra o grafo G e na Figura 1(b) exibimos uma de suas representações B_0 -EPG, enquanto na Figura 1(c) exibimos uma de suas representações B_1 -EPG.

Figura 1: Grafos G e duas representações EPG

O parâmetro *bend number* ou *número de dobras* de um grafo *G*, denotado por b(G), corresponde ao menor inteiro *k* para o qual *G* possui uma representação B_k -EPG. Também faz sentido falar no *bend number* de uma classe de grafos *C*, b(C), que é o menor *k* para o qual todos os grafos da classe *C* possuam representação B_k -EPG.

III. METODOLOGIA E FERRAMENTAS

A pesquisa desenvolvida neste trabalho é do tipo investigativa e exploratória. Uma pesquisa investigativa tem como objetivo investigar ou conhecer algo.

No que diz respeito a uma pesquisa exploratória, tem-se como objetivo conhecer o tema a ser estudado, considerando que este ainda é pouco conhecido, pouco explorado. Diante disso, buscamos descobrir novos resultados sobre uma classe de grafos com potencial de resultados inéditos.

A classe dos EPG Split é ainda pouco estudada na literatura, possuindo resultados conhecidos somente para a classe B_1 -EPG, e.g [9], [10], [13]. Nesta pesquisa buscamos estudar a classe B_2 -EPG Split com o intuito de caracterizar grafos que pertencem a esta classe.

IV. RESULTADOS

A seguir apresentamos alguns resultados obtidos no estudo da classe EPG.

a. Grafos Bipartidos Completos

Define-se *conjunto independente* como um conjunto de vértices *S* para o qual cada par de vértices distintos deste conjunto não existe adjacência entre eles.

Dizemos que um grafo G = (V, E) é um grafo bipartido quando seu conjunto de vértices puder ser dividido em 2 conjuntos independentes distintos, i.e. $V(G) = S_1 + S_2$, onde cada aresta liga um vértice em S_1 a outro vértice em S_2 . Já o grafo bipartido completo é o grafo $G = (S_1 + S_2, E)$ no qual para cada $v_i \in S_1$ e $v_j \in S_2$ existe $(v_i, v_j) \in E(G)$, i.e. todo vértice de S_1 possui aresta para todo vértice em S_2 .

É resultado conhecido na literatura que o grafo $K_{3,3} \notin B_1$ -EPG, [1]. De posse desta informação, nos perguntamos: $K_{3,3} \in B_2$ -EPG? Conseguimos mostrar que os grafos $K_{3,i} \in B_2$ -EPG, para *i* inteiro, onde $3 \le i \le 10$, ao apresentar uma representação B_2 -EPG destes grafos. Já era resultado conhecido da literatura que $K_{3,i} \in B_2$ -EPG para $3 \le i \le 10$, e que estão em B_3 -EPG para $11 \le i \le 39$, e B_4 -EPG para $i \ge 61$, sendo desconhecido o intervalo $40 \le i \le 60$.

No entanto, [20] apresenta somente um resultado matemático provando que $K_{3,i} \in B_2$ -EPG, para *i* inteiro, onde $3 \le i \le 10$, o artigo de [20] não apresenta explicitamente representações B_2 -EPG para estes grafos, com exceção do $K_{3,10}$, o único para o qual é apresentado uma representação B_2 -EPG. Então este trabalho já apresenta alguma contribuição suplementar aos resultados obtidos por [20].

Lema 1. $K_{3,10} \in B_2$ -*EPG*.

Demonstração. Por apresentação da representação B_2 -EPG de $K_{3,10}$, conforme Figura 3.

Assim, reintroduzimos uma representação do $K_{3,10} \in B_2$ -EPG, e para os grafos restantes, $K_{3,i} \in B_2$ -EPG, para *i* inteiro, onde $3 \le i \le 9$, a representação do $K_{3,10}$ é suficiente para provar sua pertinência a B_2 -EPG, já que os demais grafos são subgrafos induzidos de $K_{3,10}$.

b. Grafos Split

Antes de introduzirmos o que é um grafo split, é necessário tomarmos ciência de alguns conceitos de teoria dos grafos, os quais definiremos a seguir.

Um *grafo completo* é um grafo no qual cada par de vértices distintos é mutuamente adjacente entre si. Notaremos por K_n o grafo completo com *n* vértices. E uma *clique* é um subgrafo $K \subseteq G$, onde *K* é um grafo completo. Intuitivamente, o complemento de um grafo completo resulta um conjunto independente.

E assim, um *grafo split* é um grafo G no qual o conjunto V(G) pode ser particionado em duas partes: a primeira,

Figura 3: K_{3,10} em sua representação B₂-EPG

forma uma clique K; e a segunda parte forma um conjunto independente S. Essa definição foi apresentada por [21].

Como já citado anteriormente, os trabalhos relacionados a grafos EPG split se resumem a classe B_1 -EPG, neste artigo investigaremos os grafos B_2 -EPG Split, caracterizando sub-conjuntos desta classe.

O primeiro resultado alcançado no estudo de grafos split é apresentado a seguir.

Lema 2. Seja G um grafo split, com conjunto independente S, cujo $d(s_i) \leq 2$, então $G \in B_2$ -EPG.

Demonstração. Seja G = (S, K) um grafo split, onde *S* corresponde ao conjunto independente e *K* sua clique, tal que |S| = y e |K| = w. Considere a linha l₀ e a coluna c₀, respectivamente, como linha e coluna centrais da grade. Para realizar tal representação, as seguintes instruções devem ser seguidas:

- 1. Cada vértice $k_i \in K$ deve ser representado usando um elemento de *L*-shape, a \ulcorner -shape, onde cada caminho P_{k_i} possui segmento vertical sobre a coluna c_0 , iniciando na linha l_0 e terminando na linha l_{k_i} . A aresta (l_0, l_1) sobre a coluna c_0 é aresta de interseção de todos os caminhos P_{k_i} correspondendo aos vértices da clique. O segmento horizontal do caminho P_{k_i} está sobre a linha l_i , da coluna c_0 até a coluna c_y .
- Caso d(s_i) = 1, cada vértice do conjunto s_i ∈ S, deve ser representado usando um segmento horizontal sobre a linha l_i, da coluna c_{si-1} até a coluna c_{si}.
- 3. Caso $d(s_i) = 2$, $N(s_i) = \{K_a, K_b\}$, então s_i será representado pelo caminho P_{s_i} da seguinte forma: representamos um segmento horizontal sobre a linha l_a , da coluna $c_{s_{i-1}}$ até a coluna c_{s_i} , o segmento vertical de P_{s_i} sobre a coluna c_{s_i} , da linha l_a até a linha l_b , e por fim, o último segmento horizontal do caminho P_{s_i} sobre a linha l_b , da coluna $c_{s_{i-1}}$ até a coluna c_{s_i} .

Figura 5: Representação B_2 -EPG de grafo split com $d(s_i) \le 2$

A título de exemplo, a Figura 4 ilustra um grafo split com $d(s_i) \le 2$, enquanto na Figura 5 temos sua representação B_2 -EPG.

Podemos codificar a demonstração do Lema 2 de uma forma alternativa através do pseudocódigo ilustrado no Algoritmo 1.

Como consequência do Lema 2 somos capazes de delimitar o espaço ocupado, na grade, pela representação, construída pelo Algoritmo 1. O resultado é exposto pelo corolário a seguir.

Corolário 3. Seja G um grafo split, com conjunto independente S, cujo $d(s_i) \leq 2$, então G pode ser representado sobre uma grade retangular $Q_{w \times y}$.

Demonstração. Esse resultado pode ser facilmente verificado pela representação construída no Lema 2, conforme ilustrado na Figura 5. Como pode ser observado, o número de colunas é delimitado pelo vértice s_y do conjunto independente *S*, enquanto o número de linhas é delimitado pelo vértice k_w do conjunto *K*, portando o tamanho desses conjuntos é igual ao tamanho da grade.

De forma mais genérica, removendo a restrição de $d(s_i) \le 2$, conseguimos um algoritmo que prova que é possível representar qualquer grafo EPG Split, sendo suficiente uma grade cuja dimensão é dada por uma combinação da cardinalidade dos conjuntos *K* e *S*. Logo, apresentamos o corolário a seguir.

Corolário 4. Qualquer grafo split $G(K \cup S, E)$, onde |K| = w, |S| = y, pode ser representado em uma grade de área $O(w \times y)$.

Algoritmo	I: GRAFO Ba	-EPG SPLIT	COM $d(s_i) < 2$	

$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Entrada: Grafo $G = (K, S)$
Saída: Representação B ₂ -EPG do grafo
1 início
$2 y \leftarrow S ;$
3 para $i \leftarrow 1$ até $i \le K $ faça
4 Desenha um segmento vertical na coluna c_0 , entre as linhas l_0 e l_i ;
5 Desenha um segmento horizontal na linha l_i , entre as colunas $c_0 e c_y$;
6 fim
7 para $i \leftarrow 1$ até $i \le S $ faça
8 se $d(s_i) = 1$ então
9 $K_a \leftarrow N(s_i).first();$
10 Desenha um segmento horizontal sobre a linha l_a , da coluna c_{i-1} até a coluna c_i ;
11 fim
12 se $d(s_i) = 2$ então
13 $K_a \leftarrow N(s_i).first();$
$14 \qquad K_b \leftarrow N(s_i).last();$
15Desenha um segmento horizontal sobre a linha l_a , da coluna c_{i-1} até a coluna c_i ;
16Desenha um segmento vertical sobre a coluna c_i , da linha l_a até a linha l_b ;
17 Desenha um segmento horizontal sobre a linha l_b , da coluna c_{i-1} até a coluna c_i ;
18 fim
19 fim
20 fim
21 retorna Representação B ₂ -EPG

Demonstração. Considere uma grade $Q_{w \times 2y+1}$, com linhas l_0, \ldots, l_{w-1} , de baixo para cima, e colunas c_0, \ldots, c_{2y} , da esquerda para direita.

Vamos representar os elementos da clique *K* pelos caminhos P_1, \ldots, P_{w-1} . Onde cada caminho P_j forma na grade uma *L*-shape, exclusivamente o caminho P_1 será representada por uma $_$ -shape, sobre a coluna c_0 , entre as linhas l_0 e l_1 , dobrando horizontalmente em l_0 , da coluna c_0 até c_{2y} . Os demais caminhos da clique serão representados por \ulcorner -shape sobre a coluna c_0 , da linha l_0 até a linha l_{i-1} , dobrando horizontalmente sobre a linha l_{i-1} , da coluna c_0 até c_{2y} .

Os elementos do conjunto independente *S*, serão representados pelos caminhos P'_1, \ldots, P'_y . Considerando que os vértices do conjunto independente podem ser adjacentes a qualquer vértice da clique, cada $s_i \in S$ será representado nesta demonstração com colunas vazias a sua esquerda e direita, isso garante que nenhum dos caminhos de P'_y sejam arestaintersectantes ou vértice-intersectantes entre si.

Dado que os vértices da clique *K*, estejam indexados por *j* e ordenados de forma crescente em relação a *j*, tal que j = 1, ..., w. Propomos o seguinte algoritmo para a representação do vértice s_i como o caminho P'_i :

Tomar como valor de *j* o primeiro índice de *k*, e para cada k_j ∈ N(s_i), de forma crescente, representar o caminho P'_i;

- 2. Adicione um segmento horizontal sobre a linha l_{i-1} , da coluna c_{2i-1} até a coluna c_{2i} . Se o vértice s_i ainda possui vizinhos sem representação, atribua a uma variável z o valor de *j* e a *j* o próximo índice de *k* e passe para o próximo passo, caso contrário, encerre;
- 3. Seja o vértice s_i adjacente ao vértice k_j , então o caminho P'_i possui um segmento vertical sobre a coluna c_{2i} , da linha l_{z-1} até a linha l_{j-1} , seguido de um segmento horizontal sobre a linha l_{i-1} , da coluna c_{2i-1} até a coluna c_{2i} . Se o vértice s_i ainda possui vizinhos sem representação, atribua a uma variável z o valor de j e a j o próximo índice de k e passe para o próximo passo, caso contrário, encerre;
- 4. Adicione ao caminho P'_i um segmento vertical sobre a coluna c_{2i-1} , da linha l_{z-1} até a linha l_{j-1} e retorne ao passo 2.

Logo, conseguimos representar todo vértice $s_i \in S$. Observe que esta representação de S ocupa uma quantidade de colunas igual a 2y + 1.

Assim obtemos uma representação EPG para um grafo split hospedado em uma grade de dimensão $Q_{w \times 2y+1}$. A Figura 6 ilustra como se dá a representação genérica de um grafo split construída por este algoritmo.

l_{w-1}	c_0	c_1	c_2	c_3	 c_{2y-1}	c_{2y}
	P_w					
l_{w-2}					 	
	P_{w-1}					
l_2					 	
	P_3	P_1'	1	P_2'	P_y'	
l_1						
	$\parallel P_2$					
l_0						
	P_1					

Figura 6: Grafo split representado em uma grade $Q_{w \times 2v+1}$

Em suplemento, para o Corolário 4, ilustramos o pseudocódigo do Algoritmo 2.

c. Grafos Threshold

Um grafo é dito ser um grafo threshold se ele pode ser construído, a partir de um grafo vazio, através de repetidas adições de um vértice isolado $(d(v_i) = 0)$ ou um vértice do*minante* $(d(v_i) = n - 1)$. Os grafos threshold correspondem a uma subclasse dos grafos split [22], e também correspondem a uma subclasse de grafos de intervalo [22]. Ao iniciar a investigação dessa subclasse dos grafos split, percebemos que há uma classificação imediata da classe pelo Lema 5.

Em resumo, a relação entre essas classes pode ser dada da seguinte forma: Grafos Threshold \subseteq Grafos de Intervalo \cap Grafos Split.

Lema 5. *Grafos threshold* \in *B*₀*-EPG*.

Demonstração. Essa prova é dada por demonstração direta. Sejam os grafos threshold um subconjunto de grafos de intervalo, então grafos threshold $\in B_0$ -EPG [1]. Isso é verdade

A	Algoritmo 2: GRAFO SPLIT EM GRADE $Q_{w imes 2y+1}$
	Entrada: Grafo $G = (K, S)$
	Saída: Representação B ₂ -EPG do grafo
1	início
2	$y \leftarrow S ;$
3	para $i \leftarrow 1$ até $i \le K $ faça
4	se $i = 1$ então
5	Desenha um segmento vertical na coluna c_0 , entre as linhas l_0 e l_1 ;
6	Desenha um segmento horizontal na linha l_0 , entre as colunas c_0 e c_y ;
7	fim
8	senão
9	Desenha um segmento vertical na coluna c_0 , entre as linhas l_0 e l_{i-1} ;
10	Desenha um segmento horizontal na linha l_{i-1} , entre as colunas $c_0 \in c_y$:
11	fim
12	fim
13	para $i \leftarrow 1$ até $i \le S $ faça
14	$j \leftarrow N(s_i).first();$
15	$viz \leftarrow N(s_i);$
16	$z \leftarrow null;$
17	enquanto $j \neq \emptyset$ faça
18	Desenha um segmento horizontal sobre a linha l_{j-1} , da coluna c_{2i-1} até a coluna c_{2i} ;
19	$ z \leftarrow i$
20	$viz \leftarrow viz - j;$
21	$j \leftarrow N(S_i).first();$
22	se $j = \emptyset$ então
23	encerra;
24	
25	Desenha um segmento vertical sobre a coluna c_{2i-1} , da linha l_{z-1} até a linha l_{j-1} ;
26	Desenha um segmento horizontal sobre a linha l_{j-1} , da coluna c_{2i-1} até a coluna c_{2i} ;
27	$ z \leftarrow i;$
28	$ viz \leftarrow viz - j;$
29	$j \leftarrow N(S_i).first();$
30	se $i = \emptyset$ então
31	encerra;
32	fim Í
22	Desenha um segmento vertical sobre a
55	coluna c_{2i-1} , da linha l_{z-1} até a linha l_{j-1} ;
34	fim
34 35	fim
36	fim
37	retorna Representação B ₂ -EPG

porque a propriedade de pertinência a uma classe é hereditária para subgrafos induzidos.

d. Demais resultados para a classe B₂-EPG

Um conjunto de caminhos independentes em vértice refere-se a um conjunto de caminhos onde para cada par de caminhos, $P_{v_i} e P_{v_j}$, a intersecção entre os vértices destes caminhos é vazia, i.e., $P_{v_i} \cap_v P_{v_j} = \emptyset$. Analogamente, um conjunto de caminhos independentes em aresta refere-se a um conjunto de caminhos onde para cada par de caminhos, P_{v_i} $e P_{v_j}$, a intersecção entre as arestas destes caminhos é vazia, i.e., $P_{v_i} \cap_e P_{v_j} = \emptyset$.

Tendo estes conceitos em mente, apresentamos o seguinte lema.

Lema 6. Sejam $L_1 e L_2$ dois segmentos perpendiculares entre si, onde $|L_1 \cap_v L_2| = 1$, e seja o conjunto de caminhos independentes em aresta $\mathscr{P}^e = \{P_1, P_2, P_3\}$. Se cada $P_i \in \mathscr{P}^e$ é aresta-intersectante a $L_1 e L_2$, então em qualquer representação EPG de $L_1 \cup L_2 \cup \mathscr{P}^e$, pelo menos 1 dos caminhos $P_i \in \mathscr{P}^e$ possui no mínimo 3 dobras.

Demonstração. Suponha, sem perda de generalidade, que L_1 e L₂ estão posicionadas, respectivamente, na vertical e horizontal da grade, e $|L_1 \cap_v L_2| = 1$ no ponto (l_0, c_0) , enquanto $L_1 \cap_e L_2 = \emptyset$. Suponha que o caminho P_1 aresta-intersecta L_1 com um segmento vertical entre o primeiro e segundo quadrante, e para aresta-intersectar L_2 , o caminho P_1 deve dobrar no ponto onde $L_1 \cap_{\mathcal{V}} L_2$, ou seja, no ponto (l_0, c_0) , sendo adicionado um segmento horizontal que aresta-intersecta L_2 , digamos, entre o primeiro e quarto quadrante. Já o caminho P_2 deve aresta-intersectar L_1 , logo isso pode ocorrer em alguma aresta entre o terceiro e quarto quadrante, ou em alguma aresta entre o primeiro e segundo quadrante. No caso de um segmento de P_2 colocado na aresta entre o primeiro e segundo quadrante, então P2 necessita possuir no mínimo 3 dobras para aresta-intersectar L_2 . Assim, nos resta supor que o caminho P_2 aresta-intersecta L_1 com um segmento vertical entre o terceiro e quarto quadrante. O caminho P2 deverá aresta-intersectar L2, necessariamente, dobrando para a esquerda (entre o segundo e terceiro quadrante), caso contrário $P_1 \cap_e P_2 \neq \emptyset$. E por último, devemos representar o caminho P_3 . Perceba que todas as arestas incidentes ao ponto (l_0, c_0) , nesse momento, estão cobertas por uma aresta do caminho P_1 ou do caminho P_2 . Logo, necessariamente para o caminho P_3 intersectar o segmento L_1 , temos que P_3 deve ser posicionado após a última aresta do caminho P_1 ou P_2 , sobre L_1 . Suponha, sem perda de generalidade, que P_3 possua um segmento entre o primeiro e segundo quadrante. Para que P_3 possa aresta-intersectar L_2 , ele deve evitar aresta-intersectar qualquer aresta sobre L_1 ou L_2 que seja ocupada pelos caminhos P1 ou P2 (o análogo simétrico ocorreria se P3 fosse um segmento entre o terceiro e quarto quadrante). Logo, a única opção que resta é que o caminho P_3 deverá dobrar para a direita (ou esquerda), ver Figura 7, adiciona-se um segmento horizontal, em seguida uma segunda dobra deve ser realizada para alcançar L_2 , sendo adicionado então um segmento vertical em direção ao segmento L_2 . Uma terceira dobra em P_3 deve ser adicionada para que o caminho consiga arestaintersectar o segmento L_2 . Portanto, concluímos que qualquer representação EPG de $L_1 \cup L_2 \cup P_1 \cup P_2 \cup P_3$ não está em

Figura 7: Exemplo de representação dos caminhos P₁, P₂ e P₃

 B_2 -EPG.

V. CONSIDERAÇÕES FINAIS

Neste artigo trabalhamos com grafos B_2 -EPG Split. Mostramos que todo grafo split com $d(s_i) \leq 2$ está em B_2 -EPG, isto permitiu construir um algoritmo para representar toda uma sub-família de grafos B_2 -EPG Split. Como consequência também fomos capazes de propor um algoritmo que constrói a representação de qualquer grafo split em uma grade de área $O(w \times y)$. Ademais, também apresentamos outros resultados para grafos EPG que, com restrições particulares, não estão em B_2 -EPG.

Este artigo apresenta conclusões revelantes do ponto de vista científico no que diz respeito ao estudo de grafos B_2 -EPG Split, um tópico avançado de estudo em teoria dos grafos. A profundidade dos resultados expande horizontes para novas pesquisas com outras subclasses de grafos EPG.

Como trabalhos futuros propomos a investigação da caracterização de grafos B_2 -EPG Split por meio de subgrafos induzidos proibidos. Outra questão de interessante investigação seria a seguinte: sabemos que uma grade de dimensão $O(w \times y)$ é suficiente para representar qualquer grafo split, mas seria essa grade necessária para representar todos grafos splits ou podemos representar qualquer grafo split em uma grade de menor dimensão?

REFERÊNCIAS

- M. C. Golumbic, M. Lipshteyn, and M. Stern, "Edge intersection graphs of single bend paths on a grid," *Networks: An International Journal*, vol. 54, no. 3, pp. 130–138, 2009.
- [2] F. W. Sinden, "Topology of thin film rc circuits," *Bell System Technical Journal*, vol. 45, no. 9, pp. 1639–1662, 1966.
- [3] M. L. Brady and M. Sarrafzadeh, "Stretching a knock-knee layout for multilayer wiring," *IEEE Transactions on Computers*, vol. 39, no. 1, pp. 148–151, 1990.
- [4] P. Molitor, "A survey on wiring," *Elektronische Informationsverarbeitung und Kybernetik*, vol. 27, no. 1, pp. 3–19, 1991.
- [5] A. Asinowski and A. Suk, "Edge intersection graphs of systems of paths on a grid with a bounded number of bends," *Discrete Applied Mathematics*, vol. 157, no. 14, pp. 3174–3180, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0166218X09002595
- [6] D. Heldt, K. Knauer, and T. Ueckerdt, "On the bend-number of planar and outerplanar graphs," *Discrete Applied Mathematics*, vol. 179, pp. 109–119, 2014.

- [7] L. Alcón, M. P. Mazzoleni, and T. D. dos Santos, "Relationship among B1-EPG, VPT and EPT graphs classes," *Discussiones Mathematicae Graph Theory*, 2021. [Online]. Available: https://doi.org/10.7151/dmgt.2408
- [8] K. A. Silva and T. D. Santos, "The K-sun graphs are in B2-EPG-Helly," 2022, accepted to publish in Latin American Workshop on Cliques in Graphs.
- [9] A. Asinowski and B. Ries, "Some properties of edge intersection graphs of single-bend paths on a grid," *Discrete Mathematics*, vol. 312, no. 2, pp. 427–440, 2012.
- [10] K. Cameron, S. Chaplick, and C. T. Hoàng, "Edge intersection graphs of l-shaped paths in grids," *Discrete Applied Mathematics*, vol. 210, pp. 185–194, 2016.
- [11] Z. Deniz, S. Nivelle, B. Ries, and D. Schindl, "On split B1-EPG graphs," in *Latin American Symposium on Theoretical Informatics*. Springer, 2018, pp. 361–375.
- [12] C. Bornstein, M. Golumbic, T. D. Santos, U. Souza, and J. Szwarcfiter, "The complexity of Helly-B1 EPG graph recognition," *Discret. Math. Theor. Comput. Sci.*, vol. 22, 2020.
- [13] Z. Deniz, S. Nivelle, B. Ries, and D. Schindl, "On some subclasses of Split B1-EPG graphs," in *Latin American Symposium on Theoretical Informatics*. Springer, 2021, pp. 625–636.
- [14] M. Pergel and P. Rzążewski, "On edge intersection graphs of paths with 2 bends," *Discrete Applied Mathematics*, vol. 226, pp. 106–116, 2017.
- [15] M. C. Golumbic, M. Lipshteyn, and M. Stern, "Single bend paths on a grid have strong Helly number 4: errata atque emendationes ad "edge intersection graphs of single bend paths on a grid"," *Networks*, vol. 62, no. 2, pp. 161–163, 2013.
- [16] T. Biedl and M. Stern, "On edge-intersection graphs of k-bend paths in grids," *Discrete Mathematics and Theoretical Computer Science*, vol. 12, no. 1, pp. 1–12, 2010.
- [17] L. Alcón, F. Bonomo, G. Durán, M. Gutierrez, M. P. Mazzoleni, B. Ries, and M. Valencia-Pabon, "On the bend number of circulararc graphs as edge intersection graphs of paths on a grid," *Discrete Applied Mathematics*, vol. 234, pp. 12–21, 2018.
- [18] M. C. Francis and A. Lahiri, "VPG and EPG bend-numbers of Halin graphs," Discrete Applied Mathematics, vol. 215, pp. 95–105, 2016.
- [19] E. Çela and E. Gaar, "Monotonic representations of outerplanar graphs as edge intersection graphs of paths on a grid," *ArXiv*, vol. abs/1908.01981, 2019.
- [20] D. Heldt, K. Knauer, and T. Ueckerdt, "Edge-intersection graphs of grid paths: the bend-number," *Discrete Applied Mathematics*, vol. 167, pp. 144–162, 2014.
- [21] S. Foldes and P. L. Hammer, "Split graphs," Proc. 8th southeast. Conf. on Combinatorics, graph theory, and computing; Baton Rouge 1977, 311-315 (1977)., 1977.
- [22] V. Chvátal, Set-packing Problems and threshold graphs, 1973. [Online]. Available: https://books.google.com.br/books? id=I4T5jgEACAAJ