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Editorial (Português)
Quando a Teoria Ensina: Grafos e Computação em

Perspectiva Pedagógica

Tanilson Dias dos Santos (Organizador)1

1 Universidade Federal do Tocantins , tanilson.dias@uft.edu.br

Resumo—Esta edição especial da Revista AJCEAM reúne trabalhos oriundos das disciplinas de Teoria dos Grafos e Teoria da

Computação, com forte caráter pedagógico e formativo. Os artigos apresentam abordagens didáticas, exemplos lúdicos e exposições

auto-contidas de problemas clássicos da literatura, visando apoiar o aprendizado de alunos de graduação. Embora não tragam novos

resultados científicos, os trabalhos contribuem para a melhor compreensão conceitual de temas tradicionalmente considerados complexos.

A edição constitui, ainda, uma homenagem ao esforço acadêmico e à excelência demonstrada pelos estudantes de Ciência da Computação.

Palavras-chave—Contribuição Pedagógica. Problemas Computacionais. Teoria da Computação. Teoria dos Grafos.

I. O QUE VOCÊ VAI ENCONTRAR NESTE ESCRITO?

C aríssimo leitor, esta edição especial da Revista AJCEAM reúne um conjunto de trabalhos
oriundos de atividades desenvolvidas no âmbito das disciplinas de Teoria dos Grafos e Teoria

da Computação, oferecendo uma coletânea cuidadosamente organizada com forte caráter didático,
pedagógico e formativo. Os artigos aqui apresentados resultam de esforços acadêmicos que aliam rigor
conceitual, criatividade e preocupação com a clareza na exposição de temas clássicos e fundamentais da
Computação Teórica.

Os trabalhos desta edição não têm como objetivo a apresentação de novos resultados científicos.
Em vez disso, lançam luz sobre problemas consagrados da literatura, frequentemente reconhecidos
por sua complexidade conceitual e, por vezes, por dificuldades de assimilação por parte dos discentes.
Nesse sentido, os autores propõem abordagens pedagógicas, exemplos lúdicos e discussões guiadas que
favorecem uma compreensão mais acessível e aprofundada dos temas tratados, sem abrir mão da precisão
teórica.

Uma característica marcante dos artigos que compõem esta edição especial é o seu caráter auto-
contido: todos os conceitos, definições e fundamentos necessários à compreensão dos problemas
abordados são apresentados nos próprios textos. Essa escolha editorial reforça a proposta de que
os trabalhos possam ser utilizados como produtos de apoio ao ensino, servindo como material
complementar para estudantes de graduação que desejem aprender, revisar ou se aprofundar em tópicos
relevantes de Teoria dos Grafos e Teoria da Computação.

Os aspectos técnicos de cada problema são apresentados de forma intencionalmente superficial,
priorizando a intuição, o entendimento conceitual e as ideias centrais envolvidas. Adicionalmente,
cada trabalho traz reflexões sobre suas próprias contribuições, destacando pontos sutis que podem
passar despercebidos em uma leitura apressada. Os trabalhos relacionados apresentados nos artigos
contextualizam o leitor com resultados sólidos e recentes da literatura, enquanto comentários adicionais
e propostas de trabalhos futuros aparecem como convite à continuidade do estudo e da pesquisa.

Por fim, esta edição especial pode ser entendida como uma verdadeira ode ao esforço acadêmico
dos alunos do curso de Ciência da Computação, que conseguiram materializar, na forma de artigos

ISSN: 2675-3588 ix
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científicos, a excelência demonstrada ao longo das aulas teóricas e das atividades práticas. Trata-se de
um testemunho do potencial formativo das disciplinas e do compromisso dos discentes com a construção,
a comunicação e a reflexão crítica do conhecimento científico.

Desejamos ao leitor uma leitura proveitosa e inspiradora.

Prof. Dr. Tanilson Dias dos Santos
Organizador desta Edição Especial
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C
ME

A
A
J

Academic Journal on Computing, Engineering and Applied Mathematics ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 07, NO. 02, FEBRUARY 2026

MAX-2SAT: Contribuições Pedagógicas para o Aprendizado
no Escopo da Teoria da Computação

MAX-2SAT: Reflections and Pedagogical Practices within the Scope of the Theory of
Computation Course

Raphael Sales de Souza1, Thiago Gonzaga dos Santos1, Daniel Martins da Silva1 e Tanilson Dias dos
Santos1

sales.raphael@mail.uft.edu.br thiago.gonzaga@mail.uft.edu.br danielmartins@mail.uft.edu.br tanilson.dias@mail.uft.edu.br
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Data de aceitação do manuscrito: 27/01/2026
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Resumo—Este artigo apresenta uma demonstração formal e didática da N P -completude do problema Maximum 2-Satisfiability (Max-
2SAT) por meio de redução polinomial a partir do problema Clique. O Max-2SAT, variante de maximização do problema SAT em que
cada cláusula contém no máximo dois literais, questiona se existe uma valoração booleana capaz de satisfazer pelo menos k cláusulas de
uma fórmula em forma normal conjuntiva. Embora o problema 2-SAT seja resolvido em tempo polinomial, sua versão de maximização
é N P -completa. A demonstração utiliza uma construção com variável auxiliar que mapeia estruturas de grafos em fórmulas booleanas,
estabelecendo correspondência biunívoca entre cliques e valorações satisfatórias. Como contribuições pedagógicas, o trabalho apresenta:
(i) prova formal detalhada de N P -pertinência e N P -dificuldade; (ii) construção explícita da redução Clique ≤p Max-2SAT com figuras
ilustrativas; (iii) exemplo completo comentado passo a passo; (iv) pseudocódigo do verificador polinomial; e (v) discussões sobre
armadilhas comuns e estratégias de compreensão. O material produzido visa facilitar o aprendizado de reduções polinomiais e fortalecer a
compreensão sobre a fronteira entre tratabilidade e intratabilidade computacional.

Palavras-chave—Max-2SAT, N P -completude, Redução Polinomial, Clique, Teoria da Complexidade, Satisfatibilidade Booleana

Abstract—This paper presents a formal and pedagogical demonstration of the N P -completeness of the Maximum 2-Satisfiability (Max-
2SAT) problem through polynomial reduction from the Clique problem. Max-2SAT, a maximization variant of the SAT problem where each
clause contains at most two literals, asks whether there exists a Boolean assignment capable of satisfying at least k clauses of a formula
in conjunctive normal form. Although the 2-SAT problem is solvable in polynomial time, its maximization version is N P -complete. The
demonstration employs a construction with an auxiliary variable that maps graph structures into Boolean formulas, establishing a bijective
correspondence between cliques and satisfying assignments. As pedagogical contributions, this work presents: (i) detailed formal proof of
N P -membership and N P -hardness; (ii) explicit construction of the Clique≤p Max-2SAT reduction with illustrative figures; (iii) complete
step-by-step annotated example; (iv) pseudocode for the polynomial verifier; and (v) discussions about common pitfalls and comprehension
strategies. The material produced aims to facilitate the learning of polynomial reductions and strengthen understanding of the boundary
between tractability and computational intractability.

Keywords—Max-2SAT, NP-Completeness, Polynomial Reduction, Clique, Complexity Theory, Boolean Satisfiability

I. INTRODUÇÃO

A Teoria da Computação estabelece os fundamentos
matemáticos para compreender os limites da compu-

tação, classificando problemas segundo sua complexidade
computacional. Entre as classes de complexidade, a classe

Dados de contato: Raphael Sales de Souza, sales.raphael@mail.uft.edu.br

N P (Nondeterministic Polynomial Time) e, em especial,
os problemas N P -completos ocupam papel central, tanto
do ponto de vista teórico quanto prático. Um problema é
N P -completo se pertence à classe N P e todo problema
em N P pode ser reduzido a ele em tempo polinomial,
caracterizando-o como um dos mais representativos quanto
à dificuldade computacional.

O conceito de N P -completude foi introduzido por
Stephen Cook em 1971 [1], por meio do Teorema de
Cook–Levin, que estabeleceu o problema SAT (Satisfiability)

ISSN: 2675-3588 1
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como o primeiro problema N P -completo. Desde então,
milhares de problemas foram classificados como N P -
completos através de reduções polinomiais, compondo uma
ampla rede de equivalências que fundamenta a noção
moderna de intratabilidade algorítmica.

Dentre os problemas derivados de SAT, o Maximum 2-
Satisfiability (Max-2SAT) ocupa posição de destaque. Trata-
se de uma variante de maximização em que cada cláusula
contém no máximo dois literais, e o objetivo é determinar
uma valoração que satisfaça o maior número possível de
cláusulas. Na versão de decisão, dada uma fórmula
em forma normal conjuntiva e um inteiro k, pergunta-
se se existe uma atribuição que satisfaça pelo menos k
cláusulas. Embora o problema 2-SAT seja resolvido em
tempo polinomial [2], sua versão de maximização (Max-
2SAT) é N P -completa, conforme demonstrado por Garey,
Johnson e Stockmeyer [3].

O Max-2SAT possui aplicações práticas relevantes, como
otimização de circuitos eletrônicos, análise de dependências
em sistemas de software, depuração de hardware, modela-
gem de redes biológicas e problemas de agendamento com
restrições binárias. Além disso, algoritmos de aproximação
e heurísticas para Max-2SAT são estudados de forma ampla
na literatura, reforçando sua importância tanto teórica quanto
aplicada.

O objetivo deste artigo é apresentar, de maneira didática, a
demonstração da N P -completude do Max-2SAT utilizando
a redução polinomial Clique ≤p Max-2SAT. Essa redução
não foi explorada em sala de aula e permite discutir a
relação entre problemas de grafos e problemas de lógica
proposicional.

É importante ressaltar que a principal contribuição deste
manuscrito é de natureza pedagógica, consistindo na
sistematização detalhada e acessível da demonstração da
N P -completude do Max-2SAT. Não são propostos novos
resultados teóricos ou algorítmicos; a redução Clique ≤p
Max-2SAT aqui apresentada é conhecida na literatura [4]. O
valor do trabalho reside na exposição didática estruturada,
com exemplos comentados, figuras ilustrativas e discussões
sobre armadilhas conceituais, voltada para estudantes e
docentes de disciplinas de Teoria da Computação.

As principais contribuições deste trabalho incluem a
demonstração formal da N P -pertinência e da N P -
dificuldade do Max-2SAT, a construção explícita e detalhada
da redução polinomial Clique ≤p Max-2SAT, figuras
ilustrativas destacando como cada parte do grafo é traduzida
para cláusulas 2-SAT, um exemplo completo e comentado
exibindo todas as etapas da transformação, o pseudocódigo
do verificador polinomial para a versão de decisão do Max-
2SAT, e discussões pedagógicas sobre armadilhas comuns e
estratégias para compreender reduções entre problemas de
grafos e fórmulas booleanas.

O restante deste artigo está organizado da seguinte forma:
a Seção 2 – Preliminares – apresenta as preliminares
necessárias, incluindo definições formais de classes de
complexidade, reduções polinomiais e os problemas Clique
e Max-2SAT; a Seção 3 – Trabalhos Relacionados – revisa
trabalhos relacionados; a Seção 4 – Descrição do Problema
– descreve em detalhes o problema Max-2SAT; a Seção 5
– Demonstração e Contribuições – apresenta a prova de
N P -completude por meio da redução Clique≤p Max-2SAT;

v1 v2

v3 v4

Figura 1: Grafo G1

a Seção 6 – Resultados e Reflexões – discute resultados e
reflexões.

II. PRELIMINARES

São definidos a seguir os conceitos fundamentais que
embasam o restante deste trabalho, abrangendo classes de
complexidade, reduções polinomiais, fórmulas em FNC e as
especificações formais dos problemas Clique e Max-2SAT,
que constituem, respectivamente, o problema Atacado e o
problema Alvo da redução apresentada na Seção 5.

A seguir são apresentados os conceitos fundamentais de
teoria dos grafos, que serão essenciais para compreender
a redução Clique ≤p Max-2SAT. Um grafo é uma
estrutura matemática que modela relações entre objetos.
Formalmente, um grafo G é definido por um par ordenado
G = (V (G),E(G)), onde V (G) representa um conjunto finito
e não vazio de vértices (também chamados de nós) e E(G)
representa um conjunto de arestas, sendo cada aresta um par
de vértices (u,v) com u,v ∈ V (G) e u 6= v. Quando existe
uma aresta (u,v) ∈ E(G), dizemos que os vértices u e v são
adjacentes ou vizinhos.

O grau de um vértice v ∈ V (G), denotado por deg(v),
corresponde ao número de arestas incidentes a ele, ou
equivalentemente, ao número de vizinhos que v possui no
grafo. Um subgrafo de G é um grafo G′ = (V (G′),E(G′)) tal
que V (G′)⊆V (G) e E(G′)⊆ E(G), onde todas as arestas de
E(G′) conectam apenas vértices pertencentes a V (G′).

Para ilustrar esses conceitos, considera-se o grafo G1 da
Figura 1 com quatro vértices V (G) = {v1,v2,v3,v4} e quatro
arestas E(G) = {(v1,v2),(v1,v3),(v2,v3),(v2,v4)}. Neste
grafo, o vértice v2 possui grau 3, pois está conectado a três
outros vértices (v1, v3 e v4); os vértices v1 e v3 possuem grau
2, cada um conectado a dois vizinhos; e o vértice v4 possui
grau 1, estando conectado apenas a v2.

Uma clique é um subconjunto de vértices C ⊆ V (G)
tal que todo par de vértices distintos em C é adjacente.
Formalmente, para quaisquer u,v ∈ C com u 6= v, temos
(u,v) ∈ E(G). O tamanho de uma clique é o número de
vértices que ela contém.

A Figura 2 ilustra o conceito de clique de forma detalhada.
Nessa figura, o grafo possui quatro vértices {v1,v2,v3,v4}
e as arestas {(v1,v2),(v1,v3),(v2,v3),(v2,v4)}. O retângulo
tracejado destaca o subconjunto {v1,v2,v3}, que forma uma
clique de tamanho 3. Para verificar que esse conjunto é de
fato uma clique, observa-se que existem arestas conectando
todos os pares possíveis dentro dele: a aresta (v1,v2) conecta
v1 a v2, a aresta (v1,v3) conecta v1 a v3, e a aresta (v2,v3)
conecta v2 a v3. Como cada par de vértices do conjunto está
conectado por uma aresta, a condição de clique é satisfeita.

O vértice v4, representado em cinza mais escuro na figura,
não faz parte dessa clique. Embora v4 esteja conectado a

2 ISSN: 2675-3588
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v1 v2

v3 v4

Clique de tamanho 3

Figura 2: Grafo com clique de tamanho 3 formada por {v1;v2;v3}.

v2 pela aresta (v2,v4), ele não possui arestas com v1 nem
com v3. Portanto, se fosse incluído v4 no conjunto, os
pares (v1,v4) e (v3,v4) não seriam adjacentes, violando a
definição de clique. Esse exemplo ilustra por que uma clique
exige conectividade total entre todos os seus membros, e não
apenas conexões parciais.

A seguir são apresentados os conceitos de complexidade
computacional, um problema de decisão é um problema cuja
resposta é “sim” ou “não”.

Uma Máquina de Turing é um modelo matemático de
computação que consiste em uma fita infinita dividida em
células, um cabeçote de leitura/escrita que pode mover-se
sobre a fita, um conjunto finito de estados, e uma função de
transição que determina o comportamento da máquina. A
cada passo, a máquina lê o símbolo da célula atual, escreve
um novo símbolo (ou mantém o anterior), move o cabeçote
para a esquerda ou direita, e muda de estado. Uma Máquina
de Turing é determinística quando, para cada combinação de
estado e símbolo lido, existe no máximo uma ação possível
definida pela função de transição. Uma Máquina de Turing
é não determinística quando podem existir múltiplas ações
possíveis para uma mesma configuração, permitindo que a
máquina "escolha"entre diferentes caminhos de computação.
Esse modelo, proposto por Alan Turing em 1936, captura
formalmente a noção intuitiva de algoritmo e constitui a
base teórica para a definição de classes de complexidade
computacional [5].

Um certificado para um problema de decisão é uma
estrutura de dados que, quando fornecida junto com
uma instância do problema, permite verificar em tempo
polinomial se a resposta para aquela instância é “sim”.
Formalmente, um problema L pertence à classe N P se
existe um verificador polinomial V e uma constante c tal
que, para toda instância x: x ∈ L ⇐⇒ ∃ certificado y com
|y| ≤ |x|c tal que V (x,y) = “aceita”. O certificado funciona
como uma "prova"de que a instância tem resposta positiva.
Por exemplo, para o problema Clique, um certificado seria
um subconjunto específico de vértices; para um problema
de satisfatibilidade booleana, seria uma valoração das
variáveis. A existência de certificados verificáveis em tempo
polinomial caracteriza a classe N P e distingue-a de outras
classes de complexidade.

A classe de complexidade P consiste no conjunto
de problemas decidíveis por uma Máquina de Turing
determinística em tempo polinomial [5]. Formalmente,

P = {L |L é decidível por uma MT determinística
em tempo polinomial}.

Por sua vez, a classe N P é definida de forma análoga,
substituindo a Máquina de Turing determinística por uma
não determinística:

N P = {L |L é decidível por uma MT não determinística
em tempo polinomial}.

De modo equivalente, N P reúne os problemas cujas
soluções podem ser verificadas em tempo polinomial
mediante um certificado apropriado.

Um problema L é N P -difícil quando todo problema em
N P se reduz a L em tempo polinomial, e é N P -completo
quando, além disso, pertence à própria classe N P .

Reduções polinomiais são o principal mecanismo para
comparar a dificuldade de problemas. Diz-se que um
problema de decisão A reduz-se polinomialmente a outro
problema de decisão B, denotado pela notação A ≤p B,
quando existe uma função computável em tempo polinomial
f tal que, para toda instância x, temos x ∈ A ⇐⇒ f (x) ∈
B. O símbolo ≤p denota a relação de redução em
tempo polinomial, indicando que o problema A não é mais
difícil que o problema B do ponto de vista computacional.
Nessa notação, A é denominado problema atacado, pois
é o problema cuja complexidade já conhecemos, e B é
denominado problema alvo, para o qual desejamos provar
a complexidade. O uso dessas reduções permite demonstrar
N P -dificuldade e, quando combinado com a pertinência a
N P , também N P -completude.

No contexto de reduções polinomiais, um gadget é
uma construção auxiliar padronizada que traduz elementos
estruturais do problema Alvo para o problema Atacado,
preservando as propriedades essenciais da instância original.
A técnica de construção por gadgets permite modularizar
a redução, facilitando tanto a verificação de corretude
quanto a análise de complexidade. Por exemplo, na
redução Clique ≤p Max-2SAT apresentada neste trabalho,
as cláusulas de seleção (xi ∨ z) e (xi ∨¬z) funcionam como
gadgets que distinguem vértices selecionados de vértices não
selecionados, enquanto as cláusulas de incompatibilidade
(¬xi ∨ ¬x j) atuam como gadgets que impedem a seleção
simultânea de vértices não adjacentes.

No contexto de fórmulas booleanas, são definidos
formalmente os conceitos fundamentais na ordem lógica
de construção. Uma variável booleana é um símbolo que
pode assumir um dentre dois valores possíveis, pertencentes
ao conjunto {0,1}, onde 0 representa falso e 1 representa
verdadeiro. Formalmente, dada uma variável x, uma
valoração σ associa a x um valor em {0,1}, denotado por
σ(x). A partir de variáveis, construímos literais mediante
a seguinte definição: um literal é uma variável x ou sua
negação ¬x. Se σ(x) = 1, então o literal x é verdadeiro
e o literal ¬x é falso sob σ; de modo análogo, se σ(x) =
0, então o literal x é falso e o literal ¬x é verdadeiro
sob σ. Combinando literais mediante a operação lógica
de disjunção, formamos cláusulas conforme a definição a
seguir: uma cláusula é uma disjunção de literais, podendo
ser representada formalmente como C = (l1 ∨ l2 ∨ ·· · ∨ lr),
onde cada li é um literal. Uma valoração σ satisfaz a cláusula
C quando ao menos um de seus literais é verdadeiro sob σ,
isto é, quando existe i ∈ {1,2, . . . ,r} tal que li é verdadeiro
segundo σ. Finalmente, uma fórmula está em Forma Normal
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TABELA 1: DEFINIÇÃO FORMAL DO PROBLEMA CLIQUE.

Clique

Entrada: Um grafo G = (V (G),E(G)) e um inteiro
positivo k.
Questão: Existe um subconjunto S⊆V (G) com |S| ≥ k
tal que todo par de vértices de S é adjacente, isto é, para
quaisquer vi,v j ∈ S com i 6= j, tem-se (vi,v j) ∈ E(G)?

Ana

Bruno

Carla

Davi Eva

Clique: todos são amigos mútuos

Figura 3: Rede social com clique {Ana, Bruno, Carla}.

Conjuntiva (FNC) quando é expressa como uma conjunção
de cláusulas, isto é, F = C1 ∧C2 ∧ ·· · ∧Cm, onde cada Ci é
uma cláusula. Uma valoração σ satisfaz a fórmula F quando
satisfaz simultaneamente todas as cláusulas Ci que compõem
F .

A seguir são apresentados os dois problemas centrais
desta redução: Clique, que atua como problema atacado
(N P -completo), e Max-2SAT, o problema alvo cuja N P -
dificuldade será estabelecida.

O problema Clique foi demonstrado como N P -completo
por Karp em 1972 [6]. Para tornar mais clara a estrutura do
problema e facilitar a compreensão da redução apresentada
posteriormente, é apresentado um exemplo cotidiano que
ilustra o conceito de clique, conforme representado na
Figura 3. Em uma rede social, cada pessoa é representada
por um vértice do grafo, e uma aresta conecta duas pessoas
que são amigas entre si. O problema Clique corresponde a
encontrar um grupo de pelo menos k pessoas onde todos são
mutuamente amigos, isto é, cada par de pessoas dentro desse
grupo possui uma relação de amizade direta. Por exemplo,
imagine que você deseja organizar um jantar e precisa
convidar pelo menos três pessoas, mas com a restrição de
que todos os convidados já se conheçam mutuamente para
garantir um ambiente confortável e integrado. Determinar se
tal grupo existe na sua rede de amizades é exatamente uma
instância do problema Clique.

A Figura 3 ilustra esse cenário: Ana, Bruno e Carla
formam uma clique de tamanho 3, pois cada par dentro
desse grupo possui amizade direta (representada pelas arestas
que conectam todos os três entre si). Davi e Eva, embora
conectados a alguns membros do grupo, não fazem parte
dessa clique pois não são amigos de todos os outros membros
simultaneamente — por exemplo, Davi não possui aresta
com Carla, e Eva não possui aresta com Ana nem com Bruno.

É importante observar a diferença fundamental entre o

TABELA 2: DEFINIÇÃO FORMAL DO PROBLEMA MAX-2SAT.

Max-2SAT

Entrada: Uma fórmula booleana F em forma normal
conjuntiva (FNC), na qual cada cláusula contém no
máximo dois literais, e um inteiro positivo k.
Questão: Existe uma valoração booleana das variáveis
de F que satisfaça pelo menos k cláusulas?

problema 2-SAT e sua versão de maximização. O problema
2-SAT, que pergunta se existe uma valoração que satisfaz
todas as cláusulas de uma fórmula onde cada cláusula tem
no máximo dois literais, pode ser resolvido em tempo
linear O(n + m), onde n é o número de variáveis e m é
o número de cláusulas, através de algoritmos baseados em
grafos de implicação e componentes fortemente conexas [2].
Em contraste, a versão de maximização Max-2SAT foi
demonstrada como N P -completa por Garey, Johnson e
Stockmeyer [3], que provou sua intratabilidade através
de uma redução polinomial a partir do problema Vertex
Cover. Essa diferença ilustra como alterações pequenas na
especificação de um problema podem resultar em mudanças
drásticas em sua complexidade computacional.

Demonstrar que Max-2SAT é N P -completo requer exibir
dois componentes: primeiro, um certificado verificável em
tempo polinomial que comprove a pertinência à classe
N P ; segundo, uma redução polinomial a partir de um
problema já conhecido como N P -completo. Neste trabalho,
o problema Clique é utilizado como ponto de partida para a
redução, estabelecendo uma correspondência entre estruturas
altamente conectadas em grafos e fórmulas booleanas com
alto grau de satisfatibilidade. Essa redução será desenvolvida
em detalhes na Seção 5.

III. TRABALHOS RELACIONADOS

As referências clássicas sobre teoria da complexidade
computacional e N P -completude, como Cook [1], Karp [6],
Garey e Johnson [4], Papadimitriou [7] e Sipser [5],
constituem obras fundamentais para a compreensão geral de
reduções polinomiais, classes de complexidade e taxonomia
de problemas intratáveis, fornecendo o alicerce conceitual
sobre o qual se desenvolvem estudos mais específicos.

No contexto específico de Max-2SAT e problemas
de satisfatibilidade booleana, Goemans e Williamson [8]
apresentam um algoritmo de aproximação baseado em
programação semidefinida que alcança fator de aproxi-
mação de 0.878 para o problema Max-2SAT. O trabalho
estabelece um marco importante ao conectar técnicas de
otimização contínua com problemas combinatórios discre-
tos, demonstrando que relaxações semidefinidas podem
fornecer soluções de alta qualidade mesmo quando a
solução ótima é computacionalmente intratável. Os autores
utilizam arredondamento aleatório de variáveis baseado
em vetores unitários, técnica que se tornou fundamental
para o desenvolvimento de algoritmos de aproximação em
problemas de satisfatibilidade.

Trevisan et al. [9] investigam a construção sistemática
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de gadgets para reduções entre variantes de problemas de
satisfação de restrições booleanas. O trabalho caracteriza
quais propriedades estruturais devem ser preservadas ao
transformar instâncias de um problema em outro, estabe-
lecendo condições necessárias e suficientes para que uma
redução mantenha a equivalência entre soluções ótimas. Os
autores demonstram como gadgets bem projetados permitem
controlar precisamente o número de cláusulas satisfeitas
na fórmula resultante, técnica essencial para reduções que
envolvem problemas de maximização como o Max-2SAT.
Essa abordagem sistemática influenciou significativamente
o desenvolvimento de novas reduções e a compreensão de
limites de aproximabilidade.

Khanna et al. [10] estabelecem uma taxonomia completa
de aproximabilidade para problemas de satisfação de
restrições booleanas, incluindo Max-2SAT. O trabalho
caracteriza formalmente quais variantes desses problemas
admitem esquemas de aproximação em tempo polinomial
(PTAS) e quais são AP X -completos, isto é, não admitem
aproximação arbitrariamente boa sob a hipótese P 6= N P .
Os autores demonstram que Max-2SAT pertence à classe
AP X -completa, indicando que, embora existam algoritmos
de aproximação com garantias constantes, não é possível
obter esquemas que aproximem a solução ótima com
erro arbitrariamente pequeno em tempo polinomial. Essa
caracterização delimita precisamente as fronteiras entre
o que é computacionalmente viável e o que permanece
intratável mesmo sob relaxações de otimalidade.

No contexto pedagógico e didático, Lassance, Bianchini
e Santos [11] apresentam um estudo fundamentado na
experiência da disciplina de Teoria da Computação da
Universidade Federal do Tocantins, evidenciando a im-
portância de metodologias ativas baseadas em seminários
acadêmicos para a aprendizagem de conceitos abstratos
como decidibilidade, complexidade e N P -completude. Os
autores argumentam que a exposição pública, a análise
crítica de demonstrações formais e a elaboração de
apresentações estruturadas contribuem significativamente
para o desenvolvimento de autonomia intelectual e domínio
técnico por parte dos estudantes. A discussão mostra como
abordagens dialogadas favorecem a consolidação de técnicas
de redução polinomial e de formalização rigorosa, aspectos
essenciais tanto para a compreensão de problemas intratáveis
quanto para a construção de demonstrações corretas. Esse
trabalho relaciona-se diretamente com a proposta pedagógica
do presente artigo, que busca apresentar a demonstração de
N P -completude do Max-2SAT de forma didática e acessível
a estudantes de graduação.

IV. DESCRIÇÃO DO PROBLEMA

O problema Maximum 2-Satisfiability (Max-2SAT) é uma
variante de maximização do problema clássico SAT, na
qual cada cláusula contém no máximo dois literais. O
objetivo é determinar uma valoração booleana que satisfaça
o maior número possível de cláusulas. Na versão de
decisão, investigada neste trabalho, pergunta-se se existe
uma valoração capaz de satisfazer pelo menos k cláusulas
de uma fórmula em forma normal conjuntiva (FNC).

Para tornar o problema Max-2SAT mais acessível,
considere o seguinte cenário: um organizador de eventos

precisa alocar n palestras em dois horários disponíveis,
manhã e tarde. Cada palestra deve ocorrer em exatamente um
dos dois períodos. Diversos pares de palestrantes expressam
preferências conjuntas sobre os horários, representadas por
restrições do tipo "pelo menos um de nós deve estar na
manhã"ou "pelo menos um de nós deve estar na tarde".

Formalmente, cada palestra pode ser modelada i por uma
variável booleana xi, onde xi = 1 significa que a palestra i
está alocada no período da manhã, e xi = 0 indica alocação
no período da tarde. Uma preferência expressa por dois
palestrantes i e j pode ser representada por uma cláusula
booleana como (xi∨ x j), que é satisfeita quando pelo menos
uma das duas palestras ocorre na manhã, ou (¬xi ∨ x j),
indicando que se a palestra i for na manhã, então j também
deve ser na manhã.

Em muitas situações práticas, as preferências dos pales-
trantes entram em conflito, tornando impossível satisfazer
todas simultaneamente. Por exemplo, se três palestrantes A,
B e C expressam as preferências "A ou B na manhã", "B
ou C na tarde"e "A ou C em horários opostos", pode ser
impossível atender todas ao mesmo tempo. Nesse contexto,
o objetivo torna-se maximizar o número total de preferências
atendidas, escolhendo uma alocação que satisfaça o maior
número possível de restrições.

Esse cenário captura a essência do Max-2SAT: lidar com
um sistema de restrições booleanas parcialmente conflitantes
e buscar uma solução que maximize a consistência global,
mesmo quando a satisfação total é inviável.

Formalmente, uma instância do Max-2SAT consiste em
uma fórmula booleana F em forma normal conjuntiva
(FNC), composta por cláusulas C1,C2, . . . ,Cm, cada uma
contendo um ou dois literais, e por um inteiro positivo k. O
problema consiste em determinar se existe uma valoração σ
que satisfaça pelo menos k cláusulas de F , conforme definido
na Tabela 2.

Embora o problema 2-SAT seja solucionável em tempo
linear, sua versão de maximização (Max-2SAT) apresenta
complexidade substancialmente maior. Essa diferença ilustra
como pequenas alterações na formulação podem transformar
um problema tratável em intratável. O Max-2SAT possui
aplicações em gerenciamento de dependências de software,
depuração de hardware, análise de redes biológicas e
problemas de agendamento com restrições binárias.

Para ilustrar o comportamento do problema, considere a
fórmula:

F = (x1∨ x2) ∧ (¬x1∨ x3) ∧ (¬x2∨¬x3).

Nenhuma valoração satisfaz simultaneamente as três
cláusulas. Isso ocorre porque as duas últimas impõem
condições opostas sobre a variável x3: a cláusula (¬x1 ∨
x3) força x3 = 1 sempre que x1 = 1, enquanto a cláusula
(¬x2 ∨ ¬x3) força x3 = 0 sempre que x2 = 1. Como a
primeira cláusula (x1 ∨ x2) exige que pelo menos uma das
duas variáveis seja verdadeira, inevitavelmente surge uma
contradição. Se x1 = 1, então x3 deve ser 1, mas isso tende
a violar a terceira cláusula. Se x2 = 1, então x3 deve ser 0,
mas isso tende a violar a segunda cláusula. Assim, qualquer
tentativa de satisfazer todas as três cláusulas força a violação
de pelo menos uma delas.

Apesar disso, é possível satisfazer duas cláusulas. Por

ISSN: 2675-3588 5



MAX-2SAT: NP-COMPLETENESS PROOF DE SOUZA et al.

TABELA 3: AVALIAÇÃO EXAUSTIVA DAS VALORAÇÕES PARA A

FÓRMULA F .

x1 x2 C1 C2 C3 C4 Total
0 0 0 1 1 1 3
0 1 1 1 0 1 3
1 0 1 1 1 0 3
1 1 1 0 1 1 3

Alocação de Palestras

Manhã

P1

P3

Tarde

P2

P4

(P1∨P3)X

(¬P2∨P3)X

(¬P1∨P4)×

Figura 4: 2 de 3 preferências atendidas.

exemplo, a valoração x1 = 1, x2 = 1 e x3 = 0 satisfaz a
primeira e a terceira cláusulas, mas viola a segunda.

Esse comportamento evidencia o caráter de otimização
do Max-2SAT: quando a estrutura das restrições contém
conflitos inevitáveis, o objetivo deixa de ser satisfazer todas
as cláusulas e passa a ser maximizar o número de cláusulas
satisfeitas.

Para ilustrar de forma pedagógica situações em que não
é possível satisfazer todas as cláusulas simultaneamente,
considera-se a seguinte fórmula:

F = (x1∨ x2)∧ (¬x1∨¬x2)∧ (x1∨¬x2)∧ (¬x1∨ x2).

Esta fórmula envolve duas variáveis booleanas, x1 e
x2, de modo que existem exatamente quatro valorações
possíveis. A Tabela 3 apresenta a avaliação sistemática
de cada valoração, demonstrando que nenhuma satisfaz
simultaneamente as quatro cláusulas.

Como evidenciado na tabela, cada valoração satisfaz
exatamente três das quatro cláusulas, caracterizando um caso
típico em que a formulação assume natureza de problema de
maximização. Este exemplo evidencia a essência do Max-
2SAT: quando a estrutura das restrições contém conflitos
inevitáveis, o objetivo deixa de ser satisfazer todas as
cláusulas e passa a ser maximizar o número de cláusulas
satisfeitas.

Retornando à interpretação lúdica apresentada anterior-
mente, podemos visualizar o problema através do cenário de
alocação de palestras. A Figura 4 ilustra de forma resumida a
estrutura conceitual desse cenário, destacando os elementos
centrais da formalização que será empregada na redução
apresentada posteriormente.

Essa analogia capta a essência do Max-2SAT: resolver um

sistema de restrições parcialmente conflitantes e maximizar
sua consistência.

Do ponto de vista didático, o Max-2SAT é especialmente
valioso por evidenciar de forma clara a diferença entre
problemas de satisfação total e problemas de maximização.
A análise desse tipo de fórmula permite ao estudante
perceber como a impossibilidade de satisfazer todas as
cláusulas conduz naturalmente a questões de otimização.
O problema também mostra que a estrutura das cláusulas
exerce influência direta sobre a complexidade computacio-
nal, deixando evidente que restrições simples como limitar
cada cláusula a dois literais não garantem a existência
de algoritmos polinomiais. Além disso, o Max-2SAT
estabelece conexões importantes entre problemas booleanos
e problemas em grafos, permitindo interpretar propriedades
combinatórias por meio de fórmulas proposicionais. A
construção de reduções por gadgets, como a utilizada
na transformação Clique ≤p Max-2SAT apresentada na
Seção 5, reforça técnicas fundamentais para demonstrações
de N P -completude. Uma compreensão precisa desse
comportamento é essencial para acompanhar com rigor a
prova apresentada.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Nesta seção é estabelecida a N P -completude do problema
Max-2SAT. A redução utilizada parte do problema Clique
e emprega uma construção baseada em gadgets de seleção
e incompatibilidade [4], detalhada passo a passo com a
variável auxiliar z, as cláusulas de seleção e as cláusulas de
exclusão para não-arestas.

Para provar que Max-2SAT é N P -completo, é necessário
demonstrar duas propriedades:

(i) Max-2SAT ∈N P ;

(ii) existe um problema π sabidamente N P -completo tal
que π≤p Max-2SAT.

Tome (I): Max-2SAT ∈N P . Para mostrar que Max-2SAT
pertence à classe N P , é suficiente exibir um certificado de
tamanho polinomial e um algoritmo verificador que, dado
esse certificado, decide em tempo polinomial se ele constitui
uma solução válida para a instância. No caso do Max-2SAT,
o certificado é uma valoração booleana σ : {x1,x2, . . . ,xn}→
{0,1} que atribui valores verdadeiro ou falso a todas as
variáveis da fórmula F . Dado esse certificado, o Algoritmo 1
percorre cada cláusula da fórmula, avalia se ela é satisfeita
pela valoração fornecida e conta o número total de cláusulas
satisfeitas, verificando se esse total atinge pelo menos o
limiar k especificado na instância.

Para verificar que Max-2SAT pertence à classe N P ,
analisamos a complexidade do algoritmo verificador. O
algoritmo percorre cada uma das m cláusulas uma única
vez. Como cada cláusula contém no máximo dois literais,
a avaliação de C j sob σ é feita em tempo O(1). Portanto,
o tempo total de execução é O(m), que é polinomial no
tamanho da entrada. Logo, Max-2SAT ∈N P .

Tome (II): Max-2SAT é N P -difícil via Clique ≤p
Max-2SAT. Para demonstrar que Max-2SAT é N P -difícil,
seleciona-se o problema Clique, definido formalmente na
Tabela 1 e conhecido por ser N P -completo desde o trabalho
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Algorithm 1 Verificador Polinomial para Max-2SAT

Entrada: Fórmula F =C1∧C2∧·· ·∧Cm em 2-FNC, inteiro
k, certificado σ

Saída: ACEITA se σ satisfaz pelo menos k cláusulas;
REJEITA caso contrário

1: contador← 0
2: for cada cláusula C j ∈ F do
3: Avalie C j sob a valoração σ
4: if C j é satisfeita por σ then
5: contador← contador+1
6: end if
7: end for
8: if contador≥ k then
9: return ACEITA

10: else
11: return REJEITA
12: end if

seminal de Karp [6], e constrói-se uma redução polinomial
Clique ≤p Max-2SAT. Seguindo a terminologia adotada
neste trabalho, Clique atua como problema atacado (o
problema de partida, cuja N P -completude já é conhecida)
e Max-2SAT é o problema alvo, para o qual desejamos
transferir a dificuldade computacional.

A escolha do problema Clique como ponto de partida para
a redução é estratégica por diversas razões. Primeiro, a
estrutura de Clique envolve a seleção de um subconjunto de
vértices com propriedades específicas (adjacência mútua), o
que mapeia naturalmente para variáveis booleanas indicando
inclusão ou exclusão de elementos. Segundo, a condição
de que todos os pares devem ser adjacentes traduz-se
diretamente em cláusulas de incompatibilidade para pares
não adjacentes. Terceiro, o parâmetro k (tamanho da clique)
pode ser codificado no número de cláusulas satisfeitas,
permitindo equivalência precisa entre os problemas. Por fim,
a redução Clique ≤p Max-2SAT ilustra de forma didática
a conexão entre problemas de grafos e problemas de lógica
proposicional, tema central deste trabalho.

A estratégia geral consiste em criar uma variável booleana
xi para cada vértice, uma variável auxiliar z, e construir
cláusulas que incentivam a seleção de vértices enquanto
punem escolhas de pares não adjacentes. O parâmetro K′

é ajustado para que a satisfação de exatamente K′ cláusulas
corresponda a uma clique de tamanho k.

A construção formal da fórmula procede da seguinte
maneira. Dada uma instância (G,k) do problema Clique,
onde G = (V (G),E(G)) é um grafo com conjunto de vértices
V (G) e conjunto de arestas E(G), e k é um inteiro positivo
representando o tamanho mínimo da clique procurada, a
função de redução f produz uma instância (F ′,K′) do
problema Max-2SAT, transformando o grafo G em uma
fórmula booleana F ′ em forma normal conjuntiva (onde cada
cláusula contém no máximo dois literais) e o parâmetro k em
um novo parâmetro K′ que representa o número mínimo de
cláusulas a serem satisfeitas. A seguir, descreve-se passo a
passo como F ′ e K′ são construídos a partir dos elementos de
G e do valor k.

A construção de f pode ser realizada em tempo
polinomial. A criação das variáveis booleanas requer

O(|V (G)|) operações para os n vértices, além de O(1) para
a variável auxiliar z. As cláusulas de seleção totalizam 2 ·
|V (G)| cláusulas, cada uma construída em tempo constante,
resultando em O(|V (G)|). As cláusulas de incompatibilidade
correspondem a uma cláusula para cada par de vértices não-
adjacentes, o que no pior caso representa |E| = O(|V (G)|2)
cláusulas. Por fim, o cálculo de K′ envolve apenas O(1)
operações aritméticas. Portanto, a complexidade total da
redução é O(|V (G)|2), que é polinomial no tamanho da
entrada.

A construção da fórmula F ′ envolve a criação de variáveis
booleanas e três tipos de cláusulas que trabalham em
conjunto para codificar a estrutura do grafo. Inicialmente,
são definidas as variáveis que representarão os vértices
do grafo. Para cada vértice vi ∈ V , cria-se uma variável
booleana xi que indica se o vértice vi faz parte da clique
candidata. Além dessas variáveis, é introduzida uma variável
auxiliar adicional z, cujo papel será explicado no contexto
das cláusulas de seleção.

O primeiro tipo de cláusula são as cláusulas de seleção,
que incentivam a escolha de vértices e permitem controlar o
tamanho da clique. Para cada vértice vi do grafo original,
são inseridas duas cláusulas na fórmula: (xi ∨ z) e (xi ∨¬z).
Essas cláusulas funcionam juntas para distinguir vértices
selecionados de vértices não selecionados. Quando xi = 1,
indicando que o vértice vi foi escolhido para compor a clique,
ambas as cláusulas são satisfeitas, independentemente do
valor atribuído à variável auxiliar z. Já quando xi = 0, apenas
uma das duas cláusulas pode ser satisfeita, dependendo
do valor de z: se z = 1, a cláusula (xi ∨ z) é satisfeita
e (xi ∨ ¬z) é violada; se z = 0, ocorre o inverso. Essa
diferença de uma cláusula satisfeita entre vértices escolhidos
e não escolhidos permite controlar o tamanho da clique
por meio do parâmetro K′, garantindo que apenas seleções
com exatamente k vértices produzam o número exigido de
cláusulas satisfeitas.

O segundo tipo de cláusula são as cláusulas de incom-
patibilidade, que garantem que apenas vértices mutuamente
adjacentes sejam selecionados simultaneamente. Para cada
par de vértices (vi,v j) que não são adjacentes no grafo
original, isto é, para cada par onde (vi,v j) /∈ E, adiciona-
se à fórmula a cláusula (¬xi ∨¬x j). Essa cláusula impõe
uma restrição essencial: vértices não adjacentes não podem
ser selecionados ao mesmo tempo para compor a clique. Se
ambos xi e x j recebem o valor 1, a cláusula (¬xi ∨¬x j) se
torna falsa, penalizando essa escolha inválida. Por outro
lado, se ao menos um dos vértices não for selecionado (isto
é, se uma das variáveis for 0), a cláusula é satisfeita. Dessa
forma, qualquer valoração que satisfaça um número elevado
de cláusulas deve corresponder a um conjunto de vértices que
forma uma clique no grafo original.

Finalmente, define-se o parâmetro K′ que estabelece
o número mínimo de cláusulas a serem satisfeitas. O
parâmetro K′, que estabelece o número mínimo de cláusulas
a serem satisfeitas na instância de Max-2SAT, é definido de
modo a manter equivalência exata com o problema Clique.
O parâmetro é definido como K′ = |V | + k + |E|, onde
|V (G)| é o número total de vértices do grafo (e, portanto,
o número de cláusulas do tipo (xi ∨ z)), k é o tamanho da
clique procurada no problema original (refletindo o ganho
adicional obtido nas cláusulas (xi∨¬z) quando k vértices são
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TABELA 4: RESUMO DA REDUÇÃO CLIQUE ≤p MAX-2SAT.

Componente Cláusulas Função (Gadget) Contrib. p/
K′

Var. de vértice xi, vi ∈V Indica se vi pertence
à clique

—

Var. auxiliar z Controla contagem
de cláusulas

—

Seleção posi-
tiva

(xi ∨ z) Satisfeita se z=1;
base fixa

|V |

Seleção nega-
tiva

(xi ∨¬z) Satisfeita se xi=1;
mede seleção

k

Incompatib. (¬xi ∨ ¬x j),
(vi,v j) /∈ E

Impede seleção de
não adjacentes

|E|

Total: |V |+k+|E|

Grafo G

v1

v2

v3

v4

Clique: {v1;v2;v3}

Redução

Fórmula Max-2SAT

Seleção (+z):
(x1 ∨ z)∧ (x2 ∨ z)
∧(x3 ∨ z)∧ (x4 ∨ z)

Seleção (¬z):
(x1 ∨¬z)∧ (x2 ∨¬z)
∧(x3 ∨¬z)∧ (x4 ∨¬z)

Incompatibilidade:
(¬x1 ∨¬x4)∧ (¬x2 ∨¬x4)
∧(¬x3 ∨¬x4)

K′ = 4+3+3 = 10

Figura 5: Transformação completa: grafo com clique {v1,v2,v3}
e fórmula Max-2SAT resultante.

escolhidos), e |E| é o número de não-arestas, isto é, de pares
de vértices não adjacentes (que correspondem às cláusulas
(¬xi ∨¬x j)). Essa definição garante que a solução do Max-
2SAT reproduza a condição do problema da clique.

Para facilitar a compreensão da construção, a Tabela 4
consolida os componentes da redução, explicitando o
papel de cada tipo de cláusula, o significado dos gadgets
empregados e a contribuição de cada bloco para o parâmetro
K′.

A Figura 5 ilustra o processo de redução em três etapas,
mostrando como cada elemento do grafo original é traduzido
para componentes da fórmula Max-2SAT. Na primeira etapa,
apresentamos o grafo de entrada com seus vértices e arestas.
Na segunda etapa, mostramos os gadgets de seleção, que
consistem nas cláusulas (xi ∨ z) e (xi ∨ ¬z) para cada
vértice, representando o mecanismo que diferencia vértices
escolhidos de não escolhidos. Na terceira etapa, exibimos os
gadgets de incompatibilidade, que são as cláusulas (¬xi ∨
¬x j) geradas para cada par de vértices não adjacentes,
impedindo a seleção simultânea de vértices que não formam
aresta.

Para entender como esse valor opera, considere uma
valoração que corresponde a uma clique válida de tamanho
k. Todas as |V (G)| cláusulas do tipo (xi ∨ z) são satisfeitas,
contribuindo |V (G)| para a contagem. As k cláusulas
(xi ∨ ¬z) associadas aos vértices escolhidos também são
satisfeitas, acrescentando k ao total. Além disso, todas as |E|
cláusulas de incompatibilidade são satisfeitas, pois nenhum
par de vértices não adjacentes foi selecionado ao mesmo
tempo. Somando essas contribuições, obtém-se K′ = |V |+
k+ |E|. Já qualquer valoração que não represente uma clique
de tamanho pelo menos k ou que viole alguma cláusula de
incompatibilidade satisfará um número menor de cláusulas,
o que garante a equivalência entre os dois problemas.

A Figura 5 apresenta uma visualização completa da
transformação, mostrando lado a lado o grafo de entrada
e a fórmula Max-2SAT resultante, com destaque para a
correspondência entre cada elemento do grafo e as cláusulas
geradas. Na parte esquerda da figura, observa-se o grafo G
com a clique {v1,v2,v3} destacada, onde as linhas contínuas
representam arestas e as linhas tracejadas representam não-
arestas. Na parte direita, é exibida a fórmula completa
organizada em três blocos: as cláusulas de seleção positivas
(xi ∨ z), as cláusulas de seleção negativas (xi ∨ ¬z), e as
cláusulas de incompatibilidade (¬xi ∨¬x j). A organização
visual evidencia como cada vértice do grafo origina suas
cláusulas de seleção e como cada par de vértices não
adjacentes (linhas tracejadas) gera sua respectiva cláusula de
incompatibilidade.

Para ilustrar como o parâmetro K′ é obtido, considere o
grafo mostrado na Figura 5, com V (G) = {v1;v2;v3;v4} e
E(G) = {(v1,v2);(v2,v3);(v1,v3)}. Suponha que desejamos
verificar se existe uma clique de tamanho k = 3 nesse grafo.

Primeiro, são identificados os componentes necessários
para o cálculo:

O número de vértices é |V (G)| = 4, o que gera quatro
cláusulas do tipo (xi ∨ z), uma para cada vértice do grafo.
Essas cláusulas sempre serão satisfeitas quando z = 1,
independentemente de quais vértices forem escolhidos.

O tamanho da clique desejada é k = 3, que corresponde
ao número de cláusulas adicionais do tipo (xi ∨ ¬z)
que esperamos satisfazer quando o número de vértices
selecionados é três.

Para determinar o número de não-arestas |E|, conta-se
quantos pares de vértices não são adjacentes. Em um grafo
com quatro vértices, existem

(4
2

)
= 6 pares possíveis. Como

o grafo possui |E(G)| = 3 arestas, o número de não-arestas
é |E| = 6− 3 = 3. Os pares não adjacentes são: (v1,v4),
(v2,v4) e (v3,v4). Para cada um desses pares, inclui-se uma
cláusula de incompatibilidade.

Aplicando a fórmula K′ = |V (G)|+ k+ |E|, obtém-se:

K′ = 4+3+3 = 10

Assim, a instância de Max-2SAT correspondente per-
gunta: "É possível satisfazer pelo menos 10 cláusulas
da fórmula construída?"Uma resposta positiva equivale a
afirmar que o grafo original possui uma clique de tamanho
pelo menos 3.

Para verificar a construção, observe que o grafo contém
uma clique de tamanho 3 formada pelos vértices {v1,v2,v3}.
Atribuindo x1 = x2 = x3 = 1, x4 = 0 e z = 1, temos:

As 4 cláusulas (x1∨z), (x2∨z), (x3∨z) e (x4∨z) são todas
satisfeitas porque z = 1, contribuindo com 4 cláusulas.

Das 4 cláusulas do tipo (xi ∨ ¬z), apenas as três
correspondentes aos vértices selecionados são satisfeitas:
(x1 ∨¬z), (x2 ∨¬z) e (x3 ∨¬z), pois x1 = x2 = x3 = 1. Isso
contribui com 3 cláusulas adicionais.

As 3 cláusulas de incompatibilidade (¬x1 ∨¬x4), (¬x2 ∨
¬x4) e (¬x3 ∨ ¬x4) são todas satisfeitas porque x4 = 0,
contribuindo com 3 cláusulas.

O total é 4 + 3 + 3 = 10 = K′, o que confirma que a
valoração satisfaz exatamente o número exigido de cláusulas.
Esse exemplo mostra que o parâmetro K′ reflete de forma
precisa a estrutura da clique por meio da contagem de
cláusulas satisfeitas.
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Estabelecida a construção, é necessário agora provar sua
corretude demonstrando a equivalência entre as instâncias.
Para estabelecer que a redução está correta, é preciso
demonstrar que (G,k) ∈ Clique se e somente se (F ′,K′) ∈
Max-2SAT. Cada direção é provada separadamente.

Ida (⇒): Se G possui uma clique de tamanho k, então
(F’, K’) é satisfatível. Suponha que exista um conjunto
S ⊆V (G) de vértices formando uma clique de tamanho pelo
menos k, isto é, |S| ≥ k e para todo par de vértices distintos
vi,v j ∈ S, existe uma aresta (vi,v j) ∈ E(G). Constrói-se uma
valoração que satisfaz pelo menos K′ cláusulas da fórmula
F ′.

Defina a valoração da seguinte forma: para cada variável
xi, atribua xi = 1 se o vértice vi pertence ao conjunto S e xi =
0 caso contrário. Adicionalmente, atribua z = 1 à variável
auxiliar. Analisa-se quantas cláusulas são satisfeitas por essa
valoração.

Primeiro, são analisadas as cláusulas de seleção. Para
cada vértice vi ∈ V (G), há duas cláusulas: (xi ∨ z) e (xi ∨
¬z). Como foi definido z = 1, todas as cláusulas do tipo
(xi ∨ z) são satisfeitas, independentemente do valor de xi, o
que contribui com |V (G)| cláusulas satisfeitas. Já para as
cláusulas (xi ∨¬z), temos ¬z = 0 nessa valoração, de modo
que elas são satisfeitas apenas quando xi = 1. Como foi
atribuído xi = 1 aos k vértices do conjunto S, k cláusulas
desse tipo são satisfeitas.

Agora são consideradas as cláusulas de incompatibilidade.
Para cada par não-adjacente (vi,v j) /∈ E(G), temos a cláusula
(¬xi ∨ ¬x j). Essa cláusula é falsa apenas quando ambos
xi = 1 e x j = 1, o que aconteceria se ambos os vértices vi
e v j pertencessem ao conjunto S. No entanto, por hipótese,
S é uma clique, portanto todos os pares de vértices em S
são adjacentes. Isso significa que não existe nenhum par
(vi,v j) /∈ E(G) com ambos vi,v j ∈ S. Consequentemente,
para todo par não-adjacente (vi,v j) /∈ E(G), pelo menos um
dos vértices não pertence a S, garantindo que pelo menos
uma das variáveis xi ou x j vale 0, o que torna a cláusula
(¬xi ∨¬x j) verdadeira. Portanto, todas as |E| cláusulas de
incompatibilidade são satisfeitas.

Somando as contribuições, obtém-se |V (G)|+k+ |E|=K′

cláusulas satisfeitas, provando que (F ′,K′) ∈Max-2SAT.
Volta (⇐): Se (F ′,K′) é satisfatível, então G possui

uma clique de tamanho k. Suponha agora que exista uma
valoração que satisfaz pelo menos K′ cláusulas da fórmula
F ′. É demonstrado que pode-se extrair dessa valoração um
conjunto de vértices que forma uma clique de tamanho pelo
menos k no grafo G.

Sem perda de generalidade, pode-se assumir que a variável
auxiliar z recebe o valor 1 nesta valoração. Caso z = 0 na
valoração original, considera-se uma valoração alternativa
onde invertemos o valor de z para 1 e mantemos os valores de
todas as variáveis xi inalterados. Como cada vértice contribui
com duas cláusulas (xi ∨ z) e (xi ∨ ¬z), inverter z apenas
troca qual dessas cláusulas é satisfeita para vértices com
xi = 0, sem alterar o total de cláusulas satisfeitas. Portanto, é
possível trabalhar com uma valoração onde z = 1.

Com z = 1, todas as |V (G)| cláusulas da forma (xi ∨ z)
são automaticamente satisfeitas. Isso deixa espaço para
K′−|V (G)|= k+ |E| cláusulas adicionais serem satisfeitas.
Essas cláusulas adicionais vêm de duas fontes: as cláusulas
(xi ∨ ¬z) para vértices com xi = 1 e as cláusulas de

v1

v2

v3

v4

Figura 6: Grafo de entrada para a redução: clique {v1,v2,v3} e
vértice isolado v4.

incompatibilidade (¬xi∨¬x j).
Defina S = {vi | xi = 1} como o conjunto de vértices cujas

variáveis foram atribuídas como verdadeiras. Para satisfazer
pelo menos k + |E| cláusulas adicionais, é necessário ter
pelo menos |S| cláusulas do tipo (xi ∨¬z) satisfeitas (uma
para cada vértice em S) e todas as |E| cláusulas de
incompatibilidade satisfeitas.

Se alguma cláusula de incompatibilidade (¬xi ∨¬x j) não
for satisfeita, isso significa que ambos xi = 1 e x j = 1,
mas (vi,v j) /∈ E(G). Cada cláusula de incompatibilidade
violada reduz o número total de cláusulas satisfeitas em
uma unidade. Para manter o total em pelo menos K′, seria
necessário que mais cláusulas (xi ∨¬z) fossem satisfeitas, o
que requereria mais vértices em S. No entanto, adicionar
mais vértices aumenta o risco de violar mais cláusulas de
incompatibilidade. De fato, pode-se verificar algebricamente
que violar qualquer cláusula de incompatibilidade torna
impossível atingir exatamente K′ cláusulas satisfeitas com a
construção apresentada.

Portanto, todas as |E| cláusulas de incompatibilidade
devem ser satisfeitas, o que garante que não existe nenhum
par (vi,v j) /∈ E(G) com ambos vi,v j ∈ S. Logo, S forma uma
clique de tamanho pelo menos k no grafo G.

Para consolidar a compreensão da redução, é apresentado
um exemplo completo que percorre todas as etapas da
transformação, desde o grafo de entrada até a verifica-
ção da valoração resultante. Considere um grafo com
quatro vértices V (G) = {v1,v2,v3,v4} e arestas E(G) =
{(v1,v2),(v2,v3),(v1,v3)}. A Figura 6 ilustra esse grafo,
onde os vértices v1, v2 e v3 formam uma clique de tamanho
3, representada pelas linhas contínuas que conectam cada par
desses três vértices. O vértice v4 não possui arestas com
nenhum dos outros vértices, o que é indicado pelas linhas
tracejadas que representam os pares não adjacentes (v1,v4);
(v2,v4); (v3,v4). Essa distinção visual entre arestas presentes
e ausentes é fundamental para compreender como a redução
constrói as cláusulas de incompatibilidade.

A partir da clique de tamanho 3 identificada no grafo, a
construção gera as cláusulas:

(xi∨ z), (xi∨¬z) para i = 1,2,3,4,

e, para as não-arestas:

(¬x1∨¬x4), (¬x2∨¬x4), (¬x3∨¬x4).

A valoração x1 = x2 = x3 = 1, x4 = 0 e z = 1 satisfaz
exatamente K′ cláusulas, como requerido. A Figura 7 ilustra
detalhadamente essa verificação, mostrando quais cláusulas
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Verificação: x1 = x2 = x3 = 1, x4 = 0, z = 1

Seleção (xi ∨ z): 4 cláusulas

Seleção (xi ∨¬z): 3 cláusulas

Incompatibilidade: 3 cláusulas

Total: 4+3+3 = 10 = K′ X

Figura 7: Verificação detalhada da valoração que satisfaz K′ = 10
cláusulas.

são satisfeitas e quais não são, organizadas por tipo. Na
coluna da esquerda, observa-se que todas as cláusulas de
seleção positiva (xi ∨ z) são satisfeitas porque z = 1. Na
coluna central, as cláusulas de seleção negativa (xi∨¬z) são
satisfeitas apenas para os vértices selecionados (x1, x2, x3),
totalizando 3 cláusulas, enquanto a cláusula (x4 ∨¬z) não é
satisfeita pois x4 = 0 e ¬z = 0. Na coluna da direita, todas as
cláusulas de incompatibilidade são satisfeitas porque x4 = 0
torna verdadeira qualquer cláusula da forma (¬xi∨¬x4).

Esse exemplo demonstra concretamente como a estrutura
da clique no grafo original é preservada na fórmula Max-
2SAT: os três vértices da clique correspondem aos três
vértices com xi = 1, que são exatamente os responsáveis
por satisfazer as cláusulas extras de seleção negativa.
Simultaneamente, o fato de esses três vértices serem
mutuamente adjacentes garante que nenhuma cláusula de
incompatibilidade é gerada entre eles, permitindo que todas
as cláusulas de incompatibilidade (que envolvem apenas v4)
sejam satisfeitas.

A redução com a variável auxiliar z evidencia diversos as-
pectos pedagógicos relevantes. Ela mostra como cláusulas de
dois literais podem impor restrições estruturais fortes sobre
as possíveis valorações e como a seleção de vértices válidos
depende da satisfação simultânea de múltiplas cláusulas
independentes. Além disso, as cláusulas negativas traduzem
de maneira direta as relações de incompatibilidade no grafo,
reforçando a conexão entre propriedades combinatórias e
expressões booleanas. A definição precisa do parâmetro
K′ demonstra como controlar o tamanho da clique desejada
por meio da contagem de cláusulas satisfeitas. Por fim,
essa construção evidencia por que reduções entre problemas
de grafos e fórmulas booleanas constituem ferramenta
fundamental no estudo de N P -completude.

VI. RESULTADOS E REFLEXÕES

Apresentada a demonstração de N P -completude do Max-
2SAT, esta seção discute os principais resultados obtidos,
bem como reflexões conceituais e pedagógicas sobre o
processo de construção da redução e sobre os elementos que
tornaram essa abordagem útil para o aprendizado em Teoria
da Computação.

A demonstração apresentada confirmou que o problema
Max-2SAT pertence à classe N P , uma vez que o número de
cláusulas satisfeitas por uma valoração pode ser verificado
em tempo linear no tamanho da instância. Basta percorrer
cada cláusula uma única vez, avaliar se ela é verdadeira sob
a valoração fornecida como certificado, e contar quantas são

satisfeitas. Como cada cláusula contém no máximo dois
literais, essa avaliação é realizada em tempo constante por
cláusula, resultando em complexidade total O(m), onde m é
o número de cláusulas.

Além disso, foi demonstrado que Max-2SAT é N P -
difícil, pois o problema Clique, que é N P -completo
conforme estabelecido por Karp [6], foi reduzido a ele por
meio de uma função de transformação computável em tempo
polinomial. A redução constrói uma fórmula booleana cujo
tamanho é polinomial no tamanho do grafo de entrada: o
número de variáveis é |V |+ 1 e o número de cláusulas é
2|V |+ |E|, onde |E| ≤

(|V |
2

)
. A construção de cada cláusula

requer tempo constante, portanto a transformação completa
opera em tempo O(|V |2).

A formulação com a variável auxiliar z mostrou-se útil,
pois permite controlar o número total de cláusulas satisfeitas
sem recorrer a construções mais extensas. Essa técnica evita
a criação de cláusulas com mais de dois literais e preserva
a estrutura típica do Max-2SAT. A variável z funciona como
um mecanismo de balanceamento que garante que vértices
escolhidos contribuam com exatamente uma cláusula a mais
do que vértices não escolhidos, traduzindo o tamanho da
clique diretamente na quantidade de cláusulas satisfeitas.

O valor limite K′ foi definido para refletir com precisão
a estrutura combinatória do grafo original. A decom-
posição K′ = |V | + k + |E| incorpora três componentes
distintos: a base fixa de cláusulas sempre satisfeitas, o
ganho proporcional ao tamanho da clique e a penalização
associada à violação das cláusulas de incompatibilidade.
Essa construção assegura que uma valoração que satisfaça
exatamente K′ cláusulas corresponda a uma clique de
tamanho k, estabelecendo equivalência completa entre os
dois problemas.

Esses resultados mostram que pequenas alterações estru-
turais em problemas que parecem simples, como a transição
de 2-SAT para Max-2SAT, podem alterar de forma profunda
sua complexidade. Enquanto 2-SAT admite solução em
tempo linear por meio do grafo de implicações, sua
versão de maximização torna-se tão difícil quanto qualquer
problema em NP, evidenciando a fronteira entre tratabilidade
e intratabilidade.

O desenvolvimento da redução Clique ≤p Max-2SAT
revelou diversos aspectos importantes para o ensino e com-
preensão de problemas N P -completos. A transformação de
relações de adjacência em cláusulas de dois literais torna
explícito como propriedades estruturais de grafos podem ser
modeladas por fórmulas booleanas. Cada aresta ou não-
aresta no grafo corresponde de forma direta a uma restrição
lógica, estabelecendo um dicionário claro entre os dois
domínios. Essa correspondência evidencia que problemas
aparentemente distintos compartilham estrutura matemática
profunda, sendo manifestações diferentes de uma mesma
dificuldade computacional subjacente.

A expressão (¬xi ∨¬x j) traduz a proibição de escolher
dois vértices não adjacentes, mostrando como restrições
combinatórias são mapeadas para restrições lógicas. Essa
cláusula funciona como uma "barreira lógica"que impede
configurações inválidas, e sua violação resulta na redução
do número total de cláusulas satisfeitas. Compreender esse
mecanismo de penalização é fundamental para desenvolver
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intuição sobre como problemas de otimização combinatória
podem ser codificados em fórmulas booleanas.

A introdução da variável auxiliar z simplifica a contagem
de cláusulas, garantindo equilíbrio entre as expressões do
tipo (xi ∨ z) e (xi ∨ ¬z) e permitindo a definição precisa
do parâmetro K′. Sem essa variável, seria necessário
construir gadgets mais complexos ou usar cláusulas maiores,
evidenciando a fronteira. A técnica de usar variáveis
auxiliares para controlar comportamentos globais da fórmula
é aplicável em construções de reduções, e sua apresentação
neste contexto fornece modelo útil para outros problemas.

O ajuste de K′ evidencia uma técnica comum em reduções,
na qual o número de cláusulas satisfeitas reflete diretamente
o tamanho da estrutura procurada no problema original.
Essa correspondência numérica precisa entre parâmetros do
problema fonte e problema alvo é característica essencial
de reduções bem construídas. Estudantes muitas vezes
têm dificuldade em determinar parâmetros corretos para
problemas de otimização; o exemplo apresentado demonstra
metodologia sistemática baseada na análise de contribuições
independentes de cada componente da construção.

Provar ambas as direções da equivalência, isto é,
que uma clique gera uma valoração válida e que uma
valoração válida gera uma clique, reforça o raciocínio
formal necessário para reduções corretas. Muitos estudantes
cometem o erro de provar apenas uma direção ou de assumir
equivalência sem justificativa rigorosa. A demonstração
cuidadosa apresentada serve como modelo de argumentação
matemática, enfatizando a importância de considerar todas
as possibilidades e eliminar casos degenerados.

Analisar como cada valoração influencia o conjunto das
cláusulas satisfeitas ajuda a desenvolver intuição sobre como
problemas booleanos capturam propriedades de grafos. Ao
considerar sistematicamente os efeitos de atribuir valores
verdadeiro ou falso a cada variável, estudantes desenvolvem
compreensão profunda de como restrições locais (satisfação
de cláusulas individuais) emergem como propriedades
globais (existência de cliques). Essa conexão entre nível
local e global é fundamental não apenas em complexidade
computacional, mas em toda ciência da computação.

Ao final, a redução analisada oferece uma visão sólida
sobre a intratabilidade do Max-2SAT e sobre a versatilidade
das reduções polinomiais. A construção estudada demonstra,
de forma acessível e estruturada, como problemas de
natureza combinatória e lógica podem ser relacionados
de maneira precisa, contribuindo significativamente para o
aprendizado prático de N P -completude.

+3O material desenvolvido pode ser empregado em diver-
sos contextos de ensino. Em disciplinas de graduação em
Teoria da Computação ou Análise de Algoritmos, a redução
pode ser apresentada como estudo de caso após a introdução
dos conceitos de N P -completude, permitindo que estudan-
tes acompanhem passo a passo uma demonstração completa
antes de desenvolverem suas próprias provas. Em cursos de
pós-graduação, o material pode servir como ponto de partida
para discussões sobre técnicas avançadas de redução, limites
de aproximabilidade e conexões com outros problemas de
satisfatibilidade. Como atividade prática, sugere-se propor
aos estudantes a verificação manual da redução para grafos
pequenos, a implementação computacional do algoritmo de
transformação, ou a adaptação da técnica para variantes

como Max-3SAT ou Weighted Max-2SAT. A estrutura
modular da apresentação — com figuras, tabelas-resumo e
exemplos comentados — facilita a segmentação do conteúdo
em múltiplas aulas ou a utilização em metodologias ativas
baseadas em seminários, conforme discutido por Lassance,
Bianchini e Santos [11].

O material apresentado serve tanto como recurso didático
para compreensão de técnicas específicas quanto como
exemplar metodológico para desenvolvimento de novas
reduções, cumprindo assim o objetivo pedagógico central
deste trabalho.

VII. CONSIDERAÇÕES FINAIS

Este artigo apresentou uma demonstração formal e didática
da N P -completude do problema Max-2SAT por meio de
redução polinomial a partir do problema Clique. A prova foi
estruturada demonstrando-se primeiro a pertinência à classe
N P mediante certificado verificável em tempo polinomial,
e em seguida a N P -dificuldade através de transformação
polinomial que preserva equivalência entre instâncias.

A construção proposta utiliza variável auxiliar z para
controlar o número de cláusulas satisfeitas, ajustando o
parâmetro K’ para refletir de forma precisa o tamanho da
clique desejada. As cláusulas de seleção incentivam a esco-
lha de vértices, enquanto as cláusulas de incompatibilidade
impedem seleção simultânea de vértices não adjacentes,
evidenciando como relações combinatórias em grafos são
codificadas por fórmulas booleanas.

Entre as dificuldades encontradas, destacam-se a escolha
adequada do parâmetro K’ e a formalização rigorosa da prova
de corretude em ambas as direções. A compreensão do papel
da variável z exigiu análise cuidadosa de como cada tipo de
cláusula contribui para a contagem total.

Como limitações, o trabalho concentrou-se na versão de
decisão do Max-2SAT e na redução a partir de Clique.
Outras reduções, como baseadas em 3-SAT ou Vertex Cover,
podem oferecer perspectivas complementares. Para trabalhos
futuros, sugere-se explorar variantes parametrizadas, analisar
complexidade em classes especiais de grafos, desenvolver
algoritmos aproximativos e investigar aplicações com SAT
solvers modernos.

O material produzido serve como recurso didático para
disciplinas de Teoria da Computação, contribuindo para a
formação de estudantes em Ciência da Computação. Espera-
se que inspire novas produções que articulem rigor técnico e
finalidade pedagógica, fortalecendo a comunidade de ensino
e pesquisa em Teoria da Computação.
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Resumo—Este trabalho propõe uma abordagem metodológica e didática para a reprodução e elucidação dos conceitos de NP-Completude e
da intratabilidade inerente a problemas computacionais, especialmente os combinatórios, utilizando o Set Packing Problem (SP) como estudo
de caso. A metodologia consiste na exposição detalhada do problema, seguida pela reprodução da demonstração formal do pertencimento
do SP à classe NP-Completa, incluindo a construção e análise de seu verificador polinomial e a apresentação passo a passo da técnica de
redução polinomial de CLIQUE para SP. O principal resultado e a contribuição deste artigo é o desenvolvimento de um material pedagógico
que visa aprimorar a compreensão integral dos conceitos da Teoria da Computação, auxiliando o público leigo a assimilar de forma eficaz o
significado da complexidade computacional.

Palavras-chave—Teoria da Computação, Complexidade Computacional, NP-Completude, Empacotamento de Conjuntos, Redução
Polinomial

Abstract—This work proposes a methodological and didactic approach for the reproduction and elucidation of the concepts of NP-
Completeness and the inherent intractability of combinatorial problems, using the Set Packing Problem (SP) as a case study. The
methodology consists of a detailed exposition of the problem, followed by the reproduction of the formal demonstration of SP’s membership in
the NP-Complete class, including the construction and analysis of its polynomial verifier and the step-by-step presentation of the polynomial
reduction technique from CLIQUE to SP. The main result and contribution of this article is the development of pedagogical material that
aims to enhance the integral understanding of Theory of Computation concepts, assisting the public in effectively assimilating the meaning
of computational complexity.

Keywords—Theory of Computation, Computational Complexity, NP-Completeness, Set Packing Problem, Polynomial Reduction

I. INTRODUÇÃO

T eoria da Computação (TC) é a base teórica para a
Ciência da Computação e Engenharia da Computação,

fornecendo as ferramentas conceituais necessárias para
compreender o que pode ser computado e, crucialmente,
com qual eficiência. Foi no início da década de 1970 que
a disciplina ganhou uma nova dimensão com o surgimento
da Teoria da Complexidade Computacional, impulsionada
pelo trabalho de Stephen Cook (1971) [1] e, notavelmente,
por Richard Karp (1972) [2]. Este campo de estudo buscou
categorizar problemas com base nos recursos (tempo e

Dados de contato: Emanuel Badaró Fonseca, badaro.fonseca@uft.edu.br

espaço) requeridos por seus melhores algoritmos de solução,
culminando na definição das classes P (Polynomial Time) e
N P (Nondeterministic Polynomial Time) e na formulação do
problema P versus N P , definido como um dos Millennium
Prize Problems pelo Clay Mathematics Institute [3].

Neste contexto, a complexidade representa o que de fato
significa a intratabilidade de problemas, ou seja, a prova de
que certas questões computacionais não podem ser resolvidas
de forma eficiente (em tempo polinomial) por qualquer
algoritmo determinístico conhecido, a menos que P =N P .
A compreensão da NP-Completude é, portanto, essencial
para que o futuro profissional saiba quando buscar soluções
exatas ou métodos alternativos como algoritmos aproximados
e heurísticos.

Considere por exemplo um conjunto universo U e uma
coleção de subconjuntos S. O objetivo é verificar se existe
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uma subcoleção dentro de S contendo pelo menos k
subconjuntos que sejam mutuamente disjuntos, isto é, que não
compartilhem nenhum elemento comum entre si (a interseção
entre qualquer subconjunto escolhido é vazia). Este é o
Problema do Set Packing (Empacoteamnto de Conjuntos),
um dos 21 problemas NP-Completos de Karp [2] e o qual será
utilizado como estudo de caso neste artigo.

A complexidade inerente à Teoria da Computação,
especificamente no que tange às reduções polinomiais e
à classe NP-Completa, representa um desafio pedagógico
constante, apesar da relevância teórica de problemas como o
Set Packing. Com o objetivo de mitigar essas dificuldades,
este trabalho propõe uma construção pedagógica da prova de
NP-Completude do Set Packing. A estrutura do artigo segue
uma lógica sequencial: a Seção 2 fornece o embasamento
teórico e as definições fundamentais. A Seção 3 examina a
literatura pertinente e trabalhos correlatos. As Seções 4 e 5
constituem o cerne do trabalho, apresentando a descrição e a
demonstração formal do problema, assim como a estratégia
de redução. As contribuições e reflexões sobre o aprendizado
são debatidas na Seção 6, seguidas pelas conclusões na Seção
7.

II. PRELIMINARES

Esta seção apresenta os conceitos e ferramentas de análise
pertinentes que serão utilizados ao longo de todo este trabalho.

Um conjunto é definido como uma coleção não ordenada
de elementos distintos. A partir deste conceito, estabelece-se
a relação de subconjunto: diz-se que um conjunto B é um
subconjunto de um conjunto A (denotado por B⊆ A) se todos
os elementos presentes em B são também elementos de A.
Por exemplo, dado o conjunto A = {1,2,3}, podemos definir
um subconjunto B = {1,2}. Como ambos os elementos de B
estão em A, temos que B⊆ A.

Um grafo G é definido formalmente como um par ordenado
G = (V,E), composto por um conjunto finito e não vazio
de vértices V e um conjunto de arestas E. Neste contexto,
os vértices constituem os elementos de V e representam
as entidades ou objetos que estão sendo modelados. Já as
arestas são definidas como pares não ordenados (u,v) de
vértices distintos de V , representando as conexões ou relações
estabelecidas entre esses vértices.

Considere o grafo presente na Figura 1 como exemplo, onde
o conjunto de vértices é V = {v1,v2,v3,v4,v5} e o conjunto
de arestas é E = {(v1,v2),(v2,v3),(v1,v3),(v4,v5),(v3,v5)}.
Neste caso, o vértice v1 está conectado ao vértice v2 pela
aresta (v1,v2).

Uma clique em um grafo é um subconjunto de vértices C⊆
V tal que todo par de vértices distintos em C está conectado
por uma aresta em E. A Figura 1 mostra um exemplo visual
de uma clique de tamanho 3 em um grafo.

Na Teoria da computação, um problema de decisão é uma
questão que tem uma resposta simples de “sim” ou “não”. É
como fazer uma pergunta que pode ser respondida com um
"verdadeiro" ou "falso".

Utilizando o grafo da Figura 1 e k = 3, a pergunta “Existe
uma clique de tamanho 3 neste grafo?” é um problema de
decisão cuja resposta é “Sim”.

A complexidade computacional é o estudo de quão
eficientemente um algoritmo (uma receita para resolver um

Figura 1: Exemplo de uma clique de tamanho 3. Clique
C = {v1,v2,v3}.

problema) pode resolver um problema em termos de tempo e
recursos (como memória). Medimos o “tempo” pelo número
de passos que o algoritmo leva para rodar, especialmente à
medida que o tamanho da entrada aumenta.

Para ordenar uma lista de n números, um algoritmo simples
pode levar n2 passos (como o Bubble Sort), enquanto um mais
eficiente leva n logn passos (como o Merge Sort).

Um problema é classificado como pertencente ao Tempo
Polinomial P quando existe um algoritmo capaz de encontrar
sua resposta (do tipo sim ou não, para problemas de decisão)
em um número de passos que cresce, no máximo, como um
polinômio do tamanho da entrada. Por essa razão, problemas
em P são geralmente categorizados na literatura como “fáceis”
ou “eficientemente solúveis”.

A Classe N P (Non-deterministic Polynomial time) agrupa
problemas de decisão para os quais, dada uma “solução
candidata” (denominada certificado), é possível verificar sua
correção em tempo polinomial. Esta definição não implica
necessariamente que a solução possa ser encontrada de forma
eficiente, mas sim que podemos confirmar rapidamente a
validade de uma proposta apresentada. Vale ressaltar, por
fim, que todo problema pertencente à classe P está também
contido em N P .

Por exemplo, no jogo Sudoku, encontrar a solução para
um tabuleiro vazio pode ser demorado, mas dada uma grade
preenchida (o certificado), verificar se ela segue as regras (não
repetir números nas linhas, colunas e quadrantes) é muito
rápido (polinomial).

A Redução Polinomial (A≤p B) é uma ferramenta formal
utilizada para demonstrar que um problema é “pelo menos tão
difícil” quanto outro. O processo consiste na capacidade de
transformar eficientemente (em tempo polinomial) qualquer
instância de um problema A em uma instância de um problema
B, preservando a equivalência das respostas: a instância de A
é positiva se, e somente se, a instância correspondente de B
também o for.

Como exemplo, suponha que o Problema A seja “encontrar
a saída de um labirinto físico de sebes”. Se soubermos
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Figura 2: Entrada: o grafo G e k = 4. A resposta é "Sim", pois
{v1,v2,v3,v4} é uma clique.

transformar (reduzir) este labirinto em um desenho de Grafo
(Problema B), onde cada cruzamento é um vértice e cada
corredor é uma aresta, podemos usar um algoritmo de
computador conhecido para resolver B. Assim, resolver o
grafo resolve o labirinto.

O problema da Clique é um problema de decisão NP-
Completo.

CLIQUE

Entrada: Um grafo G = (V,E) e um inteiro k ≥ 1.
Questão: Existe um subconjunto de vértices V ′ ⊆V tal que
|V ′| ≥ k e, para todo par de vértices distintos em V ′, existe
uma aresta em E que os conecta?

Considere como exemplo a Figura 2.
O problema do Conjunto Independente também

é um problema de decisão NP-Completo.

INDEPENDENT SET

Entrada: Um grafo G = (V,E) e um inteiro k ≥ 1.
Questão: Existe um subconjunto de vértices V ′ ⊆V tal que
|V ′| ≥ k e não há arestas em E conectando quaisquer dois
vértices em V ′?

Considere como exemplo de Independent Set a Figura 3.
O problema do Empacotamento de Conjuntos

é central para este trabalho e pertence
à classe dos problemas NP-Completos.

SET PACKING

Entrada: Uma coleção C = {S1,S2, . . . ,Sm} de subconjuntos
de um conjunto universal U , e um inteiro k ≥ 1.
Questão: Existe uma subcoleção C′ ⊆ C tal que |C′| ≥ k e
todos os conjuntos em C′ são mutuamente disjuntos (ou seja,
para quaisquer dois conjuntos Si,S j ∈C′ com i 6= j, tem-se
Si∩S j = /0)?

Figura 3: Entrada: Grafo G e k = 2. A resposta é "Sim", pois o
subconjunto {v1,v6} tem tamanho 2 e não existe a aresta (v1,v6)

em E(G).

Exemplo: Entrada: U = {1,2,3,4}, C =
{{1,2},{2,3},{3,4}} e k = 2. A resposta é "Sim",
pois a subcoleção C′ = {{1,2},{3,4}} tem tamanho 2 e os
conjuntos são disjuntos.

III. TRABALHOS RELACIONADOS

A literatura sobre o problema do Set Packing (SP) é extensa,
abrangendo desde as provas fundamentais de complexidade
até aplicações modernas em teoria dos jogos e otimização.
Nesta seção, destacamos trabalhos que fundamentam a teoria,
exploram limites de tratabilidade e dialogam com a proposta
pedagógica deste artigo.

A referência primária para a classificação do Set Packing
é o trabalho clássico de Karp [2], onde demonstrou em suas
pesquisas a redutibilidade entre 21 problemas combinatórios,
estabelecendo o Set Packing como NP-Completo através de
uma cadeia de reduções originada na Satisfiabilidade (SAT).
Este trabalho define a posição do problema na hierarquia de
complexidade. Complementarmente, Garey e Johnson [4]
sistematizaram a metodologia de provas de NP-Completude.
O presente artigo adota a estrutura formal de construção e
verificação polinomial proposta por eles, adaptando seu rigor
técnico a uma abordagem pedagógica.

Avançando para estratégias de resolução exata e mode-
lagem, no trabalho de Delorme, Gandibleux e Rodriguez
(2004) [5], podemos notar que eles trabalham com uma
nova abordagem de modelagem para a resolução exata. Na
pesquisa, os autores abordam o problema de Set Packing
propondo uma transformação para o problema de clique
máxima e obtêm uma redução significativa na complexidade
do espaço de busca. Os resultados são interessantes por
demonstrarem como a reformulação do modelo matemático e
o uso de limitantes superiores podem acelerar a resolução de
instâncias difíceis.

Expandindo o escopo para generalizações com aplicações
práticas, no trabalho de Muritiba et al. (2010) [6], podemos
notar que eles trabalham com o problema de empacotamento
de bins com conflitos (BPPC). Na pesquisa, os autores
abordam o problema propondo novos limites inferiores
baseados na computação de cliques maximais, novos
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limites superiores através de uma abordagem meta-heurística
envolvendo busca tabu e um operador de cruzamento, e um
algoritmo exato baseado em uma formulação de cobertura de
conjuntos, resolvido por meio de geração de colunas e branch-
and-price. Os resultados são interessantes por demonstrar a
eficácia dos algoritmos propostos em um vasto conjunto de
instâncias de referência da literatura, resolvendo 780 de 800
instâncias para a otimalidade e melhorando consistentemente
algoritmos anteriores.

Investigando a tratabilidade sob condições específicas, no
trabalho de Jia, Zhang e Chen (2004) [7], podemos notar
que eles trabalham com a complexidade parametrizada do
problema de empacotamento de conjuntos. Na pesquisa,
os autores abordam o problema de m-Set Packing (onde
o tamanho de cada conjunto é limitado por uma constante
m) propondo um algoritmo eficiente de complexidade
parametrizada e obtêm a prova de que o problema é tratável
por parâmetro fixo (FPT) em relação ao tamanho da solução
k. Os resultados são interessantes por demonstrarem que,
ao restringir o tamanho dos conjuntos, é possível superar a
intratabilidade geral e encontrar soluções exatas de forma
eficiente para valores pequenos de k.

Sob a ótica de soluções aproximadas para o caso geral, no
trabalho de Fürer e Yu (2014) [8], podemos notar que eles
trabalham com a análise teórica de algoritmos de aproximação.
Na pesquisa, os autores abordam o problema de k-Set
Packing investigando o poder das melhorias locais (local
improvements) e obtêm limites de aproximação refinados para
o problema. Os resultados são interessantes por aprofundarem
o entendimento sobre as limitações e capacidades da busca
local, fornecendo garantias mais justas para a qualidade das
soluções encontradas por essa classe de algoritmos.

Retornando às inovações em modelagem matemática,
no trabalho de Alidaee et al. (2008) [9], podemos notar
que eles trabalham com uma nova abordagem baseada em
Programação Quadrática Binária Irrestrita (UBQP/QUBO).
Na pesquisa, os autores abordam o problema de Set Packing
transformando as restrições de disjunção em penalidades na
função objetivo quadrática e obtêm soluções de alta qualidade
que rivalizam com métodos especializados em termos de
tempo e eficiência. Os resultados são interessantes por
demonstrarem que uma estrutura unificada e sem restrições
pode simplificar a resolução de problemas combinatórios
complexos, permitindo o uso de heurísticas genéricas
robustas.

Por fim, o trabalho de Lassance e Bianchini [10] investigou
o impacto de estratégias didáticas no ensino de Teoria da
Computação. O estudo conclui que abordagens descritivas
e a participação ativa dos discentes (via seminários) são
eficazes para diluir a complexidade das reduções polinomiais.
Seguindo esta diretriz pedagógica, nosso trabalho adota uma
estratégia de decomposição visual e prova passo a passo,
visando contribuir com o entendimento de conceitos abstratos
de intratabilidade computacional pelo público em geral.

IV. DESCRIÇÃO DO PROBLEMA

O problema do Set Packing (Empacotamento de Conjuntos),
doravante denominado SP, é um problema fundamental
na otimização combinatória e na teoria da complexidade
computacional. Formalmente, dado um universo finito U

e uma família de subconjuntos S = {S1,S2, . . . ,Sm}, onde
Si ⊆U , um packing é uma subcoleção S′ ⊆ S tal que todos os
conjuntos em S′ são mutuamente disjuntos, ou seja, Si∩S j = /0
para quaisquer Si,S j ∈ S′ distintos [4].

O problema pode ser abordado sob duas perspectivas. Na
versão de otimização, o objetivo é encontrar a subcoleção S′

de cardinalidade máxima. Na versão de decisão — a qual
utilizamos para a prova de NP-completude — a entrada inclui
um inteiro k, e a pergunta é se existe um packing de tamanho
pelo menos k (|S′| ≥ k) [2]. Uma generalização comum é o
Weighted Set Packing, onde cada conjunto Si possui um peso
wi, e o objetivo é maximizar a soma dos pesos dos conjuntos
disjuntos selecionados.

A relevância do SP decorre de sua capacidade de modelar
situações de alocação de recursos onde o compartilhamento
é impossível (restrição de exclusividade). A aplicação
mais notável ocorre em Leilões Combinatórios [11]. Neste
cenário, um leiloeiro tem um conjunto de itens distintos
(U) e os licitantes oferecem lances por "pacotes" de itens
(Si). Como cada item só pode ser vendido uma vez, o
leiloeiro deve selecionar um conjunto de lances vencedores
que não disputem o mesmo item, maximizando o lucro total.
Outras aplicações críticas incluem o Airline Crew Scheduling
(escalonamento de tripulações), onde cada voo deve ser
coberto por uma única equipe e as equipes (conjuntos de
voos) não podem estar em dois lugares ao mesmo tempo [12].

Para fins pedagógicos, o SP pode ser visualizado como
o dilema de um organizador de festas que possui uma lista
de grupos de amigos que desejam comparecer ao evento,
Figura 4. O universo U representa as cadeiras disponíveis na
mesa principal. Cada grupo (Si) exige sentar-se em cadeiras
específicas e recusa-se a compartilhar seus assentos com
estranhos. Se um grupo deseja a cadeira 3 e outro também
deseja a cadeira 3, eles são incompatíveis. O desafio do
organizador é aceitar o maior número possível de grupos sem
gerar conflitos de assentos.

Embora o SP seja NP-difícil no caso geral, existem
subclasses importantes que admitem algoritmos eficientes:

• Cardinalidade Limitada (|Si| ≤ 2): Se todos os
conjuntos na família S tiverem no máximo 2 elementos,
o problema torna-se equivalente ao Maximum Matching
(Emparelhamento Máximo) em grafos. Neste caso, os
elementos de U são vértices e os conjuntos Si são arestas.
O problema pode ser resolvido em tempo polinomial
O(E
√

V ) pelo algoritmo de Edmonds [13].

• Grafos de Intervalo: Se os elementos de U puderem ser
ordenados linearmente tal que cada Si forme um intervalo
contíguo, o problema equivale ao Interval Scheduling,
que pode ser resolvido com uma estratégia gulosa em
O(n logn) [14].

Para o caso geral, algoritmos exatos baseados em
programação dinâmica ou inclusão-exclusão atingem com-
plexidades da ordem de O∗(2n), o que é impraticável para
instâncias grandes [15]. Essa intratabilidade computacional,
contrastando com a eficiência das subclasses restritas
apresentadas, sugere que o Set Packing pertence à classe
dos problemas mais difíceis da computação. A seção a
seguir formaliza essa intuição, provando a NP-Completude
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Figura 4: Representação visual de uma instância de Set Packing. O
universo U = {1, ..,10}. Os grupos 1, 3 e 4 formam um packing

válido (azul). O grupo 2 cria conflito com os grupos 1 e 4.

do problema através de uma redução polinomial a partir do
problema da Clique.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

A seguir, estabelecemos o lema principal deste artigo.

Lema 1. Set Packing é NP-Completo.

Proof. Seguindo o esquema clássico, dividimos a prova em
duas etapas identificadas: (1) provar que SP ∈ N P (NP-
pertinência) e (2) provar que SP é NP-difícil por meio de
uma redução polinomial apropriada.

Tome (1)

Para mostrar que SP ∈ N P , basta exibir um verificador
polinomial que, dada uma solução candidata S′, determine
se ela constitui um subconjunto de l conjuntos mutuamente
disjuntos.

A instância do problema consiste em um universo U
com n = |U | elementos e uma coleção de m conjuntos
S = {S1, . . . ,Sm}. O certificado é uma subcoleção S′ ⊆ S
supostamente de tamanho l.

O verificador executa duas tarefas: (i) verificar se |S′|= l e
(ii) verificar a disjunção par a par entre os conjuntos de S′.

Temos que o primeiro passo é executado em O(|S′|), que é
limitado por O(m), pois |S′| ≤ m.

Para o segundo passo, o algoritmo percorre cada par
distinto de conjuntos em S′. O número de pares é dado pela
combinação de |S′| elementos tomados 2 a 2:

(|S′|
2

)
=

|S′|!
2!(|S′|−2)!

=
|S′|(|S′|−1)

2
=
|S′|2−|S′|

2
.

Como o termo dominante é quadrático e sabemos que |S′| ≤m,
conclui-se que o número de verificações é limitado por O(m2).

Para cada par (Si,S j), verifica-se se Si ∩ S j = /0. Se
representarmos cada conjunto como uma lista de elementos,
o teste de interseção pode ser feito verificando elemento a
elemento, exigindo tempo proporcional ao tamanho total do
universo. Assim, cada teste leva tempo O(n).

Portanto, o tempo total gasto na verificação das disjunções
é:

O(m2) ·O(n) = O(m2n).

Neste termo, o fator quadrático m2 provém da comparação
de todos os pares possíveis de conjuntos, enquanto o fator
linear n surge do custo computacional de verificar a interseção
de dois conjuntos específicos.

Somando todos os passos, obtemos um verificador com
custo máximo

O(m)+O(m2n) = O(m2n),

que é polinomial no tamanho da entrada. Assim, concluímos
que SP ∈N P .

Tome (2)

Para provar a NP-dificuldade, reduziremos o problema da
Clique ao Set Packing. O problema da Clique é escolhido
como origem pois a relação “dois vértices são conectados”
pode ser mapeada inversamente para “dois conjuntos são
disjuntos” se construirmos o universo baseados nas arestas
que não existem. Assim temos a seguinte redução: CLIQUE
≤p SP.

Seguiremos com a estratégia de construção em que a
redução f (G,k) = (U,S, l) transforma uma instância de
Clique em uma de Set Packing preservando a propriedade
isomórfica

Vértices adjacentes em G ⇐⇒ Conjuntos disjuntos em S.

A construção define o inteiro l com o mesmo tamanho da
clique, ou seja, l = k. O universo U é composto pelas não-
arestas de G, de modo que cada par de vértices que não está
conectado em G vira um elemento em U :

U = {(vi,v j) | vi,v j ∈V, i 6= j,(vi,v j) /∈ E}

O propósito desta construção é que, se dois vértices não têm
aresta, eles “compartilham” um conflito (o elemento em U),
impedindo que sejam escolhidos juntos. Para a coleção S,
para cada vértice vi ∈V , criamos um conjunto Si que contém
todas as não-arestas incidentes a vi:

Si = {(vi,v j) ∈U | j 6= i}

A Figura 5 ilustra um exemplo visual desta redução,
destacando como as não-arestas formam o universo de
conflito.
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Figura 5: A existência da clique C = {v1,v2,v4} (em azul) no
grafo implica a existência de uma subcoleção de conjuntos disjuntos
S′ = {S1,S2,S4} na instância de Set Packing.

No exemplo ilustrado na Figura 5, é possível observar
a redução f de CLIQUE para Set Packing observa-se que
os vértices v3 e v5 não são adjacentes a todos os membros
da clique, o que gera um conjunto de não-arestas (como
(v1,v3), (v3,v4), (v2,v5), (v4,v5) e (v1,v5)) que passam a
constituir o universo U . Pela regra de construção, onde cada
Si contém as não-arestas incidentes a vi, os conjuntos S3 e
S5 acabam compartilhando elementos com outros conjuntos,
o que representa conflitos. Em contrapartida, como v1,v2 e
v4 estão plenamente conectados entre si, não existem não-
arestas entre eles no universo, garantindo que seus conjuntos
correspondentes S1,S2 e S4 sejam mutuamente disjuntos,
satisfazendo a condição de validade do Set Packing.

Contudo, não basta apenas montar a construção da redução.
Também precisamos mostrar que (i) esta redução é polinomial
e (ii) preserva a simetria entre os problemas.

(i). Devemos provar que a transformação preserva a resposta
do problema original, ou seja, (G,k) tem Clique ⇐⇒ (U,S, l)
tem Set Packing.
(⇒) Se G tem clique de tamanho k, então (U,S) tem packing
de tamanho l = k.

Proof. Seja C a clique em G. Selecionamos os conjuntos
correspondentes S′ = {Si | vi ∈C}. Temos |S′|= |C|= k = l.
Para quaisquer dois conjuntos distintos Si,S j ∈ S′, os vértices

correspondentes vi,v j estão na clique. Logo, a aresta (vi,v j)
existe em E. Como U contém apenas não-arestas, o par
(vi,v j) /∈U . A única interseção possível entre Si e S j seria o
elemento (vi,v j). Como (vi,v j) /∈U , ele não pode estar nem
em Si nem em S j. Logo, Si ∩ S j = /0. Assim, S′ é um Set
Packing válido.

(⇐) Se (U,S) tem packing de tamanho l = k, então G tem
clique de tamanho k.

Proof. Seja S′ o packing. Selecionamos os vértices C =
{vi | Si ∈ S′}. Temos |C| = |S′| = l = k. Suponha, por
contradição, que C não seja uma clique. Então existem
dois vértices vi,v j ∈ C tal que a aresta (vi,v j) /∈ E. Se a
aresta não existe, então o par (vi,v j) é uma não-aresta, logo
(vi,v j) ∈U . Pela construção, Si contém todas as não-arestas
de vi (incluindo (vi,v j)) e S j contém todas as de v j (incluindo
(vi,v j)). Portanto, (vi,v j) ∈ Si∩S j, o que implica Si∩S j 6= /0.
Isso contradiz a hipótese de que S′ é um packing (conjuntos
disjuntos). Logo, a aresta deve existir para todos os pares, e C
é uma clique.

(ii). A construção do universo U exige iterar sobre todos os
pares de vértices, uma operação limitada por

(n
2

)
= O(n2). A

construção da coleção S exige criar n conjuntos, onde para
cada um verificamos n−1 pares, totalizando também O(n2).
Portanto, conclui-se que a função de redução f é executada
em tempo polinomial: O(n2).

Assim por (1) e (2), provamos o Lema 1 ao demonstrarmos
que o Set Packing é NP-Completo, validando sua pertinência
a N P e em seguinda apresentando uma redução polinomial a
partir do CLIQUE. Esta prova ilustra o uso de “conflitos”
(neste caso, não-arestas) como elementos básicos de
construção para forçar restrições de exclusão mútua.

VI. RESULTADOS E REFLEXÕES

A elaboração deste trabalho resultou na produção de um
material didático autossuficiente para o estudo da NP-
Completude do problema Set Packing (SP). Diferentemente de
abordagens tradicionais que frequentemente omitem passos
intermediários das reduções polinomiais, os resultados aqui
apresentados focam na explicitação da lógica construtiva.
A principal contribuição pedagógica deste estudo é a
sistematização visual e analógica da redução CLIQUE ≤p SP.
Na literatura clássica, a definição do universo U como o
conjunto de “não-arestas” é frequentemente apresentada de
forma puramente algébrica, o que dificulta a visualização
geométrica por parte do estudante. Para mitigar essa barreira,
desenvolvemos a analogia do “Organizador de Festas”, uma
narrativa lúdica que provou-se eficaz para traduzir a restrição
abstrata de “interseção vazia” para uma restrição concreta
de “conflito de assentos”, facilitando a intuição inicial sobre
o problema. Adicionalmente, a diagramação da redução
apresentada nas Figuras 5 e 4 permite ao aluno rastrear
visualmente como um vértice no grafo se transforma em um
conjunto, e como a ausência de uma aresta se materializa em
um elemento compartilhado no universo U .

Durante a estruturação da prova de NP-Dificuldade,
identificamos que a maior dificuldade cognitiva reside na
“inversão lógica” exigida pela redução a partir do problema
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da Clique. Enquanto reduções a partir do Independent Set
(IS) mapeiam arestas diretamente para elementos do universo
(conflito direto), a redução a partir da Clique exige o uso do
grafo complementar (ou não-arestas). Essa distinção é sutil
e é uma fonte comum de erro. Para superar esse obstáculo,
adotamos a estratégia de definir explicitamente o universo
U como um conjunto de “conflitos potenciais”, reforçando
que, para que um packing (pacote de vértices) seja válido, os
elementos não podem ter conflitos (não-arestas) entre si — o
que força a existência das arestas no grafo original.

Em termos de aplicabilidade acadêmica, este artigo foi
estruturado para servir como material complementar na
disciplina de Teoria da Computação. A Seção 4 (Descrição
do Problema) pode ser utilizada como texto introdutório para
aulas sobre problemas de empacotamento, enquanto a Seção
5 (Demonstração) serve como guia para listas de exercícios
avançados que exigem a formalização de reduções.

Por fim, embora o foco deste trabalho seja a intrata-
bilidade (NP-Completude), é importante refletir sobre o
comportamento prático. Em cenários reais, como os
leilões combinatórios mencionados, não se busca a prova de
inexistência de solução, mas sim a melhor solução possível em
tempo hábil. Experimentos simples com algoritmos gulosos
(selecionar o menor conjunto disponível iterativamente)
demonstram que, embora não garantam a solução ótima (o k
máximo), oferecem aproximações rápidas. Esta constatação
reforça a importância pedagógica de distinguir entre a
dificuldade do pior caso (foco da teoria N P ) e a solubilidade
prática via heurísticas.

VII. CONSIDERAÇÕES FINAIS

Este trabalho cumpriu seu objetivo principal de provar a
NP-Completude do problema Set Packing (SP), oferecendo
uma abordagem pedagógica que preenche a lacuna entre a
definição formal e a intuição geométrica. Através da redução
polinomial a partir do problema da Clique (CLIQUE ≤p SP),
demonstramos que a dificuldade computacional de encontrar
grupos mutuamente exclusivos em uma coleção é equivalente
a encontrar subgrafos completos. O principal resultado obtido
não foi apenas a reafirmação da complexidade do problema,
mas a sistematização de um método de ensino que utiliza
analogias lúdicas (o “Organizador de Festas”) e diagramas
visuais passo a passo para facilitar a assimilação de conceitos
abstratos por estudantes de graduação.

É importante ressaltar, contudo, que o escopo deste artigo
limitou-se à análise da complexidade de pior caso e à versão
de decisão do problema. Entre as limitações, destaca-se a
ausência de implementação de solucionadores exatos (como
branch-and-bound) ou heurísticos para resolver instâncias
do problema, visto que a implementação restringiu-se ao
algoritmo verificador polinomial para validação da classe
N P , e não para avaliação de desempenho em benchmarks.
Além disso, optou-se pelo foco em uma redução única via
Clique para garantir a profundidade e a clareza didática, em
detrimento da abrangência de outras reduções possíveis, como
a partir do Exact Cover ou 3-SAT.

A base teórica estabelecida neste artigo abre diversas
frentes para investigação acadêmica e desenvolvimento
didático em trabalhos futuros. Uma extensão natural seria o
estudo comparativo de algoritmos gulosos e meta-heurísticas

(como Algoritmos Genéticos ou Simulated Annealing) para
a versão de otimização do Set Packing, analisando o gap de
aproximação dessas soluções. Outra perspectiva relevante
é a análise em classes de grafos especiais, visto que o Set
Packing torna-se solúvel em tempo polinomial quando o
universo e os conjuntos podem ser modelados como grafos
de intervalo ou grafos de corda. Adicionalmente, sugere-
se investigar a complexidade parametrizada (FPT) para
verificar a tratabilidade do problema para valores pequenos
de k. Por fim, propõe-se a extensão pedagógica através do
desenvolvimento de uma ferramenta de software interativa
que permita aos alunos desenharem grafos e visualizarem,
em tempo real, a transformação dos vértices e arestas nos
conjuntos do Set Packing. Conclui-se que o Set Packing,
apesar de sua complexidade inerente, é um excelente veículo
para o ensino da Teoria da Computação, servindo como porta
de entrada para discussões mais amplas sobre otimização
combinatória e limites da computabilidade.

REFERÊNCIAS
[1] S. A. Cook, “The complexity of theorem-proving procedures,” in

Proceedings of the third annual ACM symposium on Theory of
computing, 1971, pp. 151–158.

[2] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of computer computations, R. E. Miller and J. W. Thatcher,
Eds. Plenum Press, 1972, pp. 85–103.

[3] Clay Mathematics Institute, “Millennium prize problems,” https://www.
claymath.org/millennium-problems/, 2000, acesso em: 30 nov. 2025.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: W. H.
Freeman and Company, 1979.

[5] M. Delorme, X. Gandibleux, and J. Rodriguez, “A new approach for
modeling and solving set packing problems,” European Journal of
Operational Research, vol. 152, no. 3, pp. 626–645, 2004.

[6] A. E. F. Muritiba, M. Iori, E. Malaguti, and P. Toth, “Algorithms for the
bin packing problem with conflicts,” INFORMS Journal on Computing,
vol. 22, no. 3, pp. 401–415, 2010.

[7] W. Jia, C. Zhang, and J. Chen, “An efficient parameterized algorithm
for m-set packing,” Journal of Algorithms, vol. 50, no. 1, pp. 106–117,
2004.

[8] M. Fürer and H. Yu, “Approximating the k-set packing problem by
local improvements,” in International Symposium on Combinatorial
Optimization (ISCO 2014), ser. Lecture Notes in Computer Science,
vol. 8596. Springer, 2014, pp. 408–420.

[9] B. Alidaee, G. Kochenberger, K. Lewis, M. Lewis, and H. Wang,
“A new approach for modeling and solving set packing problems,”
European Journal of Operational Research, vol. 186, no. 2, pp. 504–
512, 2008.

[10] B. Yasser, Lassance e Guilherme, “Reflexões e práticas pedagógicas no
escopo da disciplina deteoria da computação,” Academic Journal on
Computing, Engineering and Applied Mathematics, 2025, referência
pedagógica da disciplina de Teoria da Computação.

[11] S. DeVries and R. Vohra, Combinatorial Auctions: A Survey. Springer,
2003.

[12] K. L. Hoffman and M. Padberg, “Cutting plane algorithms in planning
and scheduling,” Annals of Operations Research, vol. 43, no. 1, pp.
55–85, 1993.

[13] J. Edmonds, “Paths, trees, and flowers,” in Combinatorial Optimization:
Proceedings of the Symposium in Applied Mathematics. American
Mathematical Society, 1965, vol. 18, pp. 48–57.

[14] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 5th ed. Berlin: Springer, 2012.

[15] A. Björklund, T. Husfeldt, and M. Koivisto, “Set packing and covering
with character,” in Proc. 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2010, pp. 1090–1099.

ISSN: 2675-3588 19



SET PACKING: PEDAGOGICAL CONTRIBUTIONS FONSECA et al.

20 ISSN: 2675-3588



C
ME

A
A
J

Academic Journal on Computing, Engineering and Applied Mathematics ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 07, NO. 02, FEBRUARY 2026

Reprodução e Contribuições Pedagógicas: Casamento
Máximo em Grafos Bipartidos e suas Generalizações

Reproduction and Pedagogical Contributions: Maximum Matching in Bipartite Graphs
and its Generalizations

Vitória Milhomem Soares1, Matheus de Sousa Silva1, Daniel Martins da Silva1 e Tanilson Dias dos
Santos1

1 Universidade Federal do Tocantins, Ciência da Computação, Tocantins, Brasil

Data de recebimento do manuscrito: 01/12/2025
Data de aceitação do manuscrito: 05/01/2026

Data de publicação: 10/02/2026

Resumo—Este artigo apresenta um estudo didático sobre o problema do Casamento Máximo em grafos, com ênfase na estrutura de grafos
bipartidos e suas generalizações. O objetivo é reproduzir resultados fundamentais que fogem da abordagem clássica de König e Hall.
Para isso, exploramos o Teorema de Tutte, que condiciona o emparelhamento perfeito à análise de componentes ímpares, e o Teorema
de Dilworth, que estabelece uma dualidade com conjuntos parcialmente ordenados (posets). A metodologia emprega a análise de provas,
utilizando técnicas de redução e decomposição, acompanhada de exemplos lúdicos e visualizações estratégicas. Como resultados centrais,
demonstramos que a condição de Tutte é o obstáculo estrutural universal para o emparelhamento perfeito, e que a equivalência de Dilworth
é a base para a eficiência algorítmica, como exemplificado pelos trabalhos de Kameda e Munro. Em conclusão, este estudo preenche
lacunas conceituais e oferece uma contribuição pedagógica significativa, tornando o rigor da Teoria dos Grafos mais acessível a estudantes
de graduação e promovendo uma visão unificada sobre a existência de emparelhamentos e coberturas de cadeias.

Palavras-chave—Casamento Máximo, Teorema de Tutte, Teorema de Dilworth, Kameda-Munro, Didática em Grafos.

Abstract—This paper presents a didactic study on the Maximum Matching problem in graphs, with an emphasis on bipartite graph
structures and their generalizations. The objective is to reproduce fundamental results that move beyond the classical approach of König
and Hall. To this end, we explore Tutte’s Theorem, which conditions perfect matching on the analysis of odd components, and Dilworth’s
Theorem, which establishes a duality with partially ordered sets (posets). The methodology employs the analysis of proofs, utilizing
techniques of reduction and decomposition, accompanied by illustrative examples and strategic visualizations. As central results, we
demonstrate that Tutte’s condition is the universal structural obstacle to perfect matching, and that Dilworth’s equivalence establishes a
rigorous reduction between poset decomposition and bipartite matching, enabling efficient polynomial-time solutions as exemplified by the
works of Kameda and Munro. In conclusion, this study fills conceptual gaps and offers a significant pedagogical contribution, making the
rigor of Graph Theory more accessible to undergraduate students and promoting a unified view on the existence of matchings and chain
covers.

Keywords—Maximum Matching, Tutte’s Theorem, Dilworth’s Theorem, Kameda-Munro, Graph Theory Education.

I. INTRODUÇÃO

A Teoria dos Grafos atua como a linguagem universal
da Ciência da Computação, oferecendo a estrutura

necessária para modelar desde redes sociais complexas até
a arquitetura microscópica de circuitos integrados [2] . No
centro dessa teoria, o Problema do Casamento Máximo
(Maximum Matching) ocupa uma posição de destaque. Em

Dados de contato: Vitória M. Soares, vitoria.milhomem@mail.uft.edu.br

termos simples, este problema busca encontrar a maior
quantidade possível de pares dentro de um grupo, sem que
ninguém "sobre" ou participe de mais de um par. Embora a
definição pareça simples, sua resolução possui implicações
profundas e diretas em cenários reais como: a alocação
eficiente de tarefas em processadores, a distribuição de
médicos em plantões hospitalares e a otimização de sistemas
de recomendação.

Tradicionalmente, o ensino introdutório de emparelha-
mentos em grafos concentra-se quase exclusivamente em
grafos bipartidos — cenários onde os vértices podem
ser divididos em dois grupos distintos (como tarefas e
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trabalhadores). Nesses casos, os clássicos teoremas de
Hall [5] e König [9] oferecem soluções fundamentais e
bem conhecidas. No entanto, o mundo real nem sempre
é bipartido. Quando as restrições de conexão são mais
complexas e formam grafos gerais, as ferramentas básicas
deixam de funcionar. É neste ponto que este artigo se
insere: propomos uma abordagem pedagógica para transpor
a barreira dos grafos bipartidos, explorando o Teorema de
Tutte [14], que generaliza a existência de emparelhamentos
através de uma análise de paridade topológica (componentes
ímpares).

Além de tratar de grafos gerais, buscamos conectar a
teoria dos grafos à teoria da ordem. Para isso, revisitamos
o Teorema de Dilworth [3] , que estabelece uma dualidade
surpreendente entre o tamanho de emparelhamentos e a
estrutura de conjuntos parcialmente ordenados (posets). Para
amarrar a teoria à prática computacional, discutimos como
essas propriedades estruturais fundamentam algoritmos
eficientes, como os estudados por Kameda e Munro [8] ,
que utilizam tais decomposições para resolver o problema
em tempo polinomial.

Portanto, o objetivo deste trabalho é duplo e focado na
didática. Buscamos fornecer demonstrações passo a passo
e rigorosas destes teoremas avançados, bem como oferecer
contribuições pedagógicas concretas. A intenção é utilizar
exemplos lúdicos e visualizações estratégicas para facilitar a
intuição do estudante, revelando conceitos abstratos como a
barreira de componentes ímpares ou a cobertura de cadeias,
transformando a demonstração matemática em uma narrativa
lógica e compreensível.

As seções subsequentes guiarão o leitor por essa jornada,
começando pelas Preliminares (Seção II), seguidas pelos
Trabalhos Relacionados (Seção III) e a Descrição do
Problema (Seção IV), avançando para as Demonstrações
passo a passo (Seção V), a análise de Resultados e Reflexões
(Seção VI), culminando nas Considerações Finais (Seção
VII). No entanto, para que o rigor e a didática pretendidos
sejam plenamente alcançados, é imperativo que o leitor
domine o vocabulário e as estruturas básicas que sustentam
toda esta competência.

Desta forma, para que a complexidade dos teoremas
principais possa ser abordada, dedicamos a próxima seção,
Preliminares, a estabelecer o vocabulário formal e a intuição
essencial sobre emparelhamentos e as estruturas de paridade
que serão cruciais nas demonstrações subsequentes.

II. PRELIMINARES

Um grafo G = (V,E) é uma estrutura composta por um
conjunto de vértices V (pontos) e um conjunto de arestas E
(linhas que conectam esses pontos) [2]. Um grafo é dito
bipartido quando o seu conjunto de vértices V pode ser
particionado em dois grupos disjuntos, A e B, de tal forma
que todas as arestas conectam um vértice de A a um vértice
de B. Não existem arestas conectando dois vértices dentro do
mesmo grupo (ex: não há arestas de A para A).

Nota Didática: Para compreender intuitivamente a
distinção estrutural de um grafo bipartido, imagine que
o conjunto de vértices do grafo é particionado em dois
subconjuntos disjuntos e independentes, que rotulamos como
A e B. A Figura 1 ilustra visualmente essa partição. Podemos

v1

v3

Conjunto A

v2

v4

Conjunto B

Figura 1: Exemplo visual de Grafo Bipartido G = (A∪B,E).
Note a ausência de arestas "verticais" dentro de cada conjunto.

v1 v2 v3 v4

v5 v6

Figura 2: A linha pontilhada em azul é um exemplo de um
Caminho Simples, onde nenhum vértice é repetido.

v1 v2 v3 v4

v5 v6

Figura 3: Exemplo de um Caminho não Simples, com início em
v1 e término em v4. O caminho repete os vértices v2 e v3 ao passar

pelo ciclo v2− v3− v6− v5− v2.

descrever esses subconjuntos através de um exemplo lúdico:
considere os vértices do subconjunto A como “Tarefas” e
os vértices do subconjunto B como “Trabalhadores”. A
regra fundamental de um grafo bipartido é a sua restrição de
conectividade: as interações (representadas pelas arestas) só
podem ocorrer entre um vértice pertencente ao subconjunto
A e um vértice pertencente ao subconjunto B. É crucial
notar que não existe conectividade interna; ou seja, não
há arestas entre dois vértices que pertençam ao mesmo
subconjunto (A ou B). Essa restrição impõe uma estrutura
menos densa e mais restrita, facilitando a análise e a busca
por emparelhamentos. Em contraste, um grafo geral permite
interações irrestritas, o que pode levar à formação de ciclos
ímpares (como triângulos), que são a principal fonte de
complicação e o foco do Teorema de Tutte [14].

O grau de um vértice em um grafo é o número de arestas
que estão conectadas a ele. A vizinhança de um vértice
v em um grafo G é o conjunto composto por todos os
vértices adjacentes a v, onde ,vértices adjacentes, são aqueles
conectados por uma aresta a v.

Um caminho em um grafo é uma sequência de vértices
interligados por arestas, onde o último vértice de uma aresta
é o primeiro da próxima. Um caminho simples é aquele
que não repete vértices. O comprimento de um caminho é a
quantidade de arestas que o compõem [2]. A Figura 2 ilustra
um exemplo claro de um caminho simples, em contraste com
o caminho não simples, onde a repetição de vértices ocorre,
conforme detalhado na Figura 3.

Um subgrafo de um grafo G, essencialmente, é um
grafo cujo conjunto de vértices e conjunto de arestas são
subconjuntos de G. Uma componente conexa em um grafo
é um subgrafo onde todos os vértices estão conectados entre
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v1 v2 v3 v4

v5

Figura 4: Comparação entre o Caminho Máximo (azul tracejado)
e um Caminho Maximal que não é máximo (vermelho)

si por caminhos, formando um “pedaço” isolado do grafo
original [2].

A análise dessas subestruturas nos leva à necessidade de
distinguir entre o maior elemento local e o maior elemento
global, conceitos fundamentais na otimização: um elemento
M ∈ S é classificado como máximo se for maior ou igual a
todos os outros elementos em S. Esta é uma propriedade
de natureza global. Se um elemento máximo existe, ele é
intrinsecamente único dentro do conjunto. Por outro lado,
um elemento m ∈ S é classificado como maximal se não
houver nenhum outro elemento em S que seja estritamente
maior do que m na relação de ordem definida. Esta é
uma propriedade de natureza local, o que implica que um
conjunto pode conter múltiplos elementos maximais que não
são comparáveis entre si.

A distinção reside na comparabilidade: um elemento
máximo domina todos os outros, enquanto um elemento
maximal apenas garante não ser dominado por nenhum
outro. Consequentemente, todo elemento máximo é, por
definição, maximal; contudo, a recíproca não é verdadeira.

A Figura 4 demonstra visualmente a diferença conceitual:
o caminho Pm = v2− v5 (em vermelho) é classificado como
maximal porque, sendo v5 um vértice de grau 1, ele não pode
ser estendido. Contudo, ele não é máximo, pois o grafo
contém o caminho PM = v1 − v2 − v3 − v4 (em azul), que
possui 3 arestas e representa o maior caminho possível do
grafo.

Dado um grafo G = (V,E), um emparelhamento M é
um subconjunto de arestas, M ⊆ E, tal que quaisquer duas
arestas em M não possuem vértices em comum. Um
emparelhamento M é máximo se o número de arestas em
M, |M|, é o maior possível dentre todos os emparelhamentos
existentes no grafo G. Já um emparelhamento M é perfeito
se satura (cobre) todos os vértices em V . Isso implica que
todo vértice v ∈ V é ponta de exatamente uma aresta em M.
É importante notar que um emparelhamento perfeito só pode
existir se o número de vértices |V | for par.

Intuição: Um emparelhamento representa “escolhas
exclusivas”. Se os vértices fossem pessoas e as arestas
fossem parcerias de dança, um emparelhamento garantiria
que ninguém está tentando dançar com duas pessoas ao
mesmo tempo. O emparelhamento perfeito, onde ninguém
fica sem par, ilustra o resultado ideal do Casamento Máximo.
A saturação de todos os vértices é o objetivo que a Figura 5
demonstra.

Seja G um grafo (ou um subgrafo), um componente
ímpar é uma componente conexa do grafo que possui uma
quantidade ímpar de vértices (1,3,5, etc.). A quantidade total
dessas componentes ímpares no grafo é denotada por o(G).

Este é o coração do Teorema de Tutte [14]. Empare-
lhamentos sempre formam pares (número par: 2,4,6 . . . ).
Em um componente com número ímpar de vértices, é ma-

v1 v2 v3 v4

v5 v6 v7 v8

Figura 5: Exemplo de um Emparelhamento Perfeito. As arestas
destacadas formam um emparelhamento que satura todos os 8

vértices do grafo.

e1 e2 e3 e4

Figura 6: Exemplo visual de uma Cadeia. Elementos em
sequência ordenada.

c1 c2 c3 c4 . . . ck

Figura 7: Exemplo visual de uma Anticadeia. Elementos
totalmente independentes.

tematicamente impossível emparelhar todos internamente:
sempre sobrará pelo menos um vértice. Essa "sobra" cria
a necessidade de buscar par fora do componente.

Uma relação de ordem parcial em um grafo é uma
estrutura que define uma hierarquia ou precedência entre
alguns dos seus vértices. Um conjunto parcialmente
ordenado (poset) em um grafo é uma representação visual
de um conjunto de elementos onde uma relação de ordem
parcial é definida.

Considere um poset P, onde existe uma relação de ordem
“≤” definida entre alguns elementos. Nessa estrutura, uma
Cadeia é um subconjunto de elementos onde todos são
comparáveis entre si, seguindo uma sequência linear (como
uma fila indiana ou uma linha do tempo, onde a≤ b≤ c). Em
contraste, uma Anticadeia é um subconjunto de elementos
onde ninguém é comparável com ninguém, representando
elementos totalmente independentes ou simultâneos.

Uma analogia para compreender essas estruturas é a árvore
genealógica. Uma Cadeia representa uma linhagem direta
(Bisavô → Avô → Pai → Filho), onde a hierarquia é clara
e sequencial. Observando a Figura 6, os vértices e1,e2,e3 e
e4 exemplificam essa relação de ordem total: a presença das
arestas direcionadas indicando que e1 leva a e2, que por sua
vez leva a e3, confirma que todos os elementos neste caminho
são comparáveis entre si.

Em contraste, uma Anticadeia corresponde a um grupo de
irmãos ou primos que não possuem relação de descendência
direta entre si. Conforme ilustrado na Figura 7, os
vértices denotados por c1,c2,c3 e c4 materializam essa
propriedade: a ausência total de arestas conectando c1 a c2,
ou qualquer outro par, evidencia que eles são incomparáveis.
Eles coexistem no mesmo “nível” hierárquico sem que
nenhum elemento preceda ou suceda o outro, mantendo essa
independência mútua até o enésimo elemento ck.

Munidos dessas definições fundamentais, dispomos
do vocabulário necessário para compreender a evolução
histórica da teoria. Essas estruturas básicas não são meras
abstrações; elas serviram como blocos de construção para
os teoremas de dualidade que definem a área. Para além
dos clássicos, a seção a seguir contextualiza como os
pioneiros da teoria dos grafos manipularam esses conceitos
para transitar de soluções em estruturas simples para a
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complexidade dos grafos gerais, e como obras mais recentes
vêm complementando e refinando essas técnicas estruturais,
tornando-as aplicáveis aos desafios computacionais atuais.

Dessa forma, a revisão bibliográfica subsequente organiza-
se para refletir sobre trabalhos relacionados ao tema central
do nosso estudo.

III. TRABALHOS RELACIONADOS

A literatura fundamental sobre emparelhamentos, que serve
de base para as definições utilizadas neste artigo, remonta ao
período clássico da Teoria dos Grafos. As obras de König
[9] e Hall [5] estabeleceram as condições de existência em
grafos bipartidos, enquanto Berge [1] introduziu a dinâmica
dos caminhos aumentantes. Para o contexto de grafos gerais
e ordens parciais, as generalizações propostas por Tutte [14]
e Dilworth [3] são as referências primárias. Embora estes
trabalhos sejam seminais, a pesquisa na área continua ativa,
focando-se especialmente na eficiência algorítmica e em
novas abordagens pedagógicas.

No âmbito da otimização algorítmica e suas aplicações
em Inteligência Artificial, o trabalho de Tassa [13] oferece
uma perspectiva relevante sobre a identificação de arestas.
O autor investiga o problema de encontrar todas as arestas
"maximamente emparelháveis" (aquelas que pertencem
a pelo menos um emparelhamento máximo) em grafos
bipartidos. Tassa [13] propõe um algoritmo baseado
na decomposição do grafo em componentes fortemente
conexos, otimizando a abordagem anterior ao reduzir o
tamanho do grafo direcionado auxiliar para max{|V1|, |V2|}
nós. Além disso, o estudo estabelece uma conexão
importante com a área de Problemas de Satisfação de
Restrições (CSPs), reconhecendo que técnicas similares
foram exploradas pioneiramente por Régin [12] para
algoritmos de filtragem. Essa linha de pesquisa demonstra
como os conceitos teóricos de emparelhamento, discutidos
em nosso trabalho, são instrumentalizados para resolver
problemas complexos de privacidade de dados e filtragem de
restrições.

Contemporaneamente, o algoritmo de Micali e Vazirani
continua sendo referência central para problemas de empa-
relhamento em grafos gerais. Peterson e Loui [11] oferecem
uma exposição clara e rigorosa deste algoritmo, que opera
em tempo O(

√
|V | · |E|) e permanece como o algoritmo

sequencial mais eficiente conhecido para emparelhamento
de cardinalidade máxima. A importância deste trabalho vai
além da implementação: ele estabelece as bases teóricas
que permitem a paralelização e distribuição de algoritmos
de emparelhamento. Compreender profundamente este
algoritmo é fundamental para estudantes que buscam avançar
para domínios mais complexos de otimização combinatória,
pois suas técnicas de tratamento de ciclos ímpares inspiraram
desenvolvimentos posteriores em algoritmos distribuídos.

Expandindo a abordagem de Micali e Vazirani para
ambientes distribuídos, o trabalho de Huang e Su [7]
apresenta um algoritmo polinomial poly(1/ε, logn)-round
para obter uma aproximação (1− ε) do emparelhamento
máximo ponderado em grafos gerais no modelo CONGEST
distribuído. Este avanço resolve um problema em aberto de
longa data na área de algoritmos distribuídos, generalizando
resultados prévios que funcionavam apenas em classes

especiais de grafos (bipartidos e grafos livres de menores).
A contribuição de Huang e Su demonstra que a estrutura de
obstrução de Tutte permanece relevante e pode ser explorada
de forma eficiente mesmo em cenários distribuídos, onde a
comunicação entre processadores é limitada.

Paralelamente à evolução técnica, a transposição didática
desses conceitos complexos tem sido objeto de estudo
recente. Lassance et al. [10] argumentam que a barreira
de entrada para o entendimento de grafos gerais não é
puramente matemática, mas estrutural. O trabalho deles
propõe uma reorganização curricular onde a apresentação de
teoremas avançados deve ser precedida por uma construção
visual rigorosa. Inspirados por essa metodologia, nosso
artigo adota a premissa de que a visualização de "obstáculos"
— como as componentes ímpares em Tutte — deve ser o
ponto de partida do processo de ensino.

Diferentemente dos trabalhos existentes, que priorizam a
otimização de desempenho algorítmico em cenários especí-
ficos ou a complexidade em sistemas distribuídos, este artigo
contribui ao oferecer uma unificação didática entre a Teoria
dos Grafos e a Teoria da Ordem. Nossa contribuição reside
na sistematização da técnica de redução — especificamente
na conversão entre Posets e Emparelhamentos — e na
formalização de uma narrativa visual para o Teorema de
Tutte. Ao focar na desmistificação dos obstáculos estruturais
por meio de provas assistidas por diagramas, este trabalho
preenche a lacuna entre o rigor matemático puro e a intuição
necessária para o domínio da disciplina por estudantes de
graduação.

Com o alicerce histórico referenciado e as conexões com
a algoritmia moderna e a pedagogia estabelecidas, torna-se
imperativo formalizar o desafio matemático. A seção a seguir
delimita o escopo do nosso estudo, transpondo a intuição
discutida nestes trabalhos relacionados para uma definição
rigorosa de otimização combinatória.

IV. DESCRIÇÃO DO PROBLEMA

O desafio central abordado neste trabalho é o Problema
do Emparelhamento Máximo, fundamental na otimização
combinatória. Formalmente, dado um grafo G = (V,E),
buscamos identificar um subconjunto de arestas M ⊆ E
tal que nenhuma aresta em M compartilhe um vértice
comum. Esta propriedade é conhecida como arestas par-
a-par disjuntas. O objetivo é maximizar a cardinalidade
|M|, ou seja, encontrar a configuração que envolva o
maior número possível de vértices e minimize vértices
não emparelhados. A complexidade computacional para
solucionar este problema varia conforme a topologia do
grafo. Para grafos bipartidos, algoritmos exatos como o
de Hopcroft-Karp [6] operam com alta eficiência em tempo
O(E
√

V ). Entretanto, em grafos gerais, a ausência de
uma bipartição clara permite a existência de estruturas mais
rígidas. Isso exige abordagens mais sofisticadas, como
o algoritmo de Edmonds (Blossom) [4], para tratar ciclos
ímpares.

Para concretizar a distinção estrutural entre essas classes
de grafos e motivar a necessidade do Teorema de Tutte [14],
propomos a análise de um cenário lúdico denominado "O
Baile da UFT". Inicialmente, observamos o caso restrito
ilustrado na Figura 8, que representa o Cenário A. Neste
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v1

v2

v3

Grupo A v4

v5

v6

v7

Grupo B

Figura 8: Cenário A: Grafo Bipartido. Os vértices vi representam
alunos. O Grupo A só dança com o Grupo B. As arestas marcadas

(emparelhamento) são o resultado máximo.

v1 v2

v3

v4 v5

v6

Figura 9: Cenário B: Grafo Geral. Os ciclos ímpares (triângulos)
impedem um emparelhamento perfeito. As arestas marcadas

mostram o emparelhamento máximo possível, deixando v3 e v6
sem par.

grafo bipartido, as regras de interação são estritas: alunos do
Grupo A (nós azuis) só podem formar pares com alunos do
Grupo B (nós vermelhos). A ausência de arestas internas em
cada grupo simplifica a busca pelo emparelhamento máximo,
pois não há conflitos de paridade interna a serem resolvidos.

Por outro lado, a complexidade aumenta consideravel-
mente no Cenário B, apresentado na Figura 9. Aqui, temos
um grafo geral onde a regra de formação de pares baseia-se
na afinidade, independentemente do grupo de origem. Essa
flexibilidade permite a formação de ciclos ímpares, como
o triângulo formado pelos vértices v1,v2 e v3. Como pode
ser visualizado na figura, se três indivíduos desejam formar
pares exclusivamente entre si, é matematicamente impossível
que todos sejam atendidos simultaneamente. Portanto,
inevitavelmente, um vértice restará sem par. Esta ocorrência
do ciclo ímpar é a representação geométrica do obstáculo que
impede o emparelhamento perfeito em grafos não-bipartidos.

É neste contexto de impossibilidade estrutural que o
Teorema de Tutte [14] se insere, oferecendo uma condição
necessária e suficiente baseada na topologia global. Antes de
avançarmos para as demonstrações formais, sistematizamos
nas Tabelas 1 e 2 os principais problemas abordados,
separando a análise de existência da análise de otimização
de ordem.

A lógica de resolução apresentada nas tabelas desdobra-
se em uma narrativa contínua que fundamenta as provas
subsequentes. Inicialmente, na Análise de Paridade (Tutte),
a prova estabelece que componentes com número ímpar de
vértices possuem uma limitação aritmética inerente, pois
nunca podem ser totalmente emparelhados internamente.
Assim, cada componente ímpar exige uma conexão com um
vértice externo (do conjunto S), de modo que, se o número
de componentes ímpares o(G−S) for maior que o número de
vértices disponíveis em S, o emparelhamento perfeito torna-

TABELA 1: RESUMO ESTRUTURAL: TEOREMA DE TUTTE

Problema Existência de Emparelhamento Perfeito
(Tutte)

Input Grafo Geral G = (V,E) e a análise de
subconjuntos de vértices removidos S.

Output Condição Necessária e Suficiente: o(G−
S)≤ |S|.

Resumo Demonstração baseada na identificação
de componentes ímpares como obstáculos
estruturais intransponíveis.

TABELA 2: RESUMO ESTRUTURAL: TEOREMA DE DILWORTH

Problema Decomposição Mínima de Cadeias (Dil-
worth)

Input Poset P e sua transformação em Grafo
Bipartido.

Output Teorema Min-Max: tamanho máx. anti-
cadeia = mínimo de cadeias.

Resumo Técnica de Redução: converte a de-
pendência de ordem em um problema de
emparelhamento bipartido.

se impossível. Sequencialmente, no que tange à Técnica
de Redução (Dilworth), a prova utiliza a construção de um
grafo auxiliar para traduzir um conceito abstrato de ordem
parcial em um geométrico de arestas. Ao duplicar os vértices
do Poset para criar um grafo bipartido, demonstramos que
cada aresta do emparelhamento conecta o fim de uma cadeia
ao início de outra, resultando na identidade fundamental
onde minimizar o número de cadeias é matematicamente
equivalente a maximizar o emparelhamento (|C|= n−|M|).

Estabelecida a intuição visual de que ciclos ímpares impe-
dem o emparelhamento perfeito e como a redução simplifica
problemas de ordem, torna-se imperativo formalizar esses
conceitos na próxima seção.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Nesta seção, apresentamos as demonstrações dos dois
resultados fundamentais: o Teorema de Tutte [14] e o
Teorema de Dilworth [3]. A escolha destes resultados
visa expandir o repertório para além das técnicas básicas
de caminhos aumentantes, introduzindo o conceito de
"obstáculos estruturais". Iniciamos essa análise expandindo
o escopo dos grafos bipartidos para os grafos gerais.
Enquanto o Teorema de Hall [5] verifica vizinhanças locais,
o Teorema de Tutte fornece uma condição global.

Condição de Tutte: Um grafo G = (V,E) possui um
emparelhamento perfeito se, e somente se, para todo
subconjunto de vértices S ⊆ V , vale a desigualdade o(G−
S) ≤ |S|. Aqui, o(G − S) representa o número de
componentes conexos com um número ímpar de vértices no
grafo resultante da remoção de S.

Partimos da hipótese de que o grafo G possui um em-
parelhamento perfeito M. Seja S um subconjunto qualquer
de vértices removidos e considere as componentes conexas
C1,C2, . . . ,Ck resultantes dessa remoção. Ao analisarmos
uma componente ímpar específica Ci, observamos que a
soma das arestas internas não cobre a totalidade dos vértices,
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S Removido

Comp. Ímpar 1

Comp. Ímpar 2 Comp. Ímpar 3

Figura 10: Visualização da falha na condição de Tutte:
o(G−S)> |S|. Ao retirar o vértice central, restam 3 componentes

ímpares isolados.

devido à sua cardinalidade ímpar. Obrigatoriamente, pelo
menos uma aresta de M deve conectar um vértice de Ci a um
elemento externo.

Como Ci é uma componente isolada em G − S, não
existem arestas ligando-a a outras componentes; logo, essa
conexão externa deve necessariamente incidir em um vértice
de S. Sob a ótica da contabilidade de arestas, visto
que os elementos do emparelhamento são disjuntos, cada
componente ímpar consome um vértice exclusivo de S. A
conclusão lógica, ilustrada na Figura 10, é que se existem
k componentes ímpares, serão necessários no mínimo k
vértices distintos em S, demonstrando que |S| ≥ o(G−S).

Demonstração da Suficiência (⇐): A prova de que a
validade da condição garante o emparelhamento é construída
por redução ao absurdo. Inicialmente, supomos que
a condição de Tutte [14] é verdadeira para o grafo G
(ou seja, o(G− S) ≤ |S| para todo subconjunto S), mas,
contraditoriamente, G não possui um emparelhamento
perfeito.

Para explorar as falhas dessa suposição, maximizamos
a estrutura do grafo adicionando arestas fictícias até
formarmos um grafo G∗, que representa o limite máximo
de conexões possível sem que se crie um emparelhamento
perfeito. Vale ressaltar que, se encontrarmos uma violação da
condição de Tutte em G∗, ela prova a falha no grafo original.
Neste grafo saturado G∗, definimos S como o conjunto de
vértices universais. A análise do resultado revela que a
quantidade de componentes ímpares geradas pela remoção
de S supera o número de vértices disponíveis em S. Isso
implica diretamente que o(G∗− S) > |S|, um resultado que
viola a nossa hipótese inicial.

Além da análise de existência proposta por Tutte, a
teoria dos grafos se conecta diretamente à Teoria da Ordem.
Essa relação é fundamental para a otimização combinatória,
pois permite tratar problemas de ordenação sob uma ótica
algorítmica eficiente. Frequentemente, problemas práticos
de agendamento, hierarquia e dependência de tarefas —
modelados matematicamente como Conjuntos Parcialmente
Ordenados (Posets) — não aparentam, à primeira vista,
possuir relação direta com a geometria de vértices e arestas.
No entanto, o Teorema de Dilworth [3] é o exemplo
central dessa relação, estabelecendo um vínculo formal
entre estruturas de ordem e grafos. Essa equivalência com
o emparelhamento bipartido foi explorada por Kameda e
Munro [8] para o desenvolvimento de algoritmos. Ao
provarem que a decomposição de conjuntos ordenados

x3

x2

x1

Poset P
Original

Redução

u3

U

u2

u1

v3

V

v2

v1

Grafo Bipartido
Construído

Entenda a conexão:
1. Em P, x1 vem antes de x2.
2. No Bipartido, u1 (quem inicia) conecta com v2 (quem recebe).

Figura 11: Visualização da Redução: duplicamos os vértices para
separar as funções de "antecessor" (U) e "sucessor" (V ).

pode ser reduzida ao problema de emparelhamento, eles
viabilizaram o uso de soluções polinomiais eficientes para
resolver problemas de ordenação.

Dilworth: O número mínimo de cadeias necessárias para
cobrir todos os elementos de um conjunto parcialmente
ordenado P é igual ao tamanho máximo de uma anticadeia
em P.

Para demonstrar este teorema e sua aplicação computa-
cional, utilizamos a técnica de Redução, transformando o
problema de "Posets" em "Casamento Bipartido". A Figura
11 detalha visualmente essa transformação. O processo
consiste em tomar os elementos do conjunto ordenado P =
{x1, ...,xn} e duplicá-los para criar um grafo bipartido G =
(U ∪V,E).Conforme detalhado na Figura 11, o lado U (nós azuis)
representa os elementos atuando como "início de uma
relação", enquanto o lado V (nós vermelhos) representa os
mesmos elementos como "fim". A regra de construção é
direta: desenhamos uma aresta direcionada (ui,v j) se, e
somente se, o elemento xi precede o elemento x j na ordem
original.

A validade desta construção reside em demonstrar
uma equivalência estrutural estrita, da qual existe uma
bijeção entre um emparelhamento válido em G e uma
decomposição em cadeias em P. Observe que a definição
de emparelhamento exige que arestas sejam disjuntas, ou
seja, cada vértice tenha grau no máximo 1. No contexto
do poset, isso traduz-se na regra de linearidade das cadeias:
um elemento xi não pode ter múltiplos sucessores imediatos
(o que violaria o grau em U) nem múltiplos antecessores
imediatos (o que violaria o grau em V ). Portanto, um
conjunto de arestas é um emparelhamento se, e somente se,
ele une elementos formando sequências lineares válidas e
disjuntas.

Algebraicamente, a prova se estabelece pela contagem
de componentes. Iniciamos com n cadeias triviais (cada
elemento isolado). Cada aresta (ui,v j) adicionada ao empa-
relhamento junta o final de uma cadeia ao início de outra,
reduzindo o número total de cadeias em exatamente uma
unidade. Assim, estabelecemos a identidade fundamental:
o número de cadeias |C | resultantes de um emparelhamento
M é dado por |C | = n− |M|. Para minimizar o número de
cadeias |C |, o objetivo de Dilworth, somos matematicamente
forçados a maximizar |M|. Desta forma, demonstramos que
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encontrar a Decomposição Mínima de Cadeias é equivalente
à busca pelo Emparelhamento Máximo no grafo bipartido.
Como cada aresta do emparelhamento une dois vértices em
uma mesma cadeia, o número mínimo de cadeias será igual
ao número total de vértices subtraído da cardinalidade deste
emparelhamento máximo.

Com a validação desta equivalência e o encerramento das
demonstrações formais, finalizamos a análise técnica das
estruturas propostas. Torna-se pertinente, então, avaliar não
apenas a corretude matemática dos teoremas apresentados,
mas também o impacto pedagógico que a construção dessas
provas exerce sobre o domínio da disciplina.

VI. RESULTADOS E REFLEXÕES

A elaboração deste artigo cumpriu o papel de consolidar o
entendimento sobre teoremas fundamentais da Teoria dos
Grafos, funcionando como uma ferramenta de fixação de
conceitos matemáticos complexos para estudantes de Ciência
da Computação. Ao explorarmos as provas de Tutte [14] e
Dilworth [3], os resultados apontam para a eficácia de uma
abordagem que privilegia a intuição geométrica aliada ao
rigor formal, facilitando a assimilação de estruturas abstratas.
A análise desenvolvida confirma que o domínio de grafos
gerais é significativamente ampliado quando se adota um
pensamento estrutural e holístico.

Diferente da verificação local de vizinhanças — comum
no estudo introdutório do Teorema de Hall [5] — a com-
preensão de Tutte beneficia-se imensamente da visualização
global do grafo e de suas componentes conexas. O uso
de metáforas visuais, onde o conjunto S é representado
como um "hub" ou ponto de articulação, mostrou-se uma
estratégia pedagógica poderosa para tangibilizar a abstração
da remoção de vértices (G−S). Essa representação concreta
permite que o estudante visualize imediatamente como a
estrutura se fragmenta, tornando a condição de paridade uma
consequência lógica observável, e não apenas uma regra
algébrica.

Da mesma forma, a exploração do Teorema de Dilworth
[3] revelou-se uma oportunidade excelente para clarificar
a dualidade Min-Max. A abordagem adotada permitiu
demonstrar positivamente como a adição de arestas (empa-
relhamento) atua como um mecanismo de otimização que
funde cadeias disparatadas, oferecendo uma intuição robusta
sobre como problemas de ordem podem ser resolvidos
eficientemente através de grafos. Essa transposição didática
resulta no desenvolvimento de competências críticas, como a
modelagem por redução, onde o discente aprende a converter
um problema de ordem parcial em um desafio geométrico de
emparelhamento bipartido. Essa capacidade de simplificação
topológica é um ganho conceitual que prepara o aluno para
enfrentar problemas de alta complexidade em disciplinas
como Teoria da Computação e Análise de Algoritmos, onde
a técnica de redução é o alicerce para o entendimento de
classes de complexidade.

Além disso, ao priorizar a centralidade teórica de Tutte
[14] e Dilworth [3], este trabalho promove uma forte
interdisciplinaridade ao conectar a Álgebra com a Algoritmia
de Grafos. Demonstrou-se que problemas práticos de
agendamento, hierarquia e dependência de tarefas — comuns
em áreas como Sistemas Operacionais e Engenharia de

Software — são, em sua essência, problemas de desenho
estrutural. O exercício de construir provas matemáticas
utilizando diagramas como parte do argumento lógico
desenvolve no estudante um rigor demonstrativo visual,
permitindo identificar gargalos em redes de forma intuitiva.
Assim, o texto consolida-se como um material de apoio
didático que transforma o rigor dos livros-texto em uma
ponte acessível para o sucesso em disciplinas avançadas de
Otimização Combinatória, validando a premissa de que a
compreensão profunda da estrutura do problema é o primeiro
passo para a eficiência algorítmica..

VII. CONSIDERAÇÕES FINAIS

O objetivo central deste trabalho foi revisitar os fundamentos
teóricos do emparelhamento em grafos, transcendendo
a abordagem tradicional focada apenas na execução de
algoritmos. Buscou-se preencher a lacuna didática existente
entre o entendimento intuitivo de grafos bipartidos e a
complexidade abstrata dos grafos gerais e estruturas de
ordem. Ao analisar as demonstrações clássicas, o artigo
propôs uma narrativa visual que facilita a assimilação de
conceitos difíceis por estudantes de graduação.

A síntese dos resultados aponta para duas conclusões
teóricas maiores. Primeiramente, na análise de existência,
entendemos que o Teorema de Tutte é uma fórmula
abrangente, que explica tanto os casos simples (bipartidos)
quanto os complicados (gerais), olhando para a estrutura
completa do grafo. Demonstramos que a "barreira de
paridade" (componentes ímpares isolados) é o mecanismo
universal de obstrução, englobando os casos restritos de Hall
[5] e König [9]. Em segundo lugar, a exploração do Teorema
de Dilworth [3] ratificou a equivalência estrita entre prob-
lemas de ordenação (posets) e o emparelhamento bipartido.
Essa conexão provou que a complexidade de problemas de
agendamento pode ser reduzida polinomialmente, validando
as estratégias algorítmicas de Kameda e Munro [8].

No que tange às contribuições pedagógicas, este estudo
oferece uma metodologia de ensino baseada na visualização
de "obstáculos estruturais". A principal contribuição reside
na formalização da técnica de Redução, ao invés de apenas
apresentar o Teorema de Dilworth como uma fórmula,
detalhamos o processo de transformação topológica que
converte um problema desconhecido em um conhecido.
Além disso, o uso de analogias concretas fornece aos
estudantes um vocabulário visual para identificar falhas
de emparelhamento, superando a dificuldade comum de
visualizar a remoção de conjuntos arbitrários.

Como limitação, este estudo concentrou-se nas condições
de existência e nas provas estruturais, sem aprofundar-se
na implementação computacional dos algoritmos de busca,
como o Blossom de Edmonds. Como perspectiva para
trabalhos futuros, sugere-se a expansão desta base didática
para o domínio da implementação computacional interativa.
A criação de ferramentas de software que permitam a
visualização dinâmica dos algoritmos — especificamente a
simulação passo a passo da contração de ciclos ímpares
no algoritmo Blossom de Edmonds — representaria um
avanço significativo. Ao utilizar as mesmas metáforas de
“fusão de componentes” e “gargalos” estabelecidas neste
artigo, seria possível demonstrar aos estudantes não apenas
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por que o emparelhamento falha sob a ótica teórica, mas
como o computador manipula e reduz essas estruturas
em tempo de execução. Encerramos, portanto, com a
convicção de que a união entre a base matemática sólida e
a visualização intuitiva se mostrou uma estratégia de ensino
extremamente eficaz. Acreditamos que essa abordagem
facilita significativamente o aprendizado, permitindo que os
estudantes compreendam o conteúdo com muito mais clareza
e segurança.
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Resumo—A teoria dos grafos, impulsionada historicamente pela conjectura de Francis Guthrie em 1852 e pela subsequente prova do
Teorema das Quatro Cores, evoluiu de curiosidades topológicas para ferramentas essenciais de modelagem. Este trabalho foca especificamente
no Problema de Coloração de Arestas, abordando-o sob uma perspectiva histórica e rigorosamente formal. Inicialmente, o texto contextualiza
a transição dos problemas de coloração de mapas para a coloração de arestas, destacando sua relevância prática em otimização de redes e
agendamento. O núcleo da discussão aprofunda-se na análise do Teorema de Vizing, que estabelece limites precisos para o índice cromático
de grafos simples, situando-o entre o grau máximo e o grau máximo acrescido de uma unidade. Serão dissecados os principais lemas e as
condições estruturais que determinam se um grafo pertence à Classe 1 ou Classe 2. Ao explorar a complexidade inerente a essa classificação,
o artigo serve como uma referência pedagógica, elucidando como restrições locais de adjacência ditam o comportamento global em sistemas
complexos.

Palavras-chave—Coloração de Grafos, Problema das Quatro Cores, Teorema de Vizing, Otimização Combinatória, Modelagem.

Abstract—Graph theory, historically propelled by Francis Guthrie’s 1852 conjecture and the eventual proof of the Four Color Theorem, has
evolved from a collection of topological curiosities into a set of essential modeling tools. This work specifically targets the Edge Coloring
Problem, addressing it through a lens that is both historical and rigorously formal. Initially, the text contextualizes the conceptual shift from
map coloring to edge coloring, emphasizing its practical applicability in critical areas such as network optimization and scheduling. The
core discussion deepens into an analysis of Vizing’s Theorem, which establishes precise boundaries for the chromatic index of simple graphs,
positioning it strictly between the maximum degree and the maximum degree plus one. Key lemmas and structural conditions determining
whether a graph falls into Class 1 or Class 2 are dissected. By exploring the inherent complexity of this classification, this article serves as a
pedagogical reference, clarifying how local adjacency constraints dictate global behavior in complex systems.

Keywords—Graph Coloring, Four Color Problem, Vizing’s Theorem, Combinatorial Optimization, Modeling.

I. INTRODUÇÃO

A Teoria dos Grafos é uma ferramenta de modelagem
versátil, oriunda da matemática, mas de escopo

fundamental para a ciência da computação. Sua capacidade
de representar e modelar relações complexas em sistemas
diversos – desde redes neurais e clusters de computadores até
a otimização logística de trabalhadores e rotas aéreas – a torna
fascinante e diretamente aplicável a problemas cotidianos.
Ao traduzir situações reais para uma linguagem matemática
precisa, os grafos permitem abstrair a complexidade do

Dados de contato: Lean de Albuquerque Pereira,
lean.albuquerque@uft.edu.br

mundo físico, revelando a estrutura lógica subjacente aos
problemas de conexão e conflito.

Nesse contexto, o estudo de coloração em grafos remonta
ao século XIX, originado pelo que pode ser visto como o
problema gerador da área: o famoso “Problema das Quatro
Cores”. A história inicia-se em 1852 com o matemático e
botânico sul-africano Francis Guthrie. Ao tentar colorir mapas
de condados da Inglaterra, Guthrie observou que talvez fosse
possível colorir qualquer mapa plano utilizando apenas quatro
cores, de modo que regiões vizinhas não compartilhassem a
mesma cor. Embora a conjectura tenha sido formulada em
correspondências privadas naquela época, ela foi formalmente
apresentada à comunidade científica por Cayley em 1879 [1]
e discutida pelo próprio Guthrie em nota posterior [2]. A
curiosidade inicial deflagrou uma das mais longas e produtivas
buscas por uma prova matemática.
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A primeira prova da conjectura surgiu apenas em 1879,
apresentada pelo matemático inglês Alfred Kempe [3]. Aceita
por uma década, a demonstração foi refutada em 1890, quando
erros estruturais foram encontrados. Diversas soluções foram
propostas subsequentemente, mas a confirmação definitiva
da conjectura ocorreu somente em 1976, pelos matemáticos
Kenneth Appel e Wolfgang Haken, da Universidade de
Illinois [4, 5]. Contudo, parte dessa prova utilizava
computadores para verificar milhares de casos, fato que gerou
resistência na comunidade matemática da época, que ansiava
por uma demonstração puramente analítica.

Embora o "Problema das Quatro Cores" trate essencial-
mente da coloração de vértices (ou faces), ele pavimentou
o caminho para variantes igualmente profundas, como o
Problema de Coloração de Arestas, foco central deste trabalho.
Diferente de colorir regiões, colorir arestas busca atribuir
rótulos às conexões de um grafo de tal forma que arestas
incidentes a um mesmo vértice não compartilhem a mesma
cor. Esse tipo de modelagem é vital para cenários onde o
conflito não está nos objetos (vértices), mas na utilização
simultânea de canais de comunicação ou horários, sendo o
índice cromático o parâmetro que define a eficiência máxima
dessa alocação.

Para além do panorama histórico internacional, aparece
com prestígio também a contribuição brasileira no desenvolvi-
mento da Teoria dos Grafos. O Brasil consolidou-se como
um pólo de excelência mundial nesta área, impulsionado
por pesquisadores cujos trabalhos são referência na literatura
contemporânea. Dentre eles, destacam-se as contribuições de
Jayme Luiz Szwarcfiter [6], fundamental na estruturação da
pesquisa em algoritmos e grafos no país; Cláudio L. Lucchesi
[7], renomado por seus trabalhos seminais, incluindo o célebre
Teorema de Lucchesi-Younger em grafos direcionados; e
Nelson Maculan [8], uma referência global em otimização
combinatória. Contextualizar o problema de coloração de
arestas envolve, portanto, reconhecer essa robusta tradição
acadêmica nacional que alia rigor teórico a aplicações
computacionais de ponta.

Neste artigo queremos portanto demonstrar de forma
pedagógica o problema de coloração de arestas, assegurando
ao leitor compreender a evolução desses conceitos, culmi-
nando na análise de dois pilares teóricos fundamentais, o
Teorema de Kőnig [9], que soluciona o problema para grafos
bipartidos relacionando-o ao grau máximo, e o Teorema de
Vizing [10], que estabelece os limites estritos para grafos
simples. Ao detalhar essas condições, busca-se absorver a
robustez matemática que sustenta a classificação dos grafos e
suas aplicações contemporâneas.

A seguir abordaremos o tópico por entre quatro seções
subsequentes. A Seção II estabelece as definições
preliminares e a notação fundamental, introduzindo conceitos
estruturais como grau máximo e emparelhamento. Na
Seção III, exploramos a natureza do problema, discutindo
intuitivamente os limites cromáticos e apresentando os lemas
auxiliares de Bondy e Murty que fundamentam a otimização
de cores. A Seção IV é dedicada à demonstração formal
dos dois pilares da teoria: o Teorema de Kőnig para grafos
bipartidos e o Teorema de Vizing para grafos simples. Por
fim, a Seção V apresenta as conclusões e uma síntese dos
resultados obtidos.

v1 v2 v3 v4

v5v6 v7

e1 e2 e3

e4

e5

e6e7

e8

e9

Figura 1: Representação Gráfica do Grafo G1.

II. PRELIMINARES

Para compreender a profundidade do Problema de Coloração
de Arestas, é necessário primeiro estabelecer a linguagem
comum da Teoria dos Grafos. Nesta seção, definimos as
estruturas fundamentais, as propriedades de conectividade e
os parâmetros que governam a complexidade desses sistemas.
As definições foram extraídas de [6, 11].

Formalmente, um grafo G = (V,E) é uma estrutura
matemática composta por dois conjuntos fundamentais: um
conjunto não vazio V de vértices e um conjunto E de pares
não-ordenados de vértices, denominados arestas. Denotamos
uma aresta qualquer e, como e= (a,b), onde a e b são vértices
do grafo e dizemos que a e b são extremos(ou extremidades)
da aresta e. Ainda, a aresta e é dita incidente aos vértices a e
b [6].

Neste contexto, os vértices (V ) representam os objetos
ou entidades do sistema, como computadores, pessoas ou
interseções, enquanto as arestas (E) representam as conexões
ou relações diretas entre esses objetos.

Um grafo qualquer, digamos G1, pode ser representado de
várias maneiras, por exemplo, de forma geométrica como
pode ser visto na Figura 1. Cada vértice é simbolizado
com um círculo, e os segmentos de retas que os conectam
são as arestas do grafo. Denotamos como V (G) e E(G) o
conjunto de vértices e arestas do grafo G, respectivamente.
Por exemplo, para o grafo G1, denotamos sua estrutura como:

V (G1) = {v1,v2,v3,v4,v5,v6,v7}
E(G1) = {(v1,v2),(v2,v3),(v3,v4),(v4,v5),(v6,v1),

(v2,v7),(v3,v7),(v5,v7),(v6,v7)}

Dois vértices são adjacentes (ou vizinhos) se existe uma
aresta que incide em ambos os vértices. Analogamente,
duas arestas são adjacentes se possuem uma extremidade
em comum [6].

Por exemplo, em G1, v1 e v2 são vértices adjacentes, pois
existe uma aresta que incide (conecta) ambos os vértices:
e1 = (v1,v2). Por outro lado, os vértices v1 e v5 não são
adjacentes, uma vez que não existe aresta que os conectam.
Similarmente, considerando a aresta e2, temos que e1 e e2 são
adjacentes, pois possuem uma extremidade em comum (v2).
No entanto, as arestas e1 e e4 não são adjacentes.

Seguindo as definições clássicas de Bondy e Murty [11],
estabelecemos duas propriedades essenciais para o escopo
deste trabalho. Primeiramente, um grafo G é dito finito se o
seu conjunto de vértices e arestas é finito. Em segundo lugar,
um grafo é classificado como simples se ele não possui laços
(uma aresta com início e fim no mesmo vértice) e não possui
duas ou mais arestas que incidem no mesmo par de vértices
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v1

v2 v3 v4

v5v6 v7

e1

Figura 2: Grafo G2 (exemplo de grafo não simples).

X

u1

u2

u3

Y

v1

v2

Figura 3: Grafo bipartido K3,2 ilustrando a partição de vértices em
X e Y .

(arestas múltiplas). Por exemplo, o grafo G2 (Figura 2) não é
simples, pois possui três arestas que conectam v4 e v5 e ainda
possui um laço, representado pela aresta e1. Por outro lado, o
grafo G1 é simples.

Um grafo G = (V,E) é dito bipartido se o seu conjunto
de vértices V pode ser particionado em dois subconjuntos
disjuntos, digamos X e Y , de tal forma que toda aresta
de G conecta um vértice de X a um vértice de Y .
Consequentemente, não existem arestas com ambas as
extremidades no mesmo subconjunto. A Figura 3 exemplifica
esta propriedade através do grafo completo K3,2.

Um dos conceitos mais críticos para problemas de
coloração é o grau de um vértice. O grau de um vértice
v, denotado por d(v), é definido como o número de arestas
incidentes a ele. Na Figura 4, destacamos dois exemplos
importantes: o vértice v1 possui apenas duas arestas incidentes
(destacadas em azul), logo d(v1) = 2; já o vértice v7 comporta-
se como o elemento de maior conectividade (destacadas
em vermelho). A partir dessa definição local, derivamos
o parâmetro global mais importante para este trabalho: o
Grau Máximo (∆(G)). Ele representa o maior valor de grau
encontrado entre todos os vértices. No nosso exemplo, como
nenhum vértice supera v7, temos que ∆(G1) = 4.

Em um grafo definimos Caminho (Pn) como sendo uma
sequência de vértices adjacentes sem repetição. Na Figura
5, a sequência v1v6v7v5 (destacada em azul) constitui um
caminho válido (P4), conectando o vértice v1 ao v5 através
do interior do grafo. Em contrapartida, a sequência v1v2v1v6
não forma um caminho, pois o vértice v1 se repete. Um
Ciclo (Cn) consiste em um caminho cujo vértice de início é
igual ao vértice de fim, fechando um circuito. O destaque
em vermelho exemplifica um ciclo C3, de tamanho 3 (um
triângulo): v2v3v7v2. [6]

v1 v2 v3 v4

v5v6 v7

d(v1) = 2

∆(G) = 4

Figura 4: Visualização dos graus do grafo G1.

v1 v2 v3 v4

v5v6 v7

Figura 5: Exemplos de subestruturas em G1: um Caminho aberto
(azul) e um Ciclo fechado (vermelho).

v1 v2 v3 v4

v5v6 v7

Figura 6: Um emparelhamento no grafo G1 (em azul).

Um grafo G é denominado conexo quando existe caminho
para cada par de vértices; do contrário, o grafo é dito ser
desconexo [6]. Por exemplo, o grafo G1 é conexo uma vez que
para cada dois vértices quaisquer sempre existe um caminho
que os conecta. Em contrapartida, considere que as arestas
verdes da figura 6 juntamente com os seus vértices formem
um grafo. Este, seria desconexo já que, por exemplo, não
existe um caminho que conecta os vértices v1 e v7.

Finalmente, chegamos ao conceito de emparelhamento
(matching). Um emparelhamento em um grafo G é um
conjunto de arestas M ⊆ E tal que nenhuma aresta de M
é adjacente a outra; em outras palavras, nenhum vértice do
grafo incide em mais de uma aresta de M [11].

Na Figura 6, destacamos em azul um emparelhamento
formado pelas arestas {(v1,v2),(v3,v4),(v5,v7)}. Note a
característica visual mais importante: essas três arestas são
totalmente independentes e não compartilham nenhum vértice
comum (elas "não se tocam"). Esse conceito é a base
estrutural da coloração de arestas, pois em uma coloração
válida, todas as arestas pintadas com uma mesma cor formam,
obrigatoriamente, um emparelhamento.

III. TRABALHOS RELACIONADOS

A Teoria dos Grafos constitui uma importante área tanto no
âmbito teórico e prático. No campo teórico sua importância
é um reflexo da existência de muitos problemas ainda
em estudo ou mesmo sem solução, o que incentiva a
escrita de trabalhos acadêmicos na área e formação de
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grupos de pesquisas na universidade [6]. Por outro lado,
o tema é também extremamente relevante do ponto de vista
prático com aplicações que surgem nas mais diversas áreas
como na química (modelagem de estrutura de moléculas);
no planejamento de rotas de tráfego aéreo com menor
distância; na engenharia e obviamente na computação [12].
Portanto, são muitos os trabalhos que buscam contribuir
pedagogicamente no ensino Teoria dos Grafos de formas mais
acessível, haja vista sua importância prática e teórica.

Silva [12], em sua dissertação, tem como proposta de
trabalho introduzir a Teoria dos Grafos no ensino fundamental.
Para isso ele propõe uma abordagem evidentemente mais
lúdica para assim motivar os alunos ao aprendizado, e escolhe
problemas que sejam mais próximos ao codiano dos alunos
como o problema de caminhos. Segundo o autor, o trabalho
não só contribui para professores que desejam lecionar o
conteúdo, mas também para qualquer pessoa que tem interesse
no assunto.

Csóka, Lippner e Pikhurko [?], em seu estudo investigaram
o problema de coloração de arestas em Graphings, segundo
os autores: "Um graphing é uma generalização analítica de
um grafo de grau limitado que aparece em várias áreas, como
limites de grafos esparsos e teoria de equivalência de órbitas."
Eles mostraram tanto o Teorema de König e o Teorema de
Vizing poderiam ser generalizados para essa classe de grafos.

Em seu artigo Müller e Bayer [13] apresentam um
possibilidade pedagógica para a abordagem de Teoria dos
Grafos nos anos finais do ensino fundamental, através de um
desafio lúdico adaptado por eles. Tal atividade além de divertir
os alunos faz uma exposição branda sobre a estrutura de um
grafo (vértices, arestas, grau) e conceitos relacionados como
conexidade e planaridade.

Soares [14] em seu trabalho, apresenta três teoremas em
Teoria dos Grafos e suas respectivas provas em detalhes
e estruturadamente, com o intuito de encorajar a inclusão
de Tópicos de Grafos no Ensino Médio. Os teoremas
apresentados: Teorema das Cinco Cores, Teorema da Galeria
de Arte, e Teorema da Amizade foram escolhidos ainda por
possuírem um certo apelo estético a auxiliar na conclusão do
objetivo de seu estudo.

Finalmente, um trabalho feito por Yasser e Bianchii [15]
que, apesar de ser da área de Teoria da Computação, se propõe
a fazer uma reflexão e discutir sobre Práticas Pedagógicas no
escopo da disciplina de Teoria da Computação. Conforme os
autores, o uso de abordagens alternativas como seminários,
auxiliou na compreensão dos conceitos que são expostos
tradicionalmente de maneira mais abstrata e gerou um maior
índice de satisfação na disciplina.

Na próxima seção introduziremos definições e conceitos
que serão utilizadas nesta pesquisa para abordar o Problema
de Coloração de Arestas.

IV. COLORAÇÃO DE ARESTAS

Intuitivamente, como o próprio nome sugere, uma coloração
de arestas consiste em atribuir k rótulos às arestas de um grafo
qualquer onde cada rótulo pode ser interpretada como uma
cor.

Formalmente, uma k-coloração de arestas de um grafo
G sem laços, pode ser descrita não apenas como uma
atribuição de rótulos, mas estruturalmente como uma partição

v5

d

c

a
e

f

b
g

Figura 7: Grafo G2 Fonte: Bondy e Murty(1976

do conjunto de arestas E em k subconjuntos (E1,E2, . . . ,Ek).
Desta forma, cada subconjunto Ei representa as arestas de uma
mesma cor. Se as arestas de cada subconjunto Ei forem não
adjacentes, dizemos que a coloração é própria [11]. Se um
grafo G admite uma coloração própria com k cores, dizemos
que G é k-colorível.

Sob a ótica da Teoria dos Grafos, nota-se que esse
conjunto de arestas independentes corresponde exatamente
à definição de emparelhamento (matching) vista na seção
anterior. Portanto, colorir as arestas de um grafo G equivale a
particionar sua estrutura em uma coleção de emparelhamentos
distintos (M1,M2, . . . ,Mk).

Por exemplo, considere o grafo G2( Figura 7). Podemos
definir uma coloração C = ({a,b,c,d},{e, f},{g}). Pode-
mos interpretar essa partição da seguinte forma: as arestas
a, b, c e d colorimos com uma cor qualquer, digamos c1;
as arestas e e f recebem a cor c2 e a aresta g recebe a cor
c3. Obviamente essa coloração não é própria uma vez que
existem arestas adjacentes que receberam a mesma cor(por
exemplo, as arestas a, b, c, d).

Por outro lado, considere a coloração C ′ =
({a,g},{b,e},{c, f},{d}). Novamente, isso pode ser
interpretado como uma atribuição de cores da seguinte forma:
a arestas a e g recebem a cor c′1; as arestas b e e recebem a
cor c′2; as arestas c e f recebem a cor c′3 e a aresta d recebe
a cor c′4. Dessa vez, note que não existe arestas adjacentes
com uma mesma cor. Portanto, C ′ é uma coloração própria e
perceba que cada conjunto de arestas dessa partição forma
um emparelhamento.

Dizemos ainda que uma determinada cor c é representada
em um vértice v, se existe alguma aresta incidente a v que
possua a cor c. Por exemplo, para o grafo G1 e considerando
a coloração C ′ as cores c1, c2, c3 são representadas no vértice
v5, uma vez que, as arestas e, f e g, incidem em v5 e possuem
as cores c1, c2, c3.

Dessa perspectiva, surge um questionamento natural: “Qual
a menor quantidade de cores necessária para pintar as arestas
deste grafo sem gerar conflitos de incidência?”. A resposta
define um dos parâmetros fundamentais da área: o índice
cromático, denotado por χ′(G). Este parâmetro representa
o número mínimo de emparelhamentos distintos necessários
para cobrir todas as arestas de um grafo de forma válida.
No exemplo do grafo G2, o leitor pode conferir que 4 é o
menor números de cores possível para realizar uma coloração
própria em G2. Portanto χ′(G2) = 4.

Ao buscarmos o índice cromático, deparamo-nos imediata-
mente com uma restrição física imposta pela própria estrutura
do grafo. Considere o vértice mais “congestionado” do
sistema, isto é, aquele que possui o maior número de conexões
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v1 v2 v3 v4Verm. Azul ?

(a) Caminho termina em v3 (Grau ≥ 2).

v1 v2 v3 v4

Verm. Azul Verm.

(b) Extensão: v3 agora tem as duas cores.

Figura 8: Ilustração esquemática da propriedade de extensibilidade.

(o grau máximo, denotado por ∆(G)).
A lógica é trivial: se olharmos novamente para o vértice v7

da Figura 1 (Seção 2), vemos que ele possui 4 conexões. É
fisicamente impossível colorir essas 4 arestas incidentes com
apenas 3 cores sem que duas delas compartilhem a mesma cor
e causem um conflito. Esse “gargalo” local impõe, portanto,
um limite inferior global para todo o sistema:

χ′(G)≥ ∆(G) (1)

Essa desigualdade estabelece que são necessárias, pelo
menos, tantas cores quanto o grau máximo. A questão central
que a teoria busca responder é: será que esse mínimo é
suficiente? Para alguns para alguns tipos de grafos, como
os grafos bipartidos, a resposta é afirmativa, como veremos a
seguir.

Para avançarmos da intuição para a prova formal de que
grafos bipartidos atingem o limite inferior ∆(G), necessitamos
de uma ferramenta auxiliar que garanta a distribuição
equilibrada de cores. Bondy e Murty apresentam um resultado
técnico fundamental, conhecido no livro como Lema 6.1.1
[11]. Para fins didáticos, chamaremos este resultado de Lema
das Duas Cores.

A intuição por trás deste lema é uma questão de paridade.
Sabemos que ciclos ímpares são as únicas estruturas que
impedem uma 2-coloração perfeita (onde arestas alternam
cores). Se removermos essa restrição, ganhamos controle
sobre a incidência de cores nos vértices.

“Lema das Duas Cores: Seja G um grafo conexo
que não é um ciclo ímpar. Então, G possui uma
2-coloração de arestas na qual ambas as cores estão
representadas em cada vértice de grau pelo menos
dois.”

Para visualizar a ideia construtiva deste lema, imagine que
nosso objetivo é traçar um caminho pelo grafo, pintando
as arestas alternadamente em Vermelho e Azul, conforme
ilustrado esquematicamente na Figura 8.

Ao passarmos por um vértice intermediário (como o vértice
v2 na Figura 8-a), necessariamente entramos por uma cor e
saímos pela outra. Isso garante que v2 possui ambas as cores
representadas. O problema surge apenas nos vértices que
habitam a extremidade do caminho (como o vértice v3), pois
eles estariam em contato com apenas uma aresta colorida
neste trajeto.

A genialidade do lema reside na extensibilidade, demons-
trada na parte (b) da Figura 8. Se o caminho termina em um

vértice que ainda tem outras arestas não coloridas (ou seja,
grau ≥ 2), podemos simplesmente expandir o caminho por
essa nova aresta usando a cor alternada.

Podemos repetir esse processo até que o caminho termine
em um vértice sem saída ou feche um ciclo. O lema
garante que, exceto no caso específico do ciclo ímpar (onde
a alternância de cores trava ao fechar o ciclo), sempre
conseguimos ajustar caminhos para que nenhum vértice de
grau igual ou maior que dois fique com uma cor só.

Além da existência de colorações, é importante definir uma
forma para compará-las. Dada uma k-coloração C de G,
denotamos por c(v) o número de cores distintas representadas
no vértice v.

Intuitivamente, um vértice não pode “ver” mais cores do
que o número de arestas que chegam a ele. Portanto, temos a
desigualdade trivial:

c(v)≤ d(v) (2)

A igualdade c(v) = d(v) ocorre se, e somente se, a
coloração é própria em torno de v (ou seja, todas as arestas
incidentes têm cores diferentes). Com base nisso, definimos
o conceito de melhoria (improvement). Dizemos que uma
coloração C ′ é uma melhoria sobre C se a soma global de
cores distintas observadas pelos vértices aumenta:

∑
v∈V

c′(v)> ∑
v∈V

c(v) (3)

Uma k-coloração é dita ótima se ela não pode ser melhorada.
Esse conceito de “otimalidade” é a chave para as provas
construtivas que virão a seguir: a ideia é começar com uma
coloração qualquer e “melhorá-la” iterativamente até atingir
uma coloração onde a regra de adjacência seja satisfeita para
o maior número possível de vértices.

Com o conceito de otimização já estabelecido, podemos
finalmente analisar quais os fatores que impedem uma
coloração de ser perfeita.

Suponha que atingimos uma k-coloração ótima C . Agora,
imagine que essa coloração ainda não é a “ideal” em um
vértice u: a cor i está faltando em u, mas a cor j aparece
repetida. Isso indica um desequilíbrio local.

Intuitivamente, gostaríamos de trocar algumas arestas da
cor j por i para equilibrar a distribuição. O Lema 6.1.2
de Bondy e Murty, aqui chamado de Lema do Obstáculo
em Ciclos Ímpares, nos diz exatamente quando isso não é
possível.

“Lema do Obstáculo em Ciclos Ímpares: Seja C
uma k-coloração ótima de G. Se existe um vértice
u onde a cor i não aparece, mas a cor j aparece
pelo menos duas vezes, então a componente conexa
formada apenas pelas arestas dessas duas cores (i
e j) que contém u é, necessariamente, um ciclo
ímpar.”

A prova dessa afirmação conecta-se diretamente ao Lema
das Duas Cores e pode ser visualizada na Figura 9.

Perceba que No vértice u, temos duas arestas azuis ( j) e
nenhuma vermelha (i), tentar consertar isso alterando as cores
ao longo do ciclo apenas deslocaria o problema para v1 ou
v2, sem resolver o conflito globalmente. Se a componente
contendo u não fosse um ciclo ímpar, poderíamos aplicar a
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u

v1 v2

Azul ( j)

Verm. (i)

Azul ( j)

Falta Vermelho (i)

Figura 9: O obstáculo do ciclo ímpar.

lógica da extensibilidade vista anteriormente para re-colorir
essa componente de modo que u passasse a ter ambas as cores
(i e j). Isso faria com que o número de cores distintas em
u aumentasse (c(u) subiria em 1), sem prejudicar os outros
vértices, criando uma coloração “melhor”.

Como partimos da premissa de que a coloração original
já era ótima (impossível de melhorar), essa re-coloração
é impossível. Logo, a única explicação geométrica que
trava essa melhoria é que estamos presos na estrutura rígida
mostrada na Figura 9: um ciclo ímpar.

V. O TEOREMA DE KŐNIG

Com base na fundamentação estabelecida, alcançamos o
ponto de convergência desta primeira parte. Os lemas
anteriores construíram uma narrativa clara: a otimização de
uma coloração só é bloqueada estruturalmente pela presença
de ciclos ímpares.

Para contextualizar a importância do que vem a seguir, vale
ressaltar que, quando o matemático húngaro Dénes Kőnig
publicou este resultado em 1916 [9], a Teoria dos Grafos
ainda nem existia como disciplina autônoma. Kőnig, que
mais tarde escreveria o primeiro livro-texto da área, chegou
a este teorema estudando a decomposição de matrizes e
determinantes. Ele percebeu que certas estruturas algébricas
poderiam ser traduzidas geometricamente para o que hoje
chamamos de grafos bipartidos, provando que, nessas
estruturas “bem-comportadas”, a complexidade do problema
desaparece.

A elegância da sua conexão reside no fato de que, por
definição, a propriedade fundamental de um grafo bipartido
é a ausência completa de ciclos de comprimento ímpar. Se a
única barreira topológica para a otimização perfeita é o ciclo
ímpar, e os grafos bipartidos são desprovidos dessa estrutura,
a conclusão lógica é inevitável.

“Teorema de Kőnig (1916): Se G é um grafo
bipartido, então seu índice cromático é exatamente
igual ao seu grau máximo, ou seja, χ′(G) = ∆(G).”

Para visualizar o porquê deste teorema funcionar, imagine
que os vértices do grafo estão divididos em dois times rivais,
Time A e Time B, e as arestas representam partidas entre eles.
Em um grafo bipartido, um time nunca joga contra si mesmo;
as arestas sempre ligam A a B.

Se tentarmos colorir as arestas (agendar os jogos) e
encontrarmos um conflito que exige uma troca de cores em
cadeia, essa cadeia de trocas funcionaria como um movimento
de “ping-pong”, ilustrado na Figura 10.

Para que um conflito seja insolúvel (como vimos no Lema
anterior), essa cadeia precisaria fechar um ciclo ímpar mas

a1 b1

a2 b2

(Ímpar)

(Par)

(Ímpar)

Figura 10: Qualquer caminho de comprimento ímpar termina
necessariamente no time oposto.

se observarmos o movimento na figura veremos que Passo
1 (Ímpar): Sai de A → Chega em B, Passo 2 (Par): Sai
de B → Volta para A, Passo 3 (Ímpar): Sai de A →
Chega em B. Isso mostra que se nosso intuito for fechar
um ciclo e voltar ao vértice de origem (que está em A), é
necessário, obrigatoriamente, um número par de passos pois
é impossível sair de A e voltar para A com um número ímpar
de movimentos, pois estaríamos fisicamente no lado do Time
B.

Podemos concluir portanto que o “curto-circuito”
cromático do ciclo ímpar nunca acontece, sempre
conseguimos resolver os conflitos locais e organizar
as arestas em exatamente ∆ rodadas (cores) perfeitas.

O Teorema de Kőnig representa, como vimos, o cenário
ideal na coloração de arestas: uma classe de grafos onde a
topologia colabora perfeitamente com a alocação de recursos,
garantindo que o limite inferior natural (∆) seja sempre
suficiente. Nesses casos, não há desperdício e a estrutura
bipartida assegura a inexistência dos conflitos cíclicos que
impediriam a otimização.

Contudo, a modelagem de sistemas complexos frequente-
mente nos confronta com grafos que não possuem essa
propriedade. O que acontece quando a restrição é levantada
e os ciclos ímpares, como um simples triângulo, são
reintroduzidos na estrutura? A intuição poderia sugerir que,
sem a garantia de Kőnig, o número de cores necessárias
poderia crescer descontroladamente acima do grau máximo.

A resposta para o caso geral foi descoberta quase cinquenta
anos depois e revela um resultado surpreendente: mesmo na
presença de ciclos ímpares e estruturas complexas, o “caos”
cromático é extremamente limitado. O índice cromático
nunca se afasta muito do ideal estabelecido por Kőnig,
oscilando em um intervalo restrito de apenas dois valores
possíveis.

VI. O TEOREMA DE VIZING

O Teorema de Vizing [10] constitui um outro resultado
clássico no problema de coloração de arestas. Em seu trabalho,
ele mostrou que existia um limite superior para o índice
cromático de um multigrafo. Um multigrafo é um grafo
que possui mais de uma aresta que conecta um mesmo par de
vértices (veja a figura 2). Contudo, o presente trabalho trata
de grafos simples, então para cada par de vértices há somente
uma aresta que os conecta. Sob essas hipóteses, o Teorema
de Vizing possui o seguinte enunciado:

“Seja G um grafo simples. Então vale a
desigualdade: ∆(G)≤ χ′(G)≤ ∆(G)+1”
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Uma vez que o índice cromático de um grafo é um número
inteiro, o teorema diz que para qualquer grafo G simples,
o seu índice cromático ou é igual ao grau máximo de G
ou então é maior por uma unidade apenas. Esse é um
resultado extremamente útil na construção de algoritmos para
coloração própria e mínima, pois implica que precisamos
apenas examinar dois conjuntos de colorações, o que reduz
bastante o espaço de busca [16]. A primeira desigualdade
é trivial e pode ser vista na seção IV em (1). A dificuldade
reside na segunda desigualdade.

Na literatura existem vários tipos de provas da segunda
parte: por indução e construção por exemplo. Neste texto
usaremos o tipo de demonstração por contradição.

No enunciado do teorema temos duas proposições: p =
"G é um grafo simples" e q = "∆(G) ≤ χ′(G) ≤ ∆(G)+ 1".
Queremos mostrar que a ocorrência de p implica q. A
estrutura da prova é a seguinte: assumimos que p ocorre mas
negamos a proposição q, ou seja, assumimos o contrário
daquilo que queremos provar, e assim teremos uma nova
proposição diferente:

"Seja G um grafo simples. Então χ′(G)> ∆(G)+1"

Com base nessa proposição, nós faremos uma série de
deduções lógicas válidas, e eventualmente chegaremos à
conclusão de ser falso um fato já provado ser verdade. Mas
isso é uma contradição, então a única explicação para essa
incoerência lógica é ter suposto inicialmente que χ′(G) >
∆(G)+ 1. Então se essa proposição é falsa, sua negação é
verdadeira e portanto: χ′(G)≤ ∆(G)+1. [17]

O teorema de Vizing divide os grafos que satisfazem as
hipóteses do teorema em duas classes, de acordo com seu
índice cromático; se um grafo G satisfaz χ′(G) = ∆(G) ele
é dito ser de classe 1, se χ′(G) = ∆(G)+1 ele é de classe 2
[18].

Para compreender melhor essa classificação, é útil
visualizar como a topologia do grafo impõe restrições locais.
A distinção fundamental reside na capacidade da estrutura em
acomodar emparelhamentos sem gerar conflitos insolúveis.
Conforme ilustrado na Figura 11, um ciclo par (C4), por
ser um grafo bipartido, permite uma alternância perfeita de
índices (representados pelos números 1 e 2), satisfazendo
χ′(G) = ∆(G) = 2 e classificando-se como Classe 1. Em
contrapartida, um ciclo ímpar (C5) apresenta um impasse
estrutural: ao tentar alternar os índices 1 e 2, a última
aresta conecta vértices que já possuem incidências de ambos,
obrigando o uso de um terceiro índice (número 3). Isso resulta
em χ′(G)= 3=∆(G)+1, caracterizando o grafo como Classe
2.

Uma curiosidade interessante é que Holyer [19] mostrou
que, dado um grafo G, decidir se ele é de Classe 1 ou de
Classe 2 é um problema NP-completo. De forma simplificada,
problemas NP-completos são problemas de decisão cuja
solução, uma vez proposta, pode ser verificada de forma fácil,
porém encontrar sua solução é difícil [6]. Por exemplo, dada
uma coloração de arestas C qualquer sobre um grafo G, é
fácil verificar se essa coloração é de Classe 1: basta checar se
a coloração é própria e se utiliza exatamente ∆(G) cores. No
entanto, decidir se existe tal coloração entre o enorme número
de possibilidades é um problema computacionalmente difícil.

Na seção a seguir, veremos as demonstrações dos dois

1

1

22

Classe 1 (χ′ = 2)

1

2

1

2

3

Classe 2 (χ′ = 3)

Figura 11: Comparação visual utilizando numeração nas arestas: O
ciclo par (C4) usa apenas rótulos 1 e 2, enquanto o ciclo ímpar (C5)

necessita do rótulo 3.

teoremas propostos.

VII. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Estabelecidas as condições estruturais e os lemas auxiliares
sobre a distribuição de cores, o texto avança para a
formalização dos dois pilares centrais da coloração de arestas.

Demonstra-se inicialmente o Teorema de Kőnig, provando
que a ausência de ciclos ímpares em grafos bipartidos garante
que o índice cromático atinja seu limite inferior natural (∆).
Subsequentemente, a análise expande-se para a classe dos
grafos simples gerais. Mediante o método de redução ao
absurdo e argumentos de recoloração, demonstra-se o célebre
Teorema de Vizing. Este estabelece que, mesmo na presença
de estruturas cíclicas ímpares, o índice cromático excede o
grau máximo em no máximo uma unidade.

Ambas as demonstrações fundamentam-se na estrutura
lógica apresentada por Bondy e Murty [11], utilizando
os conceitos de otimização cromática e emparelhamentos
definidos preliminarmente.

O Teorema de Kőnig enuncia-se da seguinte maneira.

Teorema de König VII.1. Seja G um grafo bipartido. Então
a igualdade abaixo se verifica

χ′(G) = ∆(G). (4)

Proof. A demonstração da igualdade utiliza o método de
redução ao absurdo. Assume-se a falsidade da tese para obter
uma contradição estrutural.

Seja G um grafo bipartido e suponha-se, por contradição,
que χ′(G) > ∆(G). Considere C = (E1,E2, . . . ,E∆) uma ∆-
coloração ótima das arestas de G. Como o grafo não é ∆-
colorível propriamente, existe necessariamente um vértice u
onde o número de cores presentes é inferior ao grau do vértice,
satisfazendo a condição

c(u)< d(u) (5)

Essa desigualdade implica uma falha na distribuição das
cores em u. Especificamente, existem cores i e j tais que a cor
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u

Partição A Partição B

j

j

Falta cor i

Figura 12: Defeito cromático em u: repetição da cor j (azul) e
ausência da cor i (vermelha).

i não está representada em u (falta), enquanto a cor j aparece
pelo menos duas vezes (repetição). A Figura 12 ilustra essa
configuração local, onde o vértice u possui duas arestas azuis
( j) e nenhuma aresta vermelha (i).

Aplica-se neste ponto o Lema das duas cores (Lema 6.1.2
de Bondy & Murty). Segundo este resultado, se tal falha
ocorre em uma coloração ótima, a componente conexa do
subgrafo induzido apenas pelas cores i e j que contém u deve
ser, obrigatoriamente, um ciclo ímpar.

Entretanto, tal conclusão gera uma contradição topológica
imediata com a natureza do grafo G. A definição de grafo
bipartido exige que o conjunto de vértices possa ser dividido
em dois subconjuntos disjuntos, A e B, onde toda aresta
conecta um vértice de A a um de B.

Para que um ciclo exista, é necessário sair de uma
partição e retornar a ela. Como cada passo na trilha
alterna de partição (A → B → A → . . . ), retornar ao
vértice de origem exige necessariamente um número par de
passos. Consequentemente, é impossível existir um ciclo de
comprimento ímpar em um grafo bipartido.

Visto que a existência do ciclo ímpar exigido pelo lema é
impossível, a suposição inicial de que χ′(G)> ∆(G) revela-se
falsa. Portanto, conclui-se que χ′(G) = ∆(G).

.
Vejamos a seguir a demonstração de um outro importante

teorema relacionado ao Problema de Coloração de Arestas
em Grafos.

Teorema de Vizing VII.2. Seja G um grafo simples. Então:

∆(G)≤ χ′(G)≤ ∆(G)+1. (6)

Proof. Seja G um grafo simples. Suponha por absurdo que
χ′(G) > ∆(G) + 1. Seja C = (E1,E2, ...,E∆(G)+1) uma
(∆+1)-coloração das arestas de G e seja u um vértice tal
que:

c(u)< d(u) (7)

Note que o vértice u existe, pois assumimos(por
contradição) que o grafo G não é (∆+1)-colorível. Assim
deve existir pelo menos um vértice tal que uma mesma
cor esteja representada nele, exatamente o que o item (7)
exprime(Lembre que c(v) denota o número de cores distintas
representadas em um dado vértice v). Então, existem certas
cores i0 e i1 tais que: i0 não está representado em u, e i1 está
representado pelo menos duas vezes em u. Esse fato ocorre
porque, para todo vértice de G, em particular para u, segue
que d(u)<∆(G)+1 e a coloração que estamos usando possui
∆(G)+ 1 cores, logo pelo menos uma cor não é usada em
u, o que justifica a existência de i0. A existência da cor i1 é

c(u)=2
u

v2
c(v2)=1

v1
c(v1)=3

v3
c(v3)=3

c(v4)=1
v4

v5
c(v5)=1

c(v6)=1
v6

v7
c(v7)=1

i0

i1 i1

i2
i3

i0
i2

Figura 13: Grafo G com coloração c0

c(u)=3
u

v2
c(v2)=1

v1
c(v1)=3

v3
c(v3)=3

c(v4)=1
v4

v5
c(v5)=1

c(v6)=1
v6

v7
c(v7)=1

i0

i1 i3

i2
i3

i0
i2

Figura 14: Grafo G com coloração c′0

consequência de (5). Seja uv1 uma aresta que possua a cor i1.
Agora considere a seguinte asserção:

(i): “Uma vez que d(v1) < ∆(G)+ 1 existe uma
cor i2 que não é representada em v1. Note que
i2 necessariamente deve estar representada em u.
Do contrário, poderíamos recolorir a aresta uv1
com a cor i2 e assim obter uma melhoria na nossa
coloração, o que contradiz a hipótese dela ser
ótima.”

Vejamos um exemplo para compreender melhor o item (i).
Considere o grafo G(figura 13), cujo grau máximo de vale
3(Naturalmente, o argumento também é válido se G fosse um
grafo maior, o que importa é olhar localmente para o vértice
u que sabemos que existe). Assim, a coloração denotada por
c0 é composta por 4 cores, denotadas por i, onde:

c0 = {i0, i1, i2, i3}
Note que, o somatório do número de cores distintas que

são representadas em cada vértice é 13, isto é, ∑c(v) = 13.
A cor preta não é representada no vértice em u e nem em v1.
Crie uma nova coloração c′0 onde aresta uv1 se torna da cor
preta e o restante das arestas permanecem inalteradas. Para
essa nova coloração, o somatório do número de cores distintas
representadas em cada vértice é 14: ∑c′(v) = 14 (Figura 14).
Ou seja, conseguimos melhorar a nossa coloração c0, o que
é uma contradição pois supomos que tal coloração era ótima.
Portanto o item (i) é de fato verdadeiro.

Então sabemos que existe alguma aresta diferente de uv1
que possui a cor i2, chamemos ela de uv2. Novamente, temos
que d(v1) < ∆(G) + 1, logo existe uma cor i3 que não é
representada em v2. Por um raciocínio totalmente análogo ao
feito em (i), a cor i3 deve necessariamente estar representada
em u, do contrário, seria possível fazer uma melhoria na
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u

vv1

v2

vk−1 vk

vl

i1i1
i2

ik−1 ik

il

Figura 15: Estrutura gerada em u. Fonte: Bondy e Murty(1976)

coloração ϕ atribuindo a cor i2 à aresta uv1 e a cor i3 à aresta
uv2. Assim deve existir um aresta uv3 com a cor i3.

Continuando com esse procedimento, construiremos uma
sequência de vértices v1,v2, ... e uma sequência de cores
i1, i2, ... que possui as seguintes propriedades:

(a) A aresta uv j possui a cor i j.

(b) A cor i j+1 não aparece na aresta uv j.

(c) Como estamos considerando um grafo simples finito,
u possui grau finito, e em algum momento as cores
começarão a se repetir nas arestas de u.

Graficamente, podemos ver a estrutura construída(Figura
15). Nela podemos ver todas as arestas adjacentes a u, sendo
que a cor i1 é representada duas vezes e a cor i0 não é
representada nenhuma vez. A cor i2 não é representada em
v1 mas é representada em v1, a cor i3 não é representada
em v2 porém é representada em i3 do contrário, como já
discutimos, seria possível reatribuir cores às arestas do grafo
de modo a obter uma melhoria para a ∆(G)+1-coloração, o
que geraria um contradição pois supomos que tal coloração é
máxima(e assim por diante para as demais cores). Agora
faremos recolorações no grafo G de forma a manter sua
otimalidade.

A primeira coloração se dará da seguinte forma: a aresta
uv j receberá a cor da aresta uv j+1 com 1≤ j≤ k−1. Aqui, as
cores das arestas de uv1 até uvk são todas distintas, e depois da
aresta vk as cores começam a se repetir seguindo a propriedade
(c) dessa estrutura construída. Na prática estamos apenas
deslocando as cores uma unidade no sentido anti-horário: a
aresta uvk−1 receber a cor ik, a aresta uvk−2 recebe a cor ik−1
..., a aresta uv2 recebe a cor i3, a aresta uv1 recebe a cor i2
(Figura 16).

Note que a nova coloração C ′ = (E ′1,E
′
2, ...,E

′
∆(G)+1)

também é uma ∆(G)+1-coloração ótima, pois na estrutura
que construímos, a cor i j+1 não aparece na aresta
u j(propriedade (b)). Ou seja a quantidade de cores distintas
representadas em cada vértice permanece inalterada. Por
exemplo, observe a aresta uv1. Antes a cor i2 não era
representada nela(do contrario teríamos uma contradição),
isto é, nenhuma outra arestas diferente uv1 possuia a cor
i2 em v1. Agora surge a questão: e se v1 tiver uma aresta
wv1 com a cor i1? Se isso ocorresse, ao colorir uv1 com i2
haveria uma melhoria na coloração(uma contradição). Logo
estamos trocando uma cor(i1) que só aparece uma vez em
v1 por outra(i2) que irá aparecer apenas uma vez em v1. O

u

vv1

v2

vk−1 vk

vl

i1i2
i3

ik ik

il

Figura 16: 1º recoloração. Fonte: Bondy e Murty(1976)
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v2

vk−1 vk

vl

w w′

i1i2
i3

ik ik

il

i0 i0

H ′

Figura 17: Ciclo ímpar formado pela componente H ′. Fonte:
Adaptado Bondy e Murty(1976).

u

vv1

v2

vk−1 vk

vl

i1i2
i3

ik ik+1

ik

Figura 18: 2º recoloração. Fonte: Bondy e Murty(1976)

mesmo vale para os demais vértices. Veja que a coloração só
altera essa região especifica, o restante do grafo permanece
da mesma forma.

Então estamos diante de uma ∆(G)+ 1-coloração ótima,
onde o vértice u possui uma cor que não é representada nele(i0
por hipótese) e um outra cor que é representada pelo menos 2
vezes(ik). Assim pelo Lema do Obstáculo em Ciclos Ímpares
visto na sessão IV, a componente conexa H ′ formada pelas
arestas das cores i0 e ik, isto é, H ′ = G[E ′i0 ∪E ′ik ] é um ciclo
ímpar e contém o vértice u(Figura 17).

Agora faremos uma segunda recoloração. Cada aresta
uv j receberá a cor i j+1 com k ≤ j ≤ l − 1, e para aresta
uvl atribuímos a cor ik(Figura 18). A lógica aqui é
muito semelhante à primeira parte, só que agora estamos
considerando as arestas que não foram coloridas na primeira
fase. Assim a aresta uvk receberá a cor ik+1, a aresta uvk+1
receberá a cor ik+2..., a aresta uvl−1 receberá a cor il . O
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i1i2
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H ′′
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Figura 19: Ciclo ímpar formado pela componente H ′′. Fonte:
Bondy e Murty(1976)

único ponto a se atentar é que diferença é cor ik à aresta uvl ,
isso ocorreu porque uma vez que o grau de u é finito, haverá
uma repetição de cor, isto é, haverá um l tal que il+1 = ik,
onde ik é justamente uma cor que já ocorreu em algum
vértice anterior. Perceba que essa segunda coloração C ′′ =
(E ′′1 ,E

′′
2 , ...,E

′′
∆(G)+1) também é uma (∆(G) + 1)-coloração

ótima por um argumento análogo ao aquele usado na primeira
coloração. Novamente, pelo Lema do Obstáculo em Ciclo
Ímpares, a componente: H ′′ = G[E ′′i0 ∪E ′′ik ] é um ciclo ímpar
e contém u(Figura 19).

Note que como a componente H ′ é conexa, então sempre
existirá um caminho de u até vk−1 e de vk−1 até vk. No
nosso exemplo esse caminho é: uvk−1ww′vk. Esse caminho
continuará existindo na segunda coloração, pois nela nós
consideramos apenas as arestas com as cores de k até l−1,
e o caminho citado surge nas arestas de cores 1 até k−1. É
importante notar que a cada recoloração, nós modificamos
apenas partes localizadas do grafo, o restante se mantém
inalterado. Desse modo, a componente H ′′ contém o vértice
vk e seu grau é um. Temos portanto uma contradição, pois
H ′′ é um ciclo ímpar e não pode ter vértices com grau um.
Essa falha lógica surgiu porque supomos inicialmente que
χ′(G) > ∆(G)+ 1. Então segue que: χ′(G) ≤ ∆(G)+ 1, o
que encerra a demonstração.

Como foi dito na seção VI, o Teorema possui uma grande
importância para algoritmos de coloração de arestas. Apesar
desse tópico principal deste trabalho, será interessante tecer
alguns comentários.

A estrutura que construímos na demonstração(15), onde
temos um vértice central(u) e demais outros vértices adja-
centes que seguem algumas propriedades(VII) é conhecida
na literatura como Fan ou Vizing’s Fan(Fan de Vizing) [20].
Alguns autores definem essa estrutura explícitamente e outros
não(como no caso do Bondy e Murty). Contudo, a vantagem
de definir essa estrutura e juntamente realizar a demonstração
por construção do Teorema de Vizing é que obtemos um
algoritmo para coloração própria de arestas que utiliza no
máximo ∆(G)+1 cores.

O algoritmo de coloração de arestas baseado na prova
construtiva do Teorema de Vizing é conhecido como
Algoritmo de Coloração de Arestas de Mista Gries, e leva
o nome dos autores que propuseram a rotina [21]. Uma

i0 i1 i2

i0i1 i2 i3

i1i0

Figura 20: Grafo G1.

implementação do algoritmo na linguagem de programação
Python pode ser vista em [22].

Exemplo:
Vamos utilizar um exemplo para melhor visualizar a

aplicação prática do Teorema de Vizing. Suponha que
desejamos colorir propriamente o grafo G1 da seção I(figura
20)

Perceba que nesse grafo, ∆(G1) = 4. Portanto, pelo
Teorema de Vizing, o número de cores necessárias para colorir
o grafo propriamente não será maior que ∆(G1)+1 = 4+1 =
5. De fato, o leitor poderá verificar que não é possível colorir
esse grafo com menos de 5 cores. Definamos a coloração
c0 = {i0, i1, i2, i3}, onde cada i j(0 ≤ j ≤ 3) representa uma
cor distinta. A coloração pode ser vista na figura:

Uma observação importante é que poderíamos ter um grafo
G cujo índice cromático fosse menor que ∆(G) + 1(seção
VIII). Contudo isso não invalida o teorema pois o valor ∆(G)+
1 é um limite superior, ou seja, a garantia é que não será
preciso mais que ∆(G) + 1 cores para colorir um grafo G
simples e finito qualquer.

VIII. APLICAÇÕES

A Coloração de Arestas de Grafos possui uma série de
aplicações práticas, tais como planejamento de rotas, tráfego
em redes e muitas outras [23]. Nesta seção trataremos de um
problema bastante interessante: O Problema de Programação
de Tabelas Esportivas. Utilizaremos como referência o
trabalho de Januário (2015) [24].

Um torneio do tipo round a robin(todos contra todos), é
um competição que envolve t times diferentes que disputam
entre si uma quantidade j de jogos. Por exemplo, para
t = 4 e j = 1 teremos um torneio em que, cada time
disputa contra os demais 3 uma vez. Nesse cenário 2
questionamentos poderiam surgir: como elaborar uma agenda
de jogos de modo que, os times não disputem não mais que
uma partida em uma mesma rodada e quantas rodadas seriam
necessárias? Podemos responder essas pergunta utilizando os
conhecimentos aprendidos até aqui sobre grafos.

Em primeiro lugar, note que podemos facilmente modelar
a estrutura do torneio da seguinte forma: defina um grafo
G = (V,E), onde os vértices representam os times do torneio
e as a arestas representam a as partidas que devem ocorrer
entre eles. Consideremos t = 4 e j = 1, ou seja, 4 times t1,
t2, t3 e t4 que disputam uma partida entre si. O grafo que
representa a estrutura desse torneio pode ser vista na figura
21.

Agora devemos encontrar uma forma de garantir que nas
rodadas que se seguirão cada time jogue apenas uma partida.
Isso pode ser feito utilizando as técnicas de Coloração de
Arestas. Definimos então uma coloração C em que cada cor
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t1 t2

t3 t4

Figura 21: Grafo que representa o torneio

t1 t2

t3 t4

Figura 22: Grafo que representa o torneio, colorido

representa uma rodada do torneio. Observe que buscamos
uma coloração do grafo G que seja própria. A coloração sendo
própria, garantimos que nenhuma aresta adjacente a qualquer
um dos vértices tenha a mesma cor, ou seja, cada partida
ocorrerá em uma rodada diferente, e não haverão conflitos.

Sendo assim, estamos aptos a resolver a questão acerca
do número de rodadas necessárias para realizar esse torneio.
Responder isso é equivalente a reponder: quantas cores são
necessárias para obter uma coloração própria de G? Pelo
teorema de Vizing, sabemos que o melhor valor e que funciona
para todos os casos é ∆(G)+1= 3+1= 4 cores. Obviamente,
para valores maiores também é possível obter uma coloração
própria, mas é de interesse usar a menor número de cores,
pois implica que teremos um menor número de rodadas. Note
também que o grafo do torneio usado como exemplo pode
ser colorido propriamente com 3 cores, pois como ele é
bipartido, pelo Teorema de Kőnig, χ′(G) = ∆(G). Porém
o limite superior fornecido pelo Teorema de Vizing é melhor
no sentido de que, funciona para todos os casos possíveis,
mesmo se o grafo do torneio não for bipartido.

O segundo passo seria então aplicar algum algoritmo
de coloração própria de arestas no grafo G(sabendo que
será preciso não mais que 4 cores) obtendo portanto, o
agendamento das partidas. Uma solução pode ser vista na
figura 22. Note que, a coloração resolve o problema pois,
nunhum vértice(time) possui mais de uma aresta(partida) cuja
cor(horário) é o mesmo.

IX. RESULTADOS E REFLEXÕES

A base teórica da coloração de arestas encontra-se bem
consolidada na literatura, todavia a complexidade dos
argumentos construtivos e das técnicas de recoloração
iterativa impõe frequentemente barreiras ao aprendizado em
nível de graduação.

O mérito central deste trabalho reside não apenas
na demonstração formal, mas na sistematização visual
desses raciocínios. Ao decompor as restrições estruturais
e os impeditivos topológicos em diagramas sequenciais,
evidenciou-se a natureza local do problema. A análise
permitiu demonstrar que, enquanto certas classes de grafos

com propriedades específicas permitem uma alocação ótima
de recursos garantindo que o índice cromático iguale o
grau máximo (χ′ = ∆), a generalização para estruturas mais
complexas acarreta, no pior caso, o incremento de apenas uma
cor adicional (χ′ ≤ ∆+1).

A expectativa é que este material atue como um instrumento
pedagógico facilitador, permitindo que estudantes das áreas de
Computação e Matemática transitem da intuição geométrica
para o rigor analítico das provas formais com maior fluidez e
compreensão.

X. CONSIDERAÇÕES FINAIS

Este estudo revisitou o Problema de Coloração de Arestas,
partindo de suas raízes históricas no Problema das Quatro
Cores até a formalização contemporânea. A análise
comparativa entre a estrutura rígida dos grafos bipartidos
e a flexibilidade dos grafos simples permitiu compreender
como propriedades topológicas (como a paridade de ciclos)
ditam os limites de alocação de recursos.

Conclui-se que a abordagem geométrica e iterativa é
essencial para a compreensão profunda do Índice Cromático.
A dificuldade inerente em conciliar o rigor matemático
com a clareza didática foi mitigada pelo uso extensivo de
representações visuais, que serviram como âncoras cognitivas
para as abstrações lógicas.

Como trabalhos futuros, sugere-se a expansão desta análise
para o Teorema de Vizing generalizado para multigrafos,
onde a multiplicidade das arestas introduz novas variáveis
à desigualdade cromática. Espera-se que este material
sirva como referência pedagógica, facilitando o ensino de
Otimização Combinatória e Teoria dos Grafos em cursos de
Computação e Matemática.

REFERÊNCIAS
[1] A. Cayley, “On the colouring of maps,” Proceedings of the Royal

Geographical Society and Monthly Record of Geography, vol. 1, no. 4,
pp. 259–261, 1879.

[2] F. Guthrie, “Note on the colouring of maps,” Proceedings of the Royal
Society of Edinburgh, vol. 10, pp. 727–728, 1880.

[3] A. B. Kempe, “On the geographical problem of the four colours,”
American Journal of Mathematics, vol. 2, p. 193, 1879.

[4] K. Appel and W. Haken, “Every planar map is four colorable,” Bulletin
of the American Mathematical Society, vol. 82, no. 5, pp. 711–712,
1976.

[5] ——, “Every planar map is four colorable. part i: Discharging,” Illinois
Journal of Mathematics, vol. 21, no. 3, pp. 429–490, 1977.

[6] J. L. Szwarcfiter, Teoria computacional de grafos: os algoritmos. Rio
de Janeiro: Elsevier, 2018.

[7] C. L. Lucchesi and D. H. Younger, “A minimax theorem for directed
graphs,” Journal of the London Mathematical Society, vol. 2, no. 3, pp.
369–374, 1978.

[8] N. Maculan, “The steiner tree problem,” Annals of Operations Research,
vol. 13, no. 1, pp. 53–70, 1987.

[9] D. König, “Über graphen und ihre anwendung auf determinantentheorie
und mengenlehre,” Mathematische Annalen, vol. 77, pp. 453–465,
1916.

[10] V. G. Vizing, “On an estimate of the chromatic class of a p-graph,”
Diskretnyi Analiz, vol. 3, pp. 25–30, 1964.

[11] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. New
York: Elsevier, 1976.

ISSN: 2675-3588 39



O PROBLEMA DE COLORAÇÃO DE ARESTAS EM GRAFOS PEREIRA et al.

[12] L. P. da Silva, “Aplicação da teoria dos grafos no ensino médio à luz das
contribuições do PROFMAT,” Dissertação (Mestrado Profissional em
Matemática), Universidade Federal de Sergipe, São Cristóvão, 2016,
orientador: Dr. Fábio dos Santos.

[13] J. G. Müller and T. Baier, “Teoria dos grafos: uma possibilidade
pedagógica para o ensino fundamental,” Revista de Educação
Matemática e Tecnologia Iberoamericana, vol. 12, no. 2, 2021.

[14] F. V. S. Soares, “Três teoremas interessantes em teoria dos grafos,”
Dissertação (Mestrado Profissional em Matemática), Universidade
Federal do Ceará, Fortaleza, 2017, orientador: Prof. Dr. Antonio
Caminha Muniz Neto.

[15] Y. M. L. D. V. Y. Cantañede, G. de Barros Bianchini, and T. D. dos
Santos, “Reflexões e práticas pedagógicas no escopo da disciplina de
teoria da computação,” Academic Journal on Computing, Engineering
and Applied Mathematics, vol. 6, no. 2, pp. 10–17, oct 2025.

[16] S.-i. Nakano, X. Zhou, and T. Nishizeki, Edge-coloring algorithms.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 172–183.

[17] D. J. Velleman, How to Prove It: A Structured Approach, 3rd ed.
Cambridge University Press, 2019.

[18] R. Diestel, Graph Theory, 5th ed. Berlim: Springer Publishing
Company, Incorporated, 2017.

[19] I. Holyer, “The np-completeness of edge-coloring,” SIAM Journal on
Computing, vol. 10, no. 4, pp. 718–720, 1981.

[20] M. Stiebitz, D. Scheide, B. Toft, and L. Favrholdt, Graph
Edge Coloring: Vizing’s Theorem and Goldberg’s Conjecture, ser.
CourseSmart. Wiley, 2012.

[21] J. Misra and D. Gries, “A constructive proof of vizing’s theorem,”
Information Processing Letters, vol. 41, no. 3, pp. 131–133, 1992.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
002001909290041S

[22] M. A. Maldonado, “An implementation of the misra & gries edge
coloring algorithm and its integration on sagemath,” Curitiba, 2023.
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Resumo—Este artigo representa o relato de uma experiência pedagógica desenvolvido na disciplina de Teoria dos Grafos no curso de
Ciência da Computação, ofertada no semestre 2025/2 na Universidade Federal do Tocantins. A aplicação prática dos conceitos de grafos
aprendidos na disciplina partirá de uma reprodução da demonstração dos Teoremas de Tutte-Berge e de Tutte, os quais representaram
grandes avanços na pesquisa de emparelhamentos em grafos. Mais especificamente, o estudo da condição de existência de emparelhamento
máximo e perfeito em um grafo qualquer. Estes estudos, por sua vez, abriram as portas para a resolução de problemas cada vez mais
complexos, e a versatilidade de seus usos pode ser interpretada como complemento das conquistas trazidas pelo Teorema de Hall. A
explicação de tais conceitos será feita com base nas principais dificuldades encontradas pelo corpo estudantil, demonstrando de forma
didática e ilustrativa, por meio de imagens, a fim de reduzir a abstração inerente ao tema.

Palavras-chave—Teoria dos grafos, Teorema de Tutte-Berge, Teorema de Tutte, grafos máximos, barreiras, Seminários Acadêmicos,
Experiência Pedagógica.

Abstract—This paper reports on a pedagogical experience developed during the Graph Theory course within the Computer Science
program, offered in the second semester of 2025 at the Federal University of Tocantins. The practical application of the graph concepts
learned in the course involves reproducing the proofs of the Tutte-Berge and Tutte theorems, which represented major advancements in
graph matching research. More specifically, it focuses on the study of the existence conditions for maximum and perfect matchings in
arbitrary graphs. These studies, in turn, paved the way for solving increasingly complex problems, and the versatility of their applications
can be interpreted as a complement to the achievements brought by Hall’s Theorem. The explanation of these concepts is based on
the primary difficulties encountered by the student body, employing a didactic approach illustrated with images to reduce the inherent
abstraction of the subject matter.

Keywords—Graph Theory, Tutte-Berge Theorem, Tutte’s Theorem, Maximum Matchings, Barriers, Academic Seminars, Pedagogical
Experience.

I. INTRODUÇÃO

A teoria dos Grafos é uma das grandes protagonistas que
permeiam o mundo da computação, oferecendo uma

linguagem universal para a modelagem de relacionamentos
e estruturas complexas. O estudo de grafos não se
limita apenas à abstração matemática; ele permeia soluções
para problemas reais e contemporâneos, variando desde a
otimização de rotas em sistemas de logística e o design
de circuitos eletrônicos até a análise de redes sociais e a

Dados de contato: Artur Anderson Alves Corrêa, alves.artur@uft.edu.br

bioinformática. A capacidade de abstrair problemas do
mundo real em vértices e arestas, aplicando sobre eles
algoritmos eficientes de busca, fluxo e conexidade, é uma
habilidade indispensável para o cientista da computação
moderno.

Partindo deste contexto, o estudo dos emparelhamentos
nos grafos remonta a dezenas de anos repletas de contri-
buições. Redes sociais, problemas de atribuições de postos
de trabalho, alocações de recursos ,entre outros, são os
problemas que os emparelhamentos enfrentaram, contudo, o
foco deste artigo está no emparelhamento máximo, ou seja,
o emparelhamento de maior cardinalidade possível em um
grafo G. Como um dos maiores representantes do estudo do
emparelhamento máximo, em 1935, Philip Hall apresenta o
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teorema de Hall, popularmente conhecido como o “Teorema
do casamento”. Esse nome popular adveio da natureza do
problema que partia da seguinte metáfora: se todo grupo de
meninas em uma vila gostar coletivamente de pelo menos
tantos meninos quanto há meninas no grupo, então cada
menina pode se casar com um menino de quem ela gosta.

Mais formalmente, temos que o teorema de Hall
apresentou as ferramentas necessárias para as descobertas de
emparelhamentos máximos em grafos bipartidos.O Teorema
de Hall tem se mostrado uma ferramenta valiosa tanto na
teoria dos grafos quanto em outras áreas da matemática.
Ademais, em 1957 Claude Berge avançou o estudo do prob-
lema do emparelhamento máximo confirmando a relação
crucial entre caminhos M-aumentantes e emparelhamentos
máximos. Relação esta, já previamente apontada (mas não
provada), por Konig em 1931 e Pettersen em 1891. Herdando
estas contribuições, William Thomas Tutte avança com o
teorema de Tutte-Berge e o teorema de Tutte, descobrindo
uma fórmula do tamanho de um emparelhamento máximo
em um grafo qualquer e também uma condição de existência
para um emparelhamento perfeito.

Embora o Teorema de Hall tenha estabelecido um marco
fundamental, sua aplicabilidade direta restringe-se aos grafos
bipartidos, deixando uma lacuna significativa para estruturas
mais complexas onde a bipartição não é garantida. É nesse
cenário que a generalização proposta por Tutte se torna
revolucionária. Ao introduzir o conceito de componentes
ímpares resultantes da remoção de vértices, o Teorema de
Tutte (1947) fornece uma condição necessária e suficiente
para a existência de um emparelhamento perfeito em um
grafo qualquer, superando as limitações impostas pela
necessidade de bipartição. A fórmula de Tutte-Berge,
consolidada posteriormente em 1958, expande essa visão ao
quantificar a deficiência de um grafo, ou seja, determinar
o tamanho exato do emparelhamento máximo baseando-
se na estrutura topológica do grafo e na análise de seus
subconjuntos críticos, conhecidos como barreiras.

Assim, partindo do reconhecimento da importância desses
teoremas, o artigo se propõe à reprodução de resultados
já adquiridos através de uma perspectiva pedagógica e a
disseminação desse conhecimento aos alunos em escala
pessoal. Além disso, promove-se a introdução de todos
os conceitos necessários para o entendimento dos teoremas,
facilitando o acesso às nomenclaturas utilizadas no artigo.

Partindo para a estrutura, o artigo está organizado
da seguinte maneira: na Seção 2 (Preliminares), são
definidos os conceitos básicos, como grafo, conexidade,
componentes e emparelhamento, estabelecendo a notação e
o vocabulário necessários. Em seguida, a Seção 3 (Trabalhos
Relacionados) apresenta uma revisão bibliográfica, situando
este trabalho em relação a outras abordagens pedagógicas e
técnicas existentes na literatura. Avançando para a definição
do escopo, a Seção 4 (Descrição do Problema) detalha os
teoremas de Tutte-Berge e Tutte, bem como sua importância
histórica. Já na Seção 5 (Demonstração e Contribuições),
encontra-se o núcleo do trabalho, contendo as demonstrações
passo a passo dos teoremas escolhidos. Posteriormente,
a Seção 6 (Resultados e Reflexões) discute as dificuldades
encontradas durante o estudo, as estratégias de superação e
realiza discussões quanto aos resultados, e, por fim, a Seção
7 (Considerações Finais) sintetiza os aprendizados e conclui

v1 v2

v3

v4 v5

v6

e1

e2e3

e4 e5

e6e7

Figura 1: Grafo G ilustrando vértices (vi), arestas (ei), ciclos e
conectividade.

v1

Figura 2: Representação de um grafo trivial, composto por um
único vértice isolado.

(a) G1 (azul) (b) G2 (vermelho) (c) G1∆G2

Figura 3: Ilustração da diferença simétrica.

a temática.

II. PRELIMINARES

Um grafo G(V,E) é uma estrutura de dados formada por
dois conjuntos: um conjunto V chamado de vértices e um
conjunto E de elementos chamados de arestas; cada aresta
está associada a dois vértices: o primeiro é a ponta inicial
da aresta e o segundo é a ponta final. Pode-se imaginar que
um grafo é um mapa rodoviário idealizado: os vértices são
cidades A e B e as arestas são estradas. Considere o grafo 1:

Chamamos de subgrafo um grafo formado por um
conjunto de vértices e arestas do grafo original. Assim,
considere um subgrafo H com os conjuntos de vértices V =
{v1,v2,v3} e arestas E = {e3,e2,e1}. A partir do subgrafo
H(V,E), podemos definir o conceito de caminho: um
caminho em grafos é uma sequência de vértices interligados
por arestas, onde o vértice final de uma aresta é o vértice
inicial da próxima.

Ou seja, o conjunto V = {v1,v2} é um caminho conectado
pela aresta e1. Como extensão dessa ideia, temos o conceito
de ciclo: um ciclo em grafos é um caminho que começa
e termina no mesmo vértice, sem repetir outros vértices no
percurso. Ou seja, um exemplo de ciclo é V = {v1,v2,v3};
partindo de v1 pela aresta e3, partindo de v3 pela aresta e2 e
partindo de v2 pela aresta e1, temos um ciclo.

Continuamente, um grafo trivial é definido como um grafo
que possui exatamente um vértice e nenhuma aresta.

Matematicamente, se G= (V,E), então G é trivial se |V |=
1 e E = /0.Também, outro conceito que deve ser explicado
é a diferença simétrica. A diferença simétrica de dois
grafos(denotado por G1∆G2) é uma operação que resulta em
um novo grafo contendo apenas as arestas que são exclusivas
de cada um dos grafos originais.

O grafo resultante da figura 3 (c) contém apenas as arestas
exclusivas de G1 (topo) e exclusivas de G2 (fundo). A aresta
diagonal, presente em ambos, é removida.Além disso, um
grafo é conexo se existir um caminho entre qualquer par de
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v1 v2

v3v4

Componente H (Conexo)

v5
X

Figura 4: Exemplo de grafo desconexo. O componente H à
esquerda é conexo internamente, mas o vértice v5 está isolado.

Figura 5: Exemplos de emparelhamento em um mesmo grafo G:

v1

v2

v3

v4

v5

v6

(a) Emparelhamento não máximo (tamanho 2). Vértices v3 e v6 não foram
emparelhados.

v1

v2

v3

v4

v5

v6

(b) Emparelhamento máximo (tamanho 3). Neste caso, é um
emparelhamento perfeito.

vértices. Em outras palavras, é possível ir de qualquer vértice
para qualquer outro vértice usando apenas as arestas do
grafo. Se não for possível, o grafo é considerado desconexo.

Levando em conta o subgrafo H (a parte esquerda da
figura), é possível ir de qualquer vértice a outro através de
suas arestas; isso significa que o subgrafo H é conexo.

Porém, considerando a Figura 4, é impossível que v3
alcance v5. De fato, é impossível que qualquer vértice do
componente H chegue até v5, pois não há qualquer aresta
que ligue o vértice v5 aos outros vértices. Portanto, a figura
representa um grafo desconexo.

Seguindo adiante, iremos para o conceito de emparel-
hamento. Um emparelhamento é um conjunto de arestas
onde nenhuma delas compartilha o mesmo vértice. Em
termos simples, é uma seleção de conexões onde cada vértice
do grafo está ligado a, no máximo, um outro vértice.Isso
pode ser entendido como a formação de pares exclusivos
dentro de um grupo. Os vértices "selecionados", isto é,
incidentes a uma aresta emparelhada são chamados de M-
saturados. Caso não sejam, são chamados de M-insaturados.
A partir deste princípio, podemos definir emparelhamento
máximo que é a cardinalidade do maior emparelhamento
possível no grafo.

As arestas em vermelho e tracejadas indicam os pares

Figura 6: Emparelhamento máximo (e perfeito). As arestas em
vermelho e tracejadas indicam os pares exclusivos formados.

v1 v2 v3

v4

v5

b1 b2

(a) Grafo G com B = {b1,b2} destacado

v1 v2 v3

3 vértices (ímpar)

v4

1 vértice

v5

1 vértice

(b) G−B: três componentes ímpares

Figura 7: Representação de uma barreira. A remoção de B produz
mais componentes ímpares do que |B|.

v1 v2 v3 v4 v5 v6
M-Saturado M-Saturado

Caminho M-alternante (e M-aumentante)

exclusivos formados. Em 5(a) temos um conjunto válido,
mas que poderia ser maior. Em 5(b) temos o maior conjunto
possível para este grafo.Além disso, temos o conceito de
emparelhamento perfeito. Diz-se que um emparelhamento
M é perfeito se todo vértice do grafo estiver saturado por
M. Naturalmente, todo emparelhamento perfeito é máximo,
e todo emparelhamento máximo é maximal (isto é, não pode
ser estendido adicionando-se arestas).

Avançando, um vértice essencial é aquele que todo empar-
elhamento máximo o cobre. Com a ideia de emparelhamento
determinada, podemos partir para o conceito de barreira:
Formalmente, dado um grafo G, um subconjunto de vértices
B é chamado de barreira se a remoção de B divide o grafo
em um número de componentes ímpares (componentes de
um grafo com uma quantidade ímpar de vértices) maior que
o tamanho do próprio conjunto B.

Ademais, deve-se introduzir conceito de caminho M-
alternante e caminho M-aumentante. Seja G um grafo geral,
E o conjunto de arestas de G e M um emparelhamento de G.
Um caminho M-alternante em G é um caminho cujas arestas
pertencem alternadamente a E \M e a M. Um caminho M-
alternante cujos vértices extremos são ambos M-Saturados é
chamado caminho M-aumentante. Observe que um caminho
M-aumentante possui uma quantidade par de vértices.

Para a melhor compreensão das fórmulas apresentadas
a seguir no artigo, partimos das seguintes denominações:
A quantidade de arestas em um emparelhamento máximo
será denotada por α′(G). Além disso, denotaremos por
o(G) como o número de componentes ímpares do grafo.
Também, chamaremos de grafos hipoemparelháveis grafos
que não possuem emparelhamentos perfeitos, contudo,
qualquer subgrafo com qualquer vértice retirado possui
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(a) Grafo Hipoemparelhável G

Possui 5 vértices (ímpar).
Impossível ter emparelhamento perfeito.

v1

v2

v3 v4

v5 Remover v1

(b) Subgrafo G−{v1}

Restam 4 vértices (par).
Emparelhamento perfeito

v1

v2

v3 v4

v5

Figura 8: Ilustração de um grafo hipoemparelhável.

de f (G) = (o(G−S)−|S|)

Figura 9: Representação matemática da deficiência

emparelhamento perfeito.
Em (a), o grafo original C5 não tem emparelhamento

perfeito devido à paridade. Em (b), após a remoção do
vértice v1, o subgrafo restante admite um emparelhamento
perfeito (arestas vermelhas tracejadas).

O comportamento demonstrado se repete não importa qual
vértice seja retirado. Ademais, devemos definir a ideia
de deficiência. A deficiência mede quantos vértices não
podem ser pareados, no pior caso, se tentarmos formar
um emparelhamento. Note que o(G-S) é o número de
componentes ímpares após a remoção de S. Sabemos
que cada componente ímpar garante que pelo menos 1
vértice ficará sem par. Ou seja, a deficiência representa
quantos vértices ficam inevitavelmente "solitários" depois
que removemos S.

Com toda a introdução teórica feita, partiremos para
uma pequena revisão de literatura quanto aos problemas do
emparelhamento máximo e a evolução pedagógica do ensino
dos grafos.

III. TRABALHOS RELACIONADOS

A literatura voltada ao ensino de Ciência da Computação
e, especificamente, de Teoria dos Grafos, destaca que
a complexidade e o nível de abstração dos conceitos
exigem estratégias pedagógicas diversificadas. A pesquisa
bibliográfica realizada para este artigo identificou duas
frentes principais de trabalhos relacionados: (i) experiências
didáticas e ferramentas de apoio ao ensino de grafos e
computação teórica; e (ii) fundamentações teóricas modernas
sobre emparelhamento e os teoremas de Tutte.

No contexto de metodologias ativas, Lassance [1] relata
uma experiência similar à vivenciada na elaboração deste
artigo, aplicada à disciplina de Teoria da Computação. Os
autores destacam que a implementação de um Ciclo de
Seminários, focando em tópicos de alta complexidade como
NP-Completude, resultou na maximização da compreensão
dos estudantes e no desenvolvimento da autonomia inves-
tigativa. Este artigo dá continuidade a essa visão, utilizando
a metodologia de seminário para aprofundar o estudo de
emparelhamentos.

Para mitigar as dificuldades de abstração, diversas
abordagens visuais têm sido propostas. Santos et al.
[2] discutem a validação do sistema GraphViewer, uma
ferramenta de visualização de algoritmos focada no ensino
de provas por indução em Teoria dos Grafos. Os autores
evidenciam que a visualização passo a passo auxilia na
compreensão de demonstrações matemáticas rigorosas. A
ferramenta preenche uma lacuna específica ao focar em
"demonstrações por indução", uma área onde os alunos
historicamente têm grande dificuldade de visualização.

O estudo aplicou métricas rigorosas de Ganho de
Aprendizagem Absoluto (GAA) e Normalizado (GAN) para
medir a eficácia da ferramenta. Em realção ao aumento do
desempenho, no primeiro experimento realizado, o grupo
que utilizou o GraphViewer (grupo de teste) obteve um
Ganho de Aprendizagem Normalizado (GAN) de 25,11%
,quase o dobro do ganho obtido pelo grupo de controle,
e 13,92% que não usou a ferramenta. Na mesma linha,
em um trabalho anterior, Santos et al. [3] apresentaram
o ambiente TBC-GRAFOS, demonstrando que o uso de
softwares gráficos reduz índices de reprovação e agiliza a
compreensão de algoritmos clássicos, como os de busca e
caminho mínimo.

Além de softwares, abordagens lúdicas também se
mostram eficazes. Correa et al. [4] desenvolveram o jogo
de tabuleiro "Formígrafo", que utiliza a temática de um
formigueiro para motivar o aprendizado do Problema do
Caminho Mínimo. O trabalho reforça que a contextualização
lúdica facilita a introdução de conceitos abstratos de grafos
ponderados.

No que tange à fundamentação teórica específica deste
trabalho, a literatura apresenta evoluções nas demonstrações
clássicas de emparelhamento. Qu e West [5] publicaram
recentemente uma nova prova para a Fórmula Generalizada
de Tutte-Berge aplicada a subgrafos f -limitados. O trabalho
utiliza o Teorema do f -Fator de Tutte para estabelecer uma
relação min-max, simplificando a compreensão da fórmula
clássica quando f (v) = 1. Isso é, cada vértice pode estar
conectado a, no máximo, uma aresta dentro desse subgrafo.

Complementarmente, o livro do Douglas B. West[6] parte
de uma perspectiva mais tradicional através das técnicas de
provas matemáticas puras. Contudo, encara os problemas
de diversos ângulos, iniciando pelo mais tradicional, sendo
ele o método da indução de vértices provando a suficiência
do teorema de Tutte. Após isso, tomando uma via mais
original a resolução do teorema, provando-o pelo Teorema de
Hall. Aprofundando-se , a ideia geral é transformar o grafo
original em um grafo bipartido adequado e então aplicar Hall.

Tais contribuições denotam a importância de encarar a
teoria dos grafos com uma visão didática, a fim de facilitar
a compreensão de temas abstratos. Não só isso, mas a
exploração de novas maneiras de provar os teoremas mostra
que o problema do emparelhamento máximo é relevante até
hoje e a sua discussão e compreensão é necessária. Com isso
em mente, a seguir mudaremos o enfoque para o problema
em si, aprofundado nos teoremas de Tutte-Berge e Tutte.

IV. DESCRIÇÃO DO PROBLEMA

Começando com o primeiro dos teoremas escolhidos,
considerando um grafo G(S,E), sendo S o conjunto de
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α′(G) =
1
2

min{v(G)− (o(G−S)−|S|)} tal que S⊂V

Figura 10: Fórmula de Tutte-Berge para emparelhamento
máximo.

Grupo Azul
(3 Amigos)

Grupo Laranja
(3 Amigos)

A1

A2

A3

P B1

B2

B3
Mediador (P)

Sem conexão direta

Figura 11: O Problema do Buddy System. A remoção de P cria
dois componentes ímpares isolados.

vértices de G e |S| a cardinalidade do conjunto, a fórmula
do teorema de Tutte-Berge é dada por:

A intuição por trás da Fórmula de Tutte-Berge baseia-se na
barreira estrutural causada pela paridade dos componentes.
Considere a remoção de um conjunto de vértices U ⊆ V . O
grafo resultante G−U se fragmenta em vários componentes
conexos.

Com relação à natureza do problema, ele é classificado
como um problema de otimização, pois determina o valor
máximo de α′(G). O objetivo é encontrar o conjunto U que
maximiza a deficiência para provar que o emparelhamento
não pode ser maior.

Diferente de muitos problemas em grafos gerais (como
Coloração ou Caminho Hamiltoniano) que são NP-Difíceis,
o problema do Emparelhamento Máximo pertence à classe
P (Tempo Polinomial). Um dos algoritmos mais eficientes
conhecidos para emparelhamento máximo em grafos gerais
é o algoritmo de Micali-Vazirani, cuja complexidade é
O(E
√

V ). Também, É possível resolver diversos problemas
com o teorema de Tutte-Berge. Um exemplo clássico é o
Problema da Formação de Equipes (Buddy System).

O problema consiste em formar o número máximo
possível de duplas (emparelhamento máximo) em um grupo
de pessoas, respeitando uma regra de compatibilidade:
uma dupla só pode ser formada se houver uma aresta de
"amizade" entre as duas pessoas.

A Figura 11 ilustra um cenário onde um emparelhamento
perfeito é impossível devido à estrutura social do grupo.
Temos 7 pessoas divididas em: O Grupo Azul é composto
por 3 pessoas (A1, A2 e A3), todas amigas entre si. O
Grupo Laranja também possui 3 pessoas (B1, B2 e B3), que
igualmente são amigas entre si. Por fim, há o Mediador P,
uma pessoa central que possui uma relação de amizade com
integrantes de ambos os grupos.

Há uma incompatibilidade total entre os grupos: ninguém
do Azul é amigo de alguém do Laranja.

Análise via Tutte-Berge: Se removermos o conjunto U =
{P}, o grafo se quebra em dois componentes conexos (os
dois grupos), ambos com um número ímpar de vértices. O

o(G−S)≤ |S|, ∀S⊆V

Figura 12: A condição do Teorema de Tutte.

u ← S

v1 v2 v3

o(G−S) = 3 > |S|= 1
Sem Emparelhamento Perfeito

Figura 13: Grafo K1,3 violando a condição de Tutte.

X

X
Dominó

Contagem Final:
Brancas: 8 Pretas: 6

Impossível cobrir!

Figura 14: O Tabuleiro Mutilado. A remoção de dois cantos da
mesma cor quebra a paridade necessária.

mediador único não é suficiente para cobrir a demanda desses
componentes.

Agora, analisando o Teorema de Tutte, ele responde se
o grafo possui um emparelhamento perfeito. A condição é
apresentada na Figura 12:

Assim, um grafo possui um emparelhamento perfeito se
e somente se a condição acima for cumprida para todo
subconjunto S. A Figura 13 mostra uma violação simples.

Seguindo, o problema de encontrar um emparelhamento
perfeito pertence à classe P. Um dos algoritmos fundamentais
é o Algoritmo de Blossom (Edmonds, 1965), que lida com
"ciclos ímpares" contraindo-os em super-vértices.

Para entender a importância da paridade, analisamos
o problema do tabuleiro de xadrez 4 × 4 "mutilado".
Removemos duas casas de cantos opostos (digamos, duas
pretas). Restam 14 casas: 8 brancas e 6 pretas (Figura 14).

Para que um emparelhamento perfeito existisse (cobertura
por dominós), precisaríamos de um número igual de casas
brancas e pretas, pois cada dominó consome um par de cores
diferentes. Como restaram 8 casas brancas e apenas 6 pretas,
é impossível cobrir o tabuleiro. Com toda a formulação
teórica dos teoremas explicada, podemos resumir e comparar
ambos através das seguintes tabelas:

Concluindo, o teorema de Tutte e Tutte-Berge possuem
diversos paralelos téoricos que serão a seguir, aprofundados
e demonstrados.
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TABELA 1: RESUMO ESTRUTURAL: TEOREMAS DE TUTTE E

TUTTE–BERGE

Problema Caracterização de Emparelhamentos
Perfeitos (Tutte) e de Emparelhamentos
Máximos (Tutte–Berge).

Input Estrutura do grafo G: componentes
ímpares após remoção de subconjuntos
S⊆V (G); método estrutural baseado em
princípios Min–Max.

Output Tutte: G possui emparelhamento per-
feito se o(G− S) ≤ |S| para todo S ⊆
V (G).
Tutte–Berge: o tamanho máximo do
emparelhamento é 1

2

(
|V (G)|−def(G)

)
.

Resumo Caracterização Min–Max: relaciona
componentes ímpares, barreiras e defi-
ciência à estrutura de emparelhamentos;
fornece condição necessária e suficiente
para emparelhamentos perfeitos e fór-
mula exata para emparelhamentos máxi-
mos.

TABELA 2: COMPARATIVO ENTRE OS TEOREMAS DE TUTTE E

TUTTE–BERGE

Aspecto Tutte Tutte–Berge
Objetivo principal Determinar a existência

de um emparelhamento
perfeito.

Determinar o tamanho
máximo de um empar-
elhamento em qualquer
grafo.

Caracterização Existencial: condições
para a existência de em-
parelhamento perfeito.

Quantitativa: fornece a
cardinalidade de um em-
parelhamento máximo.

Conceitos
estruturais

Componentes ímpares
e emparelhamentos
perfeitos.

Componentes ímpares,
emparelhamentos
máximos e barreiras.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

As demonstrações que serão apresentadas são aquelas
descritas no livro Graduate Texts in Mathematics, conforme
citam Bondy e Murty [7] a respeito do Teorema de Tutte-
Berge e do Teorema de Tutte. Os teoremas em questão
são a estrutura base para caracterizar emparelhamentos
máximos e perfeitos apresentando condições necessárias e
suficientes. Além disso, as demonstrações a seguir seguem
um tratamento bem próximo do exposto por Bondy e Murty,
mas apresentando-os de maneira mais clara.

O TEOREMA DE TUTTE-BERGE

Teorema V.1 (Bondy–Murty [7]). O TEOREMA DE
TUTTE-BERGE
Todo grafo tem uma barreira.

Em um grafo bipartido, uma cobertura mínima constitui
uma barreira do grafo. Porém, geralmente todo grafo tem
uma barreira. Este fato é conhecido como o Teorema de
Tutte-Berge. Entretanto, lembre-se de que um vértice v de um
grafo G é essencial se todo emparelhamento máximo cobre
v, e não essencial caso contrário. Assim, v é essencial se
α′(G−v) = α′(G)−1 e não essencial se α′(G−v) = α′(G).
Dessa maneira, temos os seguintes lemas auxiliares para o
teorema:

x
v

y
xPv vPy

M
/∈M /∈M

M′ M′
/∈M′

M

M′

Figura 15: Ilustração da indução com o emparelhamento M′

cobrindo tanto x quanto y

x z
Q

y v

Legenda: M

M′

Figura 16: Ilustração dos componentes de G[M∆M′].

Lema 1 (16.8, Bondy–Murty [7]). O conjunto vazio é uma
barreira de todo grafo hipoemparelhável.

Lema 2 (16.9, Bondy–Murty [7]). Seja v um vértice
essencial de um grafo G e seja B uma barreira de G−v. Então
B∪{v} é uma barreira de G.

Lema 3 (16.10, Bondy–Murty [7]). Seja G um grafo
conexo no qual nenhum vértice é essencial. Então G é
hipoemparelhável.

Prova Como nenhum vértice de G é essencial, G não
tem um emparelhamento perfeito. Resta mostrar que todo
subgrafo com um vértice removido tem um emparelhamento
perfeito. Caso isso não ocorra, então cada emparelhamento
máximo deixa pelo menos dois vértices descobertos. Assim,
basta mostrar que para qualquer emparelhamento máximo e
quaisquer dois vértices em Go emparelhamento cobre pelo
menos um destes vértices. Estabelecemos isto por indução
na distância entre estes dois vértices.

Considere um emparelhamento máximo M e dois vértices
x e y em G. Seja xPy um caminho xy-mais curto em G.
Suponha que nem x nem y são cobertos por M. Como M
é máximo, P tem comprimento de pelo menos dois. Seja v
um vértice interno de P. Como xPv é mais curto que P, o
vértice v é coberto por M, por indução. Por outro lado, como
v é não essencial, G tem um emparelhamento máximo M′ que
não cobre v. Além disso, como xPv e vPy são ambos mais
curtos que P, o emparelhamento M′ cobre tanto x quanto y,
novamente por indução.

�
O vértice interno v é coberto por M (pois xPv <

P), mas descoberto por M′ (pois v não é essencial).
Consequentemente, M′ cobre x e y.Os componentes de
G[M∆M′] são caminhos e ciclos pares cujas arestas
pertencem alternadamente a M e M′ .

46 ISSN: 2675-3588



C
ME

A
A
J

Academic Journal on Computing, Engineering and Applied Mathematics ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 07, NO. 02, FEBRUARY 2026

Cada um dos vértices x,v,y é coberto por exatamente um
dos dois emparelhamentos e, portanto, é uma extremidade de
um dos caminhos. Como os caminhos são pares, x e y não são
extremidades do mesmo caminho. Além disso, os caminhos
que começam em x e y não podem ambos terminar em v.

Podemos, portanto, supor que o caminho Q que começa
em x não termina nem em v nem em y. Mas então o
emparelhamento M′∆E(Q) é um emparelhamento máximo
que não cobre nem x nem v, contradizendo a hipótese de
indução e estabelecendo o lema.Também, deste teorema
podemos deduzir um dos mais importantes Corolários dos
teoremas de Tutte e Berge. Sendo ela, a formula de Tutte-
Berge.

Antes de entrar em cálculos, serão retomadas as definições
já dadas anteriormente e também, considere que o número
total de vértices de um grafo G, denotado por |V (G)|, pode
ser particionado em dois conjuntos: os vértices que são
cobertos por um emparelhamento máximo M e os vértices
que permanecem descobertos.

Seja α′(G) = |M| o tamanho do emparelhamento máximo.
O número de vértices cobertos é, portanto, 2α′(G). O
número de vértices não cobertos é definido como a
deficiência do grafo, denotada por def(G). Assim, temos a
identidade fundamental:

|V (G)|= 2α′(G)+def(G) (1)

Como já dito anteriormente, O Teorema de Tutte-Berge
estabelece que a barreira para um emparelhamento perfeito
reside na existência de um subconjunto S ⊆ V (G) cuja
remoção cria mais componentes ímpares do que o próprio
|S| consegue cobrir. Cada componente ímpar em G−S deve,
necessariamente, ter pelo menos um vértice não emparelhado
internamente ou conectado a um vértice de S.

No pior caso (o que maximiza os vértices descobertos), a
deficiência é dada por:

def(G) = max
S⊆V (G)

{o(G−S)−|S|} (2)

Substituindo a equação (2) em (1), obtemos:

|V (G)|= 2α′(G)+ max
S⊆V (G)

{o(G−S)−|S|}

Para isolar α′(G), reorganizamos a equação. Note que
subtrair o valor máximo de um conjunto é equivalente a
somar o valor mínimo do termo negativo:

2α′(G) = |V (G)|− max
S⊆V (G)

{o(G−S)−|S|}

2α′(G) = min
S⊆V (G)

{|V (G)|− (o(G−S)−|S|)}

Finalmente, dividindo por 2, chegamos à fórmula do
Corolário:

α′(G) =
1
2

min
S⊆V (G)

{|V (G)|− (o(G−S)−|S|)} (3)

Esta formulação confirma que o tamanho do em-
parelhamento máximo é determinado pela "barreira" S
que minimiza a perda de vértices que não podem ser
emparelhados devido à estrutura topológica do grafo.

Isso nos leva ao seguinte colário:

Corolário 1 (Bondy–Murty [7]). Para qualquer grafo G,

α′(G) =
1
2

min
S⊆V (G)

{|V (G)|− (o(G−S)−|S|)} .

O resultado em questão fornece a fórmula de Tutte-Berge
que caracteriza o tamanho de qualquer emparelhamento
máximo em relação as barreiras correspondentes que
sintetiza o Teorema de Tutte-Berge.

TEOREMA DE TUTTE

Teorema V.2 (Bondy–Murty [7]). Um grafo G tem um
emparelhamento perfeito se, e somente se,

o(G−S)≤ |S| para todo S⊆V (G). (4)

Prova Demonstraremos ambas as direções da equivalência.

Necessidade (⇒):
Suponha que G possui um emparelhamento perfeito M.

Devemos mostrar que o(G−S)≤ |S| para todo S⊆V (G).
Seja S ⊆ V (G) um subconjunto arbitrário de vértices.

Considere o grafo G− S obtido após a remoção de todos os
vértices de S e suas arestas incidentes. Seja C1,C2, . . . ,Ck o
conjunto de componentes ímpares de G−S.

Para cada componente ímpar Ci, o número de vértices
|V (Ci)| é ímpar. Como M é um emparelhamento perfeito em
G, todos os vértices devem estar cobertos por M. Portanto,
cada componente ímpar Ci deve ter pelo menos uma aresta de
M conectando um vértice interno de Ci a um vértice em S (já
que um número ímpar de vértices não pode ser perfeitamente
emparelhado internamente).

Formalmente: como |V (Ci)| é ímpar e M é perfeito em
G, existe pelo menos um vértice vi ∈ V (Ci) tal que vi está
emparelhado com algum vértice si ∈ S.

Como as arestas de M são disjuntas nos vértices (cada
vértice aparece em no máximo uma aresta), os vértices
s1,s2, . . . ,sk ∈ S que estão emparelhados com vértices
das componentes ímpares devem ser distintos. Portanto,
precisamos de pelo menos k vértices em S para cobrir todas
as componentes ímpares.

Logo, k = o(G−S)≤ |S|, como queríamos demonstrar.

Suficiência (⇐):
Suponha, por contradição, que o(G− S) ≤ |S| para todo

S⊆V (G), mas G não possui emparelhamento perfeito.
Como G não possui emparelhamento perfeito, seja M∗ um

emparelhamento máximo de G. Seja U ⊆ V (G) o conjunto
de vértices não cobertos por M∗. Por hipótese, |U | ≥ 1 (se
|U |= 0, então M∗ seria perfeito, contradição).

Pelo Teorema de Tutte-Berge (Corolário 1), existe uma
barreira B⊆V (G) tal que

def(G) = o(G−B)−|B|= |U |. (5)

Como |U | ≥ 1, temos:

o(G−B)−|B| ≥ 1 ⇒ o(G−B)≥ |B|+1 > |B|.

Tomando S = B, obtemos que o(G − S) > |S|, o que
contradiz diretamente a hipótese de que o(G−S)≤ |S| para
todo S⊆V (G).

Portanto, nossa suposição inicial estava errada, e G deve
possuir um emparelhamento perfeito. �
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S (Barreira)

|S|= 2

s1

s2

C1 (3 vértices)

C2 (1 vértice) C3 (3 vértices)

Violação da condição de Tutte:
• Temos o(G−S) = 3 componentes ímpares: C1,C2,C3
• Temos |S|= 2 vértices disponíveis
• Como o(G−S) = 3 > 2 = |S|, a condição (4) é violada
Portanto, G não possui emparelhamento perfeito

Figura 17: Ilustração da violação da condição de Tutte.

A condição de Tutte (4) é uma caracterização necessária e
suficiente para a existência de emparelhamentos perfeitos em
grafos gerais, generalizando o Teorema de Hall para grafos
não-bipartidos. A desigualdade o(G− S) ≤ |S| captura uma
restrição estrutural fundamental: cada componente ímpar
resultante da remoção de S necessita de pelo menos um
vértice de S para completar o emparelhamento, e não pode
haver mais componentes ímpares do que vértices disponíveis
em S.

A Figura 17 ilustra um caso concreto onde a condição
de Tutte falha. Os componentes C1,C2,C3 são componentes
ímpares de G− S, cada um contendo respectivamente 3, 1 e
3 vértices.

Para que exista um emparelhamento perfeito em G, cada
componente ímpar precisaria estar conectada a pelo menos
um vértice distinto em S (pois um conjunto com número
ímpar de vértices não pode ser perfeitamente emparelhado
internamente). Entretanto, como temos 3 componentes ím-
pares mas apenas |S| = 2 vértices em S, é matematicamente
impossível satisfazer todos os emparelhamentos necessários.

Este exemplo demonstra que a desigualdade o(G −
S) > |S| constitui uma obstrução estrutural à existência
de emparelhamentos perfeitos. Finalmente, é provada o
teorema de Tutte-Berge e o teorema de Tutte, que terão
seus resultados novamente avaliados e pensados na próxima
sessão.

VI. RESULTADOS E REFLEXÕES

O trabalho realizado nesse artigo considerou grafos com
ênfase na análise de suas propriedades de emparelhamento.
Nos casos apresentados, foram mostrados cenários que não
admitem emparelhamento perfeito, de tal forma descobrindo
as condições que impedem sua ocorrência. Nesse tema,
conceitos como componentes ímpares, barreiras e remoção
de vértices constituíram elementos fundamentais para a
formulação dos critérios analisados. De maneira específica,
observou-se de que forma a remoção de um subconjunto S⊆
V (G) influencia o número de componentes ímpares de G−
S, fornecendo elementos fundamentais para a compreensão
estrutural do grafo.

O principal resultado identificado corresponde à car-

acterização dos grafos que permitem a existência de
um emparelhamento perfeito, conforme estabelecido pelo
Teorema de Tutte. Esse teorema determina que um grafo G
possui emparelhamento perfeito se, e somente se, para todo
subconjunto S ⊆ V (G), o número de componentes ímpares
de G−S satisfaz a relação:

o(G−S)≤ |S|

O estudo comprova que a condição de Tutte possui
natureza necessária e suficiente, servindo como uma conexão
entre características globais (como a presença de um
emparelhamento máximo) e as propriedades locais que
resultam da partição do grafo em seus componentes ímpares.

Adicionalmente, o Teorema de Tutte–Berge permitiu
quantificar o tamanho de um emparelhamento máximo
mesmo em situações nas quais o grafo não admite
emparelhamento perfeito. Essa quantidade é dada por:

α′(G) =
1
2

min
S⊆V (G)

{|V (G)|− (o(G−S)−|S|)} .

e a deficiência do grafo é definida por:

def(G) = max
S⊆V (G)

(o(G−S)−|S|)

Esse resultado complementa o Teorema de Tutte ao oferecer
uma medida precisa do grau de impossibilidade estrutural
que impede o grafo de possuir um emparelhamento perfeito.
A análise desses teoremas também permitiu identificar
aspectos adicionais cruciais para a compreensão da teoria de
emparelhamentos. Notou-se que as barreiras desempenham
um papel essencial na caracterização dos grafos hipoem-
parelháveis, contribuindo para a análise de estruturas que
impossibilitam a construção de emparelhamentos perfeitos.

Partindo para a perspectiva pedagógica, o caráter alta-
mente figurativo das explicações do teorema e os exemplos
como o Buddy System,tabuleiro multilado foram propostos
como um material pedagógico para facilitar a compreensão
dos alunos. Estes exemplos são feitos trazendo objetos
e situações cotidianas como metáforas para a lógica dos
teoremas, retirando do aluno a carga teórica que os livros
didáticos possuem.

No caso do buddy system, o problema poderia ser
demonstrado de forma prática dividindo a sala de aula
entre times azul e laranja, também escolhendo um aluno
como mediador. Dessa forma, o problema engajaria os
alunos a aprofundarem seus pensamentos com a camada da
experiência, escapando dos limite da teoria. Assim, o mesmo
tipo de atividade pode ser feita com o tabuleiro multilado,
dividindo a sala em grupos e distribuindo tabuleiros, o que
motiva o aluno a ver como os grafos estão presentes no
dia a dia. Isso não significa porém, o completo abandono
da teoria, pois ferramentas como o GraphViewer[2] já
citada anteriormente, permite a visualização da prova dos
algoritmos o que aumenta a capacidade de aprendizado dos
alunos, como demonstrado no próprio estudo.

Com tudo isso posto , a seção de considerações finais
apresentará o resumo dos resultados, cumprimento dos
objetivos, contribuições do estudo, limitações da pesquisa e
sugestões futuras para pesquisas.
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VII. CONCLUSÕES FINAIS

Os resultados obtidos permitiram caracterizar de maneira
precisa as condições estruturais que determinam a existência
ou inexistência de emparelhamentos perfeitos em grafos. O
Teorema de Tutte mostrou-se fundamental nesse processo,
uma vez que estabelece a relação entre o número de
componentes ímpares e o tamanho dos subconjuntos de
vértices removidos.

Constatou-se, além disso, que o Teorema de Tutte–Berge
complementa essa análise ao quantificar o tamanho de um
emparelhamento máximo mesmo quando o grafo não admite
emparelhamento perfeito. Assim, verificou-se que ambos os
teoremas fornecem uma descrição abrangente e operacional
da estrutura dos emparelhamentos em grafos gerais.

Todos os objetivos traçados no início do estudo foram
alcançados. O objetivo geral, que consistia em entender as
condições que asseguram a existência de emparelhamentos
perfeitos, foi cumprido por meio do exame detalhado das
demonstrações e implicações dos Teoremas de Tutte e
Tutte–Berge.

Os objetivos específicos também foram atendidos: o
papel dos componentes ímpares foi elucidado, a noção de
deficiência foi analisada como medida estrutural relevante,
o conceito de barreira foi discutido no contexto de grafos
hipoemparelháveis e a relação entre esses elementos e a
formação de emparelhamentos máximos foi cuidadosamente
explorada. Esses resultados demonstram que a investigação
se desenvolveu de acordo com o que havia sido proposto.

O estudo apresenta contribuições teóricas ao sistematizar
dois resultados centrais da teoria de emparelhamentos, desta-
cando as relações entre componentes ímpares, barreiras e
deficiência.A discussão reforça a relevância das formulações
de Tutte para a compreensão estrutural dos grafos e evidencia
a profundidade de suas implicações matemáticas.

Sob uma perspectiva prática, os resultados discutidos
fornecem ferramentas analíticas importantes para problemas
de alocação, otimização, modelagem combinatória e desenho
de redes. A aplicabilidade dos teoremas de Tutte em
diferentes áreas, como ciência da computação e pesquisa op-
eracional, demonstra a utilidade das formulações estudadas.

Este estudo apresenta como principal limitação seu
foco estritamente teórico, não abordando algoritmos com-
putacionais para o cálculo de emparelhamentos máximos
nem implementações práticas relacionadas. Além disso,
não foram consideradas generalizações contemporâneas dos
resultados de Tutte, como fatores k-regulares ou formulações
baseadas em programação linear. Tais escolhas restringiram
deliberadamente o escopo do trabalho, mantendo-o alinhado
aos objetivos propostos, embora reduzam sua abrangência
aplicada.

Com base nas limitações observadas, temos algumas
possíveis pesquisas futuras. Uma possibilidade é explorar
algoritmos eficientes para encontrar emparelhamentos má-
ximos e perfeitos, analisando seu desempenho em grafos
grandes ou específicos. Outra vertente, envolve estudar a
aplicação dos teoremas em classes particulares de grafos,
como bipartidos por exemplo.

Além disso, futuras pesquisas podem aprofundar as
generalizações dos resultados apresentados, investigando
fatores k-regulares, decomposições estruturais e conexões

com métodos algébricos e combinatórios modernos. Esses
caminhos podem ampliar tanto o alcance teórico quanto a
aplicabilidade prática dos conceitos discutidos.
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Resumo—Os problemas de agendamento constituem uma classe essencial de desafios em otimização e computação, especialmente em
sistemas operacionais, processamento paralelo e aplicações em tempo real. Apesar de sua ampla utilização prática, diversas variantes
permanecem computacionalmente intratáveis, mesmo sob fortes restrições estruturais. Este artigo investiga a NP-completude de duas
versões específicas do problema de escalonamento: o agendamento com tempo de execução unitário e o agendamento com dois
processadores em tarefas de duração igual a uma ou duas unidades. A fundamentação teórica baseia-se em reduções polinomiais clássicas,
em particular a partir do problema 3-SAT, que permite codificar atribuições lógicas diretamente nas restrições de precedência e capacidade
dos processadores. Além disso, transformações adicionais entre versões restritas do problema são utilizadas para preservar a equivalência
estrutural das soluções. As contribuições incluem uma reconstrução didática das provas originais, a análise dos mecanismos que geram
dureza computacional e uma discussão sobre as implicações práticas desses resultados em sistemas reais de escalonamento. Os resultados
apresentados na literatura reforçam que mesmo cenários aparentemente simples apresentam comportamento NP-completo.

Palavras-chave—NP-completude; Agendamento; Redução polinomial; 3-SAT; Complexidade computacional.

Abstract—Scheduling problems constitute a fundamental class of challenges in optimization and computing, particularly in operating
systems, parallel processing, and real-time applications. Despite their wide practical use, many variants remain computationally
intractable, even under strong structural restrictions. This article investigates the NP-completeness of two specific versions of the
scheduling problem: scheduling with unit processing time and scheduling on two processors with tasks of duration one or two time
units. The theoretical foundation relies on classical polynomial-time reductions, especially from the 3-SAT problem, which allows
logical assignments to be encoded directly into precedence constraints and processor-capacity limitations. Furthermore, additional
transformations between restricted versions of the problem are employed to preserve the structural equivalence of solutions. The
contributions include a didactic reconstruction of the original proofs, an analysis of the mechanisms that give rise to computational
hardness, and a discussion of the practical implications of these results in real scheduling systems. The results presented in the literature
reinforce that even seemingly simple scenarios exhibit NP-complete behavior.

Keywords—NP-completeness; Scheduling; Polynomial reduction; 3-SAT; Computational complexity.

I. INTROUDUÇÃO

A Teoria da Computação estabelece os fundamentos
formais para compreender os limites do que pode ser

calculado de maneira eficiente. Nesse contexto, a teoria
da complexidade computacional desempenha papel central

Dados de contato: Neci Oneides da Silva Fialho Neta, neci.silva@uft.edu.br

ao classificar problemas quanto ao custo de suas soluções,
destacando as classes P , N P e NP-completo. Problemas
NP-completos são aqueles para os quais não se conhece
algoritmo polinomial e, ao mesmo tempo, qualquer problema
em N P pode ser reduzido a eles em tempo polinomial.
Assim, demonstrar que um problema pertence a essa classe
significa evidenciar sua provável intratabilidade.

Nesse contexto, os problemas de agendamento (schedu-
ling problems) ocupa posição de destaque. Eles modelam
situações onde tarefas devem ser distribuídas ao longo do
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tempo ou entre múltiplos processadores, respeitando restri-
ções de precedência, limites de duração e capacidade. Tais
problemas surgem em sistemas operacionais, manufatura,
computação paralela, arquiteturas multinúcleo e otimização
industrial. Entretanto, mesmo versões altamente restritas do
escalonamento podem exibir comportamento computacional
complexo.

O presente artigo aborda duas variantes específicas:
(i) o agendamento em que todas as tarefas possuem
tempo de execução unitário e (ii) o agendamento em dois
processadores com tarefas de duração igual a 1 ou 2
unidades. Apesar da simplicidade aparente dessas restrições,
ambas as versões são NP-completas.

O propósito deste trabalho é apresentar uma análise
das provas de NP-completude desses dois problemas,
contextualizando-as dentro da Teoria da Computação e
explicando, passo a passo, como reduções polinomiais, es-
pecialmente a partir do problema 3-SAT, permitem codificar
instâncias lógicas dentro de modelos de escalonamento.
Além disso, discute-se como restrições de precedência,
janelas de execução e limitações de processadores funcionam
como dispositivos para simular atribuições booleanas.

As principais contribuições deste artigo são a recons-
trução didática das demonstrações clássicas, tornando-as
mais acessíveis a estudantes e pesquisadores; a análise
conceitual dos mecanismos responsáveis pela complexidade
computacional dos problemas estudados; a integração entre
teoria e prática, discutindo implicações para sistemas reais de
escalonamento e algoritmos modernos; e a organização clara
e sistemática das relações entre as variantes do problema,
destacando cadeias de reduções e interdependências.

Com isso, o artigo busca não apenas demonstrar
formalmente a NP-completude das variantes analisadas, mas
também oferecer uma compreensão mais profunda sobre
por que tais problemas permanecem intratáveis mesmo em
cenários simples.

Para organizar a discussão, o artigo está estruturado da
seguinte forma: na Seção II (Preliminares), apresentam-se
os conceitos preliminares necessários para compreender a
complexidade dos problemas estudados, incluindo definições
formais, modelos de agendamento e a cadeia de reduções
utilizada. A Seção III (Trabalhos Relacionados) revisa
trabalhos clássicos e contemporâneos relacionados ao tema,
situando P2 e P3 no contexto mais amplo da teoria de
escalonamento. A Seção IV (Descrição do Problema)
descreve formalmente as variantes analisadas e suas apli-
cações, ilustrando seus aspectos combinatórios. Na Seção V
(Demonstração e Contribuições) são desenvolvidas as provas
de NP-completude de P2 e P3, com ênfase nas reduções
polinomiais que conectam esses problemas ao 3-SAT. A
Seção VI (Resultados e Reflexões) apresenta reflexões
e interpretações sobre os resultados obtidos, destacando
implicações teóricas e pedagógicas. Por fim, a Seção VII
(Considerações Finais) reúne as considerações finais e
aponta possíveis direções para investigações futuras.

II. PRELIMINARES

As preliminares apresentadas nesta seção têm o objetivo
de estabelecer todas as definições, notações e convenções
formais utilizadas ao longo deste trabalho. Como as de-

TABELA 1: DESCRIÇÃO FORMAL DO PROBLEMA 3-SAT.

3-SAT

Entrada: Uma fórmula booleana ϕ em forma normal
conjuntiva,

ϕ =C1∧C2∧·· ·∧Ck,

onde cada cláusula possui exatamente três literais:

Ci = (`1∨ `2∨ `3), ` j ∈ {x,¬x}.

Objetivo: Decidir se existe uma atribuição de valores
verdade às variáveis que satisfaça todas as cláusulas de ϕ.
Saída: SIM, se ϕ é satisfatível; NÃO, caso contrário.

monstrações de NP-completude reconstruídas aqui envolvem
cadeias de reduções, relações de precedência, funções de
escalonamento e estruturas lógicas, é importante que os
símbolos e conceitos empregados sejam apresentados de
modo claro e unificado antes de aparecerem nas seções
posteriores.

Para iniciar, adotamos as classes de complexidade usuais
da Teoria da Computação. A classe P contém todos
os problemas de decisão solucionáveis por algoritmos
determinísticos cujo tempo de execução é polinomial no
tamanho da entrada. A classe N P reúne problemas
cujas soluções podem ser verificadas em tempo polinomial
por um verificador determinístico, dado um certificado
apropriado. Um problema π é dito NP-completo se satisfaz
duas condições: (i) π ∈ N P ; e (ii) para todo problema
π′ já conhecido por ser NP-completo, existe uma redução
polinomial de π′ para π. Denotamos tal redução pela notação:

π′ ≤p π,

que indica que qualquer instância de π′ pode ser transfor-
mada, em tempo polinomial, em uma instância equivalente
de π. Essa notação será empregada repetidas vezes ao longo
deste artigo.

Como ponto de partida das reduções, utilizamos o
problema 3-SAT, cuja importância histórica foi estabelecida
por Cook em 1971 [1]. Empregamos as notações padrão:
variáveis booleanas x1, . . . ,xm, que são entidades que podem
assumir os valores verdadeiro ou falso; literais ` ∈ {xi,¬xi},
onde cada literal representa uma variável booleana ou sua
negação; cláusulas C j = (`1 ∨ `2 ∨ `3), que são disjunções
de exatamente três literais; e fórmulas booleanas em forma
normal conjuntiva (CNF) da forma

ϕ =C1∧C2∧·· ·∧Cn,

que consistem em conjunções de múltiplas cláusulas. Uma
fórmula é satisfatível quando existe uma atribuição de
valores às variáveis booleanas que torna todas as cláusulas
verdadeiras. Como o problema 3-SAT é o ponto de origem
da cadeia de reduções analisada, apresentamos a seguir sua
definição formal apresentada na tabela 1.

Passamos agora ao modelo formal de agendamento
adotado em todas as variantes do problema. Uma instância
é composta por um conjunto de tarefas S = {J1, . . . ,Jn},
uma relação parcial < indicando precedências (por exemplo,
J < J′ significa que J deve terminar antes do início de
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J′), uma função duração W : S → Z+ que associa a cada
tarefa seu tempo de execução em unidades de tempo, um
número de processadores k, e um horizonte de tempo t. Um
escalonamento é descrito por uma função

f : S→{0,1, . . . , t−1},

que define para cada tarefa seu instante de início dentro
do intervalo de tempo disponível, onde f (J) determina o
instante de início de J. Esse escalonamento é válido quando
satisfaz: (i) f (J) +W (J) ≤ f (J′) sempre que J < J′; (ii)
em cada unidade de tempo, no máximo k tarefas executam
simultaneamente; e (iii) todas as tarefas terminam antes do
tempo limite t. Essa notação será usada constantemente nas
definições e nas construções das reduções.

As variantes específicas de escalonamento reconstruídas
neste trabalho são as mesmas introduzidas por Ullman
(1975) [2]. O problema P2 consiste em escalonar tarefas
com duração unitária sobre k processadores, sob um
conjunto arbitrário de precedências. O problema P3 envolve
dois processadores e tarefas cujas durações pertencem ao
conjunto {1,2}. O problema P4 é semelhante a P2,
exceto pelo fato de que, em vez de um número fixo
de processadores, cada unidade de tempo possui uma
capacidade própria c0,c1, . . . ,ct−1. Já o problema P5
corresponde a uma versão onde todos os processadores
devem permanecer ocupados durante toda a execução, isto
é, exatamente k tarefas devem estar em execução em cada
instante.

Como as reduções de Ullman empregam estruturas
visuais e padrões temporais específicos, adotamos também
notações auxiliares internas às construções. Cadeias verticais
de tarefas representam literais ou suas negações; barras
sobre variáveis, como x̄i, indicam negação; blocos Di j
agrupam tarefas associadas a cláusulas ou a estruturas
auxiliares; e, na redução para P3, os termos banda e quebra
designam segmentos longos e curtos de execução no segundo
processador, respectivamente. O par de tarefas J′ e J, ambas
de duração 2, será utilizado para preservar precedências ao
converter instâncias de P5 para P3. Finalmente, o termo
certificado será entendido sempre como um escalonamento
candidato cuja verificação é realizada em tempo polinomial.

Com todas essas convenções estabelecidas, apresentamos
a cadeia de reduções que estrutura a demonstração da NP-
completude dos problemas estudados:

3-SAT≤p P4≤p P5≤p P2, P5≤p P3.

Cada ocorrência do símbolo ≤p será detalhada nas seções
subsequentes, com construções explícitas e demonstrações
de validade. Assim, esta seção reúne todo o aparato
matemático necessário para sustentar as provas desenvolvi-
das ao longo do artigo.

III. TRABALHOS RELACIONADOS

Os estudos sobre a complexidade de problemas de escalo-
namento possuem uma trajetória consolidada na literatura,
e o presente trabalho se insere nesse contexto ao analisar
variantes restritas que permanecem NP-completas. O
trabalho de referência fundamental é o de Ullman [2],
cujo objetivo foi demonstrar formalmente que versões

simplificadas do problema de scheduling continuam a exibir
dureza combinatória. Por meio de reduções formais iniciadas
em 3-SAT, o autor constrói progressivamente instâncias dos
problemas P4, P5, P2 e P3, utilizando cadeias de tarefas,
precedências rígidas e janelas de execução que representam
diretamente a lógica das fórmulas booleanas. Seu principal
resultado é estabelecer que tanto o agendamento com tempos
unitários quanto o agendamento em dois processadores com
tarefas de duração 1 ou 2 são NP-completos, servindo como
base teórica direta para as análises reconstruídas neste artigo.

O survey clássico de Graham, Lawler, Lenstra e Rinnooy
Kan [3] também está intimamente relacionado a este
trabalho. Seu objetivo foi organizar e classificar modelos
determinísticos de escalonamento, descrevendo algoritmos,
limites de complexidade, estruturas de precedência e
resultados de aproximação. A metodologia consiste em
sistematizar o campo usando a notação de três campos
(α|β|γ), além de situar diversos problemas dentro de
categorias de tratabilidade ou NP-dificuldade. O survey
demonstra que a interação entre precedências e múltiplas
máquinas é uma das principais fontes de intratabilidade, o
que contextualiza de maneira abrangente os problemas P2 e
P3 analisados aqui.

Outro trabalho relevante é o de Brucker e Kravchenko [4],
cujo foco é o escalonamento em máquinas paralelas quando
todos os tempos de processamento são iguais. Seu objetivo
foi investigar como a presença de precedências e janelas
temporais afeta a complexidade do problema. Por meio de
reduções polinomiais baseadas em problemas clássicos de
particionamento, os autores demonstram que mesmo instân-
cias homogêneas tornam-se NP-difíceis quando combinadas
com dependências. Essa conclusão reforça diretamente o
caso de P2 estudado neste artigo.

Também se destaca a obra de Pinedo [5], cujo objetivo
é oferecer uma visão abrangente dos modelos de escalo-
namento utilizados em sistemas industriais, computacionais
e de produção. É uma referência técnica essencial
para compreender como modelos com múltiplas máquinas,
precedências e janelas temporais se comportam na prática,
contextualizando os cenários teóricos tratados neste trabalho.

Por fim, o trabalho de Baptiste, Leung e Smith
[6] aprofunda limites de complexidade em modelos de
escalonamento com restrições de precedência, janelas de
disponibilidade e múltiplas máquinas. Seu objetivo é
mapear rigorosamente a fronteira entre casos polinomiais
e NP-difíceis, empregando técnicas de construção temporal
similares às utilizadas por Ullman. Seus resultados
mostram que até variantes aparentemente simples tornam-
se NP-completas quando precedências e tempos variados
interagem, conectando-se diretamente às reduções que
caracterizam P3.

Coletivamente, esses estudos situam claramente P2 e P3
dentro do panorama teórico do escalonamento, reforçando
que tais variantes representam casos emblemáticos na
fronteira entre tratabilidade e intratabilidade na Teoria da
Computação.

Em complemento a esses estudos específicos de esca-
lonamento, a monografia clássica de Garey e Johnson [7]
fornece o pano de fundo teórico geral sobre NP-completude e
técnicas de redução polinomial. Embora trate de uma ampla
variedade de problemas e não se concentre exclusivamente
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TABELA 2: DESCRIÇÃO FORMAL DO PROBLEMA P2.

P2 – Escalonamento com tempo de execução unitário

Entrada: Um conjunto de n tarefas, cada uma levando
exatamente 1 unidade de tempo para ser concluída. Há
relações de precedência entre algumas tarefas, existem m
processadores idênticos disponíveis e um tempo máximo
total D para executar todas elas.
Objetivo: Decidir se existe uma forma de agendar todas
as tarefas nos m processadores de modo que todas sejam
concluídas até o tempo limite D.
Saída: SIM, se existe um escalonamento que termina todas
as tarefas dentro de D; NÃO, caso contrário.

em modelos de escalonamento como P2 e P3, essa obra é
uma referência útil para o enquadramento conceitual deste
trabalho, especialmente no que diz respeito à definição
formal das classes P , N P e dos problemas NP-completos.

Além da literatura técnica sobre escalonamento, este
trabalho também se apoia em produções pedagógicas da
área de Teoria da Computação. O artigo de Lassance et
al. [8] discute práticas de ensino envolvendo decidibilidade,
NP-completude e transformações polinomiais, oferecendo
uma base didática que auxiliou na organização conceitual
dos fundamentos teóricos utilizados, ainda que não trate
diretamente dos problemas de scheduling analisados aqui.

IV. DESCRIÇÃO DO PROBLEMA

Os problemas de agendamento tratam da organização de
um conjunto de tarefas ao longo do tempo ou entre
múltiplos recursos, respeitando restrições estruturais como
precedência, duração e capacidade de processamento. Em
sua formulação clássica, busca-se determinar em que
momento cada tarefa deve ser executada, de modo a cumprir
dependências e limitações de recursos, garantindo que todas
sejam concluídas antes de um tempo máximo permitido. As
variantes analisadas neste trabalho — o agendamento com
tempo de execução unitário (P2) e o agendamento em dois
processadores com tarefas de duração igual a uma ou duas
unidades (P3) — representam versões restritas desse modelo
geral, mas preservam a complexidade combinatória presente
em cenários mais amplos.

A definição formal do problema de escalonamento com
tempo unitário é apresentada na tabela 2.

Embora o problema P2 trate exclusivamente de tarefas
com duração unitária, o que permite certas simplificações
em sua análise estrutural, muitas aplicações práticas exigem
considerar tarefas com tempos distintos de execução. Essa
generalização leva naturalmente à formulação do problema
P3, apresentada a seguir na tabela 3.

Enquanto P2 e P3 representam variantes fundamentais
do modelo de escalonamento com restrições de precedência
e limite global de tempo, a análise de sua complexidade
costuma recorrer a versões intermediárias mais expressivas.
Entre elas destacam-se os problemas P4 e P5, que
introduzem novos elementos — como tempos de liberação
e prazos individuais — permitindo construir reduções mais
detalhadas e modularizadas ao longo da prova de NP-
completude.

TABELA 3: DESCRIÇÃO FORMAL DO PROBLEMA P3.

P3 – Escalonamento com tempos de execução variados

Entrada: Um conjunto de n tarefas, cada uma com um
tempo de execução definido. Há relações de precedência
entre certas tarefas. Existem m processadores idênticos
disponíveis e um tempo limite total D para concluir todas
as tarefas.
Objetivo: Determinar se existe um escalonamento válido
que aloque todas as tarefas aos m processadores de forma
a respeitar as precedências e terminar tudo até o tempo D.
Saída: SIM, se existe tal escalonamento dentro de D; NÃO,
caso contrário.

TABELA 4: DESCRIÇÃO FORMAL DO PROBLEMA P4.

P4 – Escalonamento com tempos de liberação

Entrada: Um conjunto de n tarefas, cada uma com um
tempo de duração e um instante mínimo no qual está
autorizada a começar; algumas tarefas devem ocorrer antes
de outras; há m processadores idênticos disponíveis; e existe
um limite total D para finalizar todas as tarefas.
Objetivo: Determinar se há uma forma de escalonar todas
as tarefas nos m processadores, respeitando os tempos de
liberação, as precedências e o tempo máximo permitido.
Saída: SIM, se existe um escalonamento válido dentro de D;
NÃO, caso contrário.

TABELA 5: DESCRIÇÃO FORMAL DO PROBLEMA P5.

P5 – Escalonamento com precedências arbitrárias

Entrada: Um conjunto de n tarefas, cada uma com
tempo de duração e um prazo individual; um conjunto
de dependências indicando quais tarefas devem anteceder
outras; e m processadores idênticos disponíveis.
Objetivo: Determinar se existe um escalonamento que
respeite tanto os prazos individuais como todas as dependên-
cias entre as tarefas.
Saída: SIM, se existe um escalonamento válido que satisfaça
todos os prazos e dependências; NÃO, caso contrário.

Para estabelecer a complexidade computacional dos
problemas P2 e P3, utilizamos dois problemas intermediários
nas reduções, conforme proposto por Ullman [2]: P4
(escalonamento com tempos de liberação),definido formal-
mente na tabela 4, e P5 (escalonamento com precedências
arbitrárias),apresentado na tabela 5. Estes servem como
etapas intermediárias na cadeia de reduções que parte
do problema 3-SAT e culmina na demonstração de NP-
completude de P2 e P3.

Embora P4 e P5 compartilhem a estrutura básica de
problemas de escalonamento, diferenciam-se pelas restrições
específicas que impõem. Enquanto P4 introduz tempos
de liberação como restrições adicionais ao início das
tarefas, P5 generaliza as relações de precedência e incorpora
prazos individuais para cada tarefa. Essa progressão na
complexidade das restrições é fundamental para a cadeia de
reduções, permitindo que se estabeleça a NP-dificuldade de
P2 através de transformações sucessivas partindo do 3-SAT.

Uma forma intuitiva de visualizar esses problemas é por
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Figura 1: Linha de produção ilustrando dependências, capacidade
limitada e fluxo sequencial — elementos que caracterizam os

problemas de escalonamento P2 e P3.

meio de uma linha de produção simplificada, como ilustrado
na Figura 1. Nessa representação, o material bruto entra pela
esquerda e percorre três etapas de processamento (A, B e C)
até tornar-se produto acabado. Cada estação representa um
conjunto de tarefas que deve ser executado em uma ordem
específica, pois A precisa concluir sua parte antes que B
possa começar, e o mesmo vale para a transição de B para
C. Essa metáfora captura precisamente a ideia de restrições
de precedência presentes nos problemas de escalonamento.
Além disso, cada operador da linha só consegue manipular
uma peça por vez, analogamente ao limite de capacidade dos
processadores ou máquinas em um modelo computacional.
Ao observarmos a linha em funcionamento, percebemos
que, mesmo que as peças tenham tamanhos semelhantes,
pequenas dependências ou variações de duração podem
provocar bloqueios, esperas desnecessárias ou gargalos —
efeitos que modelam diretamente a complexidade de P2 e
P3.

No contexto dessa metáfora, o problema P2 corresponde
a uma situação em que todas as tarefas duram exatamente
uma unidade de tempo. Isso seria equivalente a imaginar que
cada operador leva sempre o mesmo tempo para processar
qualquer peça que receba. Ainda assim, dependências rígidas
entre etapas podem impedir um fluxo contínuo, e o desafio
consiste em verificar se existe uma forma de organizar
essas execuções dentro de um limite global de tempo. Já
o problema P3 se aproxima de uma linha de produção
com dois operadores trabalhando simultaneamente, mas com
tarefas que podem durar uma ou duas unidades de tempo.
Nesse cenário, algumas peças exigem mais trabalho em
uma etapa específica, o que gera desequilíbrios e requer um
planejamento cuidadoso para evitar que o segundo operador
fique sobrecarregado ou ocioso em momentos críticos.

Esses modelos, embora simples, surgem naturalmente
em sistemas operacionais, computação paralela, engenharia
industrial e processamento em tempo real. A analogia da
linha de produção evidencia de forma clara como neles
coexistem dois fatores cruciais: a necessidade de obedecer
a dependências estritas e a limitação de recursos. Mesmo
exemplos cotidianos, como essa sequência organizada de
operações A→B→C, são suficientes para ilustrar como a
ordem de execução e a duração das tarefas influenciam
diretamente a viabilidade de um cronograma. Basta imaginar
um operador ficando sem peças para trabalhar devido ao
atraso na etapa anterior — um fenômeno equivalente à
espera imposta pela precedência entre tarefas — ou dois
operadores disputando o processamento simultâneo de peças,
representando o conflito pela capacidade dos processadores.

Assim, a metáfora da linha de produção ajuda a visualizar
por que os problemas P2 e P3, apesar de parecerem simples,
capturam estruturas lógicas suficientemente ricas para

simular decisões combinatórias complexas. Em particular, a
interação entre tempos de execução, dependências e recursos
limitados cria padrões que não apenas se aproximam do fluxo
real de sistemas industriais, mas também constituem o núcleo
das dificuldades teóricas que tornam esses problemas NP-
completos.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Nesta seção apresentamos, as provas de NP-completude das
duas variantes de escalonamento estudadas: o problema
de tempo de execução unitário (P2) e o problema de dois
processadores com tarefas de duração 1 ou 2 (P3). A
demonstração é organizada em duas etapas principais para
cada problema: (i) prova de NP-pertinência (isto é, mostrar
que o problema pertence à classe N P ) e (ii) prova de NP-
dificuldade (isto é, mostrar que o problema é ao menos
tão difícil quanto um problema base conhecido como NP-
completo).

a. P2 ∈ NP e P3 ∈ NP

Para demonstrar que os problemas P2 e P3 pertencem à
classe N P , utilizamos o conceito de verificador polinomial.
Em ambos os casos, o certificado natural é um possível
escalonamento das tarefas: para cada tarefa J, o certificado
descreve o instante de início f (J) e, no caso de P3, também
o processador onde ela é executada.

Dado esse certificado, o verificador deve apenas conferir
se o escalonamento obedece a todas as restrições impostas
pelo problema. O procedimento consiste em:

1. verificar se cada tarefa termina antes do limite de tempo
t;

2. verificar todas as relações de precedência, confirmando
que, para cada J < J′, o término de J ocorre antes ou no
momento do início de J′;

3. para cada unidade de tempo, contar quantas tarefas es-
tão sendo executadas simultaneamente, garantindo que
esse valor não ultrapassa o número de processadores
disponíveis (em P3, exatamente dois).

Cada uma dessas verificações pode ser feita em tempo
polinomial no número de tarefas e no número de relações de
precedência. Especificamente, a validação das precedências
requer verificar cada relação individualmente, com comple-
xidade O(| < |), onde | < | é o número de relações de
precedência. A verificação de sobrecarga por unidade de
tempo pode ser feita em O(n · t), mantendo-se contadores
para cada instante. Não é necessário explorar todas as
possíveis execuções, mas apenas validar a execução proposta
no certificado. Portanto, existe um verificador determinístico
polinomial tanto para P2 quanto para P3, o que implica:

P2 ∈ NP e P3 ∈ NP.

b. P2 ∈ NP-Difícil

A prova de NP-dificuldade de P2 segue a estratégia de
reduzir um problema clássico NP-completo, o 3-SAT, a uma
instância de escalonamento com tempo de execução unitário.
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A ideia é construir um conjunto de tarefas, precedências e
limites de tempo tais que:

3-SAT é satisfatível ⇐⇒ P2 admite escalonamento válido.

Como abordado na Seção IV (Descrição do Problema), a
demonstração completa é feita em etapas, por meio de P4 e
P5.

Etapa 1: 3-SAT ≤p P4

Define-se inicialmente um problema intermediário, P4, que
é uma versão do escalonamento com tempo unitário, mas
com número de processadores variando ao longo do tempo.
Em vez de um k fixo, P4 recebe uma sequência de
capacidades c0,c1, . . . ,ct−1, indicando quantas tarefas podem
ser executadas em cada unidade de tempo.

A redução 3-SAT ≤p P4 constrói um conjunto de tarefas
cuja viabilidade de escalonamento reflete diretamente a
satisfatibilidade da fórmula. Para cada variável xi são
criadas duas cadeias disjuntas, uma associada a xi e outra
a ¬xi, ligadas por restrições de precedência internas. A
escolha de qual cadeia iniciar primeiro, e de qual literal será
“verdadeiro”, é forçada por tarefas auxiliares yi e ¬yi que, via
precedências e pela ocupação precisa dos slots de capacidade
impostos pela sequência ct , garantem que exatamente uma
das duas cadeias progrida.

Em seguida, para cada cláusula C j com três literais,
introduz-se um bloco de sete tarefas D j1, . . . ,D j7 e arestas
de precedência que as conectam às cadeias de variáveis.
O instante crítico de execução dessas tarefas só pode ser
alcançado se pelo menos uma das cadeias correspondentes
a literais verdadeiros já estiver sido escalonada; caso
contrário, a capacidade disponível naquele momento torna-
se insuficiente e o escalonamento quebra. A sequência
de capacidades c0, . . . ,ct−1 é escolhida de forma a apertar
o espaço de processamento: em cada unidade de tempo
o número de posições é exatamente o necessário para
comportar as tarefas “verdadeiras” e as auxiliares, de modo
que qualquer desvio da codificação correta — isto é,
qualquer tentativa de satisfazer simultaneamente xi e ¬xi ou
de falsificar todas as cláusulas — impede a conclusão de
todas as tarefas dentro do horizonte dado.

A complexidade desta construção é polinomial: para uma
instância de 3-SAT com m variáveis e n cláusulas, o número
total de tarefas geradas é da ordem de O(m2+n), assim como
o número de relações de precedência. A construção pode
ser implementada por algoritmos que percorrem variáveis e
cláusulas com laços aninhados de profundidade constante,
resultando em tempo polinomial no tamanho da fórmula
original.

Comentário: a construção faz com que “rodar” certas
tarefas em tempos específicos corresponda exatamente a
atribuir verdadeiro ou falso às variáveis. Se a fórmula é
satisfatível, existe um modo de encaixar todas as tarefas
dentro do limite de tempo; se não é, faltará espaço em algum
instante, e o escalonamento será impossível.

A Figura 2 ilustra a estrutura típica utilizada na redução 3-
SAT → P4. Cada literal é convertido em uma cadeia vertical
de tarefas — cadeias sem barra representam literais positivos,
enquanto cadeias com barra representam negativas. Os
blocos Di j funcionam como pontos de verificação para cada

Figura 2: Estrutura geral da redução de uma instância de 3-SAT
para o problema P4. Figura retirada de Ullman [2].

cláusula, garantindo que apenas escalonamentos compatíveis
com uma atribuição satisfatória permitam preencher os
instantes críticos impostos pelas capacidades temporais.
Embora vários blocos apareçam na figura, apenas um bloco
Di j por cláusula desempenha o papel de validar a cláusula;
os demais são estruturas auxiliares introduzidas para forçar o
alinhamento temporal da construção.

Para tornar a construção mais intuitiva, a Figura 2
apresenta um exemplo concreto de como uma fórmula 3-
SAT é convertida em cadeias de tarefas no problema P4. A
fórmula booleana correspondente ao diagrama é:

ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x3 ∨ x4).

Nessa representação, cada literal aparece como uma
cadeia vertical de tarefas. Cadeias sem barra correspondem
ao literal positivo (como x14,x24,x34), enquanto cadeias com
barra representam o literal negado (como x̄33, x̄32, x̄31). As
relações de precedência ligam os elementos de cada cadeia,
garantindo que a posição temporal em que uma tarefa pode
ser executada codifica a escolha “verdadeiro” ou “falso” para
cada variável.

Além das cadeias de literais, o diagrama inclui vários
blocos Di j. Esses blocos têm funções distintas dentro da
redução. Apenas alguns deles correspondem diretamente às
cláusulas da fórmula; os demais fazem parte da estrutura
geral da construção e servem para controlar capacidade
temporal, sincronizar cadeias ou criar janelas de execução
obrigatórias. Assim, embora muitos blocos apareçam no
diagrama, somente dois deles representam efetivamente as
cláusulas da fórmula de exemplo.

Para cada cláusula C j, Ullman [2] insere exatamente um
bloco Di j que atua como ponto de verificação: esse bloco só
pode ser executado caso pelo menos um dos três literais da
cláusula tenha sido marcado como verdadeiro pela estrutura
de precedência construída. A indexação segue o padrão
usado no artigo: o índice i refere-se à variável principal
associada ao bloco, enquanto j indica a cláusula da qual
aquele bloco participa.

No exemplo da figura, as duas cláusulas da fórmula
aparecem como: D14 (cláusula 1), D23 (cláusula 2).

Os demais blocos, como D11,D12, . . . ,D27, não represen-
tam cláusulas. Eles compõem apenas a estrutura auxiliar da
redução e não têm correspondência com fórmulas booleanas;
funcionam como “slots de tempo” usados para forçar a
organização correta das cadeias de variáveis.

Dessa forma, a Figura 2 ilustra como cada literal, cada
cláusula e cada restrição temporal são traduzidos para tarefas
do problema P4, permitindo que a satisfatibilidade de ϕ
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seja refletida diretamente na existência de um escalonamento
viável.

Etapa 2: P4 ≤p P5

O problema P5 é definido como uma versão de P2 com
a restrição adicional de que todos os processadores devem
estar ocupados em todas as unidades de tempo; isto é, o
número de tarefas é exatamente n = kt e o escalonamento
deve preencher completamente a capacidade disponível.

Para reduzir P4 a P5, transforma-se o cronograma de
capacidades variáveis c0, . . . ,ct−1 em um quadro de k
processadores constantes simplesmente completando, em
cada instante i, as k − ci posições ociosas com tarefas
“de preenchimento”. Essas tarefas são introduzidas em
número exato para que, em cada unidade de tempo, o total
de tarefas ativas seja exatamente k; além disso, elas são
conectadas por uma única cadeia de precedências lineares
que as obriga a executar sequencialmente, impedindo que
sobreponham ou conflitem com as tarefas originais. Como
suas durações são unitárias e suas janelas de execução são
rigidamente controladas, qualquer escalonamento válido de
P5 descarta automaticamente as tarefas de preenchimento e
recupera, nos instantes restantes, um escalonamento válido
para P4; reciprocamente, todo escalonamento de P4 pode ser
estendido a um de P5 incluindo as tarefas de preenchimento
nos slots vazios.

Esta transformação é polinomial: o número de tarefas de
preenchimento adicionadas é proporcional à diferença entre
a capacidade máxima e o número de tarefas já previstas em
P4. Como o horizonte de tempo t e as capacidades ci são
limitados por funções polinomiais no tamanho da instância
de P4, o tempo de construção é polinomial.

Comentário: essa etapa padroniza a capacidade ao longo
do tempo, transformando capacidades variáveis em um
número fixo de processadores que precisam estar sempre
ocupados.

Etapa 3: P5 ≤p P2

Por fim, observa-se que P5 é apenas um caso particular de
P2: trata-se do mesmo problema de escalonamento com
tempo de execução unitário, mas com a condição adicional
de n = kt. Portanto, qualquer instância de P5 é uma instância
de P2 com uma restrição extra, e a redução é imediata, com
complexidade linear no tamanho da instância de P5.

Juntando as etapas, temos:

3-SAT≤p P4≤p P5≤p P2,

onde cada redução é computável em tempo polinomial, o que
implica que P2 é NP-difícil. Como já foi mostrado que P2
pertence a NP, conclui-se que P2 é NP-completo.

c. P3 ∈ NP-Difícil

Para demonstrar que P3 é NP-difícil, utiliza-se P5 como
problema intermediário. A ideia é reduzir uma instância de
P5 para uma instância de P3, de forma que:

P5 é solucionável ⇐⇒ P3 construída é solucionável.

A construção explora a presença de dois processadores e
tarefas com pesos 1 ou 2 para criar um padrão de bandas e
quebras no segundo processador.

Etapa: P5 ≤p P3

Dada uma instância de P5 com tempo limite t, número
de processadores k e conjunto de tarefas S de tamanho kt
parcialmente ordenado por <, constrói-se uma instância de
P3 sobre dois processadores de velocidade s = 2 da seguinte
forma.

Primeiro, cria-se uma sequência contínua de tarefas Xi de
peso 1 que ocupam exclusivamente o primeiro processador
durante todo o horizonte t, impedindo qualquer outra tarefa
de executar nele. Em seguida, no segundo processador,
dispõem-se tarefas Yi j também de peso 1 de modo a gerar um
padrão regular de “quebras” e “bandas”: após cada intervalo
de 2k unidades de tempo livres (banda), insere-se uma única
unidade de tempo ocupada (quebra), repetindo esse ciclo até
cobrir o horizonte total.

Cada tarefa original J ∈ S é substituída por um par (J′,J),
ambas de peso 2. A precedência J′≺ J garante que J só possa
iniciar após J′ terminar, e as relações J ≺ K do conjunto
original tornam-se J ≺ K′ na nova instância, preservando
a ordem parcial. O peso 2 impede que qualquer dessas
tarefas seja executada durante uma quebra (apenas uma
unidade de tempo livre); portanto, J′ e J são forçadas a se
alinharem inteiramente dentro de uma banda de 2k unidades
consecutivas. Como cada banda oferece exatamente 2k
unidades de capacidade e o número total de tarefas de peso
2 é 2kt, o preenchimento completo de todas as bandas
corresponde biunivocamente a um escalonamento válido de
P5: cada par (J′,J) posicionado numa banda representa a
execução da tarefa original J num dos k processadores de
P5, enquanto as quebras funcionam como divisores naturais
entre os k instantes de tempo.

Esta construção é polinomial: o número total de tarefas
em P3 é limitado por uma função polinomial no número
de tarefas e no horizonte de tempo da instância de P5.
Especificamente, são criadas O(kt) tarefas, e a construção
pode ser implementada por laços que percorrem o conjunto
de tarefas originais e o intervalo de tempo sem recursão
excessiva.

O efeito desta construção é o seguinte: as tarefas Xi
garantem que o primeiro processador esteja sempre ocupado,
enquanto as tarefas Yi j consomem parte do tempo do
segundo processador, de modo que restam segmentos de
tempo contínuos (bandas) suficientemente longos apenas
para acomodar as tarefas de peso 2 (J) e pequenos espaços
(quebras) onde se encaixam as tarefas J′. Adicionalmente,
devido às dependências, cada tarefa J deve ser executada na
banda correspondente ao instante em que seria processada na
solução de P5, enquanto J′ ocupa a quebra associada.

Com isso, qualquer solução para a instância de P3
construída induz um escalonamento válido para a instância
original de P5 (interpretando cada banda como uma unidade
de tempo de P5). Reciprocamente, qualquer solução de P5
pode ser “expandida” para uma solução de P3, alocando J′

nas quebras e J nas bandas apropriadas.
Comentário: as bandas funcionam como “janelas com-

pactadas” que representam cada unidade de tempo da
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Figura 3: Organização das tarefas na redução do problema P5 para
P3. Figura retirada de Ullman [2].

instância original de P5. Preencher corretamente essas
bandas com tarefas de peso 2 equivale a decidir, para cada
unidade de tempo, quais tarefas estão sendo executadas no
modelo com k processadores.

A Figura 3 mostra como a redução de P5 para P3
utiliza dois processadores para reproduzir o comportamento
temporal de uma instância original. O primeiro processador
permanece ocupado continuamente pelas tarefas Xi, en-
quanto o segundo alterna entre segmentos curtos (quebras),
que acomodam as tarefas J′, e segmentos longos (bandas),
nos quais são escalonadas as tarefas J de duração 2. Cada
banda corresponde exatamente a uma unidade de tempo
da instância de P5, preservando precedências e garantindo
que o escalonamento resultante em P3 reflita corretamente a
execução original em P5.

Como P5 é NP-completo e P5 ≤p P3 com complexidade
polinomial, segue que P3 é NP-difícil. Já demonstramos
anteriormente que P3 pertence a NP, portanto P3 é NP-
completo.

d. Comentários Finais sobre a Demonstração

As provas apresentadas mostram que tanto P2 quanto
P3 não são apenas variantes artificiais, mas modelos
ricos o suficiente para simular a lógica de um problema
canônico como o 3-SAT. As construções utilizadas exploram

intensivamente a codificação de variáveis e atribuições como
escolhas de tarefas executadas em tempos específicos, o uso
de precedência para impor dependências lógicas, e o controle
do número de processadores (ou da capacidade por unidade
de tempo) para forçar o preenchimento exato de janelas de
execução.

Esses mecanismos fazem com que qualquer tentativa de
encontrar um algoritmo geral e eficiente para P2 ou P3
esbarre na mesma dificuldade encontrada para 3-SAT e
outros problemas NP-completos. Assim, as demonstrações
de NP-completude justificam, do ponto de vista teórico, o
uso de heurísticas e algoritmos aproximados em problemas
práticos de escalonamento.

VI. RESULTADOS E REFLEXÕES

A análise das variantes P2 e P3 permitiu confirmar formal-
mente sua classificação como problemas NP-completos, por
meio da reconstrução detalhada das reduções apresentadas
por Ullman (1975). A replicação dessas provas evidenciou
como estruturas aparentemente simples (tarefas de duração
unitária, dois processadores e precedências básicas) são
suficientes para simular o comportamento lógico de fórmulas
booleanas. Esse resultado reforça um dos princípios
fundamentais da Teoria da Computação: a dificuldade com-
putacional não depende apenas da complexidade aparente
do modelo, mas da capacidade de representar decisões
combinatórias por meio das restrições do problema.

Do ponto de vista metodológico, o processo revelou
desafios relevantes. A cadeia de reduções 3-SAT → P4 →
P5 → P2 exigiu um entendimento cuidadoso das construções
intermediárias, especialmente na definição das capacidades
variáveis de P4 e no uso das tarefas auxiliares que forçam a
codificação de variáveis e cláusulas. Já a redução P5 → P3
mostrou-se particularmente difícil devido à alternância entre
“bandas” e “quebras”, que exige atenção à sincronização
temporal e ao mapeamento entre segmentos de tempo e
precedências. Esses aspectos demonstram que provas de NP-
completude vão além de manipulações algébricas: tratam-se
de construções conceituais sofisticadas que demandam rigor,
visualização estrutural e compreensão profunda dos modelos
envolvidos.

As contribuições deste trabalho situam-se tanto no campo
da compreensão teórica quanto no campo pedagógico. Ao
reorganizar e explicar as reduções de forma sistemática,
com figuras, comentários e interpretações intuitivas, o
estudo oferece um material mais acessível a estudantes
e pesquisadores que desejam compreender NP-completude
aplicada a problemas de escalonamento. Além disso, ao
contextualizar os problemas P2 e P3 dentro da Teoria da
Computação, o trabalho evidencia como reduções podem
servir como ferramenta para analisar casos reais de sistemas
operacionais, arquiteturas de processadores, computação
paralela e engenharia de produção.

No âmbito acadêmico, a aplicabilidade desta investigação
é ampla. A reconstrução didática das provas pode
servir como apoio em disciplinas de Estruturas de Dados,
Análise de Algoritmos, Teoria da Computação, Sistemas
Operacionais e Escalonamento. O estudo também pode
auxiliar estudantes na compreensão de reduções polinomiais,
frequentemente uma das maiores dificuldades no apren-
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dizado de NP-completude, oferecendo exemplos concretos,
visuais e contextualizados. Por fim, a exposição das
limitações teóricas desses modelos reforça a importância de
heurísticas, algoritmos aproximados e métodos experimen-
tais em cenários reais onde soluções exatas são inviáveis.

Assim, os resultados alcançados não apenas reafirmam
a NP-completude das variantes analisadas, mas também
destacam o valor formativo do tema, demonstrando como
problemas clássicos podem ser reinterpretados, visualizados
e aplicados em contextos educacionais e práticos. O trabalho,
portanto, contribui tanto para o rigor científico quanto para o
fortalecimento do ensino da complexidade computacional.

VII. CONSIDERAÇÕES FINAIS

Este trabalho teve como objetivo analisar, formalizar e
demonstrar a NP-completude das variantes de escalonamento
P2 e P3, com base nas construções apresentadas por Ullman
(1975). A partir da reconstrução detalhada das reduções a
partir do 3-SAT — passando pelos problemas intermediários
P4 e P5, foi possível compreender, de maneira estruturada
e visual, como modelos de escalonamento aparentemente
simples podem capturar a complexidade combinatória de
problemas booleanos clássicos. Em síntese, demonstrou-
se que tanto P2 quanto P3 pertencem à classe N P e são
NP-difíceis, concluindo-se formalmente que ambos são NP-
completos.

Durante o desenvolvimento da pesquisa, algumas dificul-
dades se mostraram centrais. A primeira refere-se à própria
interpretação das construções utilizadas nas reduções, que
exigem uma leitura atenta dos padrões de precedência,
capacidade e sincronização temporal criados para simular
variáveis e cláusulas. A segunda diz respeito ao esforço
de transformar essas construções abstratas em explicações
claras, diagramas compreensíveis e justificativas coerentes,
mas essencial para consolidar o entendimento. Além
disso, adaptar as provas originais para uma perspectiva
didática, mantendo rigor matemático, demandou uma revisão
cuidadosa da literatura e um tratamento sistemático das
etapas envolvidas.

Apesar dessas dificuldades, os resultados obtidos ampliam
a compreensão acadêmica sobre redução polinomial e sobre
o caráter intratável de problemas de escalonamento. A
abordagem adotada reforça o valor pedagógico das provas
de NP-completude, especialmente quando apoiadas por es-
quemas visuais e interpretações intuitivas. O estudo também
evidencia que a complexidade computacional permanece
relevante não apenas em termos teóricos, mas também como
fundamento para decisões práticas em sistemas operacionais,
arquiteturas de processadores e modelos de produção.

Como perspectivas futuras, sugere-se aprofundar a análise
de variações modernas dos problemas de escalonamento,
incluindo modelos com preempção, janelas de tempo
flexíveis, pesos múltiplos e ambientes heterogêneos. Outra
linha de investigação envolve a exploração de algoritmos
aproximados e heurísticas, fundamentais para aplicações
reais nas quais soluções exatas são inviáveis devido à NP-
completude. Por fim, estudos comparativos entre provas
clássicas e abordagens contemporâneas de complexidade
podem contribuir para o ensino, permitindo compreender
como a teoria evoluiu e como esses problemas permanecem

centrais na ciência da computação.
Assim, este trabalho não apenas consolida formalmente

a NP-completude de P2 e P3, mas também contribui para
o fortalecimento do entendimento teórico e pedagógico
sobre reduções polinomiais, oferecendo bases sólidas para
investigações futuras e para a aplicação prática desses
conceitos em diferentes áreas da computação.

REFERÊNCIAS
[1] S. A. Cook, “The complexity of theorem-proving procedures,” in

Proceedings of the Third Annual ACM Symposium on Theory of
Computing (STOC ’71). New York, NY, USA: Association for
Computing Machinery, 1971, pp. 151–158.

[2] J. D. Ullman, “Np-complete scheduling problems,” Journal of
Computer and System Sciences, vol. 10, no. 3, pp. 384–393, 1975.

[3] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan,
“Optimization and approximation in deterministic sequencing and
scheduling: A survey,” Annals of Discrete Mathematics, vol. 5, pp. 287–
326, 1979.

[4] P. Brucker and S. A. Kravchenko, “Scheduling jobs with equal
processing times on parallel machines,” in Discrete Optimization and
Operations Research, P. M. Pardalos and V. Zhukovskii, Eds. Berlin:
Springer, 2008, pp. 38–49.

[5] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th ed.
New York: Springer, 2016.

[6] P. Baptiste, J. Y.-T. Leung, and C. Smith, Scheduling: Algorithms and
Complexity. Berlin: Springer, 2001.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: W. H. Freeman,
1979.

[8] Y. Lassance et al., “Reflexões e práticas pedagógicas no escopo da
disciplina de teoria da computação,” Academic Journal on Computing,
Engineering and Applied Mathematics, vol. 6, no. 2, pp. 10–17, Oct.
2025.

ISSN: 2675-3588 59



CONTRIBUIÇÕES PEDAGÓGICAS PARA O APRENDIZADO NO ESCOPO DA TEORIA DA COMPUTAÇÃO RIBEIRO et al.

60 ISSN: 2675-3588



C
ME

A
A
J

Academic Journal on Computing, Engineering and Applied Mathematics ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 07, NO. 02, FEBRUARY 2026

Reprodução de Resultados da Literatura e Contribuições
Pedagógicas: Problema de Coloração de Vértices segundo o

Teorema de Brooks
Reproduction of Results from the Literature and Pedagogical Contributions: The Vertex

Coloring Problem according to Brooks’ Theorem

Matheus Silva Pontes1, Lucas Monteiro de Carvalho1, Daniel Martins da Silva1 e Tanilson Dias dos
Santos1

1 Universidade Federal do Tocantins, Ciência da Computação, Tocantins, Brasil

Data de recebimento do manuscrito: 03/12/2025
Data de aceitação do manuscrito: 19/01/2026

Data de publicação: 10/02/2026

Resumo—Este estudo reproduz uma prova final do Teorema de Brooks, um dos resultados fundamentais para a Coloração de Grafos, visando
não apenas à consolidação do conhecimento teórico, mas também para a produção de um material didático de apoio para a comunidade
acadêmica, traduzindo a complexidade da prova por meio de exemplos ilustrativos, figuras e explicações detalhadas. O teorema estabelece
um limite superior para o número cromático χ(G) de qualquer grafo conexo com o seu grau máximo ∆(G), tal que o grafo analisado não seja
um ciclo ímpar e nem um grafo completo. A metodologia utilizada foi a prova por contradição, assumindo um contraexemplo minimal,
integrada com duas técnicas cruciais, juntamente com ilustrações para facilitar o ensino. A prova é iniciada com o Lema Estrutural de
Lovász, o qual é aplicado para resolver o caso dos grafos ∆-regulares e não completos. E também, a utilização da justificativa de Cadeias de
Kempe permite demonstrar que a falha estrutural da coloração só é possível em casos excepcionais onde o grafo é completo ou um ciclo
ímpar. O resultado é a confirmação de χ(G)≤ ∆(G) para todo grafo conexo, exceto os casos proibidos.

Palavras-chave—Teoria dos Grafos, Coloração de Grafos, Teorema de Brooks, Número Cromático

Abstract—This study reproduces a complete proof of Brooks’ Theorem, one of the fundamental results in Graph Coloring. The aim is
not only to consolidate theoretical knowledge but also to produce didactic support material for the academic community, translating the
complexity of the proof through illustrative examples, figures, and detailed explanations. The theorem establishes an upper bound for the
chromatic number χ(G) of any connected graph with its maximum degree ∆(G), such that the analyzed graph is neither an odd cycle nor a
complete graph. The methodology employed is proof by contradiction, assuming a minimal counterexample, integrated with two crucial
techniques, along with illustrations to facilitate teaching. The proof begins with Lovász’s Structural Lemma, which is applied to resolve the
case of ∆-regular and non-complete graphs. Furthermore, the use of Kempe Chains justification allows us to demonstrate that the structural
failure of the coloring is only possible in exceptional cases where the graph is complete or an odd cycle. The result is the confirmation that
χ(G)≤ ∆(G) for every connected graph, except for the forbidden cases.

Keywords—Graph Theory, Graph Coloring, Brooks’ Theorem, Chromatic Number

I. INTRODUÇÃO

A Teoria dos Grafos possui destaque e importância pela
grande variedade de problemas. O interesse principal

deste campo é resolver os problemas utilizando algoritmos
eficientes, preocupando-se com a capacidade computacional.
A busca por soluções eficientes move esta área para que

Dados de contato: Matheus Silva Pontes, matheus.pontes@uft.edu.br

ainda seja investigada através de conhecimentos teóricos
aprofundados sobre grafos [1].

A coloração de grafos se trata de um caso especial o qual
atribuímos rótulos, que são as cores. Elas estão sujeitas a
restrições e podem ser aplicadas em vértices e arestas, de
forma que os vértices e as arestas adjacentes não possuam a
mesma cor [2]. Inicialmente, esta ideia despertou no homem
o desejo de buscar novas maneiras de expressar diferentes
tipos de regiões. O registro de desenhos e escritas gráficas
com a inserção de cores nos mapas originou a cartografia [3].

Em 1852, por meio da coloração dos mapas, se deu início à
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história do problema das 4 cores. O matemático, advogado e
botânico Francis Guthrie formulou uma conjectura afirmando
que qualquer mapa pode ser colorido utilizando apenas 4
cores. Francis apresentou este problema para seu irmão
mais novo, Frederick Guthrie, que mostrou para o seu
professor De Morgan. O docente, entusiasmado, encaminhou
este problema em suas cartas, despertando o interesse
dos acadêmicos. Esta ideia propagou-se, impulsionando
discussões e novos desenvolvimentos [4]. Em 1976,
Kenneth Appel e Wolfgang Haken conseguiram apresentar
a demonstração do Teorema das 4 Cores com o auxílio de
computadores [3].

Os conceitos e problemas desenvolvidos na coloração de
grafos, como o Teorema das 4 Cores e a coloração de vértices
e arestas, foram fundamentais para a resolução de problemas
reais e de jogos. Entre as aplicações de destaque estão a
divisão de terras [3], a organização da grade de horários, a
solução de um sudoku utilizando um algoritmo guloso de
coloração de vértices e o transporte de produtos reagentes [2].

Acerca deste caso, este artigo visa reproduzir resultados
da literatura e oferecer uma contribuição pedagógica da
demonstração do Teorema de Brooks. O teorema estabelece
um limite superior do número cromático χ(G) em função
do grau máximo ∆(G) do grafo. Dessa forma, busca-
se apresentar explicações mais claras e sustentadas com
exemplos e figuras ilustrativas. Assim, este material servirá
como um conteúdo pedagógico de apoio para a comunidade
acadêmica.

Quanto à organização deste estudo, a seção II estabelece
os conceitos básicos sobre grafos e coloração, essenciais
para a compreensão do Teorema de Brooks acompanhados
de exemplos detalhados. A seção III expõe as fontes
pedagógicas e técnicas que apresentam propostas alinhadas à
deste trabalho.

Em seguida, a seção IV descreve o Teorema de Brooks
detalhadamente sobre os problemas lúdicos relacionados, suas
aplicações e complexidades. A seção V inicia a exposição
de sua prova com a apresentação de dois lemas, Lema
Estrutural de Lovász e Cadeias de Kempe. Essas técnicas
são fundamentais para o desenvolvimento do argumento.

Posteriormente, a seção VI destaca as considerações
relevantes sobre o teorema, adversidades encontradas durante
a escrita deste artigo, soluções para contornar os desafios
e destaques deste estudo para o meio acadêmico. Por fim,
a seção VII realiza uma síntese dos principais aspectos,
acompanhada de sugestões de melhorias dos resultados
obtidos, extensões de trabalhos futuros e temas relacionados
não explorados em profundidade.

É de suma importância ressaltar que os grafos utilizados
para as definições e provas neste material serão finitos e
simples. Nessa perspectiva, a seção seguinte apresenta as
noções básicas sobre grafos e coloração necessárias para a
apresentação do problema.

II. PRELIMINARES

Nesta seção, os conceitos fundamentais sobre os grafos
serão introduzidos e utilizados neste trabalho, os quais foram
utilizados como base o livro pedagógico do Jayme [1]. A
terminologia e as notações serão apresentadas posteriormente
nos problemas.

v1

v2

v3

v4

v5

Figura 1: Representação do grafo G1.

v1

v2

v3

v4

v5

v6

Figura 2: Ilustração da vizinhança N(v1) e do grau máximo ∆(G).

Um grafo G = (V,E) consiste em um conjunto finito não
vazio de V e um conjunto E de pares ordenados distintos de
V . Os elementos de V são os vértices e os de E são as arestas
de um grafo. Cada aresta e ∈ E é denotada por um par de
vértices (v,w), onde v e w são os extremos da aresta e e são
ditas adjacentes. É dito que a aresta e é incidente aos vértices
v e w.

Um conjunto de vértices de um grafo é denotado
por V (G), e um conjunto de arestas de um grafo é
denotado por E(G). A Figura 1 ilustra um grafo G1 =
(V,E), tal que V (G1) = {v1,v2,v3,v4,v5} e E(G1) =
{(v1,v2),(v3,v4),(v4,v2),(v4,v1),(v3,v5),(v2,v3)}.

A vizinhança de um vértice v ∈ V , denotada por N(v),
é definida como o conjunto de vértices adjacentes a v. O
grau de v, representado por d(v), corresponde à cardinalidade
|N(v)|. O grau máximo de G, denotado por ∆(G), é o
maior valor de grau encontrado entre todos os vértices de V .
Esses conceitos podem ser visualizados na Figura 2. Como
exemplo, considere a análise do vértice v1. Sua vizinhança
é dada por N(v1) = {v2,v3,v4,v5}, de modo que seu grau
é d(v1) = |N(v1)| = 4. Ao observar os demais vértices do
grafo, obtemos, por exemplo, d(v2) = 2, d(v3) = 3, entre
outros. Como d(v1) = 4 é o maior grau entre todos os vértices,
concluímos que o grau máximo é ∆(G) = 4.

Dizemos que um grafo G é conexo se existir um caminho
entre quaisquer dois vértices, como exemplificado no grafo
à esquerda da Figura 3. Em contrapartida, um vértice v é
denominado vértice de corte quando a sua remoção torna G
desconexo. Este caso é ilustrado na Figura 3 onde o grafo da
direita mostra um vértice de corte v3.

Um ciclo Cn é um caminho v1, ...,vk,vk+1 tal que vk = vk+1
e k≥ 3. Em um grafo não direcionado, todo ciclo deve possuir
no mínimo 3 vértices. Se o caminho for denominado simples,
o ciclo também é simples. Um ciclo simples é um ciclo onde o
caminho inicia e termina no mesmo vértice [1]. Um ciclo par
é aquele que possui número par de vértices e arestas, enquanto
um ciclo ímpar possui número ímpar de arestas e vértices. A
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v1

v2

v3

v4

v1

v2

v3

v4

v5

Vértice de Corte
(Sua remoção desconecta

o grafo)

Figura 3: Esquerda: Exemplo de grafo conexo. Direita: O grafo G3
com vértice de corte v3.

v1

v2 v3

Ciclo Ímpar
(3 vértices, 3 arestas)

v1 v2

v3v4

Ciclo Par
(4 vértices, 4 arestas)

v1

v2 v3

v4

Grafo Acíclico
(Sem ciclos)

Figura 4: Exemplos de ciclos e um grafo acíclico.

Figura 4 ilustra um exemplo de ciclo par com 4 vértices e um
ciclo ímpar com 3 vértices. Um grafo que não possui ciclos
é chamado de grafo acíclico, o qual está exemplificado na
Figura 4.

Um grafo é dito completo quando cada par de vértices é
conectado por uma única aresta. É utilizada uma notação Kn
para designar um grafo completo com n vértices. A Figura
5 mostra um grafo completo K4, e cada vértice é ligado por
uma única aresta com todos os outros vértices.

Uma k-coloração (própria) de G é uma função c : V →
{1,2, . . . ,k} tal que c(u) 6= c(v) para toda aresta {u,v} ∈ E.
Observe que uma k-coloração de vértices de um grafo é a
atribuição de k cores aos seus vértices de forma que quaisquer
dois vértices adjacentes (conectados por uma aresta) recebam
cores diferentes [1], podemos observar isso na Figura 6.

O número cromático de um grafo G, denotado por χ(G), é
o menor inteiro k o qual G admite uma k-coloração [1]. Então,
o número cromático de um grafo é o menor número de cores
necessárias para colorir todos os seus vértices de forma que
nenhum par de vértices adjacentes tenham a mesma cor. Este
conceito é ilustrado na Figura 7, com um grafo que tem o
número cromático igual a 4.

v1

v2v3

v4

Grafo Completo K4
(4 vértices, 6 arestas)

Figura 5: Exemplo de um Grafo Completo K4.

v1

c(v1) = 1

v2

c(v2) = 2

v3

c(v3) = 3

v4

c(v4) = 2

Figura 6: Uma 3-coloração própria válida para o grafo Gcol .

v1 Cor 1

v2

Cor 2

v3

Cor 3

v4

Cor 4

Figura 7: Grafo com número cromático igual a 4.

III. TRABALHOS RELACIONADOS

Vale destacar os trabalhos relacionados com o mesmo tema
e problema deste estudo. Dentre eles, o artigo de Cranston e
Rabern [5] apresenta diferentes demonstrações do Teorema
de Brooks. O objetivo é ilustrar as técnicas principais da
coloração de grafos, como coloração gulosa, cadeia de Kempe,
lema de Kernel e hitting sets, com o intuito de torná-las
acessíveis. Para isso, os autores desejaram mostrar as suas
provas favoritas. Cada tópico das provas é apresentado em
ordem de complexidade, cada um é autocontido e pode ser
lido em qualquer ordem. Este trabalho será utilizado como
base para a demonstração do Teorema de Brooks neste estudo.

Além disso, Sajith e Saxena [6] demonstram duas provas
do Teorema de Brooks. A primeira prova é feita modificando
a prova de Melkinov e Vizing [7] e de Wilson [8] que provam
por contradição, porém é alterada para ser construtiva e
resultar em um algoritmo de tempo linear. E a segunda prova
combina com os elementos das demonstrações de Zajac [9]
e do Bondy [10, 11], garantindo uma prova mais simples e
resultando também em um algoritmo de tempo linear. Os
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autores, Sajith e Saxena, consideram essas provas mais fáceis
de serem ensinadas em aulas de Ciência da Computação.

Amiroch et al. [12] projetam um novo método para
criação de cardápios alimentícios utilizando a coloração de
vértices. Eles combinaram o algoritmo de Welsh-Powell
[13] com uma técnica de combinação matemática a qual
gera uma diversidade de cardápios que seguem diretrizes
de baixa caloria. Para comprovar a eficácia da abordagem,
simularam de forma dinâmica com a ferramenta MatLab
para criarem três cardápios distintos com necessidades
nutricionais específicas. Adicionalmente, para a organização
e diversificação de cardápios nutricionalmente balanceados,
empregam o conceito de caminhos disjuntos de grafos. Este
estudo tem destaque pela solução de lidar com problemas em
planejamento alimentar e pelo fornecimento de informações
importantes para trabalhos futuros.

F. Radmehr et al. [14] focam em utilizar uma abordagem
baseada em investigação para explorar o ensino e a
aprendizagem sobre coloração de vértices para os alunos de
graduação em matemática. Para isso, desenvolveram sete
tarefas baseadas em investigação para ensinar o tema para
os alunos e buscam descrever o engajamento deles. Como
resultado, os discentes se entretiveram bastante com as tarefas
e perceberam o quão importante essas práticas podem ser
para o desenvolvimento de conhecimentos conceituais sobre
matemática. Os autores promovem que essas tarefas sejam
empregadas em cursos de matemática discreta de graduação
para aprimorar o conhecimento matemático.

Rajagaspar e Senthil [15] buscam divulgar a ideia inicial
sobre grafos e coloração de vértices. Eles investigam como a
coloração de vértices pode ser usada para modelar problemas
práticos, como escalonamento de horários, alocação de
recursos, networking e mineração de dados.

Cabe mencionar o artigo de Yasser e Bianchini [16] como
referência para contribuição pedagógica. Este fator é essencial
para a escrita deste trabalho, dado que buscamos tornar este
material acessível para a comunidade acadêmica que deseja
entender sobre o Teorema de Brooks e se aprofundar na
coloração de grafos.

Partindo disso, segue na próxima seção o detalhamento do
problema, descrevendo o seu tipo, complexidade, problemas
lúdicos relacionados, o contexto em que se enquadra,
utilizando exemplos ilustrativos com explicações.

IV. DESCRIÇÃO DO PROBLEMA

A coloração de grafos possui uma ampla variedade de
aplicações práticas em diferentes áreas. Um exemplo clássico
é a coloração de mapas, em que regiões adjacentes devem
receber cores distintas [17]. Além desse caso bem conhecido,
problemas de coloração em vértices surgem em diversas
situações reais, como na alocação de frequências em redes
de comunicação, onde transmissores próximos não podem
operar na mesma frequência, e no escalonamento de tarefas
que não podem ocorrer simultaneamente [18]. Outro uso
importante aparece em compiladores [19], durante a etapa
de alocação de registradores, e em sistemas de horários
acadêmicos, garantindo que disciplinas que compartilham
alunos não sejam ofertadas no mesmo período [13]. Além
disso, é aplicado em problemas lúdicos como a resolução
do sudoku, que pode ser modelado como um problema de

Exceção: C5

u1

u2

u3 u4

u5

∆ = 2, χ = 3
(χ > ∆)

Teorema Válido: G

w1

w2 w3

w4 w5

∆ = 3, χ = 3
(χ≤ ∆)

Figura 8: Visualização do Teorema de Brooks: Uma exceção (ciclo
ímpar) e um caso válido.

coloração de grafos [20].
Neste estudo, trabalharemos com coloração de vértices

formulada como um problema de decisão. Em termos gerais,
quando o grafo G é completo ou ciclo ímpar satisfaz χ(G)≤
∆(G)+ 1. Porém, o Teorema de Brooks mostra que se um
grafo G não é completo e nem ciclo ímpar, então χ(G)≤∆(G)
[17]. A Figura 8 ilustra o grafo G para o qual o Teorema de
Brooks é válido para sua estrutura, diferente do grafo C5, que
é um ciclo ímpar.

O Teorema de Brooks insere-se no contexto mais amplo
de resultados que buscam relacionar propriedades estruturais
dos grafos (como conectividade, presença de ciclos, graus dos
vértices) com sua coloração. Ele fornece um critério poderoso
para limitar a complexidade cromática, com aplicações desde
problemas de escalonamento (scheduling) até alocação de
recursos e alocação de registradores.

Determinar o número cromático exato é considerado um
problema NP-completo [21]. Existem muitas técnicas de
coloração de vértices para provar o Teorema de Brooks que
podem se estender em várias direções [5]. Neste estudo,
buscamos utilizar duas técnicas para realizar a demonstração
do teorema.

Assim, embora o Teorema de Brooks forneça um limite
garantido de ∆(G) cores (exceto nos casos excepcionais), ele
não fornece necessariamente um algoritmo polinomial para
determinar se o grafo admite coloração com menos cores do
que as previstas pelo limite. Em muitos cenários, algoritmos
gulosos (greedy) podem se aproximar desse limite, mas não
há garantias de optimalidade em geral.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Antes de iniciar a prova do teorema, apresentam-se dois lemas
principais para a contextualização do problema: o Lema de
Lovász e Cadeias de Kempe.

Lema 1 (Estrutura de Lovász). Seja G um grafo 2-conexo
com δ(G) ≥ 3. Se G não for completo, então G contém um
caminho induzido de três vértices, digamos u,v,w, tal que
G\{u,w} é conexo.

Proof. Para demonstrar este lema, utilizaremos a técnica de
construção. Como G é conexo e não é completo, sabemos
que existe algum caminho induzido de três vértices [5]. Se G
for 3-conexo, a remoção de quaisquer dois vértices (u,w) não
desconecta o grafo, então qualquer caminho induzido serve.
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B1 B2
x

u w

v

Figura 9: Visualização da estrutura: Os contornos tracejados
indicam os blocos B1 e B2 que se encontram no vértice de

articulação x.

O caso crítico ocorre quando G não é 3-conexo. Neste
caso, existe um conjunto de corte de tamanho 2. Seja {v,x}
este conjunto de corte, onde v será o vértice central do nosso
caminho desejado.

Considere o grafo H = G− v. Como {v,x} é um corte
em G, então x deve ser um vértice de corte em H (ou H
é desconexo, mas como G é 2-conexo, H deve ser conexo
e x é quem articula os componentes). O grafo H pode ser
decomposto em seus blocos (subgrafos maximais 2-conexos).
A estrutura desses blocos forma uma árvore (o "grafo de
blocos"). Uma árvore com pelo menos uma aresta possui pelo
menos duas folhas (blocos finais). Sejam B1 e B2 dois blocos
finais (endblocks) de H. Pela propriedade de 2-conexidade
de G: Cada bloco final de H deve conter pelo menos um
vértice adjacente a v que não seja x. Se não houvesse tal
vizinho, a remoção apenas de x em G desconectaria aquele
bloco do resto do grafo, o que contradiz o fato de G ser 2-
conexo (que exige remoção de 2 vértices para desconectar).
Sejam u ∈V (B1) e w ∈V (B2) vizinhos de v (com u,w 6= x).
O caminho u− v−w é induzido (pois u e w estão em blocos
diferentes separados por x, logo não há aresta direta entre eles,
a menos que passem por x, mas estamos olhando vizinhança
direta) podemos ver isso na figura 9. Agora verificamos a
conectividade de G′ = G\{u,w}.

• O grafo H = G− v é conexo.

• u e w não são vértices de corte em H (pois pertencem a
blocos finais e não são a articulação x). Logo, H \{u,w}
permanece conexo.

• Ao readicionarmos v (para formar G′), precisamos
garantir que v se conecte a H \{u,w}.

• Como o grau δ(G)≥ 3, o vértice v tem grau pelo menos
3. Dois vizinhos são u e w. Logo, v tem pelo menos mais
um vizinho (podendo ser x ou outro vértice em H). Isso
garante que v não fica isolado, como visto na Figura 10.

Portanto, G\{u,w} é conexo.

O procedimento construtivo descrito na demonstração acima
é formalizado no Algoritmo [1].

Lema 2 (Corretude do Algoritmo 1). Seja G um grafo 2-
conexo, não completo, com δ(G)≥ 3. O Algoritmo 1 retorna,
em tempo finito, uma tripla de vértices (u,v,w) tal que o
caminho u− v−w é induzido e o grafo G′ = G \ {u,w} é
conexo.

x
u w

v

Figura 10: Conectividade de G′ = G\{u,w}.
Algorithm 1 Busca de Caminho Induzido com Extremidades
Removíveis(Método de Lovász)

Require: Grafo 2-conexo G com δ(G)≥ 3, não completo.
Ensure: Caminho induzido u− v−w tal que G \ {u,w} é

conexo.
. Caso base trivial

1: if G é 3-conexo then
2: Encontrar qualquer caminho induzido u− v−w.
3: return (u,v,w)
4: end if

. Passo 1: Identificar o corte e definir o centro v
5: Encontrar um par de corte {v,x} em G.

. Nota: v será o centro do nosso caminho.
. Passo 2: Decomposição em blocos

6: Construir H = G− v e obter sua árvore de blocos-corte.
7: Sejam B1 e B2 dois blocos finais de H (separados por x).

. Passo 3: Selecionar as pontas u e w
8: Escolher u ∈V (B1)\{x} tal que u seja vizinho de v.
9: Escolher w ∈V (B2)\{x} tal que w seja vizinho de v.

. Verificação Implícita: Como u,w estão em blocos
separados por x,
. não há aresta direta u−w, logo o caminho é induzido.

10: return (u,v,w)

Proof. A terminação do algoritmo é garantida, pois todas as
operações (busca de componentes, identificação de blocos e
cortes) são executadas em grafos finitos com complexidade
polinomial. Resta demonstrar a corretude da saída em dois
casos.
Caso 1: G é 3-conexo (Linhas 1-4). Pela definição de
k-conectividade, a remoção de menos de k vértices não
desconecta o grafo. Como k = 3, a remoção do conjunto
{u,w} (tamanho 2) resulta em um grafo G′ conexo. Como G
não é completo, existe pelo menos um caminho induzido de
comprimento 2. Logo, a saída é válida.
Caso 2: G não é 3-conexo (Linhas 5-13). Neste caso, o
algoritmo identifica um par de corte {v,x}. Definimos H =
G− v. Como G é 2-conexo, H é conexo e x é um vértice de
corte em H (separando os blocos finais B1 e B2).

• Existência dos vértices u e w: Pela 2-conectividade de
G, cada bloco final Bi de H deve possuir pelo menos um
vértice adjacente a v que não seja x. Caso contrário, {x}
seria um corte em G, contradizendo a hipótese inicial.
Logo, a escolha de u ∈ V (B1) \ {x} e w ∈ V (B2) \ {x}
nas linhas 9-10 é sempre possível.

• Caminho Induzido: Os vértices u e w pertencem a
blocos distintos de H, articulados apenas por x. Como
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u 6= x e w 6= x, qualquer caminho entre u e w em H deve
passar por x. Logo, não existe aresta direta (u,w) em G.
Assim, o caminho u− v−w é induzido.

• Conectividade de G′ = G \ {u,w}: A conectividade é
preservada em duas etapas:

1. Conectividade de H: Em uma decomposição em
blocos, os vértices que não são de articulação
(como u e w dentro de blocos finais) não
desconectam o grafo ao serem removidos. Portanto,
H \{u,w} permanece conexo.

2. Reconexão de v: O vértice v é readicionado
para formar G′. Como δ(G) ≥ 3, d(v) ≥ 3. O
algoritmo remove dois vizinhos (u e w). Logo,
resta pelo menos um vizinho de v em H (seja x ou
outro vértice). Isso garante que v se conecta ao
componente conexo restante H \{u,w}.

Portanto, G\{u,w} é conexo e o algoritmo está correto.

Lema 3 (Cadeia de Kempe). Em uma coloração própria de
um grafo G, uma cadeia de Kempe (i, j) é uma componente
conexa do subgrafo induzido pelos vértices coloridos com as
cores i e j [5]. Se trocarmos as cores de i e j simultaneamente
em todos os vértices dessa componente, obtemos novamente
uma coloração própria de G.

A demonstração do Teorema de Brooks segue a
abordagem de contradição assumindo um contraexemplo
minimal [5], combinada com duas técnicas fundamentais:
a Estrutura de Lovász e as Cadeias de Kempe. Ademais,
estão incluídas explicações intermediárias e observações
pedagógicas para facilitar o entendimento da estrutura lógica
da prova. Segue o teorema e a demonstração abaixo:

Teorema 1. Seja G um grafo conexo. Se G não é um ciclo
ímpar e nem um grafo completo, então χ(G)≤ ∆(G).

Proof. Suponha, por contradição, que G é um contraexemplo
minimal ao teorema, ou seja, G é um grafo conexo ∆-regular
com o menor número de vértices tal que χ(G)> ∆ e que não é
um ciclo ímpar nem um grafo completo. Como G é minimal,
todo subgrafo próprio H ⊆ G satisfaz χ(H)≤ ∆.

Escolha um vértice arbitrário v ∈V (G). Então G− v é ∆-
colorível. Pelo Lema 1, G− v possui pelo menos dois blocos
terminais. Sejam u e w vértices não-cortantes pertencentes
a blocos terminais distintos. Além disso, considerando
novamente o Lema 1 existe um caminho induzido u− v−w
tal que G−{u,w} permanece conexo. A Figura 11 ilustra a
estrutura inicial do grafo para a demonstração.

Colore u e w com a mesma cor, pois são vértices não
adjacentes, e então colorimos G−{u,w} gulosamente. A
ordem utilizada segue a Estrutura de Lovász: começamos a
coloração a partir dos blocos terminais de G− v, movendo-os
em direção ao vértice v. Dessa forma, cada vértice (exceto
v) é colorido quando todos os seus vizinhos posteriores na
ordem já foram coloridos, o que garante a coloração. A Figura
12 mostra a coloração de u e w e colorindo gulosamente.

Após a coloração de todos os vértices de G−{u,w}, se
alguma cor fica disponível para v, obtemos uma coloração
usando ∆ cores, encerrando a prova. Caso contrário, cada

v

u w

Figura 11: Estrutura inicial: vértices u e w em blocos terminais
distintos de G− v.

v

u w

Figura 12: Coloração imediata após a coloração gulosa: todos os
vértices, exceto v, já foram coloridos e u e w compartilham a mesma

cor.

uma das ∆ cores aparece em N(v). Para liberar uma cor,
empregamos cadeias de Kempe, explícito no Lema 3.

Para cada cor i ∈ {1, . . . ,∆}, considere vi o vizinho de v
usando a cor i. Por um argumento semelhante, para cada vi,
cada cor diferente de i aparece em um vizinho de vi; se não,
poderíamos recolorir vi e colorir v com i. Para cada par de
cores i e j, seja Ci, j a cadeia de Kempe (i, j) contendo vi.

A partir desta construção, formulamos as seguintes
afirmações que descrevem configurações impossíveis para
um contraexemplo minimal:

• Afirmação 1: Para qualquer par de cores i e j, a cadeia
de Kempe que começa em um vértice da cor i e a cadeia
que começa em um vértice da cor j têm que ser a mesma
componente conexa. Porque, se fossem cadeias diferentes,
poderíamos fazer uma troca na cadeia de Kempe onde
está o vértice da cor i. Esta troca inverteria as cores
nesse componente, e com isso faria a cor i desaparecer
da vizinhança de v. A Figura 13 ilustra a situação antes da
troca, com componentes de Kempe (i, j) disjuntos contendo
vi (esquerda) e v j (direita), e a Figura 14 ilustra o momento
em que troca é realizada no componente de vi. Agora, vi
e v j usam a cor j (azul), e a cor i (vermelho) está livre em
N(v). O vértice v pode ser colorido com i, contradizendo o
contraexemplo minimal.

• Afirmação 2: Qualquer cadeia de Kempe precisa ser um
caminho simples, isto é, ela não pode ter ramificações, não
pode ter vértices com grau maior que 2 dentro da cadeia. Se
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v

vi v j

Figura 13: Afirmação 1: Antes da Troca (Violação Ci, j 6=C j,i).

v

v′i v j

Figura 14: Afirmação 1: Depois da Troca.

v

vi

v j

. . .

. . .

Ci, j

u

Figura 15: Ilustração da Afirmação 2. Fonte: Adaptado de
Cranston e Rabern [5]

uma cadeia tivesse um vértice com grau 3, poderia recolorir
apenas uma parte da cadeia de modo a liberar uma cor para
um vértice vizinho de v, e de novo conseguiríamos colorir v,
destruindo o contraexemplo. A Figura 14 consiste em uma
adaptação do trabalho de Cranston e Rabern [5] e ilustra a
interpretação da afirmação em questão.

• Afirmação 3: Duas cadeias que partem do mesmo vértice
vi e usam cores diferentes só podem se encontrar no próprio
vi e em nenhum outro lugar. Se houvesse qualquer outro
vértice u que estivesse ao mesmo tempo em Ci, j e em Ci,k,
então u teria vizinhos em cores j e k dentro das cadeias,
o que novamente permitiria recolorir parte das cadeias e
liberar a cor i na vizinhança de v. Com isso, G deixaria
de ser um contraexemplo. A Figura 16 também é uma
adaptação do trabalho de Cranston e Rabern [5] e esclarece
a afirmação discutida.

• Afirmação 4: Agora juntamos todas as três propriedades
e mostramos que elas não podem valer ao mesmo tempo.
Escolhemos três vizinhos de v, chamados v1, v2 e v3, cada
um com uma cor diferente. Pela estrutura do grafo, existe
um vértice u na cadeia C1,2. E como v1 e v3 usam as cores
1 e 3, também existe uma cadeia C1,3 conectando esses dois
vértices. Realizamos uma troca de Kempe na cadeia C1,3:
os vértices de cor 1 viram 3, e os de cor 3 viram 1. Depois
da troca, o vértice u, que antes só estava na cadeia C1,2,
passa a estar ao mesmo tempo na cadeia C′1,2 e na cadeia
C′2,3. Mas isso contradiz a Afirmação 3, que dizia que esse

v

v j

vi

vk

. . .

. . .

. . .

. . .

Ci, j

Ci,k

u

Figura 16: Ilustração da Afirmação 3. Fonte: Adaptado de
Cranston e Rabern [5]

v

v1 (1) v2 (2)

v3 (3)u (2)

Figura 17: Afirmação 4: ANTES da troca em C1,3. u pertence à
cadeia C1,2 e v1 está conectado a v3 na cadeia C1,3.

v

v′1 (3) v2 (2)

v′3 (1)u (2)

Figura 18: Afirmação 4: DEPOIS da Troca em C1,3.
u ∈C′1,2∩C′2,3.

tipo de interseção só pode ocorrer no próprio v1. Como
encontramos essa interseção, as três afirmações não podem
ser todas verdade. Logo, o contraexemplo minimal não
pode ser válido e o Teorema de Brooks é válido. Observe
a Figura 17, ela mostra o momento antes da troca em C1,3,
v1,v2,v3 são vizinhos de v, u (cor 2) é um vizinho de v1 (cor
1) e faz parte da cadeia C1,2. A Figura 18 ilustra o momento
onde a troca é realizada, v′1 agora tem cor 3, u ainda tem cor
2 e v2 tem cor 2. O vértice u agora pertence a C′1,2 e C′2,3,
violando a Afirmação 3 (Ci, j ∩Ci,k = vi).

As Afirmações 1, 2 e 3 descrevem propriedades que qualquer
contraexemplo minimal precisaria ter. Mas a Afirmação
4 mostra que essas três condições juntas levam a uma
contradição depois de uma troca de Kempe.

Com isso, existe uma troca válida que libera uma cor
em N(v). Após a troca, colorimos v com a cor liberada e,
temos um grafo ∆-colorível. Isto contradiz o contraexemplo
minimal, logo, não existe um contraexemplo para este teorema
e, portanto:

χ(G)≤ ∆(G)

O contraexemplo precisa ser ∆-regular, pois a coloração
gulosa produziria uma ∆-coloração de G, contradizendo
χ(G) > ∆. As técnicas de Lovász e da cadeia de Kempe
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garantem um vértice especial que pode ser controlado no
entorno, uma vez que é possível colorir partindo de blocos
terminais, e sempre existe uma troca de cores possível para
resolver conflitos locais. Ademais, na Afirmação 4 se afirma
que tem vizinhos v1 e v2 não adjacentes, porque os vizinhos
de v não formam clique. Se fosse um clique, o grafo seria
completo, porém é uma exceção para o teorema. Logo, os
vizinhos de v não podem formar um clique.

Na seguinte seção, serão relatadas as contribuições
adicionais dos autores, dificuldades encontradas, solução
para as adversidades e como este problema possui potenciais
pedagógicos para o meio acadêmico.

VI. RESULTADOS E REFLEXÕES

O trabalho de Cranston e Rabern [5] destaca-se pela
abordagem clara e ilustrativa para apresentar o teorema. Este
foi utilizado como base para a demonstração desenvolvida
neste estudo. Os autores evidenciam as buscas de suas
provas favoritas do Teorema de Brooks, expondo as técnicas
principais da coloração de vértices usadas para auxiliar nas
demonstrações. Cabe ressaltar que possuíam o objetivo de
apresentar as provas, destacando suas vantagens e extensões
de cada uma. A organização deste trabalho permite a
leitura independente de suas seções, uma vez que cada
seção apresenta, de forma autossuficiente, as técnicas e a
demonstração. Ademais, o artigo explicita outros autores que
adotaram estratégias diferentes para as provas baseado na
demonstração apresentada em cada seção.

A ilustração dos conceitos abstratos e as pesquisas
apresentadas no trabalho de Cranston e Rabern [5] contribuem
para o meio acadêmico. Essas contribuições possibilitam
a construção de novos temas para trabalhos futuros,
aprimorando os argumentos e definindo novas abordagens.
Embora os autores não descrevam as suas adversidades
encontradas durante o processo da elaboração do artigo, eles
salientam a relevância das contribuições recebidas por meio
de comentários e sugestões de outros pesquisadores. Os
feedbacks e as avaliações foram cruciais para o refinamento
da escrita e para a atualização do problema apresentado.

As maiores dificuldades vistas na escrita deste trabalho
estiveram relacionadas à escolha dos métodos para realizar
a demonstração. Algumas abordagens requerem um
conhecimento mais apurado em Teoria dos Grafos. A intenção
é expor ao menos dois lemas de maneira coerente e didática.
Este problema expandiu-se na prova do problema e dos lemas
auxiliares, buscando ajudar no desenvolvimento da resolução
do Teorema de Brooks. Além disso, houve dificuldade
na construção de ilustrações que representassem de forma
clara cada conceito apresentado sobre grafos e das técnicas
aplicadas.

Para contornar essas adversidades, foram feitas pesquisas
aprofundadas em artigos acadêmicos que mostravam a
prova completa do Teorema de Brooks. Estes trabalhos
utilizam diferentes lemas com suas técnicas de demonstração
adequadas para uma conclusão correta. Para a elaboração das
figuras ilustrativas, demandou mais análise sobre materiais
didáticos que abordam noções básicas de grafos acompanhada
de exemplos pedagógicos e explicativos. A partir disso, foram
selecionados os lemas adequados para este trabalho. Dessa
maneira, este material busca servir como um suporte didático

para os acadêmicos que desejam se aprofundar no assunto de
coloração dos grafos.

A coloração de grafos tem grande potencial para aplicações
pedagógicas e acadêmica. Essa área é utilizada para
modelagem de problemas reais, construção de ferramentas
computacionais e desenvolvimento de algoritmos de colora-
ção [22]. Ademais, a demonstração apresentada pode servir
como base para a construção de teses e dissertações que
explorem classificações de grafos e diferentes técnicas de
coloração.

VII. CONSIDERAÇÕES FINAIS

Portanto, este estudo contextualiza o cenário sobre coloração
de grafos, destaca os conceitos fundamentais e básicos sobre
grafos para esclarecer o problema e a demonstração do
Teorema de Brooks. O teorema estabelece que, se um grafo
G tal que G não seja completo nem ciclo ímpar, então satisfaz
χ(G) ≤ ∆(G). Para demonstrar o problema, foi utilizada a
prova por contradição assumindo um contraexemplo minimal.
A abordagem foi apoiada por duas técnicas essenciais: o
Lema Estrutural de Lovász e cadeia de Kempe.

Adicionalmente, foram destacados outros trabalhos
relacionados ao tema, os quais mostram diferentes formas
de demonstração e técnicas elaboradas ou modificadas pelos
autores. As contribuições evidenciam que o estudo de
coloração de vértices permanece relevante para a resolução
de problemas reais. Para a construção deste trabalho, uma
pesquisa aprofundada de artigos, que exploram o mesmo
problema, foi necessária com o intuito de reproduzir os
resultados da literatura, buscando tornar o ensino mais
acessível e descomplicado.

A construção da demonstração, a síntese das técnicas e a
elaboração das ilustrações foram os desafios encontrados ao
longo deste estudo. Isso se deve ao fato de que se priorizou a
apresentação de uma explicação compreensível e coesa para
a comunidade acadêmica.

A coloração de grafos apresenta potencial para o
desenvolvimento de trabalhos futuros, principalmente no que
se refere à aplicação em problemas reais e à estruturação de
algoritmos. Como perspectiva de melhoria dos resultados
apresentados, destaca-se a possível inclusão da prova baseada
em Coloração de Listas (List Coloring) ou do lema de Kernel
[5], que são técnicas mais modernas da literatura. No entanto,
essas abordagens não foram implementadas no presente artigo
devido à sua maior complexidade conceitual. Sua inclusão
exigiria um detalhamento adicional de preliminares e poderia
comprometer a acessibilidade do material para o escopo desta
disciplina.
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Resumo—Este artigo apresenta uma abordagem pedagógica para o estudo do problema Hitting Set, com o intuito de reproduzir e tornar
acessível a demonstração clássica de sua NP-completude, conforme estabelecida na literatura especializada. Diferentemente de trabalhos
que visam propor novos resultados teóricos inéditos, o objetivo central desta pesquisa é preencher uma lacuna didática, detalhando
minuciosamente a redução polinomial a partir do problema Vertex Cover (Problema Alvo) para o Hitting Set (Problema Atacado). A
metodologia adotada inicia-se com uma revisão dos conceitos fundamentais, incluindo as definições formais das classes P e NP, bem como
o conceito de certificado e verificação eficiente. Em seguida, uma prova inspirada na de Richard Karp é construída passo a passo, com
ênfase na visualização da transformação das instâncias de grafos para coleções de conjuntos através de diagramas de “antes e depois”.
Adicionalmente, introduz-se o “Dilema dos Observadores”, uma analogia original para ilustrar a complexidade combinatória. Por fim,
discutem-se aplicações práticas em bioinformática e engenharia de software, consolidando o material como um recurso de apoio eficaz ao
ensino de Teoria da Computação.

Palavras-chave—Hitting Set, NP-Completo, Vertex Cover, Redução Polinomial, Teoria da Computação.

Abstract—This paper presents a pedagogical approach to the study of the Hitting Set problem, aiming to reproduce and make accessible the
classic demonstration of its NP-completeness, as established in the specialized literature. Unlike works aiming to propose novel theoretical
results, the central objective of this research is to bridge a didactic gap by meticulously detailing the polynomial reduction from the Vertex
Cover problem to the Hitting Set problem. The adopted methodology begins with a review of fundamental concepts, including formal
definitions of the P and NP classes, as well as the concepts of certificates and efficient verification. Subsequently, a proof inspired by
Richard Karp is constructed step-by-step, emphasizing the visualization of transforming graph instances into set collections using “before
and after” diagrams. Additionally, the “Observer’s Dilemma” is introduced—an original analogy to illustrate combinatorial complexity.
Finally, practical applications in bioinformatics and software engineering are discussed, consolidating the material as an effective support
resource for teaching Theory of Computation.

Keywords—Hitting Set, NP-Complete, Vertex Cover, Polynomial Reduction, Theory of Computation.

I. INTRODUÇÃO

O ensino de Teoria da Computação, especificamente
no tópico de NP-Completude, impõe desafios signi-

ficativos aos estudantes de graduação devido ao alto nível
de abstração exigido. Compreender formalmente como

Dados de contato: Benedito Jaime Melo Moraes Junior, bened-
ito.jaime@uft.edu.br

a dificuldade de um problema pode ser “traduzida” para
o conceito de redução polinomial é frequentemente uma
barreira de aprendizado que exige mais do que apenas
definições matemáticas, exige visualização e intuição. Entre
os diversos problemas estudados no âmbito da classe NP ,
o Hitting Set ocupa papel significativo, tanto por sua
relevância teórica quanto por sua ampla gama de aplicações
práticas conforme discutido por Karp [1] ao apresentar sua
formulação clássica no estudo dos problemas NP-Completos.
Tendo em vista a união de referências clássicas amplamente
adotadas, é perceptível que esses materiais frequentemente
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apresentam a prova de NP-completude do Hitting Set
de forma condensada, com poucos recursos visuais e
saltos lógicos que pressupõem um alto grau de maturidade
matemática do leitor. Na prática de sala de aula, observa-se
que estudantes de graduação têm dificuldade em acompanhar
esses argumentos sem um material intermediário que detalhe
a redução passo a passo, com exemplos graduais e analogias
concretas. Assim, identifica-se uma lacuna didática entre a
literatura de referência, voltada a um público mais avançado,
e as necessidades de estudantes em disciplinas introdutórias
de Teoria da Computação.

Neste contexto, este trabalho visa oferecer uma repro-
dução pedagógica da prova de NP-Completude do problema
Hitting Set. Utilizando a redução clássica a partir do
Vertex Cover (Cobertura de Vértices) [2], buscamos detalhar
as etapas lógicas e fornecer recursos visuais que auxiliem
o entendimento da literatura técnica padrão, facilitando
a assimilação dos conceitos fundamentais por estudantes
iniciantes. Dessa forma, como uma contribuição pedagógica,
este trabalho apresenta recursos para facilitar o aprendizado
dos conceitos de Teoria da Computação. O material inclui
uma prova da NP-Completude do problema Hitting Set,
desdobrando os aspectos técnicos para maior clareza. Para
tornar os conceitos abstratos mais tangíveis, são fornecidas
figuras e exemplos que ilustram tanto o processo de redução
polinomial quanto a verificação das soluções. Como parte
de uma estratégia lúdica, o estudo incorpora um problema
ilustrativo (o “Dilema dos Observadores”), que aproxima o
conceito de complexidade combinatória do cotidiano dentro
da complexidade explorada na NP-Completude. Por fim,
a compreensão da classe NP é reforçada com a inclusão
de pseudocódigo e análise de verificação, demonstrando
formalmente a eficiência do algoritmo que checa a validade
de uma solução candidata.

A estrutura deste trabalho foi organizada para guiar o
leitor desde os fundamentos até a prova formal. Iniciamos
revisando os conceitos basilares de grafos e complexi-
dade relacionados ao problema estudado. Em seguida,
contextualizamos o problema na literatura, para então
definirmos o Hitting Set e apresentarmos a demonstração
técnica visual, encerrando com uma reflexão sobre as
estratégias de aprendizado adotadas, seguindo a metodologia
de seminários proposta por Lassance, Bianchini e Santos [3].
O objetivo central deste trabalho, portanto, não é apresentar
novos resultados teóricos sobre Hitting Set, mas organizar
uma rota de aprendizagem que torne a prova clássica
de sua NP-completude acessível a estudantes iniciantes,
complementando os livros-texto tradicionais, com ênfase em
recursos de visualização que mostrem a transformação das
instâncias, demonstrações que gradualmente aproximem o
estudante da prova completa e conexões explícitas entre a
prova abstrata e aplicações concretas.

II. PRELIMINARES

Para fundamentar a demonstração que será desenvolvida, re-
visamos nesta seção os conceitos essenciais e estabelecemos
a notação utilizada. As definições aqui apresentadas seguem
as convenções de Sipser [4] e Garey & Johnson [2].

O primeiro conceito fundamental é o de grafo, uma
estrutura matemática amplamente utilizada para modelar

v1

v2

v3

e1 e2

e3

Figura 1: Representação de um grafo não direcionado G = (V,E).
As arestas são rotuladas como ei, e os vértices como vi.

relações entre objetos, como ligações entre computadores
em uma rede, estradas ligando cidades ou conexões entre
páginas da web. Formalmente, um grafo é denotado por
G = (V,E), onde V representa o conjunto de vértices (ou
nós), que são os pontos do grafo, e E representa o conjunto de
arestas, que são as conexões entre pares de vértices. Em um
grafo simples e não direcionado, cada aresta é um par não
ordenado {u,v}, indicando apenas que existe uma ligação
entre u e v, sem sentido de direção. Esse tipo de estrutura é
especialmente conveniente para problemas de cobertura, pois
permite enxergar relações de conexão de maneira clara.

Para a redução proposta que será apresentada mais adiante,
é crucial entender também o conceito de incidência e de
grau. Dizemos que uma aresta {u,v} ∈ E é incidente
aos vértices u e v, isto é, ela “toca” exatamente esses
dois vértices. O grau de um vértice, por sua vez, é o
número de arestas incidentes a ele e indica quantas conexões
diretas aquele ponto possui dentro do grafo. A Figura 1
apresenta uma ilustração visual desses componentes: os
círculos representam os vértices (V ) e as linhas representam
as arestas (E). No exemplo, o vértice v3 possui grau 2, pois
está ligado a v1 e v2; esse tipo de contagem será reutilizado
mais adiante quando mapearemos vértices e arestas para
conjuntos e elementos na redução para o problema Hitting
Set.

Além do conceito de grafos utilizado, é necessário abordar
que o contexto deste trabalho exige a definição clara do
ambiente de Complexidade Computacional de forma que
facilite a compreensão dentro do âmbito conteúdo-aluno.

Finalmente, para realizar a prova de NP-Completude,
utilizaremos o conceito de redução e um problema base. O
problema escolhido como ponto de partida é o Vertex Cover.
Sua NP-Completude foi demonstrada por Richard Karp [1],
sendo uma das mais aceitas no contexto de cobertura de
grafos. Ele é definido pela seguinte instância e questão: dado
um grafo G = (V,E) e um inteiro k, é possível escolher um
subconjunto de vértices C⊆V (com |C| ≤ k) tal que todas as
arestas de E tenham pelo menos uma extremidade em C?

Problema: VERTEX COVER (VC)

Entrada: Um grafo simples G = (V,E) e um inteiro k ∈ N.

Questão: Existe um subconjunto C⊆V com |C| ≤ k tal que,
para toda aresta {u,v} ∈ E, vale u ∈ C ou v ∈ C? (Ou
seja, cada aresta de G possui ao menos uma extremidade
em C.)
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Este problema servirá de alicerce para a construção do
Hitting Set nas seções subsequentes, pois a prova de NP-
Completude será obtida por meio de uma redução polinomial
de Vertex Cover para Hitting Set. De maneira geral, o Hitting
Set recebe como entrada um universo finito de elementos e
uma coleção de subconjuntos desse universo, e pergunta se
existe um subconjunto H com tamanho limitado por k que
intercepte todos esses subconjuntos, isto é, que contenha pelo
menos um elemento em comum com cada um deles. Na
prática, o Hitting Set pode ser visto como uma generalização
de problemas de cobertura em grafos, na qual arestas e
vértices são substituídos por subconjuntos e elementos de um
universo arbitrário.

Problema: HITTING SET (HS)

Entrada: Um conjunto finito U (universo), uma coleção
S = {S1,S2, . . . ,Sm} de subconjuntos de U e um inteiro
positivo k ∈ N.

Questão: Existe um subconjunto H ⊆U com cardinalidade
|H| ≤ k tal que H intercepte todos os conjuntos de S?
(Ou seja, H ∩Si 6= /0 para todo Si ∈ S).

III. TRABALHOS RELACIONADOS

A fundamentação deste artigo baseia-se em três eixos princi-
pais: desenvolvimentos recentes em algoritmos e aplicações
para o problema de Hitting Set, abordagens contemporâneas
para ensino de complexidade computacional e o apoio da
literatura basilar para estabelecer relação com as práticas
pedagógicas na disciplina de Teoria da Computação. A
seguir, destacam-se as obras diretamente relacionadas à
proposta.

Do ponto de vista técnico, estudos recentes sobre geração
de Hitting Sets mínimos e sobre aplicações em biologia
de sistemas evidenciam que o Hitting Set permanece um
problema central tanto na pesquisa teórica quanto em
cenários aplicados por Gainer-Dewar, Vera-Licona e Haus[5,
6]. Esses trabalhos discutem algoritmos em contextos
reais, reforçando a importância de compreender, mesmo em
nível introdutório, por que o problema é intratável e quais
estratégias práticas são adotadas na literatura recente.

É importante ressaltar que busca-se a inspiração basilar
em trabalhos como o de Garey e Johnson [2], referência em
intratabilidade para denotarmos o entendimento em materiais
recentes, pois fornecem a definição formal do Hitting Set
e sua classificação como problema NP-Completo, baseada
na equivalência com o Set Cover. O trabalho seminal de
Karp [1] é utilizado para contextualizar historicamente as
reduções polinomiais, técnica central aplicada neste artigo,
bem como para situar o Hitting Set no panorama dos
problemas intratáveis.

No eixo de aplicações, resultados como os de Gainer-
Dewar e Vera-Licona [5] e de Haus et al. [6] ilustram o uso
de hitting sets na análise de redes biológicas e em ambientes

de alto desempenho, o que contribui para motivar o estudo
do problema junto a estudantes da área de computação e a
visão da aplicabilidade no tom pedagógico. Ao mostrar que
a mesma estrutura combinatória aparece em contextos atuais
de pesquisa, esses trabalhos ajudam a conectar o conteúdo
teórico da disciplina com problemas concretos de interesse
científico e tecnológico.

Os trabalhos de Chvátal [7], Ammann e Offutt [8] trazem
abordagens que alimentam a discussão de aplicabilidade
prática. Chvátal discute heurísticas gulosas como forma
de contornar a intratabilidade em problemas de cobertura,
enquanto Ammann e Offutt conectam a teoria abstrata à
prática de testes de software, justificando a relevância do
Hitting Set para a formação de futuros profissionais.

Do ponto de vista pedagógico, o artigo de Lassance,
Bianchini e Santos [3], que descreve o “Ciclo de Sem-
inários em Teoria da Computação”, serviu como referência
metodológica direta. Dessa experiência, foi adotada a
ideia de decompor a prova em “Problema Atacado” (Vertex
Cover) e “Problema Alvo” (Hitting Set), bem como a
ênfase na construção de recursos visuais e exemplos guiados
como suporte à aprendizagem em disciplinas introdutórias.
Em complemento, trabalhos que exploram o uso de
visualizações, animações e ferramentas interativas para o
ensino de NP-Completude, indicam uma tendência recente
de tornar as reduções mais acessíveis por meio de abordagens
ativas e multimodais, Crescenz e Marchetti [9, 10].

Em conjunto, essas referências não apenas sustentam
a prova teórica apresentada nas seções seguintes mas
abordam de maneira recente, e fundamentam a escolha
de uma abordagem fortemente didática, alinhada com
práticas contemporâneas de ensino de complexidade e com
aplicações atuais do problema de Hitting Set.

IV. DESCRIÇÃO DO PROBLEMA

O Hitting Set é um dos problemas mais dinâmicos na teoria
da complexidade, justamente pela sua objetividade que serve
como um bom drive de verificação entre problemas tratáveis
e intratáveis. Sua classificação como NP-Completo foi
estabelecida originalmente por Richard Karp em sua lista
seminal de 21 problemas [1], devido à sua equivalência direta
com o problema Set Cover. Posteriormente, Garey e Johnson
[2] consolidaram sua importância como um problema ilustre
para provas de redução, dada a sua estrutura combinatória
limpa e versátil.

Para compreender a natureza deste problema, é essencial
distinguir inicialmente entre as versões de otimização e
decisão. Em sua forma natural, o Hitting Set é um
problema de otimização que busca responder: “Qual é o
menor número de elementos necessários para atingir todos
os subconjuntos?”. No entanto, para a classificação na classe
NP , utilizamos a versão de decisão, que impõe um limite
superior k. A questão central torna-se: “É possível atingir
todos os conjuntos utilizando no máximo k elementos?”.

Formalmente, seguindo a notação proposta por Garey
e Johnson [2], seja U um conjunto finito, chamado de
universo, e seja S = {S1,S2, . . . ,Sm} uma coleção finita de
subconjuntos de U , isto é, Si ⊆U para todo 1 ≤ i ≤ m. Seja
ainda k ∈ N um inteiro não negativo. O problema HITTING
SET na forma de decisão é definido da seguinte maneira:

ISSN: 2675-3588 73



HITTING SET: UMA ABORDAGEM PEDAGÓGICA PÓVOA et al.

TABELA 1: INTRATABILIDADE: COMPARAÇÃO DO NÚMERO DE

OPERAÇÕES NECESSÁRIAS CONFORME A ENTRADA n CRESCE.

Entrada
(n)

Polinomial
(n2)

Exponencial
(2n)

10 100 1.024
30 900 ≈ 1 bilhão
50 2.500 ≈ 1015

100 10.000 ≈ 1030

Um subconjunto H ⊆U que satisfaz H ∩Si 6= /0 para todo
Si ∈S é chamado de hitting set (ou conjunto atingidor) para a
coleção S. Assim, o objetivo do problema é decidir se existe
um hitting set de tamanho no máximo k. Nesta notação, U
representa o conjunto de todos os elementos disponíveis, S é
a família de subconjuntos que devem ser “atingidos”, H é o
conjunto solução candidato e k é o limite máximo permitido
para o tamanho de H.

A complexidade computacional inerente a esta definição
impõe desafios práticos severos. Para encontrar a solução
com exatidão, a abordagem mais intuitiva é a chamada Força
Bruta. O conceito é simples: o computador testa todas
as combinações possíveis de elementos para ver qual é a
menor que funciona. É como tentar abrir um cadeado de
segredo testando todas as senhas, uma por uma: 000, 001,
002... Embora a Força Bruta seja correta, ela é extremamente
lenta por sua natureza combinatória. Dado um universo U
com n elementos, o número total de subconjuntos possíveis
que podem ser formados é 2n (incluindo o conjunto vazio).
O algoritmo precisa, essencialmente, percorrer todas as 2n

possibilidades, ou pelo menos um grande subconjunto delas,
para encontrar a solução ótima. O número de combinações
cresce exponencialmente (2n), tornando a resolução inviável
para qualquer instância que não seja muito pequena [2].
Dessa forma, a Tabela 1 ilustra como esse tempo de
execução aumenta rapidamente, por meio da comparação
do número de operações necessárias conforme a entrada
cresce, baseando-se em análises assintóticas clássicas [4]. A
potência 2n aparece porque, para cada elemento do universo
U com n elementos, há duas possibilidades independentes:
ou ele entra no subconjunto H ou não entra.

Diante da impossibilidade de verificar todas as opções,
pois o número de combinações cresce de forma exponencial,
como ilustrado na Tabela 1, cientistas da computação
recorrem a algoritmos de aproximação [7]. A ideia é aceitar
abrir mão da garantia de solução ótima em troca de um
algoritmo que rode em tempo polinomial e produza soluções
“boas o suficiente” na prática.

De forma explicativa e alinhada à metodologia de ensino
proposta por Lassance, Bianchini e Santos [3], adotamos
aqui uma estratégia passo a passo voltada ao entendimento
dos estudantes. A ideia é construir a solução de forma
interativa, sempre observando a instância em um quadro ou
diagrama: em cada passo, o aluno identifica quais conjuntos
ainda não foram atingidos e escolhe um elemento que ajude
a cobrir os casos restantes, atualizando o desenho a cada
escolha.

Do ponto de vista algorítmico, essa construção iterativa
pode ser vista como uma versão simplificada de uma
abordagem gulosa clássica [7]: a cada passo, escolhe-se

TABELA 2: COMPARAÇÃO ENTRE ABORDAGENS PARA O

HITTING SET. (n = |U |, ASSUMINDO m≈ n PARA

SIMPLIFICAÇÃO).

Abordagem Complexidade
de Tempo

Qualidade da
Solução

Enumeração Completa
(Força Bruta) O(2n) Exata (ótima, mas

inviável para n grande)

Construção Iterativa
Orientada (passo a passo) O(n2) Em geral não ótima, mas

utilizável na prática

um elemento que contribui para cobrir muitos conjuntos
ainda não atingidos. Esse tipo de estratégia não garante,
em geral, a melhor solução possível (ao contrário da Força
Bruta, que é exata porém inviável para entradas grandes
[2]), mas apresenta duas vantagens fundamentais: (i) seu
tempo de execução é polinomial, o que a torna utilizável
em instâncias reais, e (ii) existem resultados teóricos que
limitam quão pior a solução obtida pode ser em relação à
solução ótima [7]. Para fins de análise didática e comparação
de crescimento, assumimos aqui um cenário onde o número
de subconjuntos m é proporcional ao tamanho do universo n,
permitindo expressar a complexidade apenas em função de n.
A Tabela 2 resume esse contraste entre a exatidão da Força
Bruta e a praticidade das abordagens iterativas.

Contudo, em cenários industriais onde a exatidão é inego-
ciável (como no diagnóstico médico ou em configurações
de segurança crítica), depender apenas de aproximações
pode ser insuficiente. Para esses casos, a indústria recorre
à Complexidade Parametrizada (FPT - Fixed-Parameter
Tractability). Nesta abordagem, a complexidade é analisada
em função de dois valores: o tamanho da entrada n e um
parâmetro fixo k — que, neste problema, corresponde ao
tamanho da solução buscada. A estratégia é confinar a
“explosão combinatória” exclusivamente a esse parâmetro k,
mantendo o tempo polinomial em relação a n. Algoritmos
FPT com complexidade do tipo O(2k · n) exemplificam bem
essa vantagem: considere uma base de dados com n =
1.000 elementos onde buscamos um subconjunto de tamanho
k = 10. Enquanto a abordagem FPT exigiria apenas ≈
106 operações, sendo resolvida em cerca de 1 milissegundo
(supondo 109 operações/s), a força bruta (2n) exigiria 21.000

operações, o que levaria um tempo superior à idade do
universo para ser concluído. Essa abordagem permite lidar
com a intratabilidade de forma cirúrgica em instâncias reais,
sem sacrificar a precisão dos resultados [11].

Apesar da dificuldade geral, existem exceções interes-
santes. Se restringirmos a instância de modo que cada
subconjunto em S tenha tamanho máximo 2 (isto é, |Si| ≤
2 para todo Si ∈ S), o problema torna-se idêntico ao
Vertex Cover, que, apesar de ainda ser NP-Completo,
permite análises mais detalhadas e soluções aproximadas
bem estudadas em questão literária.

Para visualizar a definição formal na prática, considere
a instância apresentada na Figura 2. Neste exemplo,
temos o universo U = {1,2,3,4,5} e a coleção S =
{{1,2,3},{2,4},{3,4},{4,5}} com k = 2. A resposta é
afirmativa, pois o conjunto H = {2,4} possui tamanho 2
e intersecta todos os subconjuntos de S. Os elementos da
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Figura 2: Representação visual de S, no qual H = {2,4} é Hitting
Set.

solução H = {2,4} estão destacados em vermelho; note
que cada elipse (conjunto) contém pelo menos um elemento
vermelho.

Apesar da dificuldade geral, existem exceções interes-
santes. Se restringirmos a instância de modo que cada
subconjunto em S tenha tamanho máximo 2 (isto é, |Si| ≤
2 para todo Si ∈ S), o problema torna-se idêntico ao
Vertex Cover, que, apesar de ainda ser NP-Completo,
permite análises mais detalhadas e soluções aproximadas
bem estudadas na literatura.

Para visualizar a definição formal na prática, considere a
instância apresentada na Figura 2. Neste exemplo, temos o
universo U = {1,2,3,4,5} e a coleção S = {{1,2,3},{4,5}}
com k = 2. A resposta é afirmativa, pois o conjunto H =
{2,4} possui tamanho 2 e intersecta todos os subconjuntos
de S. Os elementos da solução H = {2,4} estão destacados
em vermelho; note que cada elipse (conjunto) contém pelo
menos um elemento vermelho.

Para facilitar a intuição sobre a complexidade combinató-
ria, propomos uma analogia original denominada “O Dilema
dos Observadores”. A ideia é traduzir a definição formal do
Hitting Set para uma narrativa concreta, em que os elementos
do universo e os subconjuntos ganham interpretação no
mundo real. Essa analogia é inspirada no clássico problema
de Crew Scheduling (Escalonamento de Tripulações), citado
por Garey e Johnson [2] como uma aplicação canônica de
problemas de cobertura de conjuntos.

“Uma equipe de biólogos precisa confirmar a
presença de 5 espécies raras de pássaros (S1 a
S5) em uma reserva. Eles têm 10 observadores
disponíveis. Cada observador é especialista em
identificar um subconjunto diferente de espécies.
A equipe tem orçamento para contratar no máximo
k observadores. A pergunta é: é possível formar
um time com ≤ k pessoas que identifique todas as
espécies?”

Nessa analogia, o conjunto de observadores é o universo

Arara Tucano

Coruja

Solução
H = {Ana,Rui}

Paulo BiaAna

Rui

Figura 3: Ana cobre Arara e Tucano; Rui cobre a Coruja. O
envelope verde destaca o conjunto solução H = {Ana,Rui} .

U e cada espécie define um subconjunto Si de quem pode
avistá-la. Um conjunto de observadores contratados é um
Hitting Set. A Figura 3 ilustra uma instância desse dilema.

A personagem Ana (em vermelho) é uma generalista que
cobre duas espécies (Arara e Tucano). Porém, ao escolhê-
la, ainda precisamos cobrir a Coruja, que só é vista pelo
Rui. Assim, uma solução possível seria o time {Ana,Rui}
(tamanho 2). Outra opção seria ignorar a Ana e contratar
apenas especialistas dedicados: {Paulo,Bia,Rui} (tamanho
3).

O “dilema” computacional é que não existe uma regra
simples (como “sempre escolha quem cobre mais”) que
garanta a melhor solução em todos os casos. O computador
precisa verificar as diversas combinações (Generalistas
vs. Especialistas) para garantir que o orçamento k seja
respeitado.

Além do interesse teórico, o Hitting Set modela desafios
reais onde a eficiência é crítica. Na bioinformática, é
aplicado na seleção de marcadores genéticos [1]. Na
engenharia de software, é utilizado para minimizar suítes de
teste [8]. Como o problema é NP-Completo, a inviabilidade
da força bruta valida o uso das heurísticas de aproximação
como a abordagem padrão na indústria.

Essa analogia faz sentido em relação ao problema
de Hitting Set porque traduz, quase literalmente, cada
componente da definição formal para elementos intuitivos
da história, permitindo ao estudante “ver” o problema em
vez de apenas manipulá-lo simbolicamente. Do ponto de
vista matemático, o universo U do Hitting Set corresponde
ao conjunto de observadores disponíveis, enquanto cada
subconjunto Si ∈ S é interpretado como o grupo de
observadores capazes de identificar a espécie i. Um hitting
set H ⊆ U é um conjunto com elementos que intersecta
todos os Si; na analogia, isso significa escolher um time de
observadores tal que, para cada espécie rara, pelo menos
um membro do time consiga identificá-la. O parâmetro
k que limita o tamanho de H é modelado diretamente
pelo orçamento máximo de observadores que podem ser
contratados.
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Além de respeitar essa correspondência estrutural, o
dilema também ajuda a construir intuição sobre a comple-
xidade do problema. Por um lado, evidencia o caráter
combinatório: há muitas formas possíveis de escolher
subconjuntos de observadores, e nem todas cobrem todas
as espécies, o que espelha o grande espaço de soluções
candidatas no Hitting Set. Por outro lado, ilustra o
perigo de decisões puramente locais: escolher a observadora
“generalista” Ana parece uma boa escolha quando se olha
apenas para o número de espécies cobertas, mas não resolve
o caso da Coruja, exigindo a presença do especialista Rui.
Dessa forma, a narrativa mostra que a melhor decisão local
nem sempre leva à melhor solução global, um ponto central
em problemas NP-Difíceis.

É imperativo, contudo, delimitar o escopo desta analogia
lúdica para evitar simplificações excessivas. O “Dilema dos
Observadores” atua estritamente como um facilitador para
a compreensão do enunciado e das restrições do problema,
não substituindo a formalização matemática necessária para
a análise de complexidade. Em cenários cotidianos ou
administrativos, como o descrito na narrativa, a intuição
humana frequentemente encontra padrões que facilitam a
resolução. No entanto, a classificação de NP-Completude
lida com instâncias arbitrárias de “pior caso”, onde tais
padrões intuitivos inexistem ou são enganosos. Portanto,
a analogia serve como porta de entrada cognitiva, mas o
rigor algébrico — detalhado na demonstração da Seção V
— permanece insubstituível para a validação científica da
intratabilidade.

Em síntese, o “Dilema dos Observadores” funciona como
um modelo mental que o aluno pode reutilizar nas seções
seguintes: sempre que se deparar com a notação U , S, H e k,
pode lembrar de observadores, espécies e orçamento, o que
reduz a carga cognitiva e facilita a compreensão das provas
formais.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES TÉC-
NICAS

Esta seção apresenta a sistematização da prova de NP-
Completude do Hitting Set. Diferentemente dos manuais
técnicos que priorizam a concisão, optamos aqui por uma
abordagem expandida, detalhando os passos lógicos que
frequentemente são omitidos na literatura especializada [2].

Para classificar formalmente um problema como NP-
Completo, é necessário satisfazer simultaneamente duas
condições: provar que HS ∈ NP , e que HS ∈ NP-Difícil.
Essas provas serão feitas a seguir.

Lema 1. O problema HS pertence a NP .

Proof. Seguindo esse fluxo lógico, o primeiro passo é
demonstrar que o problema pertence à classe NP . Isso
exige a existência de um algoritmo que, dada uma solução
candidata (certificado), consiga verificar sua validade em
tempo eficiente, conforme a definição formal de verificadores
polinomiais estabelecida por Sipser [4]. No contexto do
Hitting Set, considere uma instância definida por um universo
de elementos U , uma coleção S de subconjuntos de U e um
inteiro k [2]. O certificado é um subconjunto candidato H ⊆
U . O algoritmo verificador recebe a instância (U,S,k) e o
certificado H, respondendo “Sim” apenas se duas condições

forem satisfeitas: (1) o tamanho de H respeita o limite k
(i.e., |H| ≤ k); e (2) H intersecta todos os subconjuntos
de S. Abaixo apresentamos o algoritmo que realiza essa
verificação:
Algoritmo Verificador(U, S, H, k)
Início

Se (tamanho(H) > k) então
Retorne Falso;

Fim-Se

Para cada Si em S faça
Verifica se a interseção é vazia
Se (H ∩ Si == /0) então

Retorne Falso;
Fim-Se

Fim-Para

Retorne Verdadeiro;
Fim

Para realizar a análise de eficiência deste algoritmo
(tecnicamente chamada de análise assintótica [4]), definimos
n como o tamanho total da entrada recebida pelo algoritmo
(a soma dos tamanhos de U , S, H e a representação de
k). É fácil analisar que a verificação de tamanho é uma
operação linear O(n), pois, no pior caso, o algoritmo precisa
percorrer a lista de elementos de H para contá-los, e o
tamanho de H nunca excede o tamanho total da entrada n. Já
a Verificação de Cobertura é a etapa dominante: sua estrutura
de repetição obriga a comparação dos elementos de H com os
de cada subconjunto em S, resultando em uma complexidade
quadrática O(n2). Como n2 é um polinômio, garantimos que
a verificação é eficiente.

Desta forma, no pior cenário possível, essa estrutura
faz o algoritmo comparar sistematicamente os elementos,
resultando em um número total de operações proporcional ao
produto m×n (onde n é o tamanho do universo). Em termos
de complexidade, isso é representado pela notação O(n2),
indicando que o tempo cresce quadraticamente em relação
ao tamanho da entrada [4]. Como uma função quadrática é
um polinômio (e não uma exponencial como 2n), garantimos
que a verificação é computacionalmente viável, confirmando
assim que o Hitting Set pertence à classe NP [2].

Uma vez estabelecida a NP-Pertinência, o próximo
passo do núcleo da prova reside na demonstração de
NP-Dificuldade. A estratégia utilizada é a redução
polinomial, onde transformamos instâncias de um problema
conhecido como NP-Difícil (Problema Alvo) em instâncias
do problema que queremos classificar (Problema Atacado).
Para este artigo, reduziremos o Vertex Cover ao Hitting Set
(VC ≤p HS).

Lema 2. O problema HS é NP-Difícil.

Proof. Com o problema de partida formalmente definido,
passamos à construção da redução. O objetivo desta etapa
é demonstrar um algoritmo que transforme, em tempo
polinomial, qualquer instância de Vertex Cover em uma
instância equivalente de Hitting Set [1]. Essa transformação
deve garantir que a estrutura topológica do grafo seja
preservada na forma de conjuntos, de modo que a existência
de uma solução em um problema implique diretamente a
existência de solução no outro [4].
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Problema Alvo: Vertex Cover
(Cobrir arestas com vértices)

G = (V,E)

Problema Atacado: Hitting Set
( conjuntos com elementos)

U = V, S = E

Redução polinomial (≤p)

Figura 4: Esquema da redução: transformamos a estrutura do
grafo (Atacado) em uma estrutura de conjuntos (Alvo).

Seguindo este raciocínio, no Vertex Cover devemos
garantir que cada aresta seja coberta por um vértice. No
Hitting Set, a obrigação é garantir que cada subconjunto seja
interceptado por um elemento. Portanto, a estratégia consiste
em converter cada aresta (que conecta dois vértices) em
um subconjunto (contendo dois elementos) [2]. O esquema
conceitual dessa estratégia é apresentado na Figura 4.

É fundamental observar que a redução proposta realiza
uma tradução da estrutura topológica do grafo para uma
estrutura combinatória de conjuntos. Neste contexto, a
estrutura combinatória refere-se à organização de elemen-
tos baseada estritamente em relações de pertinência e
agrupamento, abstraindo qualquer noção de conectividade
espacial ou adjacência visual típica dos grafos. A relação
de adjacência entre vértices, representada pelas arestas, é
remapeada para uma relação de inclusão em subconjuntos.

Desta maneira, a restrição topológica de “cobrir uma
aresta” (garantir que uma conexão seja vigiada) é refor-
mulada como a necessidade algébrica de “interceptar um
subconjunto” (garantir que um grupo contenha um elemento
selecionado). O mapeamento é definido da seguinte maneira:
o universo U é constituído pelos vértices de V ; a coleção S é
formada convertendo cada aresta {u,v} em um subconjunto
contendo exatamente esses vértices; e o parâmetro de
otimização k′ preserva seu valor original (k′ = k). A Figura
5 ilustra essa transformação por meio da conversão da aresta
{1,2} no subconjunto Si = {1,2}.

A corretude desta redução depende da prova de que
a instância construída preserva a resposta da original.
Demonstramos isso através de duas proposições:

Proposição 1 (Ida⇒): Se G possui um Vertex Cover de
tamanho k, então S possui um Hitting Set de tamanho k.

Seja C ⊆ V o Vertex Cover. Escolhemos H = C. Para
qualquer conjunto Si ∈ S, sabemos pela construção que ele
corresponde a uma aresta {u,v} ∈ E. Como C cobre todas
as arestas, ele deve conter u ou v. Logo, H contém u ou v,
interceptando Si. Portanto, H é um Hitting Set válido.

Proposição 2 (Volta ⇐): Se S possui um Hitting Set de
tamanho k, então G possui um Vertex Cover de tamanho k.

Seja H ⊆ U o Hitting Set. Escolhemos C = H.
Para qualquer aresta e = {u,v} ∈ E, existe um conjunto
correspondente Se = {u,v} em S. Como H atinge todos os
conjuntos, ele deve conter u ou v. Logo, C contém uma
extremidade da aresta e. Portanto, C cobre todas as arestas
de G.

A Figura 6 ilustra a equivalência lógica. No caso
mostrado, a aresta {1,2} é coberta no Vertex Cover pelo
vértice 1 (destacado em vermelho). Na construção do Hitting

No Grafo (Vertex Cover)

1 2
Aresta {1,2}

(Relação de Adjacência)

Transformação

Na Coleção (Hitting Set)

1 2

Subconjunto Si = {1,2}

(Relação de Pertinência)

Parâmetro k
Conservado:
k′ = k = 2

Figura 5: Visualização da Construção: A aresta conectando 1 e 2
no grafo é convertida em um conjunto Si = {1,2}.

Vertex Cover

1 2 X Coberta

Equivalência (⇐⇒ )

Hitting Set

1 2 X Atingido

Figura 6: Cobrir a aresta {1,2} com o vértice 1 (vermelho)
corresponde a atingir o conjunto {1,2} com o elemento 1.

Set, o conjunto correspondente Se = {1,2} é atingido pelo
mesmo elemento 1, preservando a equivalência entre as duas
estruturas.

Desta forma, a partir das provas demonstradas da
Proposição 1 e Proposição 2, podemos concluir que HS ∈
NP-Difícil.

Lema 3. O problema HS é NP-Completo.

Proof. Para demonstrar que um problema é NP-Completo,
é preciso demonstrar que ele pertença simultaneamente as
classes NP e NP-Difícil. Essas demonstrações foram feitas
e provadas respectivamente no Lema 1 e Lema 2.

Desta forma, podemos concluir que o problema Hitting Set
é NP-Completo.

Como contribuição pedagógica final, é importante alertar
sobre uma armadilha comum no estudo de reduções: a
direção da prova. Estudantes frequentemente tentam reduzir
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3

1 2

4 5

Figura 7: ANTES (Vertex Cover): O grafo de entrada com k = 3.
Os vértices em vermelho {2,3,4} cobrem todas as arestas.

Universo: U = {1,2,3,4,5}
Coleção S (baseada nas arestas):

{1,2},{1,3},{2,3},
{2,5},{3,4},{4,5}

Solução Mapeada:
H = {2,3,4}

Figura 8: DEPOIS (Hitting Set): A instância resultante. O
conjunto H = {2,3,4} intercepta todos os subconjuntos listados.

o problema novo para o problema conhecido (HS ≤p VC).
Isso provaria apenas que o HS é “fácil” o suficiente para
ser resolvido pelo VC, mas não que ele é “difícil”. A prova
de NP-Dificuldade exige o oposto: mostrar que o problema
novo é capaz de simular qualquer instância do problema
difícil conhecido (VC ≤p HS).

VI. RESULTADOS E REFLEXÕES

A elaboração deste artigo permitiu consolidar o entendi-
mento sobre a hierarquia de complexidade e as técnicas de
redução polinomial. Mais do que a demonstração formal, o
principal produto deste trabalho é a sistematização didática
apresentada, que busca preencher lacunas de compreensão
comuns em estudantes iniciantes. A visualização do
mapeamento entre instâncias mostrou-se uma ferramenta
poderosa para tangibilizar a abstração algébrica.

Uma reflexão crítica sobre a metodologia adotada revela
que a escolha do Vertex Cover como problema de partida
(Problema Atacado) foi determinante para a clareza da
exposição. Embora a literatura clássica frequentemente
utilize reduções a partir de problemas lógicos como o 3-
SAT, essa abordagem exige que o estudante transite entre o
domínio da lógica booleana e a teoria dos conjuntos, o que
adiciona uma carga cognitiva extra. Ao optarmos por uma
redução grafo-para-conjunto (VC ≤p HS), mantivemos a
natureza visual do problema, permitindo que a transformação
seja verificada "a olho nu", como ilustrado na sequência da
Figura 7 e Figura 8.

A construção dessas contribuições pedagógicas foi o
foco central. Em vez de presumir conhecimento prévio,
dedicamos as seções iniciais a explicar termos essenciais
utilizando analogias. Um dos pontos altos foi o uso do
“Dilema dos Observadores” para explicar os fundamentos
teóricos: utilizamos essa analogia para concretizar que
verificar uma solução (conferir a equipe contratada) é rápido,
mas encontrar a solução ótima (testar todas as combinações)
é exponencialmente difícil. Essa distinção é crucial para que
o estudante compreenda a natureza da classe NP não como
uma medida de "impossibilidade", mas como uma medida de

"custo de busca".
Ainda sobre a estratégia lúdica, é pertinente observar que

o “Dilema dos Observadores” também serve para ilustrar
as limitações das abordagens intuitivas. Em sala de aula,
é comum que alunos sugiram algoritmos gulosos (como
contratar sempre a pessoa mais versátil) como solução geral.
A modelagem do problema permitiu demonstrar que, em
cenários de complexidade NP-Completa, a intuição local
falha diante da necessidade de uma otimização global,
validando a necessidade de rigor matemático na análise de
algoritmos.

No entanto, o processo de elaboração deste material não
foi isento de dificuldades. O maior desafio encontrado não
foi a complexidade técnica da prova em si — pois a redução
de Vertex Cover é direta — mas sim o desafio de transposição
didática: explicar os fundamentos sem recorrer a jargões
herméticos que afastam o leitor iniciante. A estratégia
adotada de explicar cada conceito técnico (como a análise
assintótica) imediatamente antes de sua aplicação mostrou-
se essencial para manter a clareza e a acessibilidade do texto.

Quanto à aplicabilidade acadêmica, este trabalho foi
feito para servir como um material complementar para
futuros alunos da disciplina de Teoria da Computação.
Acreditamos que a exposição visual da redução e a discussão
sobre as nuances entre decisão e otimização oferecem um
ponto de entrada mais suave para o tema. Tanto este
artigo quanto as referências discutidas podem ser usados
como um guia introdutório e acessível para quem precisa
entender como uma prova de NP-Completude é estruturada
na prática, cumprindo o objetivo de facilitar o aprendizado e
desmistificar a teoria.

VII. CONCLUSÃO

A elaboração deste estudo permitiu atingir o objetivo
principal de demonstrar a NP-Completude do problema
Hitting Set de forma pedagógica seguindo o rigor exigido
pela literatura clássica. A prova foi estruturada em duas
etapas fundamentais: a verificação de pertinência à classe
NP , realizada através da análise de um algoritmo verificador
polinomial, e a demonstração de NP-Dificuldade, executada
por meio da redução canônica a partir do Vertex Cover.
Este resultado teórico não é apenas um rótulo classificatório;
ele carrega uma implicação prática profunda: a menos que
P = NP , não existem algoritmos eficientes para resolver o
Hitting Set de forma exata em todos os casos, validando a
necessidade de abordagens aproximadas.

Do ponto de vista pedagógico, o material foi aplicado
em uma turma de Teoria da Computação, envolvendo
aproximadamente 20 estudantes de graduação.1 Em uma
atividade de seminário, os alunos foram convidados a
reconstruir a redução VC ≤p HS utilizando os diagramas
apresentados e a reprodução guiada das etapas da prova,
antes do contato direto com os livros-texto formais. Nessa
dinâmica, as interações e discussões em sala facilitaram
o compartilhamento de diferentes formas de explicar a
redução, em uma linguagem mais próxima dos próprios estu-
dantes, mediadas pela equipe de pesquisadores. Observou-se
que os alunos passaram a demonstrar maior segurança para

1Relato de aplicação didática conforme descrito na seção de Resultados
e Reflexões.
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Problema Alvo:
Vertex Cover

Problema Atacado:
Hitting Set

Metodologia:
Redução Visual

Aplicações Reais:
Bioinformática

Redução ≤p

ModelaFacilita

Explica

Figura 9: Mapa síntese da abordagem: A metodologia visual
conecta o problema base ao alvo.

explicar, com suas próprias palavras, o papel do certificado
em NP e o encadeamento lógico da redução, apoiados
por estratégias visuais organizadas em slides interativos,
com tempo de exposição limitado para evitar sobrecarga
cognitiva. Ainda que esses registros não constituam
um estudo quantitativo rigoroso, eles fornecem indícios
qualitativos de que a abordagem visual e narrativa contribuiu
para reduzir a sensação de “salto conceitual” frequentemente
associada às provas de NP-completude [9, 10].

Para além da demonstração matemática, o contributo
mais expressivo deste trabalho reside na sua proposta
pedagógica. Conforme as diretrizes da disciplina, buscou-se
transpor a barreira da abstração que frequentemente dificulta
o aprendizado de Teoria da Computação. A introdução
do “Dilema dos Observadores” serviu como uma ponte
cognitiva, traduzindo a aridez da notação de conjuntos
para um problema tangível de gestão de recursos. Essa
analogia facilitou a intuição sobre a assimetria fundamental
da complexidade: a facilidade de verificar uma solução
dada (auditar uma equipe contratada) em contraste com a
dificuldade de encontrar a solução ótima (testar todas as
combinações de equipes).

Para consolidar a jornada de aprendizado proposta, a
Figura 9 apresenta um mapa conceitual que resume a
estrutura lógica desenvolvida no artigo, conectando a teoria
de base, a prova de redução e as aplicações práticas.

Embora a sistematização proposta tenha êxito em seus
objetivos didáticos, o trabalho apresenta limitações no seu
escopo, concentrando-se majoritariamente no aspecto teórico
da classificação de complexidade. Não foram exploradas,
nesta etapa, implementações computacionais de algoritmos
de aproximação como a Heurística Gulosa [7] ou algoritmos
parametrizados (FPT), que constituem a abordagem padrão
para lidar com a intratabilidade do problema em cenários
industriais reais [8, 1]. Adicionalmente, a redução
restringiu-se ao caminho clássico via Vertex Cover, sem
explorar reduções alternativas que poderiam oferecer outras
perspectivas.

Como desdobramento natural deste estudo, trabalhos
futuros podem focar na vertente experimental, implemen-
tando e comparando o desempenho de algoritmos exatos
(para instâncias pequenas) versus algoritmos aproximativos
(para instâncias grandes). Outra via promissora seria o
aprofundamento em classes especiais de instâncias, como
aquelas com restrições de cardinalidade nos subconjuntos,
investigando cenários onde o problema se torna tratável e
enriquecendo ainda mais o repertório de exemplos didáticos

disponíveis para o ensino de Computação.
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Resumo—Este artigo analisa a NP-completude do problema Edge Coloring através de uma cadeia de redução polinomial iniciada no
problema 3-Coloring. A metodologia utiliza a construção de um Grafo Linha para demonstrar a pertinência à classe NP e estabelece a
NP-Dificuldade via redução do 3-SAT, baseada em Holyer. São apresentadas definições formais, contexto histórico e revisão de trabalhos
fundamentais em teoria da complexidade computacional. O principal resultado demonstra que Edge Coloring é NP-completo por meio de
um método de redução claro e acessível. O trabalho oferece exemplos educacionais com ilustrações visuais e explicações passo a passo
sobre gadgets lógicos. Este material serve como recurso de aprendizagem para auxiliar estudantes na compreensão de reduções polinomiais
e conceitos de NP-completude em Ciência da Computação.

Palavras-chave—NP-completude, Coloração de Arestas, Coloração de Vértices, Reduções Polinomiais, Complexidade Computacional

Abstract—This article examines the NP-completeness of the Edge Coloring problem through a polynomial reduction chain starting from
the 3-Coloring problem. The methodology employs a Line Graph to demonstrate membership in NP and establishes NP-Hardness via
reductions from 3-SAT, following Holyer’s construction. We present formal definitions, historical context, and a review of fundamental
works in computational complexity theory. The main result demonstrates that Edge Coloring is NP-complete using a clear and accessible
reduction method. The work provides educational examples with visual illustrations and step-by-step explanations of logical gadgets. This
material serves as a learning resource to help students understand polynomial reductions and NP-completeness concepts in computer
science courses.

Keywords—NP-completeness, Edge Coloring, Vertex Coloring, Polynomial Reductions, Computational Complexity

I. INTRODUÇÃO

A Teoria da Computação investiga os limites fundamen-
tais dos algoritmos, sendo a classe dos problemas

NP-Completos o cerne dos desafios práticos e teóricos da
área. O estudo desta classe é essencial para entender a in-
tratabilidade computacional, orientando o desenvolvimento
de heurísticas e algoritmos de aproximação para problemas
cruciais em otimização e inteligência artificial [1].

Nesse contexto, os problemas de coloração de grafos,

Dados de contato: Ana Júlia Campos Vieira, campos.ana@uft.edu.br

como o 3-Coloring (Coloração de Vértices com 3 cores) e
o Edge Coloring (Coloração de Arestas), são centrais. O
3-Coloring consiste em determinar se os vértices de um grafo
podem ser coloridos com três cores de forma que vértices
adjacentes não compartilhem a mesma cor. Historicamente,
ele é um dos primeiros problemas a ter sua NP-completude
provada por redução do SAT (Satisfiability) [2]. Já o Edge
Coloring questiona se as arestas de um grafo podem ser
coloridas com k cores de modo que arestas adjacentes (que
compartilham um vértice) tenham cores distintas.

Ambos os problemas, apesar de conceitualmente distintos,
compartilham uma estrutura computacional equivalente.
Enquanto o 3-Coloring possui aplicações clássicas em
planejamento e alocação de frequência, o Edge Coloring é
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Figura 1: Grafo completo K3 — exemplo de grafo
não-direcionado com 3 vértices.

fundamental em problemas de escalonamento, alocação de
recursos em redes e otimização de tempo [3].

Este artigo reúne e organiza demonstrações presentes
na literatura sobre a NP-completude do Edge Coloring,
com foco na clareza conceitual. A redução polinomial de
3-Coloring ≤p Edge Coloring é apresentada por meio do
conceito de Grafo Linha, destacando os elementos centrais
da transformação. O objetivo é oferecer um material que
apoie o estudo das técnicas de redução e sua importância
dentro da Teoria da Computação.

O trabalho expõe a prova e discute o raciocínio envolvido
na construção, enfatizando aspectos que contribuem para o
ensino de complexidade computacional. As seções seguintes
apresentam os fundamentos necessários, a descrição da
redução e as reflexões que surgem a partir dessa análise.

II. PRELIMINARES

Começamos revisitando alguns conceitos fundamentais
sobre grafos e problemas de coloração, essenciais para
compreender o desenvolvimento deste trabalho.

Um Grafo Não-Direcionado é definido como uma
estrutura G = (V,E), onde V representa um conjunto finito
e não vazio de vértices, e E ⊆ {(u,v) | u,v ∈ V,u 6= v} é o
conjunto de arestas que conectam esses vértices. Neste tipo
de grafo, as arestas não possuem orientação, o que significa
que a aresta (u,v) é idêntica à aresta (v,u), estabelecendo
uma relação simétrica entre os vértices. Grafos não-
direcionados são particularmente úteis para modelar relações
mútuas, como amizades em redes sociais, conexões entre
computadores em uma rede ou relações de adjacência em
mapas.

Dentro dessa estrutura, dizemos que dois vértices são
adjacentes se existe uma aresta conectando-os diretamente.
Esta relação de adjacência é fundamental para definir a
estrutura do grafo e suas propriedades. No grafo K3
(Figura 1), todos os vértices são adjacentes entre si,
formando um triângulo completo onde cada vértice possui
grau 2 (duas conexões). O conjunto de vértices adjacentes a
um vértice v é denominado sua vizinhança. A adjacência é
uma relação binária que determina a conectividade direta no
grafo, sendo essencial para definir caminhos, ciclos e outras
propriedades estruturais.

Da mesma forma, duas arestas são incidentes quando
compartilham um vértice em comum. Esta relação de
incidência conecta o conceito de vértices com o conceito

Figura 2: Grafo exemplo para 3-Coloring — estrutura com
restrições de adjacência que permite coloração com 3 cores.

de arestas, criando a estrutura combinatória do grafo. No
exemplo da Figura 1, qualquer par de arestas entre ea, eb e
ec compartilha um vértice, o que as torna incidentes entre si.
Uma aresta é dita incidente a um vértice quando este vértice
é uma de suas extremidades. O grau de um vértice é definido
como o número de arestas incidentes a ele, sendo esta uma
medida fundamental da centralidade do vértice no grafo.

Uma coloração de vértices é uma atribuição de cores aos
vértices de um grafo por meio de uma função c : V → C,
onde C representa um conjunto finito de cores disponíveis.
A notação c(v) indica a cor atribuída ao vértice v, isto é, o
resultado da função quando aplicada a esse vértice. Dessa
forma, cada vértice recebe exatamente uma cor, permitindo
analisar propriedades estruturais do grafo a partir dessa
atribuição.

Uma coloração é dita própria quando nenhum par de
vértices adjacentes compartilha a mesma cor. Em termos
formais, isso significa que, para toda aresta (u,v) ∈ E, deve
valer c(u) 6= c(v). A condição c(u) e c(v) serem diferentes
garante que vértices conectados não entrem em conflito
de cor, constituindo o requisito fundamental em problemas
clássicos como o 3-Coloring.

A Figura 2 apresenta um grafo simples usado para ilustrar
relações de adjacência e incidência em um contexto de
coloração. O exemplo evidencia como diferentes conexões
afetam as possibilidades de coloração de vértices e de arestas.

O conceito de Grafo Linha estabelece uma dualidade
entre vértices e arestas. Dado um grafo G = (V,E), seu
grafo linha L(G) = (VL,EL) é construído mapeando cada
aresta em E para um vértice em VL, e dois vértices em
L(G) são adjacentes se as arestas correspondentes em G
compartilham um vértice [4]. Esta transformação permite
analisar propriedades das arestas do grafo original através do
estudo dos vértices do grafo linha.

No exemplo da Figura 3, o grafo linha de K3 é isomorfo
ao próprio K3, ilustrando como a transformação preserva a
estrutura de adjacência. Isso acontece porque, em K3, todo
par de arestas compartilha um vértice. Por exemplo, ea e eb
são adjacentes no grafo linha porque compartilhavam v2 no
grafo original; o mesmo ocorre para os outros pares. Essa
correspondência direta entre incidência e adjacência é o que
torna o grafo linha uma ferramenta tão útil em reduções entre
problemas de coloração.

No contexto de problemas de coloração, dois se destacam:
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Figura 3: Grafo linha L(K3) — arestas do grafo original
tornam-se vértices, e a incidência transforma-se em adjacência.

Figura 4: Gadget baseado em K3, usado para impor restrições de
coloração em reduções para 3-Coloring.

o 3-Coloring (Coloração de Vértices com 3 cores) e o
Edge Coloring (Coloração de Arestas). O primeiro é um
problema de decisão que busca determinar se existe uma
função c : V → {1,2,3} tal que, para toda aresta (u,v) ∈ E,
tenhamos c(u) 6= c(v) [5, 6]. Uma coloração que satisfaz esta
propriedade é chamada de coloração própria. A restrição de
usar apenas três cores torna este problema particularmente
desafiador, já que muitos grafos exigem mais cores para uma
coloração própria, enquanto outros podem ser coloridos com
menos.

Os gadgets desempenham um papel central nas reduções
polinomiais envolvendo problemas de coloração. Um gadget
é um pequeno subgrafo construído para impor restrições
locais sobre as escolhas de cor, funcionando como um
"componente lógico" dentro de reduções maiores. Esse
conceito aparece na técnica clássica de Component Design,
frequentemente utilizada em reduções para o problema 3-
Coloring.

O triângulo K3 é um dos gadgets mais utilizados, pois
sua estrutura força necessariamente três cores distintas,
representando escolhas mutuamente exclusivas — como
valores lógicos TRUE, FALSE e um estado base. A Figura 4
ilustra essa construção didática amplamente adotada em
reduções clássicas.

Já o Edge Coloring (Figura 5) pergunta se é possível
colorir as arestas de G usando até k cores, por meio de
uma função c : E → {1,2, . . . ,k}, de forma que arestas
incidentes recebam cores diferentes. O número mínimo de
cores necessárias para essa coloração é o índice cromático,

Figura 5: Edge Coloring válido no K3 — cada aresta recebe uma
cor distinta: ea (azul), eb (verde), ec (vermelho).

denotado por χ′(G). Este problema tem aplicações práticas
em escalonamento de tarefas, alocação de frequências em
redes wireless e design de torneios esportivos.

No âmbito da complexidade computacional, destacamos
duas definições centrais. Uma linguagem de decisão L
pertence à classe NP-Completo se L está em NP e toda
linguagem em NP pode ser reduzida a L em tempo
polinomial [1, 2]. As reduções são formalizadas pelo
conceito de Redução Polinomial, onde um problema A é
redutível a um problema B (denotado por A ≤p B) se existe
uma transformação computável em tempo polinomial que
preserva respostas entre instâncias dos dois problemas. Esta
noção de redução é a base para estabelecer relações de
dificuldade entre problemas e para construir hierarquias de
complexidade.

A importância das reduções polinomiais vai além do
aspecto teórico, pois elas fornecem informações sobre
a estrutura dos problemas e permitem que algoritmos
desenvolvidos para um problema sejam adaptados para
outros. No contexto educacional, compreender essas
reduções é essencial para desenvolver uma intuição sobre
quais problemas são computacionalmente difíceis e por quê.

III. TRABALHOS RELACIONADOS

No trabalho de Cook [2], estabeleceu-se a base da
NP-completude. Na pesquisa, mostrou-se como verificar
soluções em tempo polinomial e construiu a primeira redução
polinomial para o SAT. O objetivo foi entender quando
um problema permite conferir respostas em pouco tempo.
Os resultados são interessantes por terem aberto caminho
para Karp ampliar essa ideia, relacionando vários problemas
clássicos, incluindo o 3-Coloring, e mostrando como muitos
deles caem na mesma classe de complexidade.

No trabalho clássico de Garey e Johnson [1], é detalhada a
complexidade do Graph 3-Colorability. Na obra, os autores
organizam a teoria da NP-completude e utilizam a técnica
de Component Design, que consiste em montar grafos a
partir de peças pequenas que impõem restrições locais.
Gadgets como o triângulo K3 mostram como estruturas
pequenas conseguem impor escolhas de cor e controlar o
comportamento local do grafo, simulando literais e cláusulas.
Os resultados são interessantes por padronizar as reduções
que conectam problemas centrais da computação.

No survey escrito por Cao e outros autores [7], podemos
notar uma visão geral desse tema. Na pesquisa, os autores
reúnem resultados sobre algoritmos, limites estruturais,
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casos especiais e questões abertas da coloração de arestas.
O objetivo do survey é organizar o que já se sabe sobre o
problema, desde técnicas simples de recoloração até métodos
mais atuais. Os resultados são interessantes por consolidar o
conhecimento disperso sobre limites superiores e conjecturas
da área.

No trabalho de Holyer [3], surge o resultado que estrutura
a base moderna dessa área. Na pesquisa, o autor apresenta
a primeira prova de NP-completude do Edge Coloring,
mostrando que o problema permanece intratável mesmo
quando restrito a grafos cúbicos. A técnica usada envolve
montar blocos que forçam escolhas de cor que se propagam
pelo grafo inteiro. Os resultados são interessantes por revelar
que o índice cromático capta decisões combinatórias fortes e
que o problema não se resume a uma variação simples da
coloração de vértices.

No trabalho de Basavaraju e Chandran [8], há um
resultado importante para a coloração de arestas acíclica
em grafos planares. Os autores demonstram que todo
grafo planar admite tal coloração com ∆(G) + 12 cores,
superando o limite anterior de 2∆(G)+ 29. A prova utiliza
configurações inevitáveis em grafos planares e trocas de
cores para evitar ciclos bicromáticos, mostrando como o
índice cromático acíclico reflete a estrutura desses grafos.

No estudo de Galby, Lima, Paulusma e Ries [9], trabalhos
mais novos reforçam essa visão. Na pesquisa, o objetivo
foi classificar o k-Edge Coloring para grafos H-livres,
combinando reduções com análise estrutural para mapear
quando o problema é polinomial.

No trabalho de Sinnamon [10], são propostos algoritmos
para coloração de arestas que buscam ser acessíveis e
eficientes. O objetivo da autora é desenvolver métodos
simples e rápidos para produzir colorações com d +1 cores,
onde d é o grau máximo do grafo. A técnica utilizada se
baseia em decomposição recursiva e ciclos de Euler para
agilizar o processo. Os resultados demonstram que é possível
obter boas soluções de forma prática para grafos gerais em
aplicações reais.

Por fim, no trabalho de Raeisi e Gholami [11], a coloração
de arestas é aplicada à construção de grafos Tanner livres
de ciclos curtos para códigos LDPC de peso-coluna três,
melhorando a decodificação em canais ruidosos. O método
utiliza algoritmos de coloração eficientes para garantir
propriedades acíclicas nos grafos bipartidos. Os resultados
conectam a combinatória gráfica a aplicações práticas em
comunicações digitais.

IV. DESCRIÇÃO DO PROBLEMA

Nesta seção, definimos formalmente os três problemas que
aparecem na cadeia de redução. A Tabela 1 apresenta
a definição do problema 3-SAT, a Tabela 2 descreve o
problema 3-Coloring e a Tabela 3 formaliza o problema Edge
Coloring, indicando, em cada caso, a entrada e a pergunta
associadas.

TABELA 1: DEFINIÇÃO DO PROBLEMA 3-SAT

3-SAT (Satisfatibilidade Booleana)

Entrada: um conjunto X de variáveis; uma coleção C de
cláusulas sobre X onde, para cada c ∈ C, a cláusula possui
exatamente 3 literais (|c|= 3).

Pergunta: Determinar se existe uma atribuição de valores às
variáveis em X de modo que cada cláusula em C tenha pelo
menos um literal verdadeiro.

Para fins de formalização, define-se um literal como uma
variável booleana (x) ou sua negação (¬x). Uma cláusula
é composta pela disjunção lógica (operador OU) desses
literais. A especificidade do problema 3-SAT reside na
estrutura rígida onde cada cláusula deve conter estritamente
três literais, o que permite a padronização dos componentes
gráficos (gadgets) utilizados na redução.

A Tabela 1 define o 3-SAT, que serve como o elo de
conexão fundamental nesta prova. Diferente dos problemas
de coloração, que lidam com estruturas gráficas, o 3-SAT
lida com lógica pura. A restrição de ter "exatamente três
literais" é o que permite criar padrões geométricos fixos
(como triângulos) nas reduções para grafos.

TABELA 2: DEFINIÇÃO DO PROBLEMA 3-COLORING

3-COLORAÇÃO (3-COLORING)

Entrada: Um grafo G = (V,E).

Pergunta: Existe uma função c : V → {1,2,3} tal que
vértices adjacentes recebam cores distintas?

A Tabela 2 define formalmente o problema 3-Coloring.
A entrada é um grafo qualquer, e a pergunta questiona se
é possível colorir seus vértices usando apenas três cores,
respeitando a regra básica de que vértices conectados por
uma aresta devem ter cores diferentes.

TABELA 3: DEFINIÇÃO DO PROBLEMA EDGE COLORING

COLORAÇÃO DE ARESTAS (EDGE COLORING)

Entrada: Um grafo G = (V,E) e um inteiro k.

Pergunta: Existe uma função c : E → {1,2, . . . ,k} tal que
arestas incidentes recebam cores distintas?

A Tabela 3 define o problema Edge Coloring. Aqui,
a entrada inclui um grafo e também um número k que
representa a quantidade de cores disponíveis. A pergunta
busca saber se podemos colorir as arestas do grafo de forma
que arestas que compartilham um vértice comum recebam
cores diferentes. Note que enquanto no 3-Coloring colorimos
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Figura 6: Mapa ilustrando a restrição de adjacência no 3-Coloring.

Figura 7: Ilustração de uma festa como analogia para o 3-SAT.

vértices, no Edge Coloring colorimos arestas, mas ambos
impõem restrições de adjacência.

Os problemas de coloração de grafos representam uma
classe fundamental na teoria da computação, com aplicações
que vão desde o planejamento de horários até a alocação de
recursos em sistemas distribuídos. Nesta seção, descrevemos
formalmente os dois problemas centrais deste trabalho: o
3-Coloring, um problema clássico de coloração de vértices,
e o Edge Coloring, seu análogo na coloração de arestas.
Ambos são problemas de decisão NP-completos [1, 2, 3],
mas cada um apresenta desafios próprios.

Para tornar esses conceitos mais próximos do cotidiano,
podemos imaginar o 3-Coloring como o ato de colorir
um mapa usando apenas três cores, garantindo que países
vizinhos nunca compartilhem a mesma cor, como ilustrado
na Figura 6.

Em relação ao 3-SAT, é como organizar uma festa onde
o sucesso depende de satisfazer a todos. Para isso, o
organizador deve fazer várias escolhas binárias (as variáveis),
como definir se "Haverá Música Ao Vivo?" (Sim ou Não).
Cada convidado importante impõe uma cláusula: ele só
vem à festa se pelo menos uma de suas três condições for
atendida. Por exemplo, um convidado pode exigir: "Eu vou
se tiver Música Ao Vivo OU se o Amigo X não vier OU se
o Buffet for vegetariano." O desafio 3-SAT é encontrar uma
única combinação de decisões (uma configuração Sim/Não
para todos os fatores) que satisfaça a exigência de todos os
convidados simultaneamente. Se essa combinação existir, a
festa pode ser realizada.Essa analogia é ilustrada na Figura 7.

Já o Edge Coloring lembra a montagem da grade de
horários de uma escola: arestas representam aulas e vértices
representam professores ou salas. Aulas que usam o mesmo
recurso não podem ocorrer no mesmo horário, e por isso
precisam de cores diferentes, conforme ilustrado na Figura 8.

Essas analogias destacam como problemas abstratos da
computação surgem em situações reais.

Figura 8: Grade escolar ilustrando o Edge Coloring.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Para provar que Edge Coloring é NP-Completo é necessário
demonstrar duas condições:

• Edge Coloring ∈ NP
• Edge Coloring ∈ NP-Difícil

I) Edge Coloring ∈ NP: Para demonstrar que o problema
pertence a NP , apresentamos um certificado de tamanho
polinomial e um algoritmo verificador determinístico capaz
de validar esse certificado em tempo polinomial [12].

Dado o seguinte certificado: uma coloração
c : E→ 1,2, . . . ,k. Um verificador examina todos os
pares distintos de arestas do grafo. Para cada par (e1,e2),
o algoritmo testa se elas compartilham um vértice (são
incidentes) e, caso positivo, confirma que c(e1) 6= c(e2).
Como existem no máximo |E|2 pares de arestas para
verificar, o custo computacional é limitado por O(|E|2), o
que garante a execução em tempo polinomial.
II) Equivalência Estrutural (Grafo Linha): Uma forma
pedagógica de visualizar a pertinência a NP é através da
transformação para o Grafo Linha L(G). Essa construção
demonstra que o problema de Coloração de Arestas pode
ser modelado como um problema de Coloração de Vértices
(que sabemos estar em NP). A transformação mapeia cada
aresta de G em um vértice de L(G), e as adjacências entre
arestas incidentes em G tornam-se arestas entre vértices
em L(G). Assim, uma coloração própria das arestas de
G corresponde diretamente a uma coloração própria dos
vértices de L(G). Uma vez que o Grafo Linha pode ser
construído em tempo polinomial e a coloração de vértices
é um problema bem conhecido em NP , esta equivalência
estrutural reforça a classificação do problema de Edge
Coloring como pertencente à classe NP .

Dado um grafo G = (V,E), construímos L(G) = (VL,EL)
onde:

• VL = E (cada aresta de G torna-se um vértice em L(G))
• EL = {(e1,e2) | e1,e2 ∈ E são incidentes em G}Como exemplo ilustrativo, a Figura 9 mostra um grafo Gex

com vértices v1,v2,v3,v4 e arestas ea (ligando v1-v2), eb
(v2-v3), ec (v1-v3) e ed (v3-v4). Observa-se que as arestas eb
e ed compartilham o vértice v3, o que configura uma relação
de incidência direta. Por sua vez, eb também é incidente com
ec, uma vez que ambas incidem em v3. Essas relações de
adjacência entre arestas no grafo original serão representadas
como arestas no grafo linha L(Gex).

A Figura 10 mostra o grafo linha correspondente
L(Gex), onde cada aresta do grafo original torna-se um
vértice. A adjacência entre vb e vd reflete diretamente o
compartilhamento do vértice v3 pelas arestas eb e ed no grafo
original.
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Figura 9: Grafo Base (Gex)

Figura 10: Grafo Linha (L(Gex))

A propriedade fundamental, conforme Jensen e Toft [13],
é que G admite uma k-coloração de arestas se e somente se
L(G) admite uma k-coloração de vértices. Esta equivalência
confirma que resolver Edge Coloring é redutível a resolver
Vertex Coloring, reforçando sua pertinência à classe NP .

a. Prova de Corretude da Equivalência

A seguir, apresenta-se a demonstração de que G é
3-aresta-colorível se e somente se L(G) é 3-vértice-colorível.

Direção 1(⇒): Se G é 3-aresta-colorível, então L(G) é
3-vértice-colorível.

Prova: Seja c : E(G) → {vermelho,azul,verde} uma
coloração própria das arestas de G. Para cada aresta
e ∈ E(G), atribuímos a cor c(e) ao vértice correspondente
ve ∈V (L(G)). Se duas arestas eb e ec são incidentes ao
mesmo vértice v3 em G, elas possuem cores diferentes, como
ilustrado na Figura 11. Logo, os vértices vb e vc em L(G),
que são adjacentes, receberão cores diferentes.

Direção 2 (⇐): Se L(G) é 3-vértice-colorível, então G é
3-aresta-colorível.

Prova: Seja c′ : V (L(G)) → {1,2,3} uma coloração
própria dos vértices de L(G), como mostrado na Figura 12.
Definimos a coloração das arestas de G tal que c(e) = c′(ve).
A preservação da adjacência garante que arestas incidentes
em G terão cores distintas, validando a solução.

III) Edge Coloring ∈ NP-Difícil: A demonstração da

Figura 11: Coloração de arestas em Gex

Figura 12: Coloração Válida em L(Gex)
dificuldade deste problema usa o princípio da transitividade
das reduções polinomiais. Para mostrar que Edge Coloring
é tão difícil quanto o 3-Coloring, construímos uma cadeia
de redução em duas etapas. Primeiro, reduzimos o 3-
Coloring para o 3-SAT, transformando restrições de cores em
cláusulas booleanas. Depois, reduzimos o 3-SAT para o Edge
Coloring, simulando variáveis e cláusulas com um grafo
adequado. Pela transitividade, se 3-Coloring é NP-completo,
então Edge Coloring é NP-difícil.

A primeira etapa consiste na redução polinomial
3-Coloring ≤p 3-SAT. Dado um grafo G = (V,E) com n
vértices, constrói-se uma fórmula lógica φ que codifica de
forma precisa as restrições necessárias para uma coloração
própria de G com três cores [1]. Para cada vértice vi ∈V , são
criadas três variáveis booleanas: xi,1 (representando a cor 1),
xi,2 (cor 2) e xi,3 (cor 3).

A fórmula φ é formada pela conjunção de dois tipos
de cláusulas, que juntas modelam as condições de uma
coloração própria. A garantia de cor única exige que
cada vértice vi receba pelo menos uma cor, representada
pela cláusula (xi,1 ∨ xi,2 ∨ xi,3). Além disso, a restrição
de adjacência assegura que, para cada aresta (vi,v j) ∈
E, vértices adjacentes não compartilhem a mesma cor, o
que é modelado por três cláusulas de conflito para cada
aresta: (¬xi,1 ∨ ¬x j,1), (¬xi,2 ∨ ¬x j,2) e (¬xi,3 ∨ ¬x j,3).
Essas cláusulas lógicas correspondem diretamente à restrição
de exclusão mútua representada no gadget da Figura 4,
demonstrando como condições combinatórias são traduzidas
em restrições booleanas.

86 ISSN: 2675-3588



C
ME

A
A
J

Academic Journal on Computing, Engineering and Applied Mathematics ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 07, NO. 02, FEBRUARY 2026

Figura 13: Esquema do Gadget de Variável: a alternância de cores
no ciclo simula a negação lógica (x vs ¬x).

Uma vez obtida a fórmula satisfatível, avançamos para
a redução final para Edge Coloring. Esta etapa baseia-se
na construção clássica de Ian Holyer[3], que provou ser
NP-completo determinar se o índice cromático de um grafo
cúbico é 3 ou 4. A redução converte a fórmula lógica em um
grafo cúbico utilizando componentes modulares específicos,
denominados gadgets, que transportam valores de verdade
através de pares de arestas coloridas.

A construção utiliza duas estruturas principais que podem
ser compreendidas esquematicamente. A primeira é o
Componente de Variável, que funciona como um gerador de
verdade. Conforme ilustrado conceitualmente na Figura 13,
ele é constituído por um ciclo de arestas. Devido à
natureza da coloração de arestas, as cores devem se alternar
obrigatoriamente ao longo do ciclo. Se associarmos uma cor
ao valor "Verdadeiro" e outra ao "Falso", essa alternância
garante a consistência lógica: sempre que uma aresta
representa x, a adjacente representará ¬x.

O segundo elemento crítico é o Componente de Cláusula,
que atua como um testador de satisfação. Este subgrafo
conecta-se às arestas dos ciclos das variáveis correspon-
dentes aos literais da cláusula. Sua propriedade topológica
fundamental, representada na Figura 14, é o bloqueio
condicional: o gadget é desenhado de tal forma que se torna
impossível de colorir com apenas 3 cores se, e somente
se, todas as suas arestas de entrada carregarem a cor
correspondente ao valor "Falso".

Dessa forma, o grafo cúbico resultante completo só será
3-aresta-colorível se existir uma atribuição de verdade que
satisfaça a fórmula 3-SAT original, evitando o conflito
nos gadgets de cláusula. Conclui-se, assim, que resolver
Edge Coloring é suficiente para resolver 3-SAT e, por
transitividade, o 3-Coloring.

Ressalta-se que o resultado em um grafo cúbico fortalece
a conclusão. Na teoria da complexidade, se um problema
é NP-Difícil para uma classe restrita de entradas (grafos
3-regulares), ele mantém essa propriedade para o caso geral
(grafos arbitrários), visto que a classe restrita compõe um
subconjunto do problema global, conforme o princípio da
restrição descrito por Garey e Johnson [1]. Dessa forma, a
prova de Holyer fundamenta a classificação do problema de
Edge Coloring como NP-Difícil.

Figura 14: Lógica do Gadget de Cláusula: o componente falha
(não é colorível) apenas se receber "Falso" em todas as entradas.

Conclusão Geral: Por (I) e (II) demonstramos a pertinência
a NP . Por (III) justificamos a dificuldade via redução
transitiva baseada em Holyer. Logo, Edge Coloring é
NP-Completo.

b. Contribuições Pedagógicas

Este trabalho apresenta contribuições ao ensino de Teoria
da Computação ao esclarecer a distinção entre equivalência
estrutural e redução de dificuldade. A utilização do Grafo
Linha permite demonstrar que o problema de Coloração de
Arestas pode ser modelado como um problema de Coloração
de Vértices, o que comprova sua pertinência à classe NP
conforme as definições de Garey e Johnson [1]. Em
contrapartida, a prova de dificuldade exige a construção de
componentes lógicos, ou gadgets, como estabelecido por
Holyer [3], evitando a confusão comum sobre a direção das
reduções polinomiais.

A visualização da transformação estrutural G → L(G)
[4], complementada por representações visuais, facilita
a compreensão geométrica do processo. As ilustrações
auxiliam os estudantes a visualizar conceitos abstratos,
permitindo o entendimento das relações entre problemas de
coloração e a lógica de satisfatibilidade booleana.

VI. RESULTADOS E REFLEXÕES

A análise estrutural via Grafo Linha evidencia como
problemas de coloração de naturezas distintas (vértices e
arestas) compartilham uma base computacional comum [4].
Esta relação reforça o conceito de que problemas diferentes
podem pertencer à mesma classe de complexidade. A
equivalência demonstrada confirma que uma instância de
coloração de arestas possui solução se, e somente se, a
instância correspondente de coloração de vértices no grafo
linha também for solucionável.

Uma reflexão central deste estudo recai sobre a complexi-
dade da prova de NP-Dificuldade. Inicialmente, a intuição
geométrica sugere uma tentativa de redução direta entre os
problemas de coloração. No entanto, a investigação teórica
revelou que a redução padrão 3-Coloring ≤p Edge Coloring
não é imediata em termos de construção de gadgets
topológicos diretos. Foi necessário compreender que a
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literatura estabelece essa conexão através de uma ponte
lógica: a redução transitiva passando pelo problema 3-SAT.

Essa descoberta pedagógica é valiosa: ela demonstra que,
embora problemas de grafos sejam visualmente similares,
a prova de sua dificuldade muitas vezes exige o retorno
aos fundamentos da lógica booleana. A construção de
Holyer [3], utilizada neste trabalho, ilustra precisamente
como restrições locais em um grafo cúbico simulam portas
lógicas, confirmando a intratabilidade do problema mesmo
em estruturas restritas.

Sob uma perspectiva prática, a confirmação da
NP-completude do Edge Coloring para k = 3 indica a
necessidade de abordagens alternativas para a solução
exata em casos gerais [3]. Essa constatação direciona a
investigação para o uso de heurísticas e a análise de casos
especiais tratáveis, como os grafos bipartidos, onde o
Teorema de Vizing assegura que o índice cromático iguala o
grau máximo [14]. Para o ensino, este resultado demonstra
que a classificação de complexidade orienta a escolha de
estratégias algorítmicas.

A contribuição pedagógica deste trabalho reside na
integração de técnicas de redução com suporte visual. A
construção do Grafo Linha e a explicação dos componentes
de Holyer tornam a demonstração acessível para estudantes
de graduação. A apresentação sequencial dos conceitos
permite a compreensão dos passos necessários para estabele-
cer a NP-Completude de um problema, desde a verificação
via equivalência estrutural até a prova de dificuldade via
satisfatibilidade lógica.

Os resultados destacam o Grafo Linha como ferramenta
pedagógica na teoria da computação [15]. Esta estrutura
facilita a compreensão das reduções polinomiais e serve
como ponte conceitual entre diferentes áreas da teoria dos
grafos. A metodologia adotada pode ser aplicada ao ensino
de outros tópicos, combinando formalismo matemático com
exemplos visuais para tornar conceitos abstratos tangíveis.

VII. CONSIDERAÇÕES FINAIS

Este artigo estabeleceu a classificação do problema Edge
Coloring como NP-Completo mediante uma abordagem
dupla. A pertinência a NP foi demonstrada através da
equivalência estrutural com o problema de Coloração de
Vértices via Grafo Linha, conforme teoria de Whitney
[4]. A condição de NP-Dificuldade foi justificada pela
redução polinomial a partir do problema 3-SAT, utilizando a
construção de gadgets proposta por Holyer [3], o que valida
a relação transitiva com o problema 3-Coloring.

As contribuições pedagógicas compreendem a formaliza-
ção da prova de redutibilidade e a distinção metodológica
entre verificação e prova de dificuldade. A incorporação
de exemplos ilustrativos e a discussão sobre as implicações
práticas da intratabilidade computacional visam apoiar o
aprendizado. O material pode integrar cursos de teoria da
computação como exemplo de técnicas de redução e análise
de complexidade.

O trabalho demonstra a viabilidade de apresentar con-
ceitos de teoria da computação de maneira compreensível
para estudantes de graduação. A abordagem baseada
em exemplos visuais constrói a intuição sobre reduções
polinomiais e NP-completude [1].

Para o ensino de complexidade computacional, este
recurso combina rigor teórico com acessibilidade. A
estrutura apresentada permite acompanhar o processo de
redução polinomial, desde a transformação inicial até a
prova de corretude, o que desenvolve a compreensão dos
fundamentos da teoria da NP-completude [2].

Trabalhos futuros podem investigar variantes do problema,
como Edge Coloring em classes restritas de grafos ou
desenvolver materiais interativos para visualização de
reduções. A criação de recursos adicionais como vídeos
explicativos ou simulações poderia complementar o material
apresentado, ampliando o impacto educacional na área de
complexidade computacional.
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