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Editorial (Portugués)
Quando a Teoria Ensina: Grafos e Computacdao em
Perspectiva Pedagogica

Tanilson Dias dos Santos (Orgamizador)1

U Universidade Federal do Tocantins , tanilson.dias @uft.edu.br

Resumo—Esta edi¢do especial da Revista AJCEAM retine trabalhos oriundos das disciplinas de Teoria dos Grafos e Teoria da
Computacdo, com forte cardter pedagogico e formativo. Os artigos apresentam abordagens diddticas, exemplos liidicos e exposigcoes
auto-contidas de problemas cldssicos da literatura, visando apoiar o aprendizado de alunos de graduagdo. Embora ndo tragam novos
resultados cientificos, os trabalhos contribuem para a melhor compreensdo conceitual de temas tradicionalmente considerados complexos.

A edi¢do constitui, ainda, uma homenagem ao esforgco académico e a exceléncia demonstrada pelos estudantes de Ciéncia da Computagdo.

Palavras-chave—Contribuicdo Pedagdgica. Problemas Computacionais. Teoria da Computagdo. Teoria dos Grafos.

I. O QUE VOCE VAI ENCONTRAR NESTE ESCRITO?

Carl’ssimo leitor, esta edicdo especial da Revista AJCEAM retine um conjunto de trabalhos
oriundos de atividades desenvolvidas no ambito das disciplinas de Teoria dos Grafos e Teoria
da Computacdo, oferecendo uma coletanea cuidadosamente organizada com forte carater didatico,
pedagdgico e formativo. Os artigos aqui apresentados resultam de esfor¢os académicos que aliam rigor
conceitual, criatividade e preocupacdo com a clareza na exposi¢ao de temas cldssicos e fundamentais da
Computagao Tedrica.

Os trabalhos desta edi¢do ndo t€ém como objetivo a apresentacdo de novos resultados cientificos.
Em vez disso, lancam luz sobre problemas consagrados da literatura, frequentemente reconhecidos
por sua complexidade conceitual e, por vezes, por dificuldades de assimilagdo por parte dos discentes.
Nesse sentido, os autores propdem abordagens pedagdgicas, exemplos lidicos e discussdes guiadas que
favorecem uma compreensao mais acessivel e aprofundada dos temas tratados, sem abrir mao da precisao
tedrica.

Uma caracteristica marcante dos artigos que compdem esta edicdo especial é o seu cardter auto-
contido: todos os conceitos, definicdes e fundamentos necessdrios a compreensdo dos problemas
abordados sdo apresentados nos proprios textos. Essa escolha editorial reforca a proposta de que
os trabalhos possam ser utilizados como produtos de apoio ao ensino, servindo como material
complementar para estudantes de graduacdo que desejem aprender, revisar ou se aprofundar em tépicos
relevantes de Teoria dos Grafos e Teoria da Computagao.

Os aspectos técnicos de cada problema sdo apresentados de forma intencionalmente superficial,
priorizando a intuicdo, o entendimento conceitual e as ideias centrais envolvidas. Adicionalmente,
cada trabalho traz reflexdes sobre suas préprias contribuicdes, destacando pontos sutis que podem
passar despercebidos em uma leitura apressada. Os trabalhos relacionados apresentados nos artigos
contextualizam o leitor com resultados s6lidos e recentes da literatura, enquanto comentdrios adicionais
e propostas de trabalhos futuros aparecem como convite a continuidade do estudo e da pesquisa.

Por fim, esta edi¢cdo especial pode ser entendida como uma verdadeira ode ao esfor¢co académico
dos alunos do curso de Ciéncia da Computacdo, que conseguiram materializar, na forma de artigos

ISSN: 2675-3588 ix
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cientificos, a exceléncia demonstrada ao longo das aulas tedricas e das atividades praticas. Trata-se de
um testemunho do potencial formativo das disciplinas e do compromisso dos discentes com a construgao,

a comunicagdo e a reflexdo critica do conhecimento cientifico.

Desejamos ao leitor uma leitura proveitosa e inspiradora.

Prof. Dr. Tanilson Dias dos Santos
Organizador desta Edi¢do Especial

X ISSN: 2675-3588
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MAX-2SAT: Contribui¢des Pedagogicas para o Aprendizado
no Escopo da Teoria da Computagao

MAX-2SAT: Reflections and Pedagogical Practices within the Scope of the Theory of
Computation Course

Raphael Sales de Souza', Thiago Gonzaga dos Santos!, Daniel Martins da Silva! e Tanilson Dias dos
Santos'

sales.raphael@mail.uft.edu.br  thiago.gonzaga@mail.uft.edu.br

! Universidade Federal do Tocantins, Curso de Ciéncia da Computagdo, Tocantins, Brasil
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Data de recebimento do manuscrito: 28/11/2025
Data de aceitagdo do manuscrito: 27/01/2026
Data de publicagao: 10/02/2026

Resumo—Este artigo apresenta uma demonstragio formal e didatica da A_P-completude do problema Maximum 2-Satisfiability (Max-
2SAT) por meio de redugdo polinomial a partir do problema Clique. O Max-2SAT, variante de maximiza¢do do problema SAT em que
cada cldusula contém no méaximo dois literais, questiona se existe uma valorag¢do booleana capaz de satisfazer pelo menos k clausulas de
uma férmula em forma normal conjuntiva. Embora o problema 2-SAT seja resolvido em tempo polinomial, sua versdo de maximizagao
€ NP-completa. A demonstragdo utiliza uma constru¢do com varidvel auxiliar que mapeia estruturas de grafos em férmulas booleanas,
estabelecendo correspondéncia biunivoca entre cliques e valoragdes satisfatérias. Como contribui¢des pedagdgicas, o trabalho apresenta:
(i) prova formal detalhada de AP-pertinéncia e A P-dificuldade; (ii) construgdo explicita da redu¢ao Clique <, Max-2SAT com figuras
ilustrativas; (iii) exemplo completo comentado passo a passo; (iv) pseudocédigo do verificador polinomial; e (v) discussdes sobre
armadilhas comuns e estratégias de compreensdo. O material produzido visa facilitar o aprendizado de redugdes polinomiais e fortalecer a
compreensdo sobre a fronteira entre tratabilidade e intratabilidade computacional.

Palavras-chave—Max-2SAT, A P-completude, Reducio Polinomial, Clique, Teoria da Complexidade, Satisfatibilidade Booleana

Abstract—This paper presents a formal and pedagogical demonstration of the N P-completeness of the Maximum 2-Satisfiability (Max-
28AT) problem through polynomial reduction from the Clique problem. Max-2SAT, a maximization variant of the SAT problem where each
clause contains at most two literals, asks whether there exists a Boolean assignment capable of satisfying at least k clauses of a formula
in conjunctive normal form. Although the 2-SAT problem is solvable in polynomial time, its maximization version is N P-complete. The
demonstration employs a construction with an auxiliary variable that maps graph structures into Boolean formulas, establishing a bijective
correspondence between cliques and satisfying assignments. As pedagogical contributions, this work presents: (i) detailed formal proof of
N P-membership and N P-hardness; (ii) explicit construction of the Clique <, Max-2SAT reduction with illustrative figures; (iii) complete
step-by-step annotated example; (iv) pseudocode for the polynomial verifier; and (v) discussions about common pitfalls and comprehension
strategies. The material produced aims to facilitate the learning of polynomial reductions and strengthen understanding of the boundary
between tractability and computational intractability.

Keywords—Max-2SAT, NP-Completeness, Polynomial Reduction, Clique, Complexity Theory, Boolean Satisfiability

NP (Nondeterministic Polynomial Time) e, em especial,
os problemas A/P-completos ocupam papel central, tanto

I. INTRODUCAO

Teoria da Computagdo estabelece os fundamentos
matemdticos para compreender os limites da compu-
tacdo, classificando problemas segundo sua complexidade
computacional. Entre as classes de complexidade, a classe

Dados de contato: Raphael Sales de Souza, sales.raphael @mail.uft.edu.br
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do ponto de vista tedrico quanto pratico. Um problema é
AN P-completo se pertence a classe AP e todo problema
em AP pode ser reduzido a ele em tempo polinomial,
caracterizando-o como um dos mais representativos quanto
a dificuldade computacional.

O conceito de A P-completude foi introduzido por
Stephen Cook em 1971 [1], por meio do Teorema de
Cook-Levin, que estabeleceu o problema SAT (Satisfiability)
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como o primeiro problema A P-completo. Desde entdo,
milhares de problemas foram classificados como A P-
completos através de redugdes polinomiais, compondo uma
ampla rede de equivaléncias que fundamenta a nocdo
moderna de intratabilidade algoritmica.

Dentre os problemas derivados de SAT, o Maximum 2-
Satisfiability (Max-2SAT) ocupa posi¢do de destaque. Trata-
se de uma variante de maximizacdo em que cada cldusula
contém no maximo dois literais, e o objetivo é determinar
uma valoragdo que satisfaca o maior nimero possivel de
clausulas. Na versdo de decisdo, dada uma férmula
em forma normal conjuntiva e um inteiro k, pergunta-
se se existe uma atribuicdio que satisfaca pelo menos k
clausulas. Embora o problema 2-SAT seja resolvido em
tempo polinomial [2], sua versdo de maximizacdo (Max-
2SAT) é N P-completa, conforme demonstrado por Garey,
Johnson e Stockmeyer [3].

O Max-2SAT possui aplicagdes praticas relevantes, como
otimizacdo de circuitos eletronicos, andlise de dependéncias
em sistemas de software, depuracdo de hardware, modela-
gem de redes bioldgicas e problemas de agendamento com
restricdes bindrias. Além disso, algoritmos de aproximacao
e heuristicas para Max-2SAT sdo estudados de forma ampla
na literatura, reforcando sua importancia tanto tedrica quanto
aplicada.

O objetivo deste artigo é apresentar, de maneira didética, a
demonstragdo da A P-completude do Max-2SAT utilizando
a redu¢do polinomial Clique <, Max-2SAT. Essa redugio
nio foi explorada em sala de aula e permite discutir a
relacdo entre problemas de grafos e problemas de logica
proposicional.

E importante ressaltar que a principal contribui¢io deste
manuscrito é de natureza pedagdgica, consistindo na
sistematizacdo detalhada e acessivel da demonstragdo da
A P-completude do Max-2SAT. Nio sdo propostos novos
resultados tedricos ou algoritmicos; a redugdo Clique <,
Max-2SAT aqui apresentada é conhecida na literatura [4]. O
valor do trabalho reside na exposic¢do didatica estruturada,
com exemplos comentados, figuras ilustrativas e discussdes
sobre armadilhas conceituais, voltada para estudantes e
docentes de disciplinas de Teoria da Computacao.

As principais contribui¢des deste trabalho incluem a
demonstragio formal da A P-pertinéncia e da N P-
dificuldade do Max-2SAT, a construcio explicita e detalhada
da redugdo polinomial Clique <, Max-2SAT, figuras
ilustrativas destacando como cada parte do grafo é traduzida
para cldusulas 2-SAT, um exemplo completo e comentado
exibindo todas as etapas da transformag@o, o pseudocédigo
do verificador polinomial para a versdo de decisdao do Max-
2SAT, e discussdes pedagdgicas sobre armadilhas comuns e
estratégias para compreender reducdes entre problemas de
grafos e formulas booleanas.

O restante deste artigo estd organizado da seguinte forma:
a Se¢do 2 — Preliminares — apresenta as preliminares
necessarias, incluindo definicdes formais de classes de
complexidade, redugdes polinomiais e os problemas Clique
e Max-2SAT; a Sec¢do 3 — Trabalhos Relacionados — revisa
trabalhos relacionados; a Secdo 4 — Descrigcdo do Problema
— descreve em detalhes o problema Max-2SAT; a Secdo 5
— Demonstracdo e Contribuicdes — apresenta a prova de
N P-completude por meio da reducdo Clique <, Max-2SAT;

DE SOUZA et al.

Figura 1: Grafo G1

a Secdo 6 — Resultados e Reflexdes — discute resultados e
reflexdes.

II. PRELIMINARES

Sdo definidos a seguir os conceitos fundamentais que
embasam o restante deste trabalho, abrangendo classes de
complexidade, redugdes polinomiais, férmulas em FNC e as
especificacdes formais dos problemas Clique e Max-2SAT,
que constituem, respectivamente, o problema Atacado e o
problema Alvo da redugdo apresentada na Secdo 5.

A seguir sdo apresentados os conceitos fundamentais de
teoria dos grafos, que serdo essenciais para compreender
a redugdo Clique <, Max-2SAT. Um grafo é uma
estrutura matemdtica que modela relagdes entre objetos.
Formalmente, um grafo G ¢é definido por um par ordenado
G = (V(G),E(G)), onde V(G) representa um conjunto finito
e ndo vazio de vértices (também chamados de nés) e E(G)
representa um conjunto de arestas, sendo cada aresta um par
de vértices (u,v) com u,v € V(G) e u # v. Quando existe
uma aresta (u,v) € E(G), dizemos que os vértices u e v sdo
adjacentes ou vizinhos.

O grau de um vértice v € V(G), denotado por deg(v),
corresponde ao numero de arestas incidentes a ele, ou
equivalentemente, ao nimero de vizinhos que v possui no
grafo. Um subgrafo de G é um grafo G’ = (V(G'),E(G")) tal
que V(G') CV(G) e E(G') C E(G), onde todas as arestas de
E(G') conectam apenas vértices pertencentes a V (G').

Para ilustrar esses conceitos, considera-se o grafo G1 da
Figura 1 com quatro vértices V(G) = {v,v2,v3,v4} € quatro
arestas E(G) = {(vi,v2),(v1,v3), (v2,v3),(v2,v4)}. Neste
grafo, o vértice v, possui grau 3, pois estd conectado a trés
outros vértices (v, v3 € v4); 08 vértices vy e v3 possuem grau
2, cada um conectado a dois vizinhos; e o vértice v4 possui
grau 1, estando conectado apenas a v;.

Uma clique é um subconjunto de vértices C C V(G)
tal que todo par de vértices distintos em C € adjacente.
Formalmente, para quaisquer u#,v € C com u # v, temos
(u,v) € E(G). O tamanho de uma clique é o nimero de
vértices que ela contém.

A Figura 2 ilustra o conceito de clique de forma detalhada.
Nessa figura, o grafo possui quatro vértices {vi,va,v3,va}
e as arestas {(vi,v2), (vi,v3), (v2,v3),(v2,v4) }. O retdngulo
tracejado destaca o subconjunto {v,vz,v3}, que forma uma
clique de tamanho 3. Para verificar que esse conjunto é de
fato uma clique, observa-se que existem arestas conectando
todos os pares possiveis dentro dele: a aresta (v, v2) conecta
vl a vy, a aresta (v1,v3) conecta v; a v3, e a aresta (vp,V3)
conecta vy a v3. Como cada par de vértices do conjunto estd
conectado por uma aresta, a condi¢do de clique ¢ satisfeita.

O vértice v4, representado em cinza mais escuro na figura,
ndo faz parte dessa clique. Embora v4 esteja conectado a
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Clique de tamanho 3

P ]

Figura 2: Grafo com clique de tamanho 3 formada por {v;vs;v3}.

vo pela aresta (v2,v4), ele ndo possui arestas com v; nem
com v3. Portanto, se fosse incluido v4 no conjunto, os
pares (vi,v4) e (v3,v4) néo seriam adjacentes, violando a
defini¢do de clique. Esse exemplo ilustra por que uma clique
exige conectividade total entre todos os seus membros, € nao
apenas conexdes parciais.

A seguir sdo apresentados os conceitos de complexidade
computacional, um problema de decisdo ¢ um problema cuja
resposta € “sim” ou “ndo”.

Uma Maiquina de Turing é um modelo matemadtico de
computagdo que consiste em uma fita infinita dividida em
células, um cabecote de leitura/escrita que pode mover-se
sobre a fita, um conjunto finito de estados, e uma funcdo de
transicdo que determina o comportamento da maquina. A
cada passo, a maquina I&€ o simbolo da célula atual, escreve
um novo simbolo (ou mantém o anterior), move o cabecote
para a esquerda ou direita, e muda de estado. Uma Maquina
de Turing é deterministica quando, para cada combinagdo de
estado e simbolo lido, existe no maximo uma agdo possivel
definida pela fungdo de transi¢do. Uma Mdquina de Turing
€ ndo deterministica quando podem existir multiplas acdes
possiveis para uma mesma configuragdo, permitindo que a
madquina "escolha"entre diferentes caminhos de computacao.
Esse modelo, proposto por Alan Turing em 1936, captura
formalmente a nog¢do intuitiva de algoritmo e constitui a
base tedrica para a definicdo de classes de complexidade
computacional [5].

Um certificado para um problema de decisdo é uma
estrutura de dados que, quando fornecida junto com
uma instdncia do problema, permite verificar em tempo

[P 1)

polinomial se a resposta para aquela instdncia é “‘sim
Formalmente, um problema L pertence a classe AP se
existe um verificador polinomial V e uma constante ¢ tal
que, para toda instincia x: x € L <= 3 certificado y com
[y] < |x|€ tal que V (x,y) = “aceita”. O certificado funciona
como uma "prova'"de que a instincia tem resposta positiva.
Por exemplo, para o problema Clique, um certificado seria
um subconjunto especifico de vértices; para um problema
de satisfatibilidade booleana, seria uma valoragdo das
varidveis. A existéncia de certificados verificaveis em tempo
polinomial caracteriza a classe AP e distingue-a de outras
classes de complexidade.

A classe de complexidade P consiste no conjunto
de problemas decidiveis por uma Madaquina de Turing
deterministica em tempo polinomial [5]. Formalmente,

P = {L |L é decidivel por uma MT deterministica

em tempo polinomial }.

ISSN: 2675-3588
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Por sua vez, a classe AP é definida de forma anéloga,
substituindo a Méquina de Turing deterministica por uma
ndo deterministica:

NP = { L |L é decidivel por uma MT n#o deterministica

em tempo polinomial }.

De modo equivalente, AP redne os problemas cujas
solucdes podem ser verificadas em tempo polinomial
mediante um certificado apropriado.

Um problema L é A P-dificil quando todo problema em
AP se reduz a L em tempo polinomial, € € A P-completo
quando, além disso, pertence a propria classe A P.

Redugdes polinomiais sdo o principal mecanismo para
comparar a dificuldade de problemas. Diz-se que um
problema de decisdo A reduz-se polinomialmente a outro
problema de decisdo B, denotado pela notagdo A <, B,
quando existe uma fungdo computavel em tempo polinomial
f tal que, para toda instincia x, temos x € A < f(x) €
B. O simbolo <, denota a relacdio de redugdo em
tempo polinomial, indicando que o problema A ndo é mais
dificil que o problema B do ponto de vista computacional.
Nessa notacdo, A é denominado problema atacado, pois
é o problema cuja complexidade ja conhecemos, e B ¢
denominado problema alvo, para o qual desejamos provar
a complexidade. O uso dessas redugdes permite demonstrar
A P-dificuldade e, quando combinado com a pertinéncia a
NP, também N\ P-completude.

No contexto de redugdes polinomiais, um gadget é
uma construg¢do auxiliar padronizada que traduz elementos
estruturais do problema Alvo para o problema Atacado,
preservando as propriedades essenciais da instancia original.
A técnica de construgdo por gadgets permite modularizar
a reducdo, facilitando tanto a verificacdo de corretude
quanto a andlise de complexidade. Por exemplo, na
reducdo Clique <, Max-2SAT apresentada neste trabalho,
as cldusulas de sele¢do (x; Vz) e (x; V —z) funcionam como
gadgets que distinguem vértices selecionados de vértices ndo
selecionados, enquanto as cldusulas de incompatibilidade
(—x; V —x;) atuam como gadgets que impedem a selegdo
simultinea de vértices ndo adjacentes.

No contexto de férmulas booleanas, sdo definidos
formalmente os conceitos fundamentais na ordem légica
de constru¢do. Uma varidvel booleana € um simbolo que
pode assumir um dentre dois valores possiveis, pertencentes
ao conjunto {0,1}, onde O representa falso e 1 representa
verdadeiro.  Formalmente, dada uma varidvel x, uma
valora¢do G associa a x um valor em {0, 1}, denotado por
o(x). A partir de varidveis, construimos literais mediante
a seguinte definicdo: um literal € uma varidvel x ou sua
negacdo —wx. Se o(x) = I, entdo o literal x é verdadeiro
e o literal —x é falso sob o; de modo andlogo, se 6(x) =
0, entdo o literal x € falso e o literal —x é verdadeiro
sob 6. Combinando literais mediante a operacdo ldgica
de disjuncdo, formamos clausulas conforme a definicdo a
seguir: uma cldusula é uma disjun¢do de literais, podendo
ser representada formalmente como C = (I} VL V.- V1),
onde cada /; € um literal. Uma valoragéo ¢ satisfaz a clausula
C quando ao menos um de seus literais € verdadeiro sob G,
isto é, quando existe i € {1,2,...,r} tal que /; é verdadeiro
segundo . Finalmente, uma férmula estd em Forma Normal
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TABELA 1: DEFINICAO FORMAL DO PROBLEMA CLIQUE.

Clique

Entrada: Um grafo G = (V(G),E(G)) e um inteiro
positivo k.

Questiio: Existe um subconjunto S C V(G) com |S| > k
tal que todo par de vértices de S é adjacente, isto é, para
quaisquer v;,v; € S com i # j, tem-se (v;,v;) € E(G)?

Clique: todos sio amigos miituos

Figura 3: Rede social com clique {Ana, Bruno, Carla}.

Conjuntiva (FNC) quando é expressa como uma conjuncio
de clausulas, isto €, F = C; ACy A --- ACy,, onde cada C; é
uma cldusula. Uma valorag@o ¢ satisfaz a férmula F quando
satisfaz simultaneamente todas as cldusulas C; que compdem
F.

A seguir sdo apresentados os dois problemas centrais
desta reducdo: Cligque, que atua como problema atacado
(A P-completo), e Max-2SAT, o problema alvo cuja N P-
dificuldade sera estabelecida.

O problema Clique foi demonstrado como A P-completo
por Karp em 1972 [6]. Para tornar mais clara a estrutura do
problema e facilitar a compreensdo da redugdo apresentada
posteriormente, é apresentado um exemplo cotidiano que
ilustra o conceito de clique, conforme representado na
Figura 3. Em uma rede social, cada pessoa € representada
por um vértice do grafo, e uma aresta conecta duas pessoas
que sdo amigas entre si. O problema Clique corresponde a
encontrar um grupo de pelo menos k pessoas onde todos sdo
mutuamente amigos, isto €, cada par de pessoas dentro desse
grupo possui uma relacdo de amizade direta. Por exemplo,
imagine que voc€ deseja organizar um jantar e precisa
convidar pelo menos trés pessoas, mas com a restri¢cdo de
que todos os convidados ja se conhecam mutuamente para
garantir um ambiente confortdvel e integrado. Determinar se
tal grupo existe na sua rede de amizades é exatamente uma
instancia do problema Clique.

A Figura 3 ilustra esse cendrio: Ana, Bruno e Carla
formam uma clique de tamanho 3, pois cada par dentro
desse grupo possui amizade direta (representada pelas arestas
que conectam todos os trés entre si). Davi e Eva, embora
conectados a alguns membros do grupo, ndo fazem parte
dessa clique pois nao sdo amigos de todos os outros membros
simultaneamente — por exemplo, Davi ndo possui aresta
com Carla, e Eva ndo possui aresta com Ana nem com Bruno.

-

E importante observar a diferenca fundamental entre o
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TABELA 2: DEFINICAO FORMAL DO PROBLEMA MAX-2SAT.

Max-2SAT

Entrada: Uma férmula booleana F em forma normal
conjuntiva (FNC), na qual cada cldusula contém no
maximo dois literais, € um inteiro positivo k.

Questao: Existe uma valorag@o booleana das varidveis
de F que satisfaga pelo menos k clausulas?

problema 2-SAT e sua versdo de maximizagdo. O problema
2-SAT, que pergunta se existe uma valoracdo que satisfaz
todas as cldusulas de uma férmula onde cada cldusula tem
no maximo dois literais, pode ser resolvido em tempo
linear O(n + m), onde n é o nimero de varidveis e m é
o nimero de cldusulas, através de algoritmos baseados em
grafos de implicagdo e componentes fortemente conexas [2].
Em contraste, a versdo de maximizacdo Max-2SAT foi
demonstrada como A/P-completa por Garey, Johnson e
Stockmeyer [3], que provou sua intratabilidade através
de uma reducdo polinomial a partir do problema Vertex
Cover. Essa diferenca ilustra como alteracdes pequenas na
especificacdo de um problema podem resultar em mudancas
drasticas em sua complexidade computacional.

Demonstrar que Max-2SAT é A_P-completo requer exibir
dois componentes: primeiro, um certificado verificivel em
tempo polinomial que comprove a pertinéncia a classe
A[P; segundo, uma redugdo polinomial a partir de um
problema ja conhecido como A P-completo. Neste trabalho,
o problema Clique € utilizado como ponto de partida para a
reducdo, estabelecendo uma correspondéncia entre estruturas
altamente conectadas em grafos e férmulas booleanas com
alto grau de satisfatibilidade. Essa reducgdo serd desenvolvida
em detalhes na Secdo 5.

ITI. TRABALHOS RELACIONADOS

As referéncias cldssicas sobre teoria da complexidade
computacional e A’ P-completude, como Cook [1], Karp [6],
Garey e Johnson [4], Papadimitriou [7] e Sipser [5],
constituem obras fundamentais para a compreensdo geral de
reducdes polinomiais, classes de complexidade e taxonomia
de problemas intratdveis, fornecendo o alicerce conceitual
sobre o qual se desenvolvem estudos mais especificos.

No contexto especifico de Max-2SAT e problemas
de satisfatibilidade booleana, Goemans e Williamson [8]
apresentam um algoritmo de aproximagdo baseado em
programacdo semidefinida que alcanga fator de aproxi-
macgdo de 0.878 para o problema Max-2SAT. O trabalho
estabelece um marco importante ao conectar técnicas de
otimizac¢do continua com problemas combinatérios discre-
tos, demonstrando que relaxagdes semidefinidas podem
fornecer solugdes de alta qualidade mesmo quando a
solucdo 6tima é computacionalmente intratdvel. Os autores
utilizam arredondamento aleatério de varidveis baseado
em vetores unitdrios, técnica que se tornou fundamental
para o desenvolvimento de algoritmos de aproximagdo em
problemas de satisfatibilidade.

Trevisan et al. [9] investigam a construg@o sistemdtica
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de gadgets para redugdes entre variantes de problemas de
satisfacdo de restricdes booleanas. O trabalho caracteriza
quais propriedades estruturais devem ser preservadas ao
transformar instdncias de um problema em outro, estabe-
lecendo condi¢des necessdrias e suficientes para que uma
reducdo mantenha a equivaléncia entre solugdes 6timas. Os
autores demonstram como gadgets bem projetados permitem
controlar precisamente o nimero de cldusulas satisfeitas
na férmula resultante, técnica essencial para reducdes que
envolvem problemas de maximizacdo como o Max-2SAT.
Essa abordagem sistemadtica influenciou significativamente
o desenvolvimento de novas reducdes e a compreensdo de
limites de aproximabilidade.

Khanna et al. [10] estabelecem uma taxonomia completa
de aproximabilidade para problemas de satisfacio de
restrigdes booleanas, incluindo Max-2SAT. O trabalho
caracteriza formalmente quais variantes desses problemas
admitem esquemas de aproximagdo em tempo polinomial
(PTAS) e quais sdo APX-completos, isto €, ndao admitem
aproximagdo arbitrariamente boa sob a hipétese P # N P.
Os autores demonstram que Max-2SAT pertence a classe
AP X-completa, indicando que, embora existam algoritmos
de aproximagdo com garantias constantes, ndo € possivel
obter esquemas que aproximem a solu¢do Otima com
erro arbitrariamente pequeno em tempo polinomial. Essa
caracterizacdo delimita precisamente as fronteiras entre
o que ¢ computacionalmente vidvel e o que permanece
intratdvel mesmo sob relaxacdes de otimalidade.

No contexto pedagdgico e didatico, Lassance, Bianchini
e Santos [11] apresentam um estudo fundamentado na
experiéncia da disciplina de Teoria da Computacdo da
Universidade Federal do Tocantins, evidenciando a im-
portincia de metodologias ativas baseadas em semindrios
académicos para a aprendizagem de conceitos abstratos
como decidibilidade, complexidade e A P-completude. Os
autores argumentam que a exposicdo publica, a andlise
critica de demonstragdes formais e a elaboracdo de
apresentacdes estruturadas contribuem significativamente
para o desenvolvimento de autonomia intelectual e dominio
técnico por parte dos estudantes. A discussdo mostra como
abordagens dialogadas favorecem a consolidacio de técnicas
de reducao polinomial e de formalizacdo rigorosa, aspectos
essenciais tanto para a compreensao de problemas intrataveis
quanto para a construcdo de demonstracdes corretas. Esse
trabalho relaciona-se diretamente com a proposta pedagdgica
do presente artigo, que busca apresentar a demonstragdo de
AN P-completude do Max-2SAT de forma diddtica e acessivel
a estudantes de graduacio.

IV. DESCRICAO DO PROBLEMA

O problema Maximum 2-Satisfiability (Max-2SAT) é uma
variante de maximizacdo do problema classico SAT, na
qual cada cldusula contém no miximo dois literais. O
objetivo é determinar uma valora¢do booleana que satisfaca
o maior nimero possivel de cldusulas. Na versio de
decisdo, investigada neste trabalho, pergunta-se se existe
uma valoracdo capaz de satisfazer pelo menos k cldusulas
de uma férmula em forma normal conjuntiva (FNC).

Para tornar o problema Max-2SAT mais acessivel,
considere o seguinte cendrio: um organizador de eventos
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precisa alocar n palestras em dois hordrios disponiveis,
manha e tarde. Cada palestra deve ocorrer em exatamente um
dos dois periodos. Diversos pares de palestrantes expressam
preferéncias conjuntas sobre os hordrios, representadas por
restrigdes do tipo "pelo menos um de nds deve estar na
manha"ou "pelo menos um de nés deve estar na tarde".

Formalmente, cada palestra pode ser modelada i por uma
varidvel booleana x;, onde x; = 1 significa que a palestra i
estd alocada no periodo da manha, e x; = 0 indica alocacio
no periodo da tarde. Uma preferéncia expressa por dois
palestrantes i e j pode ser representada por uma cldusula
booleana como (x; V x;), que é satisfeita quando pelo menos
uma das duas palestras ocorre na manhd, ou (—x; \/xj),
indicando que se a palestra i for na manha, entdo j também
deve ser na manha.

Em muitas situacOes préticas, as preferéncias dos pales-
trantes entram em conflito, tornando impossivel satisfazer
todas simultaneamente. Por exemplo, se trés palestrantes A,
B e C expressam as preferéncias "A ou B na manha", "B
ou C na tarde"e "A ou C em hordrios opostos", pode ser
impossivel atender todas a0 mesmo tempo. Nesse contexto,
0 objetivo torna-se maximizar o nimero total de preferéncias
atendidas, escolhendo uma alocag¢do que satisfaca o maior
nimero possivel de restrigdes.

Esse cendrio captura a esséncia do Max-2SAT: lidar com
um sistema de restri¢gdes booleanas parcialmente conflitantes
e buscar uma solu¢do que maximize a consisténcia global,
mesmo quando a satisfaco total é invidvel.

Formalmente, uma instancia do Max-2SAT consiste em
uma férmula booleana F em forma normal conjuntiva
(FNC), composta por cldusulas Cy,Cs,...,C,, cada uma
contendo um ou dois literais, e por um inteiro positivo k. O
problema consiste em determinar se existe uma valoragdo ¢
que satisfaca pelo menos k clausulas de F', conforme definido
na Tabela 2.

Embora o problema 2-SAT seja soluciondvel em tempo
linear, sua versdo de maximiza¢do (Max-2SAT) apresenta
complexidade substancialmente maior. Essa diferenca ilustra
como pequenas alteracdes na formulacao podem transformar
um problema tratdvel em intratdvel. O Max-2SAT possui
aplicagdes em gerenciamento de dependéncias de software,
depuragdo de hardware, andlise de redes bioldgicas e
problemas de agendamento com restri¢des bindrias.

Para ilustrar o comportamento do problema, considere a
férmula:

F=(x1Vx) A (mx1Vaz) A (- V-g).

Nenhuma valoragdo satisfaz simultaneamente as trés
cldusulas. Isso ocorre porque as duas ultimas impdem
condigdes opostas sobre a varidvel x3: a cldusula (—x; V
x3) forga x3 = 1 sempre que x; = 1, enquanto a cldusula
(—xp V —x3) forca x3 = 0 sempre que x; = 1. Como a
primeira cldusula (x; V x;) exige que pelo menos uma das
duas varidveis seja verdadeira, inevitavelmente surge uma
contradi¢do. Se x; = 1, entdo x3 deve ser 1, mas isso tende
a violar a terceira clausula. Se x, = 1, entdo x3 deve ser 0,
mas isso tende a violar a segunda cldusula. Assim, qualquer
tentativa de satisfazer todas as trés clausulas forca a violagio
de pelo menos uma delas.

Apesar disso, € possivel satisfazer duas cldusulas. Por
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TABELA 3: AVALIACAO EXAUSTIVA DAS VALORACOES PARA A

FORMULA F.

x1 x| Ci G (C3 C4 | Total
0O 0] O 1 1 1 3

0 1 1 1 0 1 3

1 0 1 1 1 0 3

1 1 1 0 1 1 3

Alocacio de Palestras
Manha Tarde

[ (P1V P3)v j

[ (~P2V P3)v }

[ (~P1V P4)x }

Figura 4: 2 de 3 preferéncias atendidas.

exemplo, a valoragdo x; = 1, x = 1 e x3 = 0 satisfaz a
primeira e a terceira cldusulas, mas viola a segunda.

Esse comportamento evidencia o cardter de otimizagdo
do Max-2SAT: quando a estrutura das restricdes contém
conflitos inevitdveis, o objetivo deixa de ser satisfazer todas
as cldusulas e passa a ser maximizar o nimero de cldusulas
satisfeitas.

Para ilustrar de forma pedagégica situagdes em que ndo
€ possivel satisfazer todas as cldusulas simultaneamente,
considera-se a seguinte férmula:

F= (x1 \/)Cz) AN (—|X1 \/_‘XQ) AN (x1 \/ﬁ)Cz) AN (—‘xl \/)CQ).

Esta formula envolve duas varidveis booleanas, x| e
x», de modo que existem exatamente quatro valoracdes
possiveis. A Tabela 3 apresenta a avaliacdo sistemadtica
de cada valoragdo, demonstrando que nenhuma satisfaz
simultaneamente as quatro cldusulas.

Como evidenciado na tabela, cada valoracdo satisfaz
exatamente trés das quatro cldusulas, caracterizando um caso
tipico em que a formulac@o assume natureza de problema de
maximizacdo. Este exemplo evidencia a esséncia do Max-
2SAT: quando a estrutura das restrigdes contém conflitos
inevitdveis, o objetivo deixa de ser satisfazer todas as
cldusulas e passa a ser maximizar o nimero de cldusulas
satisfeitas.

Retornando a interpretacdo lddica apresentada anterior-
mente, podemos visualizar o problema através do cendrio de
alocacdo de palestras. A Figura 4 ilustra de forma resumida a
estrutura conceitual desse cenario, destacando os elementos
centrais da formalizagdo que serd empregada na reducdo
apresentada posteriormente.

Essa analogia capta a esséncia do Max-2SAT: resolver um
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sistema de restri¢des parcialmente conflitantes e maximizar
sua consisténcia.

Do ponto de vista diddtico, o Max-2SAT ¢é especialmente
valioso por evidenciar de forma clara a diferenca entre
problemas de satisfacdo total e problemas de maximizagao.
A andlise desse tipo de férmula permite ao estudante
perceber como a impossibilidade de satisfazer todas as
clausulas conduz naturalmente a questdes de otimizacao.
O problema também mostra que a estrutura das cldusulas
exerce influéncia direta sobre a complexidade computacio-
nal, deixando evidente que restri¢des simples como limitar
cada cldusula a dois literais ndo garantem a existéncia
de algoritmos polinomiais. Além disso, o Max-2SAT
estabelece conexdes importantes entre problemas booleanos
e problemas em grafos, permitindo interpretar propriedades
combinatdrias por meio de férmulas proposicionais. A
construcdo de redugdes por gadgets, como a utilizada
na transformacdo Clique <, Max-2SAT apresentada na
Secdo 5, reforca técnicas fundamentais para demonstracdes
de ANP-completude. Uma compreensdo precisa desse
comportamento € essencial para acompanhar com rigor a
prova apresentada.

V. DEMONSTRACAO E CONTRIBUICOES

Nesta se¢do € estabelecida a A_P-completude do problema
Max-2SAT. A reducio utilizada parte do problema Clique
e emprega uma constru¢do baseada em gadgets de selecio
e incompatibilidade [4], detalhada passo a passo com a
varidvel auxiliar z, as cldusulas de selecdo e as cldusulas de
exclusdo para nao-arestas.

Para provar que Max-2SAT é A P-completo, é necessdrio
demonstrar duas propriedades:

(i) Max-2SAT € N P;

(ii) existe um problema 7 sabidamente A_P-completo tal
que T <, Max-2SAT.

Tome (I): Max-2SAT € AP. Para mostrar que Max-2SAT
pertence a classe AP, é suficiente exibir um certificado de
tamanho polinomial e um algoritmo verificador que, dado
esse certificado, decide em tempo polinomial se ele constitui
uma solugdo valida para a instidncia. No caso do Max-2SAT,
o certificado é uma valoragdo booleana 6 : {x;,x2,...,x,} —
{0,1} que atribui valores verdadeiro ou falso a todas as
varidveis da férmula F'. Dado esse certificado, o Algoritmo 1
percorre cada cldusula da férmula, avalia se ela € satisfeita
pela valoracdo fornecida e conta o nimero total de cldusulas
satisfeitas, verificando se esse total atinge pelo menos o
limiar k especificado na instincia.

Para verificar que Max-2SAT pertence a classe NP,
analisamos a complexidade do algoritmo verificador. O
algoritmo percorre cada uma das m cldusulas uma unica
vez. Como cada cldusula contém no méximo dois literais,
a avaliagdo de C; sob ¢ ¢ feita em tempo O(1). Portanto,
o tempo total de execugdo é O(m), que é polinomial no
tamanho da entrada. Logo, Max-2SAT € A/P.

Tome (II): Max-2SAT é AP-dificil via Clique <,
Max-2SAT. Para demonstrar que Max-2SAT é A P-dificil,
seleciona-se o problema Clique, definido formalmente na
Tabela 1 e conhecido por ser A_P-completo desde o trabalho
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Algorithm 1 Verificador Polinomial para Max-2SAT

Entrada: Férmula F =C{ ACy A--- AC,,, em 2-FNC, inteiro
k, certificado &

Saida: ACEITA se o satisfaz pelo menos k cldusulas;
REJEITA caso contrario
contador < 0
for cada clausula C; € F do

Avalie C; sob a valoragdo ¢

if C; € satisfeita por ¢ then

contador < contador+ 1

end if
end for
if contador > k then

return ACEITA
else

return REJEITA
end if

D AN A R e

_ =
» o2

seminal de Karp [6], e constrdi-se uma redugdo polinomial
Clique <, Max-2SAT. Seguindo a terminologia adotada
neste trabalho, Clique atua como problema atacado (o
problema de partida, cuja A_P-completude ja é conhecida)
e Max-2SAT € o problema alvo, para o qual desejamos
transferir a dificuldade computacional.

A escolha do problema Clique como ponto de partida para
a reducdo é estratégica por diversas razdes. Primeiro, a
estrutura de Clique envolve a selecao de um subconjunto de
vértices com propriedades especificas (adjacéncia mutua), o
que mapeia naturalmente para variaveis booleanas indicando
inclusdo ou exclusdo de elementos. Segundo, a condicio
de que todos os pares devem ser adjacentes traduz-se
diretamente em cldusulas de incompatibilidade para pares
ndo adjacentes. Terceiro, o parAmetro k (tamanho da clique)
pode ser codificado no nimero de cldusulas satisfeitas,
permitindo equivaléncia precisa entre os problemas. Por fim,
a redugdo Clique <, Max-2SAT ilustra de forma didética
a conexao entre problemas de grafos e problemas de 16gica
proposicional, tema central deste trabalho.

A estratégia geral consiste em criar uma varidvel booleana
x; para cada vértice, uma varidvel auxiliar z, e construir
cldusulas que incentivam a selecdo de vértices enquanto
punem escolhas de pares nfo adjacentes. O pardmetro K’
¢ ajustado para que a satisfacdo de exatamente K’ cldusulas
corresponda a uma clique de tamanho k.

A construcdo formal da férmula procede da seguinte
maneira. Dada uma instincia (G,k) do problema Cligue,
onde G = (V(G),E(G)) é um grafo com conjunto de vértices
V(G) e conjunto de arestas E(G), e k é um inteiro positivo
representando o tamanho minimo da clique procurada, a
fungdo de redu¢do f produz uma instdncia (F',K’) do
problema Max-2SAT, transformando o grafo G em uma
férmula booleana F’ em forma normal conjuntiva (onde cada
clausula contém no maximo dois literais) e o parametro k em
um novo pardmetro K’ que representa o nimero minimo de
clausulas a serem satisfeitas. A seguir, descreve-se passo a
passo como F’ e K’ sdo construidos a partir dos elementos de
G e do valor k.

A construgdo de f pode ser realizada em tempo
polinomial. A criacdo das varidveis booleanas requer
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O(|V(G)|) operagdes para os n vértices, além de O(1) para
a varidvel auxiliar z. As cldusulas de selecdo totalizam 2 -
[V (G)| cldusulas, cada uma construida em tempo constante,
resultando em O(|V (G)|). As cldusulas de incompatibilidade
correspondem a uma cldusula para cada par de vértices ndo-
adjacentes, o que no pior caso representa |E| = O(|V(G)|?)
cldusulas. Por fim, o cdlculo de K’ envolve apenas O(1)
operacdes aritméticas. Portanto, a complexidade total da
reducio é O(|V(G)|?), que é polinomial no tamanho da
entrada.

A construcdo da férmula F’ envolve a criagdo de varidveis
booleanas e trés tipos de cldusulas que trabalham em
conjunto para codificar a estrutura do grafo. Inicialmente,
sdo definidas as varidveis que representardo os vértices
do grafo. Para cada vértice v; € V, cria-se uma varidvel
booleana x; que indica se o vértice v; faz parte da clique
candidata. Além dessas variaveis, é introduzida uma variavel
auxiliar adicional z, cujo papel serd explicado no contexto
das cldusulas de selecdo.

O primeiro tipo de cldusula sdo as cldusulas de sele¢do,
que incentivam a escolha de vértices e permitem controlar o
tamanho da clique. Para cada vértice v; do grafo original,
sdo inseridas duas cldusulas na férmula: (x;Vz) e (x; V —z).
Essas cldusulas funcionam juntas para distinguir vértices
selecionados de vértices ndo selecionados. Quando x; = 1,
indicando que o vértice v; foi escolhido para compor a clique,
ambas as cldusulas sdo satisfeitas, independentemente do
valor atribuido a varidvel auxiliar z. J4 quando x; = 0, apenas
uma das duas cldusulas pode ser satisfeita, dependendo
do valor de zz se z =1, a cldusula (x; Vz) é satisfeita
e (x; vV —z) é violada; se z = 0, ocorre o inverso. Essa
diferenca de uma cldusula satisfeita entre vértices escolhidos
e nao escolhidos permite controlar o tamanho da clique
por meio do parAmetro K’', garantindo que apenas sele¢des
com exatamente k vértices produzam o ntimero exigido de
cldusulas satisfeitas.

O segundo tipo de cldusula sdo as cldusulas de incom-
patibilidade, que garantem que apenas vértices mutuamente
adjacentes sejam selecionados simultaneamente. Para cada
par de vértices (v;,v;) que ndo sdo adjacentes no grafo
original, isto ¢, para cada par onde (v;,v;) ¢ E, adiciona-
se a formula a cldusula (—x; V —x;). Essa cldusula impde
uma restricdo essencial: vértices ndo adjacentes nao podem
ser selecionados a0 mesmo tempo para compor a clique. Se
ambos x; e x; recebem o valor 1, a cldusula (—x; V —x;) se
torna falsa, penalizando essa escolha invdlida. Por outro
lado, se a0 menos um dos vértices nao for selecionado (isto
é, se uma das variaveis for 0), a clausula € satisfeita. Dessa
forma, qualquer valora¢do que satisfagca um nimero elevado
de cldusulas deve corresponder a um conjunto de vértices que
forma uma clique no grafo original.

Finalmente, define-se o pardmetro K’ que estabelece
o nimero minimo de cldusulas a serem satisfeitas. O
pardmetro K’, que estabelece o nimero minimo de cldusulas
a serem satisfeitas na instancia de Max-2SAT, € definido de
modo a manter equivaléncia exata com o problema Clique.
O pardmetro é definido como K’ = |V|+ k + |E|, onde
[V(G)| é o nimero total de vértices do grafo (e, portanto,
o nimero de cldusulas do tipo (x; V z)), k é o tamanho da
clique procurada no problema original (refletindo o ganho
adicional obtido nas cldusulas (x; V —z) quando k vértices séo
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TABELA 4: RESUMO DA REDUCAO CLIQUE <, MAX-2SAT.

Componente Clausulas Funcao (Gadget) Contrib. p/
K/
Var. de vértice | x;, v, €V Indica se v; pertence | —
a clique
Var. auxiliar Z Controla contagem | —
de cldusulas
Selecdo posi- | (x;Vz) Satisfeita se z=1; | |V|
tiva base fixa
Selegdo nega- | (x;V —z) Satisfeita se x;=1; | k
tiva mede selecdo
Incompatib. (—x; VvV —xj), | Impede selecio de | |E|
(vi,vj) ¢ E ndo adjacentes
Total: | |V|+k+|E|
Grafo G Formula Max-2SAT
Selecdo (+2):
(x1V2)A(x2Vz)
Reducio Ax3V2)A(xsV2)
—

Selecao (—z):
(%1 V=2) A (x2 V —2)
A3 V=z) A(xa V —z)

Incompatibilidade:
(=01 V=) A (o V )
A(—x3 V —xg)

K'=4+3+3=10

Figura 5: Transformag@o completa: grafo com clique {v;,vp,v3}
e formula Max-2SAT resultante.

Clique: {vi;v2;v3}

escolhidos), e |E € o niimero de nao-arestas, isto é, de pares
de vértices ndo adjacentes (que correspondem as cldusulas
(—x; V —x;)). Essa defini¢do garante que a solugdo do Max-
2SAT reproduza a condi¢@o do problema da clique.

Para facilitar a compreensdo da construgdo, a Tabela 4
consolida os componentes da reducdo, explicitando o
papel de cada tipo de cldusula, o significado dos gadgets
empregados e a contribui¢do de cada bloco para o pardmetro
K'

A Figura 5 ilustra o processo de reducdo em trés etapas,
mostrando como cada elemento do grafo original € traduzido
para componentes da férmula Max-2SAT. Na primeira etapa,
apresentamos o grafo de entrada com seus vértices e arestas.
Na segunda etapa, mostramos os gadgets de selecdo, que
consistem nas cldusulas (x; V z) e (x; V —z) para cada
vértice, representando o mecanismo que diferencia vértices
escolhidos de ndo escolhidos. Na terceira etapa, exibimos os
gadgets de incompatibilidade, que sdo as cldusulas (—ux; V
;) geradas para cada par de vértices ndo adjacentes,
impedindo a sele¢do simultinea de vértices que ndo formam
aresta.

Para entender como esse valor opera, considere uma
valoracdo que corresponde a uma clique vélida de tamanho
k. Todas as |V(G)| cldusulas do tipo (x; V z) sdo satisfeitas,
contribuindo |V(G)| para a contagem. As k cldusulas
(x; V —z) associadas aos vértices escolhidos também séo
satisfeitas, acrescentando k ao total. Além disso, todas as \F\
clausulas de incompatibilidade sdo satisfeitas, pois nenhum
par de vértices ndo adjacentes foi selecionado ao mesmo
tempo. Somando essas contribui¢des, obtém-se K' = |V|+
k+ |E|. J4 qualquer valoragio que ndo represente uma clique
de tamanho pelo menos k ou que viole alguma cldusula de
incompatibilidade satisfard um ntimero menor de cldusulas,
0 que garante a equivaléncia entre os dois problemas.
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A Figura 5 apresenta uma visualizacdo completa da
transformacgdo, mostrando lado a lado o grafo de entrada
e a férmula Max-2SAT resultante, com destaque para a
correspondéncia entre cada elemento do grafo e as cldusulas
geradas. Na parte esquerda da figura, observa-se o grafo G
com a clique {vi,v2,v3} destacada, onde as linhas continuas
representam arestas e as linhas tracejadas representam nao-
arestas. Na parte direita, ¢ exibida a férmula completa
organizada em trés blocos: as cldusulas de selecio positivas
(x; V z), as cldusulas de sele¢do negativas (x; V —1z), e as
cldusulas de incompatibilidade (—x; V —x;). A organizagdo
visual evidencia como cada vértice do grafo origina suas
cldusulas de selecio e como cada par de vértices ndo
adjacentes (linhas tracejadas) gera sua respectiva cldusula de
incompatibilidade.

Para ilustrar como o pardmetro K’ é obtido, considere o
grafo mostrado na Figura 5, com V(G) = {vi;va;v3;wa} e
E(G) = {(v1,v2);(v2,v3);(v1,v3)}. Suponha que desejamos
verificar se existe uma clique de tamanho k = 3 nesse grafo.

Primeiro, sdo identificados os componentes necessarios
para o célculo:

O numero de vértices é |V(G)| = 4, o que gera quatro
cldusulas do tipo (x; V z), uma para cada vértice do grafo.
Essas cldusulas sempre serdo satisfeitas quando z = 1,
independentemente de quais vértices forem escolhidos.

O tamanho da clique desejada é k = 3, que corresponde
ao ndmero de cldusulas adicionais do tipo (x; V —z)
que esperamos satisfazer quando o nidmero de vértices
selecionados € trés.

Para determinar o nimero de nao-arestas \E conta-se
quantos pares de vértices ndo sdo adjacentes. Em um grafo
com quatro vértices, existem (3) = 6 pares possiveis. Como
o grafo possui |[E(G)| = 3 arestas, o nimero de ndo-arestas
¢ |[E| =6—3 =3. Os pares ndo adjacentes sdo: (vi,va),
(v2,v4) € (v3,va). Para cada um desses pares, inclui-se uma
clausula de incompatibilidade.

Aplicando a férmula K’ = |V (G)| +k + |E|, obtém-se:

K =4434+3=10

Assim, a instdncia de Max-2SAT correspondente per-
gunta: "E possivel satisfazer pelo menos 10 clusulas
da férmula construida?"Uma resposta positiva equivale a
afirmar que o grafo original possui uma clique de tamanho
pelo menos 3.

Para verificar a construgdo, observe que o grafo contém
uma clique de tamanho 3 formada pelos vértices {v,v2,v3}.
Atribuindox; =x; =x3 =1, x4 =0e z=1, temos:

As 4 cldusulas (x; Vz), (x2Vz), (x3Vz) e (x4 Vz) sdo todas
satisfeitas porque z = 1, contribuindo com 4 cldusulas.

Das 4 cldusulas do tipo (x; V —z), apenas as trés
correspondentes aos vértices selecionados sdo satisfeitas:
(x1V—z), (2 V—z) e (x3Vz), pois x; =xp = x3 = 1. Isso
contribui com 3 cldusulas adicionais.

As 3 cldusulas de incompatibilidade (—x; V —x4), (—x2 V
—w4) e (-3 V —y) sdo todas satisfeitas porque x4 = 0,
contribuindo com 3 cldusulas.

O total € 4+3+3 =10 =K', o que confirma que a
valoracio satisfaz exatamente o niimero exigido de clausulas.
Esse exemplo mostra que o parAmetro K’ reflete de forma
precisa a estrutura da clique por meio da contagem de
cldusulas satisfeitas.
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Estabelecida a construg@o, é necessdrio agora provar sua
corretude demonstrando a equivaléncia entre as instincias.
Para estabelecer que a reducdo estd correta, € preciso
demonstrar que (G, k) € Clique se e somente se (F',K’) €
Max-2SAT. Cada direcdo € provada separadamente.

Ida (=): Se G possui uma clique de tamanho k, entao
(F’, K’) é satisfativel. Suponha que exista um conjunto
S C V(G) de vértices formando uma clique de tamanho pelo
menos k, isto &, |S| > k e para todo par de vértices distintos
vi,vj € S, existe uma aresta (v;,v;) € E(G). Constréi-se uma
valoragio que satisfaz pelo menos K’ cldusulas da férmula
F'.

Defina a valoracdo da seguinte forma: para cada varidvel
X, atribua x; = 1 se o vértice v; pertence ao conjunto S e x; =
0 caso contrario. Adicionalmente, atribua z = 1 a variavel
auxiliar. Analisa-se quantas cldusulas sdo satisfeitas por essa
valoragdo.

Primeiro, sdo analisadas as cldusulas de selecdo. Para
cada vértice v; € V(G), hd duas cldusulas: (x;Vz) e (x;V
—z). Como foi definido z = 1, todas as cldusulas do tipo
(x; V z) sdo satisfeitas, independentemente do valor de x;, o
que contribui com |V(G)| cldusulas satisfeitas. J4 para as
cldusulas (x; V —z), temos —z = 0 nessa valoragio, de modo
que elas sdo satisfeitas apenas quando x; = 1. Como foi
atribuido x; = 1 aos k vértices do conjunto S, k cldusulas
desse tipo sdo satisfeitas.

Agora sdo consideradas as cldusulas de incompatibilidade.
Para cada par ndo-adjacente (v;,v;) ¢ E(G), temos a cldusula
(—x; V —xj). Essa cldusula ¢ falsa apenas quando ambos
x; =1 e x; =1, o que aconteceria se ambos os vértices v;
€ v; pertencessem ao conjunto S. No entanto, por hipétese,
S € uma clique, portanto todos os pares de vértices em §
sdo adjacentes. Isso significa que nfo existe nenhum par
(vi,vj) ¢ E(G) com ambos v;,v; € S. Consequentemente,
para todo par ndo-adjacente (v;,v;) ¢ E(G), pelo menos um
dos vértices ndo pertence a S, garantindo que pelo menos
uma das varidveis x; ou x; vale 0, o que torna a cldusula
(—x; V —x;) verdadeira. Portanto, todas as |E| cldusulas de
incompatibilidade sdo satisfeitas.

Somando as contribui¢des, obtém-se |V (G)|+k+|E| =K’
cldusulas satisfeitas, provando que (F’,K’') € Max-2SAT.

Volta («<): Se (F'.K’) é satisfativel, entdo G possui
uma clique de tamanho k. Suponha agora que exista uma
valoragiio que satisfaz pelo menos K’ cldusulas da férmula
F'. E demonstrado que pode-se extrair dessa valoragio um
conjunto de vértices que forma uma clique de tamanho pelo
menos k no grafo G.

Sem perda de generalidade, pode-se assumir que a varidvel
auxiliar z recebe o valor 1 nesta valoracdo. Caso z =0 na
valoracdo original, considera-se uma valoracdo alternativa
onde invertemos o valor de z para 1 e mantemos os valores de
todas as varidveis x; inalterados. Como cada vértice contribui
com duas cldusulas (x; Vz) e (x; V —z), inverter z apenas
troca qual dessas cldusulas € satisfeita para vértices com
x; = 0, sem alterar o total de cldusulas satisfeitas. Portanto, é
possivel trabalhar com uma valoragio onde z = 1.

Com z = 1, todas as |V(G)| cldusulas da forma (x; V 2)
sdo automaticamente satisfeitas. Isso deixa espago para
K' —|V(G)| = k+ |E| cldusulas adicionais serem satisfeitas.
Essas cldusulas adicionais vém de duas fontes: as cldusulas
(x; V —z) para vértices com x; = 1 e as cldusulas de
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Figura 6: Grafo de entrada para a reduc@o: clique {vy,vy,v3} e
vértice isolado v4.

incompatibilidade (—x; V —x;).

Defina S = {v; | x; = 1} como o conjunto de vértices cujas
varidveis foram atribuidas como verdadeiras. Para satisfazer
pelo menos k + |E| cldusulas adicionais, é necessério ter
pelo menos |S| cldusulas do tipo (x; V —z) satisfeitas (uma
para cada vértice em S) e todas as |E| cldusulas de
incompatibilidade satisfeitas.

Se alguma cldusula de incompatibilidade (—x; V —x;) nao
for satisfeita, isso significa que ambos x; =1 € x; = 1,
mas (v;,v;) ¢ E(G). Cada cldusula de incompatibilidade
violada reduz o nimero total de cldusulas satisfeitas em
uma unidade. Para manter o total em pelo menos K’, seria
necessério que mais cldusulas (x; V —z) fossem satisfeitas, o
que requereria mais vértices em S. No entanto, adicionar
mais vértices aumenta o risco de violar mais cldusulas de
incompatibilidade. De fato, pode-se verificar algebricamente
que violar qualquer cldusula de incompatibilidade torna
impossivel atingir exatamente K’ cldusulas satisfeitas com a
construgdo apresentada.

Portanto, todas as |E| cldusulas de incompatibilidade
devem ser satisfeitas, o que garante que nao existe nenhum
par (vi,vj) ¢ E(G) com ambos v;,v; € S. Logo, S forma uma
clique de tamanho pelo menos k no grafo G.

Para consolidar a compreensdo da reducio, é apresentado
um exemplo completo que percorre todas as etapas da
transformacdo, desde o grafo de entrada até a verifica-
¢do da valoragcdo resultante. Considere um grafo com
quatro vértices V(G) = {vi,v2,v3,v4} e arestas E(G) =
{(v1,v2),(v2,v3),(v1,v3)}. A Figura 6 ilustra esse grafo,
onde os vértices vy, v, e v3 formam uma clique de tamanho
3, representada pelas linhas continuas que conectam cada par
desses trés vértices. O vértice v4 ndo possui arestas com
nenhum dos outros vértices, o que € indicado pelas linhas
tracejadas que representam os pares néo adjacentes (vi,v4);
(v2,va); (v3,v4). Essa distingdo visual entre arestas presentes
e ausentes é fundamental para compreender como a reducio
constrdi as cldusulas de incompatibilidade.

A partir da clique de tamanho 3 identificada no grafo, a
construcao gera as cldusulas:

(xiVz), (V~—z) parai=1,234,
e, para as nio-arestas:
(mx1 V), (xaVoxg),  (—xsVooxg).

A valoragdo x; =x; =x3 =1, x4 = 0 e z = 1 satisfaz
exatamente K’ clausulas, como requerido. A Figura 7 ilustra
detalhadamente essa verificagdo, mostrando quais cldusulas
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Verificacdo: x; =xy =x3=1,x4=0,z=1

Selecdo (x; \V z): 4 clausulas

Selecdo (x; vV —z): 3 clausulas

Incompatibilidade: 3 clausulas

(Total: 443+3=10=K" /]

Figura 7: Verificagdo detalhada da valoragdo que satisfaz K’ = 10
cldusulas.

sdo satisfeitas e quais ndo sdo, organizadas por tipo. Na
coluna da esquerda, observa-se que todas as cldusulas de
selegéio positiva (x; V z) sdo satisfeitas porque z = 1. Na
coluna central, as cldusulas de sele¢do negativa (x; V —z) sdo
satisfeitas apenas para os vértices selecionados (x1, x2, x3),
totalizando 3 cldusulas, enquanto a cldusula (x4 V —z) ndo é
satisfeita pois x4 = 0 e =z = 0. Na coluna da direita, todas as
clausulas de incompatibilidade sdo satisfeitas porque x4 = 0
torna verdadeira qualquer cldusula da forma (—x; V —xy4).

Esse exemplo demonstra concretamente como a estrutura
da clique no grafo original é preservada na férmula Max-
2SAT: os trés vértices da clique correspondem aos trés
vértices com x; = 1, que sdo exatamente os responsdveis
por satisfazer as cldusulas extras de selecdo negativa.
Simultaneamente, o fato de esses trés vértices serem
mutuamente adjacentes garante que nenhuma cldusula de
incompatibilidade é gerada entre eles, permitindo que todas
as cldusulas de incompatibilidade (que envolvem apenas v4)
sejam satisfeitas.

A reducdo com a varidvel auxiliar z evidencia diversos as-
pectos pedagdgicos relevantes. Ela mostra como cldusulas de
dois literais podem impor restricdes estruturais fortes sobre
as possiveis valoracdes e como a selecdo de vértices validos
depende da satisfacdo simultdnea de multiplas cldusulas
independentes. Além disso, as cldusulas negativas traduzem
de maneira direta as rela¢des de incompatibilidade no grafo,
reforcando a conexdo entre propriedades combinatérias e
expressoes booleanas. A defini¢do precisa do parimetro
K’ demonstra como controlar o tamanho da clique desejada
por meio da contagem de cldusulas satisfeitas. Por fim,
essa constru¢do evidencia por que reducdes entre problemas
de grafos e férmulas booleanas constituem ferramenta
fundamental no estudo de AP-completude.

VI. RESULTADOS E REFLEXOES

Apresentada a demonstragio de A P-completude do Max-
2SAT, esta secdo discute os principais resultados obtidos,
bem como reflexdes conceituais e pedagdgicas sobre o
processo de construcdo da reducio e sobre os elementos que
tornaram essa abordagem util para o aprendizado em Teoria
da Computacdo.

A demonstracdo apresentada confirmou que o problema
Max-2SAT pertence a classe AP, uma vez que o niimero de
clausulas satisfeitas por uma valoragdo pode ser verificado
em tempo linear no tamanho da instancia. Basta percorrer
cada clausula uma tdnica vez, avaliar se ela é verdadeira sob
a valoracgdo fornecida como certificado, e contar quantas sao
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satisfeitas. Como cada cldusula contém no maximo dois
literais, essa avaliacdo é realizada em tempo constante por
cldusula, resultando em complexidade total O(m), onde m é
o nidmero de clausulas.

Além disso, foi demonstrado que Max-2SAT é A P-
dificil, pois o problema Clique, que é A P-completo
conforme estabelecido por Karp [6], foi reduzido a ele por
meio de uma funcdo de transformacdo computdvel em tempo
polinomial. A redugdo constréi uma férmula booleana cujo
tamanho € polinomial no tamanho do grafo de entrada: o
nimero de varidveis é |V|+ 1 e o ndmero de cldusulas é
2V|+|E|, onde |E| < (I%)). A construgdo de cada cldusula
requer tempo constante, portanto a transformagido completa
opera em tempo O(|V|?).

A formulagdo com a varidvel auxiliar z mostrou-se util,
pois permite controlar o nimero total de cldusulas satisfeitas
sem recorrer a constru¢des mais extensas. Essa técnica evita
a criagdo de cldusulas com mais de dois literais e preserva
a estrutura tipica do Max-2SAT. A varidvel z funciona como
um mecanismo de balanceamento que garante que vértices
escolhidos contribuam com exatamente uma cldusula a mais
do que vértices ndo escolhidos, traduzindo o tamanho da
clique diretamente na quantidade de cldusulas satisfeitas.

O valor limite K’ foi definido para refletir com precisdo
a estrutura combinatéria do grafo original. A decom-
posi¢io K’ = |V| + k + |E| incorpora trés componentes
distintos: a base fixa de cldusulas sempre satisfeitas, o
ganho proporcional ao tamanho da clique e a penalizacio
associada a violacdo das cldusulas de incompatibilidade.
Essa construgdo assegura que uma valoragdo que satisfaca
exatamente K’ cldusulas corresponda a uma clique de
tamanho k, estabelecendo equivaléncia completa entre os
dois problemas.

Esses resultados mostram que pequenas alteracdes estru-
turais em problemas que parecem simples, como a transicao
de 2-SAT para Max-2SAT, podem alterar de forma profunda
sua complexidade. Enquanto 2-SAT admite solu¢do em
tempo linear por meio do grafo de implicacdes, sua
versdo de maximizagdo torna-se tdo dificil quanto qualquer
problema em NP, evidenciando a fronteira entre tratabilidade
e intratabilidade.

O desenvolvimento da redugdo Clique <, Max-2SAT
revelou diversos aspectos importantes para o ensino e com-
preensdo de problemas A P-completos. A transformagio de
relagdes de adjacéncia em cldusulas de dois literais torna
explicito como propriedades estruturais de grafos podem ser
modeladas por férmulas booleanas. Cada aresta ou ndo-
aresta no grafo corresponde de forma direta a uma restricao
l6gica, estabelecendo um diciondrio claro entre os dois
dominios. Essa correspondéncia evidencia que problemas
aparentemente distintos compartilham estrutura matemaética
profunda, sendo manifestacdes diferentes de uma mesma
dificuldade computacional subjacente.

A expressdo (—; V —x;) traduz a proibicdo de escolher
dois vértices ndo adjacentes, mostrando como restri¢des
combinatdrias sdo mapeadas para restricoes l6gicas. Essa
clausula funciona como uma "barreira légica"que impede
configuracdes invdlidas, e sua violagdo resulta na reducio
do ndmero total de cldusulas satisfeitas. Compreender esse
mecanismo de penaliza¢do é fundamental para desenvolver
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intui¢do sobre como problemas de otimizacdo combinatéria
podem ser codificados em férmulas booleanas.

A introducgdo da varidvel auxiliar z simplifica a contagem
de cldusulas, garantindo equilibrio entre as expressdes do
tipo (x;Vz) e (x; V—z) e permitindo a defini¢do precisa
do parAmetro K’. Sem essa varidvel, seria necessario
construir gadgets mais complexos ou usar cldusulas maiores,
evidenciando a fronteira. A técnica de usar varidveis
auxiliares para controlar comportamentos globais da férmula
¢ aplicavel em construgdes de reducgdes, e sua apresentacio
neste contexto fornece modelo ttil para outros problemas.

O ajuste de K’ evidencia uma técnica comum em redugdes,
na qual o nimero de cldusulas satisfeitas reflete diretamente
o tamanho da estrutura procurada no problema original.
Essa correspondéncia numérica precisa entre parametros do
problema fonte e problema alvo é caracteristica essencial
de redugdes bem construidas. Estudantes muitas vezes
tém dificuldade em determinar parimetros corretos para
problemas de otimizagdo; o exemplo apresentado demonstra
metodologia sistemdtica baseada na andlise de contribuicdes
independentes de cada componente da construgao.

Provar ambas as direcdes da equivaléncia, isto &,
que uma clique gera uma valoragdo vilida e que uma
valoracdo vdlida gera uma clique, refor¢a o raciocinio
formal necessario para redugdes corretas. Muitos estudantes
cometem o erro de provar apenas uma dire¢do ou de assumir
equivaléncia sem justificativa rigorosa. A demonstracio
cuidadosa apresentada serve como modelo de argumentacio
matematica, enfatizando a importancia de considerar todas
as possibilidades e eliminar casos degenerados.

Analisar como cada valorag¢do influencia o conjunto das
clausulas satisfeitas ajuda a desenvolver intuicao sobre como
problemas booleanos capturam propriedades de grafos. Ao
considerar sistematicamente os efeitos de atribuir valores
verdadeiro ou falso a cada variavel, estudantes desenvolvem
compreensdo profunda de como restri¢des locais (satisfacdo
de cldusulas individuais) emergem como propriedades
globais (existéncia de cliques). Essa conexfo entre nivel
local e global é fundamental ndo apenas em complexidade
computacional, mas em toda ciéncia da computagao.

Ao final, a reducdo analisada oferece uma visdo sélida
sobre a intratabilidade do Max-2SAT e sobre a versatilidade
das redugdes polinomiais. A construcio estudada demonstra,
de forma acessivel e estruturada, como problemas de
natureza combinatéria e légica podem ser relacionados
de maneira precisa, contribuindo significativamente para o
aprendizado prético de A_P-completude.

+30 material desenvolvido pode ser empregado em diver-
sos contextos de ensino. Em disciplinas de graduagdo em
Teoria da Computagdo ou Andlise de Algoritmos, a reducdo
pode ser apresentada como estudo de caso apds a introducdo
dos conceitos de AP-completude, permitindo que estudan-
tes acompanhem passo a passo uma demonstracdo completa
antes de desenvolverem suas prdprias provas. Em cursos de
pos-graduagdo, o material pode servir como ponto de partida
para discussdes sobre técnicas avancadas de reducao, limites
de aproximabilidade e conexdes com outros problemas de
satisfatibilidade. Como atividade prdtica, sugere-se propor
aos estudantes a verificacdo manual da reducdo para grafos
pequenos, a implementagdo computacional do algoritmo de
transformag@o, ou a adaptacdo da técnica para variantes
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como Max-3SAT ou Weighted Max-2SAT. A estrutura
modular da apresentagdo — com figuras, tabelas-resumo e
exemplos comentados — facilita a segmentagdo do contetido
em multiplas aulas ou a utiliza¢cdo em metodologias ativas
baseadas em semindrios, conforme discutido por Lassance,
Bianchini e Santos [11].

O material apresentado serve tanto como recurso didatico
para compreensdo de técnicas especificas quanto como
exemplar metodolégico para desenvolvimento de novas
redugdes, cumprindo assim o objetivo pedagdgico central
deste trabalho.

VII. CONSIDERACOES FINAIS

Este artigo apresentou uma demonstracdo formal e didética
da A/P-completude do problema Max-2SAT por meio de
redugdo polinomial a partir do problema Clique. A prova foi
estruturada demonstrando-se primeiro a pertinéncia a classe
AP mediante certificado verificivel em tempo polinomial,
e em seguida a AP-dificuldade através de transformacdo
polinomial que preserva equivaléncia entre instancias.

A constru¢do proposta utiliza varidvel auxiliar z para
controlar o nimero de cldusulas satisfeitas, ajustando o
pardmetro K’ para refletir de forma precisa o tamanho da
clique desejada. As cldusulas de selecdo incentivam a esco-
lha de vértices, enquanto as cldusulas de incompatibilidade
impedem selecdo simultinea de vértices ndo adjacentes,
evidenciando como relagdes combinatérias em grafos sdo
codificadas por formulas booleanas.

Entre as dificuldades encontradas, destacam-se a escolha
adequada do parametro K’ e a formalizag@o rigorosa da prova
de corretude em ambas as dire¢des. A compreensio do papel
da varidvel z exigiu andlise cuidadosa de como cada tipo de
clausula contribui para a contagem total.

Como limita¢des, o trabalho concentrou-se na versdo de
decisdo do Max-2SAT e na redug@o a partir de Clique.
Outras reducdes, como baseadas em 3-SAT ou Vertex Cover,
podem oferecer perspectivas complementares. Para trabalhos
futuros, sugere-se explorar variantes parametrizadas, analisar
complexidade em classes especiais de grafos, desenvolver
algoritmos aproximativos e investigar aplicacdes com SAT
solvers modernos.

O material produzido serve como recurso diddtico para
disciplinas de Teoria da Computacio, contribuindo para a
formacao de estudantes em Ciéncia da Computacdo. Espera-
se que inspire novas produgdes que articulem rigor técnico e
finalidade pedagdgica, fortalecendo a comunidade de ensino
e pesquisa em Teoria da Computacio.
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Resumo—Este trabalho propde uma abordagem metodoldgica e didética para a reprodugio e elucidacdo dos conceitos de NP-Completude e
da intratabilidade inerente a problemas computacionais, especialmente os combinatdrios, utilizando o Set Packing Problem (SP) como estudo
de caso. A metodologia consiste na exposi¢do detalhada do problema, seguida pela reprodugdo da demonstragdo formal do pertencimento
do SP a classe NP-Completa, incluindo a construgdo e andlise de seu verificador polinomial e a apresentagéo passo a passo da técnica de
reducdo polinomial de CLIQUE para SP. O principal resultado e a contribui¢do deste artigo é o desenvolvimento de um material pedagdgico
que visa aprimorar a compreensdo integral dos conceitos da Teoria da Computagdo, auxiliando o publico leigo a assimilar de forma eficaz o
significado da complexidade computacional.
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Abstract—This work proposes a methodological and didactic approach for the reproduction and elucidation of the concepts of NP-
Completeness and the inherent intractability of combinatorial problems, using the Set Packing Problem (SP) as a case study. The
methodology consists of a detailed exposition of the problem, followed by the reproduction of the formal demonstration of SP’s membership in
the NP-Complete class, including the construction and analysis of its polynomial verifier and the step-by-step presentation of the polynomial
reduction technique from CLIQUE to SP. The main result and contribution of this article is the development of pedagogical material that
aims to enhance the integral understanding of Theory of Computation concepts, assisting the public in effectively assimilating the meaning
of computational complexity.
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espago) requeridos por seus melhores algoritmos de solucéo,
culminando na defini¢do das classes P (Polynomial Time) e
I. INTRODUCAO NP (Nondeterministic Polynomial Time) e na formula¢io do
problema P versus A P, definido como um dos Millennium

eoria da Computacdo (TC) € a base tedrica para a  Prize Problems pelo Clay Mathematics Institute [3].
Ciéncia da Computacio e Engenharia da Computacio,
fornecendo as ferramentas conceituais necessdrias para
compreender o que pode ser computado e, crucialmente,
com qual eficiéncia. Foi no inicio da década de 1970 que
a disciplina ganhou uma nova dimens@o com o surgimento
da Teoria da Complexidade Computacional, impulsionada
pelo trabalho de Stephen Cook (1971) [1] e, notavelmente,
por Richard Karp (1972) [2]. Este campo de estudo buscou
categorizar problemas com base nos recursos (tempo e

Neste contexto, a complexidade representa o que de fato
significa a intratabilidade de problemas, ou seja, a prova de
que certas questdes computacionais ndo podem ser resolvidas
de forma eficiente (em tempo polinomial) por qualquer
algoritmo deterministico conhecido, a menos que P=AP.
A compreensdo da NP-Completude €, portanto, essencial
para que o futuro profissional saiba quando buscar solucdes
exatas ou métodos alternativos como algoritmos aproximados
e heuristicos.

Considere por exemplo um conjunto universo U e uma
Dados de contato: Emanuel Badar6é Fonseca, badaro.fonseca@uft.edu.br colecdo de subconjuntos S. O objetivo € verificar se existe
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uma subcolecdo dentro de S contendo pelo menos k
subconjuntos que sejam mutuamente disjuntos, isto €, que nao
compartilhem nenhum elemento comum entre si (a interse¢cdo
entre qualquer subconjunto escolhido é vazia). Este € o
Problema do Set Packing (Empacoteamnto de Conjuntos),
um dos 21 problemas NP-Completos de Karp [2] e o qual serd
utilizado como estudo de caso neste artigo.

A complexidade inerente a Teoria da Computacio,
especificamente no que tange as redugdes polinomiais e
a classe NP-Completa, representa um desafio pedagdgico
constante, apesar da relevancia tedrica de problemas como o
Set Packing. Com o objetivo de mitigar essas dificuldades,
este trabalho propde uma construgdo pedagdgica da prova de
NP-Completude do Set Packing. A estrutura do artigo segue
uma légica sequencial: a Secdo 2 fornece o embasamento
tedrico e as definicdes fundamentais. A Secdo 3 examina a
literatura pertinente e trabalhos correlatos. As Secdes 4 e 5
constituem o cerne do trabalho, apresentando a descrigdo e a
demonstrag@o formal do problema, assim como a estratégia
de reducdo. As contribuicdes e reflexdes sobre o aprendizado
sdo debatidas na Secdo 6, seguidas pelas conclusdes na Se¢io
7.

II. PRELIMINARES

Esta secdo apresenta os conceitos e ferramentas de andlise

pertinentes que serdo utilizados ao longo de todo este trabalho.

Um conjunto é definido como uma cole¢do ndo ordenada
de elementos distintos. A partir deste conceito, estabelece-se
a relacdo de subconjunto: diz-se que um conjunto B é um
subconjunto de um conjunto A (denotado por B C A) se todos
os elementos presentes em B sdo também elementos de A.
Por exemplo, dado o conjunto A = {1,2,3}, podemos definir
um subconjunto B = {1,2}. Como ambos os elementos de B
estdo em A, temos que B C A.

Um grafo G é definido formalmente como um par ordenado
G = (V,E), composto por um conjunto finito e ndo vazio
de vértices V e um conjunto de arestas £. Neste contexto,
os vértices constituem os elementos de V e representam
as entidades ou objetos que estdo sendo modelados. J4 as
arestas sdo definidas como pares ndo ordenados (u,v) de
vértices distintos de V, representando as conexdes ou relacdes
estabelecidas entre esses vértices.

Considere o grafo presente na Figura 1 como exemplo, onde
o conjunto de vértices é V = {v|,v2,v3,v4,vs5} € 0 conjunto

de arestas é £ = {(V17V2>, (VZ,V3), (vl,V3), (V4,V5), (V3,V5)}.

Neste caso, o vértice v estd conectado ao vértice v, pela
aresta (vi,v2).

Uma cligue em um grafo € um subconjunto de vértices C C
V tal que todo par de vértices distintos em C estd conectado
por uma aresta em E. A Figura 1 mostra um exemplo visual
de uma clique de tamanho 3 em um grafo.

Na Teoria da computag@o, um problema de decisdo é uma
questdo que tem uma resposta simples de “sim” ou “ndo”. E
como fazer uma pergunta que pode ser respondida com um
"verdadeiro" ou "falso".

Utilizando o grafo da Figura 1 e k = 3, a pergunta “Existe
uma clique de tamanho 3 neste grafo?” € um problema de
decisdo cuja resposta é “Sim”.

A complexidade computacional é o estudo de quio
eficientemente um algoritmo (uma receita para resolver um
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Figura 1: Exemplo de uma clique de tamanho 3. Clique
C= {V],VQ,V3}.

problema) pode resolver um problema em termos de tempo e
recursos (como memoria). Medimos o “tempo” pelo nimero
de passos que o algoritmo leva para rodar, especialmente a
medida que o tamanho da entrada aumenta.

Para ordenar uma lista de n nimeros, um algoritmo simples
pode levar n? passos (como o Bubble Sort), enquanto um mais
eficiente leva nlogn passos (como o Merge Sort).

Um problema € classificado como pertencente ao Tempo
Polinomial 2 quando existe um algoritmo capaz de encontrar
sua resposta (do tipo sim ou ndo, para problemas de decisdo)
em um nimero de passos que cresce, no maximo, Como um
polindmio do tamanho da entrada. Por essa razio, problemas
em P sdo geralmente categorizados na literatura como “faceis’
ou “eficientemente soliveis”.

A Classe A P (Non-deterministic Polynomial time) agrupa
problemas de decis@o para os quais, dada uma ‘“solugdo
candidata” (denominada certificado), é possivel verificar sua
correcdo em tempo polinomial. Esta defini¢do ndo implica
necessariamente que a solu¢do possa ser encontrada de forma
eficiente, mas sim que podemos confirmar rapidamente a
validade de uma proposta apresentada. Vale ressaltar, por
fim, que todo problema pertencente a classe P estd também
contido em A P.

Por exemplo, no jogo Sudoku, encontrar a solugdo para
um tabuleiro vazio pode ser demorado, mas dada uma grade
preenchida (o certificado), verificar se ela segue as regras (ndo
repetir nimeros nas linhas, colunas e quadrantes) ¢ muito
rapido (polinomial).

A Redugdo Polinomial (A <, B) é uma ferramenta formal
utilizada para demonstrar que um problema € “pelo menos tao
dificil” quanto outro. O processo consiste na capacidade de
transformar eficientemente (em tempo polinomial) qualquer
instdncia de um problema A em uma instancia de um problema
B, preservando a equivaléncia das respostas: a instancia de A
é positiva se, e somente se, a instancia correspondente de B
também o for.

Como exemplo, suponha que o Problema A seja “encontrar
a saida de um labirinto fisico de sebes”. Se soubermos

]

ISSN: 2675-3588



X

z

Figura 2: Entrada: o grafo G e k = 4. A resposta é "Sim", pois
{v1,v2,v3,v4} é uma clique.

transformar (reduzir) este labirinto em um desenho de Grafo
(Problema B), onde cada cruzamento é um vértice e cada
corredor é uma aresta, podemos usar um algoritmo de
computador conhecido para resolver B. Assim, resolver o
grafo resolve o labirinto.

O problema da Clique € um problema de decisio NP-

Completo.

CLIQUE

Entrada: Um grafo G = (V,E) e um inteiro k > 1.
Questdo: Existe um subconjunto de vértices V' C V tal que
[V'| > k e, para todo par de vértices distintos em V', existe
uma aresta em E que os conecta?

Considere como exemplo a Figura 2.
O problema do Conjunto Independente também
problema de  decisio = NP-Completo.

2

€ um

INDEPENDENT SET

Entrada: Um grafo G = (V,E) e um inteiro k > 1.
Questdo: Existe um subconjunto de vértices V' C V tal que
[V'| > k e ndo hé arestas em E conectando quaisquer dois
vértices em V'?

Considere como exemplo de Independent Set a Figura 3.

O problema do Empacotamento de Conjuntos
¢ central para este trabalho e  pertence
a classe dos problemas NP-Completos.

SET PACKING

Entrada: Uma colegdo C ={S},S2,...,Sn } de subconjuntos
de um conjunto universal U, e um inteiro k > 1.

Questio: Existe uma subcolegio C' C C tal que |[C'| >k e
todos os conjuntos em C’ sdo mutuamente disjuntos (ou seja,
para quaisquer dois conjuntos S;,S; € C' com i # j, tem-se
S§;NS; = 0)?
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Figura 3: Entrada: Grafo G e k =2. A resposta € "Sim", pois o
subconjunto {v;,vg} tem tamanho 2 e néo existe a aresta (vq,ve)
em E(G).

Exemplo: Entrada: U = {1,2,3,4}, C =
{{1,2},{2,3},{3,4}} e k =2. A resposta é "Sim",
pois a subcolegio C' = {{1,2},{3,4}} tem tamanho 2 e os
conjuntos sdo disjuntos.

ITI. TRABALHOS RELACIONADOS

A literatura sobre o problema do Set Packing (SP) € extensa,
abrangendo desde as provas fundamentais de complexidade
até aplicacdes modernas em teoria dos jogos e otimizagao.
Nesta secdo, destacamos trabalhos que fundamentam a teoria,
exploram limites de tratabilidade e dialogam com a proposta
pedagogica deste artigo.

A referéncia primdria para a classificagdo do Set Packing
¢ o trabalho cléssico de Karp [2], onde demonstrou em suas
pesquisas a redutibilidade entre 21 problemas combinatdrios,
estabelecendo o Set Packing como NP-Completo através de
uma cadeia de redugdes originada na Satisfiabilidade (SAT).
Este trabalho define a posi¢do do problema na hierarquia de
complexidade. Complementarmente, Garey e Johnson [4]
sistematizaram a metodologia de provas de NP-Completude.
O presente artigo adota a estrutura formal de construgéo e
verificagcdo polinomial proposta por eles, adaptando seu rigor
técnico a uma abordagem pedagégica.

Avancando para estratégias de resolucdo exata e mode-
lagem, no trabalho de Delorme, Gandibleux e Rodriguez
(2004) [5], podemos notar que eles trabalham com uma
nova abordagem de modelagem para a resolucdo exata. Na
pesquisa, os autores abordam o problema de Set Packing
propondo uma transformacgido para o problema de clique
maxima e obtém uma redugdo significativa na complexidade
do espago de busca. Os resultados sdo interessantes por
demonstrarem como a reformula¢do do modelo matemadtico e
o uso de limitantes superiores podem acelerar a resolucdo de
instancias dificeis.

Expandindo o escopo para generaliza¢des com aplicagdes
préticas, no trabalho de Muritiba et al. (2010) [6], podemos
notar que eles trabalham com o problema de empacotamento
de bins com conflitos (BPPC). Na pesquisa, os autores
abordam o problema propondo novos limites inferiores
baseados na computagdo de cliques maximais, novos
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limites superiores através de uma abordagem meta-heuristica
envolvendo busca tabu e um operador de cruzamento, € um
algoritmo exato baseado em uma formulagio de cobertura de
conjuntos, resolvido por meio de gerag¢do de colunas e branch-
and-price. Os resultados sao interessantes por demonstrar a
eficcia dos algoritmos propostos em um vasto conjunto de
instancias de referéncia da literatura, resolvendo 780 de 800
instancias para a otimalidade e melhorando consistentemente
algoritmos anteriores.

Investigando a tratabilidade sob condi¢des especificas, no
trabalho de Jia, Zhang e Chen (2004) [7], podemos notar
que eles trabalham com a complexidade parametrizada do
problema de empacotamento de conjuntos. Na pesquisa,
os autores abordam o problema de m-Set Packing (onde
o tamanho de cada conjunto € limitado por uma constante
m) propondo um algoritmo eficiente de complexidade
parametrizada e obt€m a prova de que o problema € tratavel
por parametro fixo (FPT) em relacdo ao tamanho da solucio
k. Os resultados s@o interessantes por demonstrarem que,
ao restringir o tamanho dos conjuntos, € possivel superar a
intratabilidade geral e encontrar solugdes exatas de forma
eficiente para valores pequenos de k.

Sob a dtica de solugdes aproximadas para o caso geral, no
trabalho de Fiirer e Yu (2014) [8], podemos notar que eles
trabalham com a andlise tedrica de algoritmos de aproximacao.
Na pesquisa, os autores abordam o problema de k-Set
Packing investigando o poder das melhorias locais (local
improvements) e obtém limites de aproximacao refinados para
o problema. Os resultados sdo interessantes por aprofundarem
o entendimento sobre as limitacdes e capacidades da busca
local, fornecendo garantias mais justas para a qualidade das
solucdes encontradas por essa classe de algoritmos.

Retornando as inovacdes em modelagem matematica,
no trabalho de Alidaee et al. (2008) [9], podemos notar
que eles trabalham com uma nova abordagem baseada em
Programacdo Quadrética Bindria Irrestrita (UBQP/QUBO).
Na pesquisa, os autores abordam o problema de Set Packing
transformando as restri¢cdes de disjuncdo em penalidades na
fun¢do objetivo quadritica e obtém solucdes de alta qualidade
que rivalizam com métodos especializados em termos de
tempo e eficiéncia. Os resultados sdo interessantes por
demonstrarem que uma estrutura unificada e sem restri¢des
pode simplificar a resolucdo de problemas combinatdrios
complexos, permitindo o uso de heuristicas genéricas
robustas.

Por fim, o trabalho de Lassance e Bianchini [10] investigou
o impacto de estratégias didéticas no ensino de Teoria da
Computacdo. O estudo conclui que abordagens descritivas
e a participacdo ativa dos discentes (via semindrios) sdo
eficazes para diluir a complexidade das redugdes polinomiais.
Seguindo esta diretriz pedagdgica, nosso trabalho adota uma
estratégia de decomposicdo visual e prova passo a passo,
visando contribuir com o entendimento de conceitos abstratos
de intratabilidade computacional pelo ptblico em geral.

IV. DESCRICAO DO PROBLEMA

O problema do Set Packing (Empacotamento de Conjuntos),
doravante denominado SP, ¢ um problema fundamental
na otimizagdo combinatdria e na teoria da complexidade
computacional. Formalmente, dado um universo finito U

FONSECA et al.

e uma familia de subconjuntos S = {S},5,,...,5,}, onde
S; C U, um packing é uma subcole¢io S’ C § tal que todos os
conjuntos em S’ sdo mutuamente disjuntos, ou seja, S;NS; =0
para quaisquer S;,S; € S’ distintos [4].

O problema pode ser abordado sob duas perspectivas. Na
versdo de otimizacdo, o objetivo é encontrar a subcole¢o S’
de cardinalidade méxima. Na versdo de decisdo — a qual
utilizamos para a prova de NP-completude — a entrada inclui
um inteiro k, e a pergunta é se existe um packing de tamanho
pelo menos k (|S'| > k) [2]. Uma generalizagdo comum € o
Weighted Set Packing, onde cada conjunto S; possui um peso
w;, € 0 objetivo é maximizar a soma dos pesos dos conjuntos
disjuntos selecionados.

A relevancia do SP decorre de sua capacidade de modelar
situagdes de alocacdo de recursos onde o compartilhamento
é impossivel (restricdo de exclusividade). A aplicagdo
mais notavel ocorre em Leiloes Combinatorios [11]. Neste
cendrio, um leiloeiro tem um conjunto de itens distintos
(U) e os licitantes oferecem lances por "pacotes" de itens
(S;)). Como cada item s6 pode ser vendido uma vez, o
leiloeiro deve selecionar um conjunto de lances vencedores
que ndo disputem o mesmo item, maximizando o lucro total.
Outras aplicacdes criticas incluem o Airline Crew Scheduling
(escalonamento de tripula¢des), onde cada voo deve ser
coberto por uma unica equipe e as equipes (conjuntos de
voos) ndo podem estar em dois lugares ao mesmo tempo [12].

Para fins pedagdgicos, o SP pode ser visualizado como
o dilema de um organizador de festas que possui uma lista
de grupos de amigos que desejam comparecer ao evento,
Figura 4. O universo U representa as cadeiras disponiveis na
mesa principal. Cada grupo (S;) exige sentar-se em cadeiras
especificas e recusa-se a compartilhar seus assentos com
estranhos. Se um grupo deseja a cadeira 3 e outro também
deseja a cadeira 3, eles sdo incompativeis. O desafio do
organizador € aceitar o maior niimero possivel de grupos sem
gerar conflitos de assentos.

Embora o SP seja NP-dificil no caso geral, existem
subclasses importantes que admitem algoritmos eficientes:

* Cardinalidade Limitada (|S;| < 2): Se todos os
conjuntos na familia S tiverem no méaximo 2 elementos,
o problema torna-se equivalente ao Maximum Matching
(Emparelhamento Maximo) em grafos. Neste caso, os
elementos de U sdo vértices e os conjuntos S; sao arestas.
O problema pode ser resolvido em tempo polinomial
O(E+/V) pelo algoritmo de Edmonds [13].

* Grafos de Intervalo: Se os elementos de U puderem ser
ordenados linearmente tal que cada S; forme um intervalo
contiguo, o problema equivale ao Interval Scheduling,
que pode ser resolvido com uma estratégia gulosa em
O(nlogn) [14].

Para o caso geral, algoritmos exatos baseados em
programacdo dindmica ou inclusdo-exclusdo atingem com-
plexidades da ordem de O*(2"), o que é impraticdvel para
instincias grandes [15]. Essa intratabilidade computacional,
contrastando com a eficiéncia das subclasses restritas
apresentadas, sugere que o Set Packing pertence a classe
dos problemas mais dificeis da computacdo. A secdo a
seguir formaliza essa intui¢do, provando a NP-Completude
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Figura 4: Representagdo visual de uma instancia de Set Packing. O
universo U = {1,..,10}. Os grupos 1, 3 e 4 formam um packing
vélido (azul). O grupo 2 cria conflito com os grupos 1 e 4.

do problema através de uma redug@o polinomial a partir do
problema da Clique.

V. DEMONSTRACAO E CONTRIBUICOES

A seguir, estabelecemos o lema principal deste artigo.

Lema 1. Set Packing é NP-Completo.

Proof. Seguindo o esquema classico, dividimos a prova em
duas etapas identificadas: (1) provar que SP € AP (NP-
pertinéncia) e (2) provar que SP é NP-dificil por meio de
uma reducdo polinomial apropriada.

Tome (1)

Para mostrar que SP € AP, basta exibir um verificador
polinomial que, dada uma solugdo candidata S’, determine
se ela constitui um subconjunto de / conjuntos mutuamente
disjuntos.

A instincia do problema consiste em um universo U
com n = |U| elementos e uma cole¢do de m conjuntos
S ={S1,...,Su}. O certificado é uma subcole¢do &' C §
supostamente de tamanho /.

O verificador executa duas tarefas: (i) verificar se |S'| =1 e
(ii) verificar a disjungdo par a par entre os conjuntos de S’

Temos que o primeiro passo é executado em O(]S'|), que é
limitado por O(m), pois |S'| < m.
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Para o segundo passo, o algoritmo percorre cada par
distinto de conjuntos em S’. O nimero de pares é dado pela
combinagdo de |S’| elementos tomados 2 a 2:

N N L R [ R Y N
2 ) 218 -2)! 2 B 2

Como o termo dominante é quadrético e sabemos que |S'| < m,
conclui-se que o niimero de verificagdes é limitado por O(m?).

Para cada par (S;,S;), verifica-se se S;NS; =0. Se
representarmos cada conjunto como uma lista de elementos,
o teste de intersec@o pode ser feito verificando elemento a
elemento, exigindo tempo proporcional ao tamanho total do
universo. Assim, cada teste leva tempo O(n).

Portanto, o tempo total gasto na verificagdo das disjungdes
é:

O(m*)-0(n) = O(m*n).

Neste termo, o fator quadrético m? provém da comparagio
de todos os pares possiveis de conjuntos, enquanto o fator
linear n surge do custo computacional de verificar a intersecdo
de dois conjuntos especificos.

Somando todos os passos, obtemos um verificador com
custo maximo

0(m) + O(m*n) = O(m*n),

que é polinomial no tamanho da entrada. Assim, concluimos
que SP € N[P.

Tome (2)

Para provar a NP-dificuldade, reduziremos o problema da
Clique ao Set Packing. O problema da Clique é escolhido
como origem pois a relagdo “dois vértices sdo conectados”
pode ser mapeada inversamente para “dois conjuntos sdo
disjuntos” se construirmos o universo baseados nas arestas
que ndo existem. Assim temos a seguinte reducio: CLIQUE
<, SP.

Seguiremos com a estratégia de constru¢do em que a
redugdo f(G,k) = (U,S,l) transforma uma instincia de
Clique em uma de Set Packing preservando a propriedade
isomorfica

Vértices adjacentes em G <—=> Conjuntos disjuntos em S.

A construgdo define o inteiro / com o mesmo tamanho da
clique, ou seja, I = k. O universo U é composto pelas nao-
arestas de G, de modo que cada par de vértices que ndo estd
conectado em G vira um elemento em U':

U= {(V,’,Vj) | Vi, Vj EV,i?éj,(VuVj) ¢E}

O propésito desta construg@o é que, se dois vértices ndo tém
aresta, eles “compartilham” um conflito (o elemento em U),
impedindo que sejam escolhidos juntos. Para a colegdo S,
para cada vértice v; € V, criamos um conjunto S; que contém
todas as ndo-arestas incidentes a v;:

Si={(vi,v;) €U |j#i}

A Figura 5 ilustra um exemplo visual desta redugdo,
destacando como as ndo-arestas formam o universo de
conflito.
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Instancia CLIQUE
(Gk = 3)

Universo U

(Cona )

Instancia Set Packing
(Us,=3)

Figura 5: A existéncia da clique C = {vy,v2,v4} (em azul) no
grafo implica a existéncia de uma subcole¢@o de conjuntos disjuntos
S" = {81,5,,54} na instancia de Set Packing.

No exemplo ilustrado na Figura 5, é possivel observar
a redugdo f de CLIQUE para Set Packing observa-se que
os vértices v3 e vs ndo sdo adjacentes a todos os membros
da clique, o que gera um conjunto de ndo-arestas (como
(vi,v3), (v3,v4), (v2,vs), (va,vs) e (v1,vs)) que passam a
constituir o universo U. Pela regra de constru¢do, onde cada
S; contém as ndo-arestas incidentes a v;, 0s conjuntos S3 €
S5 acabam compartilhando elementos com outros conjuntos,
o que representa conflitos. Em contrapartida, como vi,v; e
v4 estdo plenamente conectados entre si, ndo existem nao-
arestas entre eles no universo, garantindo que seus conjuntos
correspondentes S1,5> € S4 sejam mutuamente disjuntos,
satisfazendo a condicdo de validade do Set Packing.

Contudo, ndo basta apenas montar a construcao da reducio.
Também precisamos mostrar que (i) esta reducdo € polinomial
e (ii) preserva a simetria entre os problemas.

(i). Devemos provar que a transformagio preserva a resposta
do problema original, ou seja, (G, k) tem Clique <= (U, S,1)
tem Set Packing.

(=) Se G tem clique de tamanho k, entdo (U,S) tem packing
de tamanho | = k.

Proof. Seja C a clique em G. Selecionamos os conjuntos
correspondentes §' = {S; | v; € C}. Temos [§'| = |C| =k =1.
Para quaisquer dois conjuntos distintos S;,S; € §', os vértices
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correspondentes v;, v; estdo na clique. Logo, a aresta (v;,v;)
existe em E. Como U contém apenas ndo-arestas, 0 par
(vi,vj) ¢ U. A tnica intersec@o possivel entre S; e S; seria o
elemento (v;,v;). Como (v;,v;) ¢ U, ele ndo pode estar nem
em S; nem em S;. Logo, §;NS; =0. Assim, S’ é um Set
Packing vilido. O

(<) Se (U,S) tem packing de tamanho | = k, entdo G tem
clique de tamanho k.

Proof. Seja S’ o packing. Selecionamos os vértices C =
{vi|$; €8} Temos |C| =|S'| =1 =k. Suponha, por
contradi¢do, que C ndo seja uma clique. Entdo existem
dois vértices v;,v; € C tal que a aresta (v;,v;) ¢ E. Se a
aresta néo existe, entdo o par (v;,v j) € uma ndo-aresta, logo
(vi,vj) € U. Pela construgdo, S; contém todas as ndo-arestas
de v; (incluindo (v;,v;)) e S; contém todas as de v; (incluindo
(vi,vj)). Portanto, (v;,v;) € S;NS}, o que implica S;NS; # 0.
Isso contradiz a hipétese de que S’ é um packing (conjuntos
disjuntos). Logo, a aresta deve existir para todos os pares, e C
€ uma clique. O

(ii). A construcdo do universo U exige iterar sobre todos os
pares de vértices, uma operagdo limitada por (g) =0(n?). A
construcdo da colegdo S exige criar n conjuntos, onde para
cada um verificamos n — 1 pares, totalizando também O(nz).
Portanto, conclui-se que a funcdo de reducdo f é executada
em tempo polinomial: O(n?).

Assim por (1) e (2), provamos o Lema 1 ao demonstrarmos
que o Set Packing € NP-Completo, validando sua pertinéncia
a AP e em seguinda apresentando uma redugdo polinomial a
partir do CLIQUE. Esta prova ilustra o uso de “conflitos”
(neste caso, ndo-arestas) como elementos basicos de
construcdo para forcar restricdes de exclusdo mutua. O

VI. RESULTADOS E REFLEXOES

A elaboragdo deste trabalho resultou na producdo de um
material diddtico autossuficiente para o estudo da NP-
Completude do problema Set Packing (SP). Diferentemente de
abordagens tradicionais que frequentemente omitem passos
intermedidrios das redugdes polinomiais, os resultados aqui
apresentados focam na explicitacdo da logica construtiva.
A principal contribuicdo pedagégica deste estudo é a
sistematizag¢do visual e analdgica da redu¢do CLIQUE <, SP.
Na literatura cldssica, a definicdo do universo U como o
conjunto de “ndo-arestas” € frequentemente apresentada de
forma puramente algébrica, o que dificulta a visualizacdo
geométrica por parte do estudante. Para mitigar essa barreira,
desenvolvemos a analogia do “Organizador de Festas”, uma
narrativa lddica que provou-se eficaz para traduzir a restricdo
abstrata de “interse¢do vazia” para uma restri¢do concreta
de “conflito de assentos”, facilitando a intuicdo inicial sobre
o problema. Adicionalmente, a diagramacao da redugdo
apresentada nas Figuras 5 e 4 permite ao aluno rastrear
visualmente como um vértice no grafo se transforma em um
conjunto, e como a auséncia de uma aresta se materializa em
um elemento compartilhado no universo U.

Durante a estruturacdo da prova de NP-Dificuldade,
identificamos que a maior dificuldade cognitiva reside na
“inversao logica” exigida pela redugdo a partir do problema
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da Clique. Enquanto reducdes a partir do Independent Set
(IS) mapeiam arestas diretamente para elementos do universo
(conflito direto), a redugdo a partir da Clique exige o uso do
grafo complementar (ou ndo-arestas). Essa distin¢do ¢ sutil
e é uma fonte comum de erro. Para superar esse obstaculo,
adotamos a estratégia de definir explicitamente o universo
U como um conjunto de “conflitos potenciais”, reforcando
que, para que um packing (pacote de vértices) seja valido, os
elementos ndo podem ter conflitos (ndo-arestas) entre si — o
que forga a existéncia das arestas no grafo original.

Em termos de aplicabilidade académica, este artigo foi
estruturado para servir como material complementar na
disciplina de Teoria da Computacdo. A Secdo 4 (Descri¢do
do Problema) pode ser utilizada como texto introdutdrio para
aulas sobre problemas de empacotamento, enquanto a Se¢ao
5 (Demonstragdo) serve como guia para listas de exercicios
avancados que exigem a formalizagdo de redugdes.

Por fim, embora o foco deste trabalho seja a intrata-
bilidade (NP-Completude), € importante refletir sobre o
comportamento pritico. Em cendrios reais, como o0s
leildes combinatérios mencionados, ndo se busca a prova de
inexisténcia de solu¢do, mas sim a melhor solug@o possivel em
tempo habil. Experimentos simples com algoritmos gulosos
(selecionar o menor conjunto disponivel iterativamente)
demonstram que, embora ndo garantam a soluc¢do 6tima (o k
maximo), oferecem aproximagdes rapidas. Esta constatacio
reforca a importincia pedagégica de distinguir entre a
dificuldade do pior caso (foco da teoria N P) e a solubilidade
prdtica via heuristicas.

VII. CONSIDERACOES FINAIS

Este trabalho cumpriu seu objetivo principal de provar a
NP-Completude do problema Set Packing (SP), oferecendo
uma abordagem pedagdgica que preenche a lacuna entre a
defini¢do formal e a intuicdo geométrica. Através da reducio
polinomial a partir do problema da Clique (CLIQUE <, SP),
demonstramos que a dificuldade computacional de encontrar
grupos mutuamente exclusivos em uma colecdo é equivalente
a encontrar subgrafos completos. O principal resultado obtido
nao foi apenas a reafirmagdo da complexidade do problema,
mas a sistematizacdo de um método de ensino que utiliza
analogias ludicas (o “Organizador de Festas”) e diagramas
visuais passo a passo para facilitar a assimilacdo de conceitos
abstratos por estudantes de graduacao.

E importante ressaltar, contudo, que o escopo deste artigo
limitou-se a andlise da complexidade de pior caso e a versao
de decisdo do problema. Entre as limitagdes, destaca-se a
auséncia de implementacao de solucionadores exatos (como
branch-and-bound) ou heuristicos para resolver instancias
do problema, visto que a implementag@o restringiu-se ao
algoritmo verificador polinomial para validagdo da classe
AP, e ndo para avaliacdo de desempenho em benchmarks.
Além disso, optou-se pelo foco em uma redugdo tnica via
Clique para garantir a profundidade e a clareza didatica, em
detrimento da abrangéncia de outras redugdes possiveis, como
a partir do Exact Cover ou 3-SAT.

A base tedrica estabelecida neste artigo abre diversas
frentes para investigagdo académica e desenvolvimento
didatico em trabalhos futuros. Uma extensdo natural seria o
estudo comparativo de algoritmos gulosos e meta-heuristicas
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(como Algoritmos Genéticos ou Simulated Annealing) para
a versdo de otimizac¢do do Set Packing, analisando o gap de
aproximacao dessas solugdes. Outra perspectiva relevante
¢ a andlise em classes de grafos especiais, visto que o Set
Packing torna-se solivel em tempo polinomial quando o
universo e os conjuntos podem ser modelados como grafos
de intervalo ou grafos de corda. Adicionalmente, sugere-
se investigar a complexidade parametrizada (FPT) para
verificar a tratabilidade do problema para valores pequenos
de k. Por fim, propde-se a extensdo pedagdgica através do
desenvolvimento de uma ferramenta de software interativa
que permita aos alunos desenharem grafos e visualizarem,
em tempo real, a transformagdo dos vértices e arestas nos
conjuntos do Set Packing. Conclui-se que o Set Packing,
apesar de sua complexidade inerente, é um excelente veiculo
para o ensino da Teoria da Computagao, servindo como porta
de entrada para discussdes mais amplas sobre otimizagao
combinatdria e limites da computabilidade.
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Resumo—Este artigo apresenta um estudo didético sobre o problema do Casamento Mdximo em grafos, com énfase na estrutura de grafos
bipartidos e suas generalizagdes. O objetivo € reproduzir resultados fundamentais que fogem da abordagem cldssica de Konig e Hall.
Para isso, exploramos o Teorema de Tutte, que condiciona o emparelhamento perfeito a andlise de componentes impares, e o Teorema
de Dilworth, que estabelece uma dualidade com conjuntos parcialmente ordenados (posets). A metodologia emprega a andlise de provas,
utilizando técnicas de redugdo e decomposicdo, acompanhada de exemplos lddicos e visualizagdes estratégicas. Como resultados centrais,
demonstramos que a condicio de Tutte € o obstdculo estrutural universal para o emparelhamento perfeito, e que a equivaléncia de Dilworth
¢é a base para a eficiéncia algoritmica, como exemplificado pelos trabalhos de Kameda e Munro. Em conclusdo, este estudo preenche
lacunas conceituais e oferece uma contribui¢do pedagdgica significativa, tornando o rigor da Teoria dos Grafos mais acessivel a estudantes
de graduacdo e promovendo uma visdo unificada sobre a existéncia de emparelhamentos e coberturas de cadeias.

Palavras-chave—Casamento Maximo, Teorema de Tutte, Teorema de Dilworth, Kameda-Munro, Didatica em Grafos.

Abstract—This paper presents a didactic study on the Maximum Matching problem in graphs, with an emphasis on bipartite graph
structures and their generalizations. The objective is to reproduce fundamental results that move beyond the classical approach of Konig
and Hall. To this end, we explore Tutte’s Theorem, which conditions perfect matching on the analysis of odd components, and Dilworth’s
Theorem, which establishes a duality with partially ordered sets (posets). The methodology employs the analysis of proofs, utilizing
techniques of reduction and decomposition, accompanied by illustrative examples and strategic visualizations. As central results, we
demonstrate that Tutte’s condition is the universal structural obstacle to perfect matching, and that Dilworth’s equivalence establishes a
rigorous reduction between poset decomposition and bipartite matching, enabling efficient polynomial-time solutions as exemplified by the
works of Kameda and Munro. In conclusion, this study fills conceptual gaps and offers a significant pedagogical contribution, making the
rigor of Graph Theory more accessible to undergraduate students and promoting a unified view on the existence of matchings and chain
covers.

Keywords—Maximum Matching, Tutte’s Theorem, Dilworth’s Theorem, Kameda-Munro, Graph Theory Education.

termos simples, este problema busca encontrar a maior

quantidade possivel de pares dentro de um grupo, sem que

I. INTRODUCAO ninguém "sobre" ou participe de mais de um par. Embora a
definicdo parega simples, sua resolucdo possui implicacdes

Teoria dos Grafos atua como a linguagem universal  profundas e diretas em cendrios reais como: a alocagdo

da Ciéncia da Computagdo, oferecendo a estrutura  eficiente de tarefas em processadores, a distribuicio de

necessaria para.modelar. desde .rede.s sociats complexas até  medicos em plantdes hospitalares e a otimizacdo de sistemas
a arquitetura microscépica de circuitos integrados [2] . No  ge recomendagio.

centro dessa teoria, o Problema d(’. Casamento Mdximo Tradicionalmente, o ensino introdutério de emparelha-
(Maximum Matching) ocupa uma posi¢do de destaque. Em  y,0n105 em grafos concentra-se quase exclusivamente em
grafos bipartidos — cendrios onde os vértices podem

ser divididos em dois grupos distintos (como tarefas e
Dados de contato: Vitéria M. Soares, vitoria.milhomem @mail.uft.edu.br
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trabalhadores). Nesses casos, os cldssicos teoremas de
Hall [5] e Konig [9] oferecem solugdes fundamentais e
bem conhecidas. No entanto, o mundo real nem sempre
¢ bipartido. Quando as restricdes de conexdo sdo mais
complexas e formam grafos gerais, as ferramentas bdsicas
deixam de funcionar. E neste ponto que este artigo se
insere: propomos uma abordagem pedagdgica para transpor
a barreira dos grafos bipartidos, explorando o Teorema de
Tutte [14], que generaliza a existéncia de emparelhamentos
através de uma andlise de paridade topolégica (componentes
impares).

Além de tratar de grafos gerais, buscamos conectar a
teoria dos grafos a teoria da ordem. Para isso, revisitamos
o Teorema de Dilworth [3] , que estabelece uma dualidade
surpreendente entre o tamanho de emparelhamentos e a
estrutura de conjuntos parcialmente ordenados (posets). Para
amarrar a teoria a pritica computacional, discutimos como
essas propriedades estruturais fundamentam algoritmos
eficientes, como os estudados por Kameda e Munro [8] ,
que utilizam tais decomposicdes para resolver o problema
em tempo polinomial.

Portanto, o objetivo deste trabalho é duplo e focado na
diddtica. Buscamos fornecer demonstracdes passo a passo
e rigorosas destes teoremas avancados, bem como oferecer
contribuicdes pedagdgicas concretas. A intengdo é utilizar
exemplos ludicos e visualizagdes estratégicas para facilitar a
intui¢do do estudante, revelando conceitos abstratos como a
barreira de componentes impares ou a cobertura de cadeias,
transformando a demonstracdo matemadtica em uma narrativa
l6gica e compreensivel.

As segdes subsequentes guiardo o leitor por essa jornada,
comecgando pelas Preliminares (Secdo II), seguidas pelos
Trabalhos Relacionados (Secdo II) e a Descricio do
Problema (Secdo IV), avangando para as Demonstracdes
passo a passo (Se¢do V), a andlise de Resultados e Reflexdes
(Seg¢do VI), culminando nas Considera¢des Finais (Secdo
VII). No entanto, para que o rigor e a didética pretendidos
sejam plenamente alcancados, € imperativo que o leitor
domine o vocabuldrio e as estruturas bdsicas que sustentam
toda esta competéncia.

Desta forma, para que a complexidade dos teoremas
principais possa ser abordada, dedicamos a préxima se¢@o,
Preliminares, a estabelecer o vocabuldrio formal e a intui¢do
essencial sobre emparelhamentos e as estruturas de paridade
que serdo cruciais nas demonstracdes subsequentes.

II. PRELIMINARES

Um grafo G = (V,E) é uma estrutura composta por um
conjunto de vértices V (pontos) e um conjunto de arestas E
(linhas que conectam esses pontos) [2]. Um grafo é dito
bipartido quando o seu conjunto de vértices V pode ser
particionado em dois grupos disjuntos, A e B, de tal forma
que todas as arestas conectam um vértice de A a um vértice
de B. Nao existem arestas conectando dois vértices dentro do
mesmo grupo (ex: ndo hd arestas de A para A).

Nota Diddtica: Para compreender intuitivamente a
distincdo estrutural de um grafo bipartido, imagine que
o conjunto de vértices do grafo € particionado em dois
subconjuntos disjuntos e independentes, que rotulamos como
A e B. A Figura 1 ilustra visualmente essa particio. Podemos
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Conjunto A

Conjunto B

Figura 1: Exemplo visual de Grafo Bipartido G = (AUB,E).
Note a auséncia de arestas "verticais" dentro de cada conjunto.

&=
(B eeni)— rees®

Figura 2: A linha pontilhada em azul € um exemplo de um
Caminho Simples, onde nenhum vértice ¢ repetido.

Figura 3: Exemplo de um Caminho ndo Simples, com inicio em

v1 e término em v4. O caminho repete os vértices v, e v3 ao passar
pelo ciclo vy —v3 —vg —vs — ).

descrever esses subconjuntos através de um exemplo lidico:
considere os vértices do subconjunto A como “Tarefas” e
os vértices do subconjunto B como “Trabalhadores”. A
regra fundamental de um grafo bipartido € a sua restri¢do de
conectividade: as interacdes (representadas pelas arestas) s
podem ocorrer entre um vértice pertencente ao subconjunto
A e um vértice pertencente ao subconjunto B. E crucial
notar que ndo existe conectividade interna; ou seja, nio
ha arestas entre dois vértices que pertencam ao mesmo
subconjunto (A ou B). Essa restricio impde uma estrutura
menos densa e mais restrita, facilitando a analise e a busca
por emparelhamentos. Em contraste, um grafo geral permite
interacdes irrestritas, o que pode levar a formacdo de ciclos
impares (como tridngulos), que s@o a principal fonte de
complicacdo e o foco do Teorema de Tutte [14].

O grau de um vértice em um grafo € o nimero de arestas
que estdo conectadas a ele. A vizinhangca de um vértice
v em um grafo G € o conjunto composto por todos os
vértices adjacentes a v, onde ,vértices adjacentes, sdo aqueles
conectados por uma aresta a v.

Um caminho em um grafo € uma sequéncia de vértices
interligados por arestas, onde o tltimo vértice de uma aresta
¢ o primeiro da préxima. Um caminho simples é aquele
que ndo repete vértices. O comprimento de um caminho ¢ a
quantidade de arestas que o compdem [2]. A Figura 2 ilustra
um exemplo claro de um caminho simples, em contraste com
o caminho nao simples, onde a repeticdo de vértices ocorre,
conforme detalhado na Figura 3.

Um subgrafo de um grafo G, essencialmente, é um
grafo cujo conjunto de vértices e conjunto de arestas sdo
subconjuntos de G. Uma componente conexa em um grafo
€ um subgrafo onde todos os vértices estdo conectados entre
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Figura 4: Comparacio entre o Caminho Maximo (azul tracejado)
e um Caminho Maximal que néio é mdximo (vermelho)

si por caminhos, formando um “pedaco” isolado do grafo
original [2].

A andlise dessas subestruturas nos leva a necessidade de
distinguir entre o maior elemento local e o maior elemento
global, conceitos fundamentais na otimizacao: um elemento
M € S € classificado como mdximo se for maior ou igual a
todos os outros elementos em S. Esta é uma propriedade
de natureza global. Se um elemento maximo existe, ele é
intrinsecamente Unico dentro do conjunto. Por outro lado,
um elemento m € § € classificado como maximal se nao
houver nenhum outro elemento em S que seja estritamente
maior do que m na relacio de ordem definida. Esta é
uma propriedade de natureza local, o que implica que um
conjunto pode conter multiplos elementos maximais que nao
sd0 compardaveis entre si.

A distin¢cdo reside na comparabilidade: um elemento
maximo domina todos os outros, enquanto um elemento
maximal apenas garante ndo ser dominado por nenhum
outro. Consequentemente, todo elemento maximo &, por
defini¢do, maximal; contudo, a reciproca ndo é verdadeira.

A Figura 4 demonstra visualmente a diferenca conceitual:
o caminho P,, = v» — v5 (em vermelho) é classificado como
maximal porque, sendo vs um vértice de grau 1, ele ndo pode
ser estendido. Contudo, ele ndo é maximo, pois o grafo
contém o caminho Py = vi — vy —v3 — v (em azul), que
possui 3 arestas e representa o maior caminho possivel do
grafo.

Dado um grafo G = (V,E), um emparelhamento M é
um subconjunto de arestas, M C E, tal que quaisquer duas
arestas em M ndo possuem vértices em comum. Um
emparelhamento M é méaximo se o nimero de arestas em
M, |M|, é o maior possivel dentre todos os emparelhamentos
existentes no grafo G. J4 um emparelhamento M ¢é perfeito
se satura (cobre) todos os vértices em V. Isso implica que
todo vértice v € V € ponta de exatamente uma aresta em M.
E importante notar que um emparelhamento perfeito s6 pode
existir se o nimero de vértices |V| for par.

Intuicdo: Um emparelhamento representa ‘“‘escolhas
exclusivas”. Se os vértices fossem pessoas e as arestas
fossem parcerias de danca, um emparelhamento garantiria
que ninguém estd tentando dancar com duas pessoas ao
mesmo tempo. O emparelhamento perfeito, onde ninguém
fica sem par, ilustra o resultado ideal do Casamento Médximo.
A saturacdo de todos os vértices € o objetivo que a Figura 5
demonstra.

Seja G um grafo (ou um subgrafo), um componente
impar € uma componente conexa do grafo que possui uma
quantidade fmpar de vértices (1,3, 5, etc.). A quantidade total
dessas componentes impares no grafo é denotada por o(G).

Este € o coragdo do Teorema de Tutte [14]. Empare-
lhamentos sempre formam pares (nimero par: 2,4,6...).
Em um componente com nimero impar de vértices, ¢ ma-
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Figura 5: Exemplo de um Emparelhamento Perfeito. As arestas

destacadas formam um emparelhamento que satura todos os 8
vértices do grafo.

Figura 6: Exemplo visual de uma Cadeia. Elementos em

sequéncia ordenada.

Figura 7: Exemplo visual de uma Anticadeia. Elementos
totalmente independentes.

tematicamente impossivel emparelhar todos internamente:
sempre sobrard pelo menos um vértice. Essa "sobra" cria
a necessidade de buscar par fora do componente.

Uma relacdo de ordem parcial em um grafo é uma
estrutura que define uma hierarquia ou precedéncia entre
alguns dos seus vértices. Um conjunto parcialmente
ordenado (poset) em um grafo é uma representacido visual
de um conjunto de elementos onde uma relacdo de ordem
parcial € definida.

Considere um poset P, onde existe uma relacdo de ordem
“<” definida entre alguns elementos. Nessa estrutura, uma
Cadeia ¢ um subconjunto de elementos onde todos sdo
compardveis entre si, seguindo uma sequéncia linear (como
uma fila indiana ou uma linha do tempo, onde a < b < ¢). Em
contraste, uma Anticadeia € um subconjunto de elementos
onde ninguém é compardvel com ninguém, representando
elementos totalmente independentes ou simultineos.

Uma analogia para compreender essas estruturas é a arvore
genealdgica. Uma Cadeia representa uma linhagem direta
(Bisavd — Avo — Pai — Filho), onde a hierarquia € clara
e sequencial. Observando a Figura 6, os vértices e, es,e3 e
e4 exemplificam essa relacdo de ordem total: a presenga das
arestas direcionadas indicando que e; leva a e, que por sua
vez leva a e3, confirma que todos os elementos neste caminho
sd30 comparaveis entre si.

Em contraste, uma Anticadeia corresponde a um grupo de
irmaos ou primos que ndo possuem relacdo de descendéncia
direta entre si. Conforme ilustrado na Figura 7, os
vértices denotados por cy,cp,c3 € ¢4 materializam essa
propriedade: a auséncia total de arestas conectando c; a ¢,
ou qualquer outro par, evidencia que eles sdo incomparaveis.
Eles coexistem no mesmo “nivel” hierdrquico sem que
nenhum elemento preceda ou suceda o outro, mantendo essa
independéncia mitua até o enésimo elemento cy.

Munidos dessas defini¢des fundamentais, dispomos
do vocabuldrio necessario para compreender a evolucdo
histérica da teoria. Essas estruturas basicas ndo sdo meras
abstragdes; elas serviram como blocos de construcdo para
os teoremas de dualidade que definem a area. Para além
dos classicos, a seg¢do a seguir contextualiza como os
pioneiros da teoria dos grafos manipularam esses conceitos
para transitar de solugdes em estruturas simples para a
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complexidade dos grafos gerais, € como obras mais recentes
vém complementando e refinando essas técnicas estruturais,
tornando-as aplicaveis aos desafios computacionais atuais.

Dessa forma, a revisdo bibliogréfica subsequente organiza-
se para refletir sobre trabalhos relacionados ao tema central
do nosso estudo.

II1. TRABALHOS RELACIONADOS

A literatura fundamental sobre emparelhamentos, que serve
de base para as defini¢des utilizadas neste artigo, remonta ao
periodo classico da Teoria dos Grafos. As obras de Konig
[9] e Hall [5] estabeleceram as condi¢des de existéncia em
grafos bipartidos, enquanto Berge [1] introduziu a dindmica
dos caminhos aumentantes. Para o contexto de grafos gerais
e ordens parciais, as generalizagdes propostas por Tutte [14]
e Dilworth [3] sdo as referéncias primdrias. Embora estes
trabalhos sejam seminais, a pesquisa na drea continua ativa,
focando-se especialmente na eficiéncia algoritmica e em
novas abordagens pedagdgicas.

No ambito da otimizagdo algoritmica e suas aplicagdes
em Inteligéncia Artificial, o trabalho de Tassa [13] oferece
uma perspectiva relevante sobre a identificagdo de arestas.
O autor investiga o problema de encontrar todas as arestas
"maximamente emparelhdveis" (aquelas que pertencem
a pelo menos um emparelhamento maximo) em grafos
bipartidos.  Tassa [13] propde um algoritmo baseado
na decomposicdo do grafo em componentes fortemente
conexos, otimizando a abordagem anterior ao reduzir o
tamanho do grafo direcionado auxiliar para max{|Vi|,|V2|}
nos. Além disso, o estudo estabelece uma conexao
importante com a 4rea de Problemas de Satisfacdo de
Restricdes (CSPs), reconhecendo que técnicas similares
foram exploradas pioneiramente por Régin [12] para
algoritmos de filtragem. Essa linha de pesquisa demonstra
como os conceitos tedricos de emparelhamento, discutidos
em nosso trabalho, sdo instrumentalizados para resolver
problemas complexos de privacidade de dados e filtragem de
restricoes.

Contemporaneamente, o algoritmo de Micali e Vazirani
continua sendo referéncia central para problemas de empa-
relhamento em grafos gerais. Peterson e Loui [11] oferecem
uma exposicdo clara e rigorosa deste algoritmo, que opera
em tempo O(+/[V]-|E|) e permanece como o algoritmo
sequencial mais eficiente conhecido para emparelhamento
de cardinalidade mdxima. A importancia deste trabalho vai
além da implementacdo: ele estabelece as bases tedricas
que permitem a paralelizagdo e distribuicdo de algoritmos
de emparelhamento. Compreender profundamente este
algoritmo é fundamental para estudantes que buscam avangar
para dominios mais complexos de otimiza¢do combinatoria,
pois suas técnicas de tratamento de ciclos impares inspiraram
desenvolvimentos posteriores em algoritmos distribuidos.

Expandindo a abordagem de Micali e Vazirani para
ambientes distribuidos, o trabalho de Huang e Su [7]
apresenta um algoritmo polinomial poly(1/¢e,logn)-round
para obter uma aproximacdo (1 — &) do emparelhamento
méximo ponderado em grafos gerais no modelo CONGEST
distribuido. Este avango resolve um problema em aberto de
longa data na drea de algoritmos distribuidos, generalizando
resultados prévios que funcionavam apenas em classes
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especiais de grafos (bipartidos e grafos livres de menores).
A contribui¢cdo de Huang e Su demonstra que a estrutura de
obstrugdo de Tutte permanece relevante e pode ser explorada
de forma eficiente mesmo em cenarios distribuidos, onde a
comunicag¢do entre processadores € limitada.

Paralelamente a evolugdo técnica, a transposicao diddtica
desses conceitos complexos tem sido objeto de estudo
recente. Lassance et al. [10] argumentam que a barreira
de entrada para o entendimento de grafos gerais ndo é
puramente matemdtica, mas estrutural. O trabalho deles
propde uma reorganizacdo curricular onde a apresentacio de
teoremas avancados deve ser precedida por uma construcio
visual rigorosa. Inspirados por essa metodologia, nosso
artigo adota a premissa de que a visualizag@o de "obstaculos"
— como as componentes impares em Tutte — deve ser o
ponto de partida do processo de ensino.

Diferentemente dos trabalhos existentes, que priorizam a
otimiza¢do de desempenho algoritmico em cendrios especi-
ficos ou a complexidade em sistemas distribuidos, este artigo
contribui ao oferecer uma unificaciio didatica entre a Teoria
dos Grafos e a Teoria da Ordem. Nossa contribuicao reside
na sistematizagdo da técnica de redugcdo — especificamente
na conversdo entre Posets e Emparelhamentos — e na
formaliza¢do de uma narrativa visual para o Teorema de
Tutte. Ao focar na desmistificagdo dos obstaculos estruturais
por meio de provas assistidas por diagramas, este trabalho
preenche a lacuna entre o rigor matematico puro e a intui¢ao
necessdria para o dominio da disciplina por estudantes de
graduagao.

Com o alicerce histdrico referenciado e as conexdes com
a algoritmia moderna e a pedagogia estabelecidas, torna-se
imperativo formalizar o desafio matematico. A se¢do a seguir
delimita o escopo do nosso estudo, transpondo a intui¢do
discutida nestes trabalhos relacionados para uma defini¢do
rigorosa de otimizacdo combinatéria.

IV. DESCRICAO DO PROBLEMA

O desafio central abordado neste trabalho é o Problema
do Emparelhamento Maximo, fundamental na otimizacio
combinatéria. Formalmente, dado um grafo G = (V,E),
buscamos identificar um subconjunto de arestas M C E
tal que nenhuma aresta em M compartilhe um vértice
comum. Esta propriedade é conhecida como arestas par-
a-par disjuntas. O objetivo € maximizar a cardinalidade
M|, ou seja, encontrar a configuragio que envolva o
maior nimero possivel de vértices e minimize vértices
ndo emparelhados. A complexidade computacional para
solucionar este problema varia conforme a topologia do
grafo. Para grafos bipartidos, algoritmos exatos como o
de Hopcroft-Karp [6] operam com alta eficiéncia em tempo
O(E/V). Entretanto, em grafos gerais, a auséncia de
uma biparti¢do clara permite a existéncia de estruturas mais
rigidas. Isso exige abordagens mais sofisticadas, como
o algoritmo de Edmonds (Blossom) [4], para tratar ciclos
impares.

Para concretizar a disting@o estrutural entre essas classes
de grafos e motivar a necessidade do Teorema de Tutte [14],
propomos a andlise de um cendrio lddico denominado "O
Baile da UFT". Inicialmente, observamos o caso restrito
ilustrado na Figura 8, que representa o Cendrio A. Neste
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Figura 8: Cendrio A: Grafo Bipartido. Os vértices v; representam
alunos. O Grupo A s6 danga com o Grupo B. As arestas marcadas
(emparelhamento) sdo o resultado maximo.

O

Figura 9: Cendrio B: Grafo Geral. Os ciclos impares (tridngulos)
impedem um emparelhamento perfeito. As arestas marcadas
mostram o emparelhamento maximo possivel, deixando v3 e vg
sem par.

grafo bipartido, as regras de interag@o sdo estritas: alunos do
Grupo A (nés azuis) s6 podem formar pares com alunos do
Grupo B (n6s vermelhos). A auséncia de arestas internas em
cada grupo simplifica a busca pelo emparelhamento maximo,
pois ndo ha conflitos de paridade interna a serem resolvidos.

Por outro lado, a complexidade aumenta consideravel-
mente no Cendrio B, apresentado na Figura 9. Aqui, temos
um grafo geral onde a regra de formacdo de pares baseia-se
na afinidade, independentemente do grupo de origem. Essa
flexibilidade permite a formagdo de ciclos impares, como
o tridngulo formado pelos vértices vi,v; € v3. Como pode
ser visualizado na figura, se trés individuos desejam formar
pares exclusivamente entre si, ¢ matematicamente impossivel
que todos sejam atendidos simultaneamente. Portanto,
inevitavelmente, um vértice restara sem par. Esta ocorréncia
do ciclo impar € a representagdo geométrica do obstaculo que
impede o emparelhamento perfeito em grafos nao-bipartidos.

E neste contexto de impossibilidade estrutural que o
Teorema de Tutte [14] se insere, oferecendo uma condi¢do
necessdria e suficiente baseada na topologia global. Antes de
avancarmos para as demonstragdes formais, sistematizamos
nas Tabelas 1 e 2 os principais problemas abordados,
separando a andlise de existéncia da andlise de otimizagdo
de ordem.

A ldgica de resolucdo apresentada nas tabelas desdobra-
se em uma narrativa continua que fundamenta as provas
subsequentes. Inicialmente, na Andlise de Paridade (Tutte),
a prova estabelece que componentes com nimero impar de
vértices possuem uma limita¢do aritmética inerente, pois
nunca podem ser totalmente emparelhados internamente.
Assim, cada componente impar exige uma conexiao com um
vértice externo (do conjunto S), de modo que, se 0o nimero
de componentes impares o(G — S) for maior que o nimero de
vértices disponiveis em S, o emparelhamento perfeito torna-
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TABELA 1: RESUMO ESTRUTURAL: TEOREMA DE TUTTE

Problema | Existéncia de Emparelhamento Perfeito

(Tutte)

Input Grafo Geral G = (V,E) e a andlise de

subconjuntos de vértices removidos S.

Output Condicdo Necessdria e Suficiente: o(G —

S) <|S].

Resumo Demonstracdo baseada na identificagdao
de componentes impares como obstaculos

estruturais intransponiveis.

TABELA 2: RESUMO ESTRUTURAL: TEOREMA DE DILWORTH

Problema | Decomposi¢do Minima de Cadeias (Dil-
worth)

Input Poset P e sua transformacdo em Grafo
Bipartido.

Output Teorema Min-Max: tamanho max. anti-
cadeia = minimo de cadeias.

Resumo Técnica de Reducdo: converte a de-
pendéncia de ordem em um problema de
emparelhamento bipartido.

se impossivel. Sequencialmente, no que tange a Técnica
de Reducao (Dilworth), a prova utiliza a constru¢do de um
grafo auxiliar para traduzir um conceito abstrato de ordem
parcial em um geométrico de arestas. Ao duplicar os vértices
do Poset para criar um grafo bipartido, demonstramos que
cada aresta do emparelhamento conecta o fim de uma cadeia
ao inicio de outra, resultando na identidade fundamental
onde minimizar o nimero de cadeias é matematicamente
equivalente a maximizar o emparelhamento (|C| = n— |M|).

Estabelecida a intui¢do visual de que ciclos impares impe-
dem o emparelhamento perfeito e como a redugo simplifica
problemas de ordem, torna-se imperativo formalizar esses
conceitos na proxima secao.

V. DEMONSTRACAO E CONTRIBUICOES

Nesta sec@o, apresentamos as demonstracdes dos dois
resultados fundamentais: o Teorema de Tutte [14] e o
Teorema de Dilworth [3]. A escolha destes resultados
visa expandir o repertério para além das técnicas bdsicas
de caminhos aumentantes, introduzindo o conceito de
"obstaculos estruturais". Iniciamos essa andlise expandindo
o escopo dos grafos bipartidos para os grafos gerais.
Enquanto o Teorema de Hall [5] verifica vizinhangas locais,
o Teorema de Tutte fornece uma condig@o global.

Condigdo de Tutte: Um grafo G = (V,E) possui um
emparelhamento perfeito se, e somente se, para todo
subconjunto de vértices S C V, vale a desigualdade o(G —
S) < IS|.  Aqui, o(G — S) representa o nimero de
componentes conexos com um nimero impar de vértices no
grafo resultante da remocao de S.

Partimos da hipétese de que o grafo G possui um em-
parelhamento perfeito M. Seja S um subconjunto qualquer
de vértices removidos e considere as componentes conexas
C1,Cy,...,Cy, resultantes dessa remogdo. Ao analisarmos
uma componente impar especifica C;, observamos que a
soma das arestas internas ndo cobre a totalidade dos vértices,
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Comp. fmpar 1

Removido

Comp. fmpar 3

Comp. fmpar 2

Figura 10: Visualizacdo da falha na condigdo de Tutte:
0o(G—S) > |S|. Ao retirar o vértice central, restam 3 componentes
impares isolados.

devido a sua cardinalidade fmpar. Obrigatoriamente, pelo
menos uma aresta de M deve conectar um vértice de C; a um
elemento externo.

Como C; é uma componente isolada em G — S, ndo
existem arestas ligando-a a outras componentes; logo, essa
conexdo externa deve necessariamente incidir em um vértice
de S. Sob a Otica da contabilidade de arestas, visto
que os elementos do emparelhamento sdo disjuntos, cada
componente impar consome um vértice exclusivo de S. A
conclusdo 16gica, ilustrada na Figura 10, € que se existem
k componentes impares, serdo necessirios no minimo k
vértices distintos em S, demonstrando que |S| > o(G —S).

Demonstracdo da Suficiéncia (<): A prova de que a
validade da condi¢@o garante o emparelhamento é construida
por reducdo ao absurdo. Inicialmente, supomos que
a condicdo de Tutte [14] é verdadeira para o grafo G
(ou seja, o(G —S) < |S| para todo subconjunto S), mas,
contraditoriamente, G nao possui um emparelhamento
perfeito.

Para explorar as falhas dessa suposicdo, maximizamos
a estrutura do grafo adicionando arestas ficticias até
formarmos um grafo G*, que representa o limite maximo
de conexdes possivel sem que se crie um emparelhamento
perfeito. Vale ressaltar que, se encontrarmos uma violagdo da
condicdo de Tutte em G*, ela prova a falha no grafo original.
Neste grafo saturado G*, definimos S como o conjunto de
vértices universais. A andlise do resultado revela que a
quantidade de componentes impares geradas pela remocio
de S supera o nimero de vértices disponiveis em S. Isso
implica diretamente que o(G* — S) > |S|, um resultado que
viola a nossa hipétese inicial.

Além da andlise de existéncia proposta por Tutte, a
teoria dos grafos se conecta diretamente a Teoria da Ordem.
Essa relagc@o é fundamental para a otimizagdo combinatéria,
pois permite tratar problemas de ordenacdo sob uma ética
algoritmica eficiente. Frequentemente, problemas praticos
de agendamento, hierarquia e dependéncia de tarefas —
modelados matematicamente como Conjuntos Parcialmente
Ordenados (Posets) — ndo aparentam, a primeira vista,
possuir relacao direta com a geometria de vértices e arestas.
No entanto, o Teorema de Dilworth [3] € o exemplo
central dessa relacdo, estabelecendo um vinculo formal
entre estruturas de ordem e grafos. Essa equivaléncia com
o emparelhamento bipartido foi explorada por Kameda e
Munro [8] para o desenvolvimento de algoritmos. Ao
provarem que a decomposi¢do de conjuntos ordenados
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Reduc¢do

=)
® ©® &

Poset P
Original

Grafo Bipartido
Construido

Entenda a conexao:
1. Em P, x; vem antes de x;.
2. No Bipartido, u; (quem inicia) conecta com v, (quem recebe).

Figura 11: Visualizacdo da Reducéo: duplicamos os vértices para
separar as fun¢des de "antecessor" (U) e "sucessor" (V).

pode ser reduzida ao problema de emparelhamento, eles
viabilizaram o uso de solu¢des polinomiais eficientes para
resolver problemas de ordenacao.

Dilworth: O nimero minimo de cadeias necessarias para
cobrir todos os elementos de um conjunto parcialmente
ordenado P ¢ igual ao tamanho médximo de uma anticadeia
em P.

Para demonstrar este teorema e sua aplicagdo computa-
cional, utilizamos a técnica de Reducdo, transformando o
problema de "Posets" em "Casamento Bipartido". A Figura
11 detalha visualmente essa transformagdo. O processo
consiste em tomar os elementos do conjunto ordenado P =
{x1,...,x,} e duplicd-los para criar um grafo bipartido G =
(UCoHfdrme detalhado na Figura 11, o lado U (nés azuis)
representa os elementos atuando como "inicio de uma
relacdo”, enquanto o lado V (nds vermelhos) representa os
mesmos elementos como "fim". A regra de construcdo é
direta: desenhamos uma aresta direcionada (u;,v;) se, e
somente se, o elemento x; precede o elemento x; na ordem
original.

A validade desta construcdo reside em demonstrar
uma equivaléncia estrutural estrita, da qual existe uma
bijecdo entre um emparelhamento vilido em G e uma
decomposicdo em cadeias em P. Observe que a definicio
de emparelhamento exige que arestas sejam disjuntas, ou
seja, cada vértice tenha grau no maximo 1. No contexto
do poset, isso traduz-se na regra de linearidade das cadeias:
um elemento x; ndo pode ter multiplos sucessores imediatos
(o que violaria o grau em U) nem multiplos antecessores
imediatos (o que violaria o grau em V). Portanto, um
conjunto de arestas é um emparelhamento se, e somente se,
ele une elementos formando sequéncias lineares validas e
disjuntas.

Algebraicamente, a prova se estabelece pela contagem
de componentes. Iniciamos com n cadeias triviais (cada
elemento isolado). Cada aresta (u;,v;) adicionada ao empa-
relhamento junta o final de uma cadeia ao inicio de outra,
reduzindo o nimero total de cadeias em exatamente uma
unidade. Assim, estabelecemos a identidade fundamental:
o niimero de cadeias |¢’| resultantes de um emparelhamento
M é dado por |'€| = n— |M|. Para minimizar o ndmero de
cadeias |'€|, o objetivo de Dilworth, somos matematicamente
forcados a maximizar |[M|. Desta forma, demonstramos que

ISSN: 2675-3588



{
EAM
encontrar a Decomposicao Minima de Cadeias € equivalente
a busca pelo Emparelhamento Maximo no grafo bipartido.
Como cada aresta do emparelhamento une dois vértices em
uma mesma cadeia, o nimero minimo de cadeias serd igual
ao numero total de vértices subtraido da cardinalidade deste
emparelhamento maximo.

Com a validagdo desta equivaléncia e o encerramento das
demonstragdes formais, finalizamos a andlise técnica das
estruturas propostas. Torna-se pertinente, entdo, avaliar ndo
apenas a corretude matematica dos teoremas apresentados,

mas também o impacto pedagdgico que a construgdo dessas
provas exerce sobre o dominio da disciplina.

VI. RESULTADOS E REFLEXOES

A elaboragdo deste artigo cumpriu o papel de consolidar o
entendimento sobre teoremas fundamentais da Teoria dos
Grafos, funcionando como uma ferramenta de fixacdo de
conceitos matemdaticos complexos para estudantes de Ciéncia
da Computacdo. Ao explorarmos as provas de Tutte [14] e
Dilworth [3], os resultados apontam para a eficicia de uma
abordagem que privilegia a intui¢do geométrica aliada ao
rigor formal, facilitando a assimilacdo de estruturas abstratas.
A andlise desenvolvida confirma que o dominio de grafos
gerais € significativamente ampliado quando se adota um
pensamento estrutural e holistico.

Diferente da verificagdo local de vizinhangas — comum
no estudo introdutério do Teorema de Hall [5S] — a com-
preensdo de Tutte beneficia-se imensamente da visualizacio
global do grafo e de suas componentes conexas. O uso
de metédforas visuais, onde o conjunto S € representado
como um "hub" ou ponto de articulacdo, mostrou-se uma
estratégia pedagdgica poderosa para tangibilizar a abstracio
da remogao de vértices (G — S). Essa representacdo concreta
permite que o estudante visualize imediatamente como a
estrutura se fragmenta, tornando a condi¢do de paridade uma
consequéncia légica observdvel, e ndo apenas uma regra
algébrica.

Da mesma forma, a exploracdo do Teorema de Dilworth
[3] revelou-se uma oportunidade excelente para clarificar
a dualidade Min-Max. A abordagem adotada permitiu
demonstrar positivamente como a adi¢do de arestas (empa-
relhamento) atua como um mecanismo de otimizagdo que
funde cadeias disparatadas, oferecendo uma intuicéo robusta
sobre como problemas de ordem podem ser resolvidos
eficientemente através de grafos. Essa transposi¢do didatica
resulta no desenvolvimento de competéncias criticas, como a
modelagem por reducdo, onde o discente aprende a converter
um problema de ordem parcial em um desafio geométrico de
emparelhamento bipartido. Essa capacidade de simplificacio
topoldgica é um ganho conceitual que prepara o aluno para
enfrentar problemas de alta complexidade em disciplinas
como Teoria da Computacdo e Andlise de Algoritmos, onde
a técnica de redugdo € o alicerce para o entendimento de
classes de complexidade.

Além disso, ao priorizar a centralidade tedrica de Tutte
[14] e Dilworth [3], este trabalho promove uma forte
interdisciplinaridade ao conectar a Algebra com a Algoritmia
de Grafos. Demonstrou-se que problemas praticos de
agendamento, hierarquia e dependéncia de tarefas — comuns
em dreas como Sistemas Operacionais e Engenharia de
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Software — sdo, em sua esséncia, problemas de desenho
estrutural. O exercicio de construir provas matemdticas
utilizando diagramas como parte do argumento légico
desenvolve no estudante um rigor demonstrativo visual,
permitindo identificar gargalos em redes de forma intuitiva.
Assim, o texto consolida-se como um material de apoio
diddtico que transforma o rigor dos livros-texto em uma
ponte acessivel para o sucesso em disciplinas avangadas de
Otimizacdo Combinatéria, validando a premissa de que a
compreensdo profunda da estrutura do problema € o primeiro
passo para a eficiéncia algoritmica..

VII. CONSIDERACOES FINAIS

O objetivo central deste trabalho foi revisitar os fundamentos
teéricos do emparelhamento em grafos, transcendendo
a abordagem tradicional focada apenas na execugdo de
algoritmos. Buscou-se preencher a lacuna diddtica existente
entre o entendimento intuitivo de grafos bipartidos e a
complexidade abstrata dos grafos gerais e estruturas de
ordem. Ao analisar as demonstracdes cldssicas, o artigo
propds uma narrativa visual que facilita a assimilacdo de
conceitos dificeis por estudantes de graduacio.

A sintese dos resultados aponta para duas conclusdes
tedricas maiores. Primeiramente, na andlise de existéncia,
entendemos que o Teorema de Tutte é uma férmula
abrangente, que explica tanto os casos simples (bipartidos)
quanto os complicados (gerais), olhando para a estrutura
completa do grafo. Demonstramos que a "barreira de
paridade" (componentes impares isolados) € o mecanismo
universal de obstrucdo, englobando os casos restritos de Hall
[5] e Konig [9]. Em segundo lugar, a exploracdo do Teorema
de Dilworth [3] ratificou a equivaléncia estrita entre prob-
lemas de ordenacido (posets) e o emparelhamento bipartido.
Essa conexdo provou que a complexidade de problemas de
agendamento pode ser reduzida polinomialmente, validando
as estratégias algoritmicas de Kameda e Munro [8].

No que tange as contribui¢des pedagégicas, este estudo
oferece uma metodologia de ensino baseada na visualizacio
de "obstaculos estruturais”". A principal contribui¢do reside
na formalizacdo da técnica de Reducdo, ao invés de apenas
apresentar o Teorema de Dilworth como uma férmula,
detalhamos o processo de transformagdo topolégica que
converte um problema desconhecido em um conhecido.
Além disso, o uso de analogias concretas fornece aos
estudantes um vocabuldrio visual para identificar falhas
de emparelhamento, superando a dificuldade comum de
visualizar a remog¢do de conjuntos arbitrarios.

Como limitacdo, este estudo concentrou-se nas condi¢des
de existéncia e nas provas estruturais, sem aprofundar-se
na implementag¢do computacional dos algoritmos de busca,
como o Blossom de Edmonds. Como perspectiva para
trabalhos futuros, sugere-se a expansao desta base diddtica
para o dominio da implementagcdo computacional interativa.
A criacdo de ferramentas de software que permitam a
visualiza¢do dindmica dos algoritmos — especificamente a
simulagdo passo a passo da contragdo de ciclos impares
no algoritmo Blossom de Edmonds — representaria um
avango significativo. Ao utilizar as mesmas metaforas de
“fusdo de componentes” e “gargalos” estabelecidas neste
artigo, seria possivel demonstrar aos estudantes nao apenas
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por que o emparelhamento falha sob a ética tedrica, mas
como o computador manipula e reduz essas estruturas
em tempo de execucdo. Encerramos, portanto, com a
convic¢do de que a unido entre a base matemadtica sélida e
a visualiza¢@o intuitiva se mostrou uma estratégia de ensino
extremamente eficaz. Acreditamos que essa abordagem
facilita significativamente o aprendizado, permitindo que os
estudantes compreendam o contetido com muito mais clareza
e seguranga.
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Resumo—A teoria dos grafos, impulsionada historicamente pela conjectura de Francis Guthrie em 1852 e pela subsequente prova do
Teorema das Quatro Cores, evoluiu de curiosidades topoldgicas para ferramentas essenciais de modelagem. Este trabalho foca especificamente
no Problema de Coloragéo de Arestas, abordando-o sob uma perspectiva histérica e rigorosamente formal. Inicialmente, o texto contextualiza
a transi¢@o dos problemas de coloracido de mapas para a coloragdo de arestas, destacando sua relevancia pratica em otimizacio de redes e
agendamento. O nicleo da discussdo aprofunda-se na andlise do Teorema de Vizing, que estabelece limites precisos para o indice cromdtico
de grafos simples, situando-o entre o grau maximo e o grau maximo acrescido de uma unidade. Serdo dissecados os principais lemas e as
condigdes estruturais que determinam se um grafo pertence a Classe 1 ou Classe 2. Ao explorar a complexidade inerente a essa classificacdo,
o artigo serve como uma referéncia pedagégica, elucidando como restrigdes locais de adjacéncia ditam o comportamento global em sistemas
complexos.

Palavras-chave—Coloracgdo de Grafos, Problema das Quatro Cores, Teorema de Vizing, Otimiza¢do Combinatdria, Modelagem.

Abstract—Graph theory, historically propelled by Francis Guthrie’s 1852 conjecture and the eventual proof of the Four Color Theorem, has
evolved from a collection of topological curiosities into a set of essential modeling tools. This work specifically targets the Edge Coloring
Problem, addressing it through a lens that is both historical and rigorously formal. Initially, the text contextualizes the conceptual shift from
map coloring to edge coloring, emphasizing its practical applicability in critical areas such as network optimization and scheduling. The
core discussion deepens into an analysis of Vizing’s Theorem, which establishes precise boundaries for the chromatic index of simple graphs,
positioning it strictly between the maximum degree and the maximum degree plus one. Key lemmas and structural conditions determining
whether a graph falls into Class 1 or Class 2 are dissected. By exploring the inherent complexity of this classification, this article serves as a
pedagogical reference, clarifying how local adjacency constraints dictate global behavior in complex systems.

Keywords—Graph Coloring, Four Color Problem, Vizing’s Theorem, Combinatorial Optimization, Modeling.

mundo fisico, revelando a estrutura ldgica subjacente aos
problemas de conexdo e conflito.

I. INTRODUCAO

Teoria dos Grafos é uma ferramenta de modelagem
versatil, oriunda da matematica, mas de escopo
fundamental para a ciéncia da computag@o. Sua capacidade
de representar e modelar relacdes complexas em sistemas
diversos — desde redes neurais e clusters de computadores até
a otimizacdo logistica de trabalhadores e rotas aéreas — a torna

fascinante e diretamente aplicdvel a problemas cotidianos.

Ao traduzir situacdes reais para uma linguagem matematica
precisa, os grafos permitem abstrair a complexidade do
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Nesse contexto, o estudo de colora¢do em grafos remonta
ao século XIX, originado pelo que pode ser visto como o
problema gerador da drea: o famoso “Problema das Quatro
Cores”. A histodria inicia-se em 1852 com o matematico e
botanico sul-africano Francis Guthrie. Ao tentar colorir mapas
de condados da Inglaterra, Guthrie observou que talvez fosse
possivel colorir qualquer mapa plano utilizando apenas quatro
cores, de modo que regides vizinhas ndo compartilhassem a
mesma cor. Embora a conjectura tenha sido formulada em
correspondéncias privadas naquela época, ela foi formalmente
apresentada & comunidade cientifica por Cayley em 1879 [1]
e discutida pelo préprio Guthrie em nota posterior [2]. A
curiosidade inicial deflagrou uma das mais longas e produtivas
buscas por uma prova matemaética.
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A primeira prova da conjectura surgiu apenas em 1879,
apresentada pelo matemadtico inglés Alfred Kempe [3]. Aceita
por uma década, a demonstracao foi refutada em 1890, quando
erros estruturais foram encontrados. Diversas solu¢des foram
propostas subsequentemente, mas a confirmacao definitiva
da conjectura ocorreu somente em 1976, pelos matematicos
Kenneth Appel e Wolfgang Haken, da Universidade de
Mlinois [4, 5]. Contudo, parte dessa prova utilizava
computadores para verificar milhares de casos, fato que gerou
resisténcia na comunidade matemadtica da época, que ansiava
por uma demonstracio puramente analitica.

Embora o "Problema das Quatro Cores" trate essencial-
mente da colorag@o de vértices (ou faces), ele pavimentou
o caminho para variantes igualmente profundas, como o
Problema de Coloragdo de Arestas, foco central deste trabalho.
Diferente de colorir regides, colorir arestas busca atribuir
rétulos as conexdes de um grafo de tal forma que arestas
incidentes a um mesmo vértice ndo compartilhem a mesma
cor. Esse tipo de modelagem ¢ vital para cendrios onde o
conflito ndo estd nos objetos (vértices), mas na utilizagao
simultidnea de canais de comunica¢do ou horérios, sendo o
indice cromdtico o parametro que define a eficiéncia mdxima
dessa alocagao.

Para além do panorama histdrico internacional, aparece
com prestigio também a contribuicio brasileira no desenvolvi-
mento da Teoria dos Grafos. O Brasil consolidou-se como
um polo de exceléncia mundial nesta drea, impulsionado
por pesquisadores cujos trabalhos sao referéncia na literatura
contemporanea. Dentre eles, destacam-se as contribui¢des de
Jayme Luiz Szwarcfiter [6], fundamental na estruturagdo da
pesquisa em algoritmos e grafos no pais; Cldudio L. Lucchesi
[7], renomado por seus trabalhos seminais, incluindo o célebre
Teorema de Lucchesi-Younger em grafos direcionados; e
Nelson Maculan [8], uma referéncia global em otimizacdo
combinatdria. Contextualizar o problema de coloracio de
arestas envolve, portanto, reconhecer essa robusta tradicao
académica nacional que alia rigor tedrico a aplicagcdes
computacionais de ponta.

Neste artigo queremos portanto demonstrar de forma
pedagdgica o problema de coloracdo de arestas, assegurando
ao leitor compreender a evolugdo desses conceitos, culmi-
nando na andlise de dois pilares teéricos fundamentais, o
Teorema de Konig [9], que soluciona o problema para grafos
bipartidos relacionando-o ao grau maximo, e o Teorema de
Vizing [10], que estabelece os limites estritos para grafos
simples. Ao detalhar essas condicdes, busca-se absorver a
robustez matematica que sustenta a classificagdo dos grafos e
suas aplicagdes contemporaneas.

A seguir abordaremos o tépico por entre quatro secdes
subsequentes. A Secdo II estabelece as definigdes
preliminares e a notagdo fundamental, introduzindo conceitos
estruturais como grau maximo e emparelhamento. Na
Secdo 111, exploramos a natureza do problema, discutindo
intuitivamente os limites crométicos e apresentando os lemas
auxiliares de Bondy e Murty que fundamentam a otimizagao
de cores. A Segdo IV é dedicada a demonstragdo formal
dos dois pilares da teoria: o Teorema de Konig para grafos
bipartidos e o Teorema de Vizing para grafos simples. Por
fim, a Secdo V apresenta as conclusdes e uma sintese dos
resultados obtidos.
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Figura 1: Representacao Gréfica do Grafo Gj.

I1. PRELIMINARES

Para compreender a profundidade do Problema de Coloracao
de Arestas, é necessario primeiro estabelecer a linguagem
comum da Teoria dos Grafos. Nesta se¢do, definimos as
estruturas fundamentais, as propriedades de conectividade e
os parametros que governam a complexidade desses sistemas.
As defini¢des foram extraidas de [6, 11].

Formalmente, um grafo G = (V,E) é uma estrutura
matemadtica composta por dois conjuntos fundamentais: um
conjunto ndo vazio V de vértices e um conjunto E de pares
nao-ordenados de vértices, denominados arestas. Denotamos
uma aresta qualquer e, como e = (a,b), onde a e b sdo vértices
do grafo e dizemos que a e b sdo extremos(ou extremidades)
da aresta e. Ainda, a aresta e é dita incidente aos vértices a e
b [6].

Neste contexto, os vértices (V) representam os objetos
ou entidades do sistema, como computadores, pessoas ou
interse¢des, enquanto as arestas (E) representam as conexdes
ou relagdes diretas entre esses objetos.

Um grafo qualquer, digamos G, pode ser representado de
varias maneiras, por exemplo, de forma geométrica como
pode ser visto na Figura I. Cada vértice é simbolizado
com um circulo, e os segmentos de retas que os conectam
sdo as arestas do grafo. Denotamos como V(G) e E(G) o
conjunto de vértices e arestas do grafo G, respectivamente.
Por exemplo, para o grafo G, denotamos sua estrutura como:

V(G1) = {v1,v2,v3,v4,V5,V6,V7 }
E(G1) ={(vi,v2),(v2,v3), (v3,v4), (v4,V5), (v, V1),
(VZ,V7), (V37V7),(V57V7)7 (V67V7)}

Dois vértices sao adjacentes (ou vizinhos) se existe uma
aresta que incide em ambos os vértices. Analogamente,
duas arestas sdo adjacentes se possuem uma extremidade
em comum [6].

Por exemplo, em Gy, v e v, sdo vértices adjacentes, pois
existe uma aresta que incide (conecta) ambos os vértices:
e; = (v1,v2). Por outro lado, os vértices v; e vs ndo sdo
adjacentes, uma vez que nao existe aresta que os conectam.
Similarmente, considerando a aresta e, temos que e; € e sdo
adjacentes, pois possuem uma extremidade em comum (v7).
No entanto, as arestas e| € e4 ndo sdo adjacentes.

Seguindo as defini¢cdes cldssicas de Bondy e Murty [11],
estabelecemos duas propriedades essenciais para o escopo
deste trabalho. Primeiramente, um grafo G € dito finito se o
seu conjunto de vértices e arestas ¢ finito. Em segundo lugar,
um grafo € classificado como simples se ele ndo possui lagcos
(uma aresta com inicio e fim no mesmo vértice) e nao possui
duas ou mais arestas que incidem no mesmo par de vértices
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Figura 2: Grafo G, (exemplo de grafo nio simples).
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Figura 3: Grafo bipartido K3 > ilustrando a parti¢do de vértices em
XeY.

(arestas multiplas). Por exemplo, o grafo G, (Figura 2) ndo é
simples, pois possui trés arestas que conectam v4 € vs € ainda
possui um lago, representado pela aresta e;. Por outro lado, o
grafo G é simples.

Um grafo G = (V,E) é dito bipartido se o seu conjunto
de vértices V pode ser particionado em dois subconjuntos
disjuntos, digamos X e Y, de tal forma que toda aresta
de G conecta um vértice de X a um vértice de Y.
Consequentemente, nio existem arestas com ambas as
extremidades no mesmo subconjunto. A Figura 3 exemplifica
esta propriedade através do grafo completo K3 5.

Um dos conceitos mais criticos para problemas de
coloracdo € o grau de um vértice. O grau de um vértice
v, denotado por d(v), é definido como o nimero de arestas
incidentes a ele. Na Figura 4, destacamos dois exemplos
importantes: o vértice v; possui apenas duas arestas incidentes
(destacadas em azul), logo d(v;) = 2; jd o vértice v; comporta-
se como o elemento de maior conectividade (destacadas
em vermelho). A partir dessa defini¢do local, derivamos
o parametro global mais importante para este trabalho: o
Grau Mdximo (A(G)). Ele representa o maior valor de grau
encontrado entre todos os vértices. No nosso exemplo, como
nenhum vértice supera v7, temos que A(G;) = 4.

Em um grafo definimos Caminho (P,) como sendo uma
sequéncia de vértices adjacentes sem repeti¢do. Na Figura
5, a sequéncia vivgv7vs (destacada em azul) constitui um
caminho vélido (Py), conectando o vértice v ao vs através
do interior do grafo. Em contrapartida, a sequéncia vivyvvg
nio forma um caminho, pois o vértice v; se repete. Um
Ciclo (C,) consiste em um caminho cujo vértice de inicio é
igual ao vértice de fim, fechando um circuito. O destaque
em vermelho exemplifica um ciclo C3, de tamanho 3 (um
tridngulo): vov3vyv;. [6]
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Figura 4: Visualizacdo dos graus do grafo G.
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Figura 5: Exemplos de subestruturas em G;: um Caminho aberto
(azul) e um Ciclo fechado (vermelho).
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Figura 6: Um emparelhamento no grafo G| (em azul).

Um grafo G é denominado conexo quando existe caminho
para cada par de vértices; do contrario, o grafo é dito ser
desconexo [6]. Por exemplo, o grafo G| é conexo uma vez que
para cada dois vértices quaisquer sempre existe um caminho
que os conecta. Em contrapartida, considere que as arestas
verdes da figura 6 juntamente com os seus vértices formem
um grafo. Este, seria desconexo ja que, por exemplo, nio
existe um caminho que conecta os vértices vy € v7.

Finalmente, chegamos ao conceito de emparelhamento
(matching). Um emparelhamento em um grafo G € um
conjunto de arestas M C E tal que nenhuma aresta de M
¢ adjacente a outra; em outras palavras, nenhum vértice do
grafo incide em mais de uma aresta de M [11].

Na Figura 6, destacamos em azul um emparelhamento
formado pelas arestas {(vi,v2),(v3,v4),(vs,v7)}. Note a
caracteristica visual mais importante: essas trés arestas sao
totalmente independentes e ndo compartilham nenhum vértice
comum (elas "nao se tocam"). Esse conceito é a base
estrutural da coloragdo de arestas, pois em uma coloragdo
vélida, todas as arestas pintadas com uma mesma cor formam,
obrigatoriamente, um emparelhamento.

III. TRABALHOS RELACIONADOS

A Teoria dos Grafos constitui uma importante area tanto no
ambito tedrico e pratico. No campo tedrico sua importancia
¢ um reflexo da existéncia de muitos problemas ainda
em estudo ou mesmo sem solugdo, o que incentiva a
escrita de trabalhos académicos na drea e formacdo de
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grupos de pesquisas na universidade [6]. Por outro lado,
o tema é também extremamente relevante do ponto de vista
préatico com aplicagdes que surgem nas mais diversas areas
como na quimica (modelagem de estrutura de moléculas);
no planejamento de rotas de trafego aéreo com menor

distancia; na engenharia e obviamente na computacdo [12].

Portanto, sao muitos os trabalhos que buscam contribuir
pedagogicamente no ensino Teoria dos Grafos de formas mais
acessivel, haja vista sua importancia pratica e tedrica.

Silva [12], em sua dissertagdo, tem como proposta de

trabalho introduzir a Teoria dos Grafos no ensino fundamental.

Para isso ele propde uma abordagem evidentemente mais
lidica para assim motivar os alunos ao aprendizado, e escolhe
problemas que sejam mais proximos ao codiano dos alunos
como o problema de caminhos. Segundo o autor, o trabalho
ndo s contribui para professores que desejam lecionar o
conteudo, mas também para qualquer pessoa que tem interesse
no assunto.

Csoka, Lippner e Pikhurko [?], em seu estudo investigaram
o problema de coloragdo de arestas em Graphings, segundo
os autores: "Um graphing é uma generalizac¢do analitica de
um grafo de grau limitado que aparece em vdrias dreas, como
limites de grafos esparsos e teoria de equivaléncia de 6rbitas."
Eles mostraram tanto o Teorema de Konig e o Teorema de
Vizing poderiam ser generalizados para essa classe de grafos.

Em seu artigo Miiller e Bayer [13] apresentam um
possibilidade pedagdgica para a abordagem de Teoria dos
Grafos nos anos finais do ensino fundamental, através de um
desafio ludico adaptado por eles. Tal atividade além de divertir
os alunos faz uma exposi¢ao branda sobre a estrutura de um
grafo (vértices, arestas, grau) e conceitos relacionados como
conexidade e planaridade.

Soares [14] em seu trabalho, apresenta trés teoremas em
Teoria dos Grafos e suas respectivas provas em detalhes
e estruturadamente, com o intuito de encorajar a inclusdo
de Toépicos de Grafos no Ensino Médio. Os teoremas
apresentados: Teorema das Cinco Cores, Teorema da Galeria
de Arte, e Teorema da Amizade foram escolhidos ainda por
possuirem um certo apelo estético a auxiliar na conclusdo do
objetivo de seu estudo.

Finalmente, um trabalho feito por Yasser e Bianchii [15]
que, apesar de ser da drea de Teoria da Computag@o, se propde
a fazer uma reflexdo e discutir sobre Praticas Pedagégicas no
escopo da disciplina de Teoria da Computagdo. Conforme os
autores, o uso de abordagens alternativas como semindrios,
auxiliou na compreensdo dos conceitos que sdo expostos
tradicionalmente de maneira mais abstrata e gerou um maior
indice de satisfacdo na disciplina.

Na préxima se¢do introduziremos defini¢des e conceitos
que serdo utilizadas nesta pesquisa para abordar o Problema
de Coloragdo de Arestas.

IV. COLORACAO DE ARESTAS

Intuitivamente, como o préprio nome sugere, uma coloragdo
de arestas consiste em atribuir k rétulos as arestas de um grafo
qualquer onde cada rétulo pode ser interpretada como uma
cor.

Formalmente, uma k-coloragdo de arestas de um grafo
G sem lagos, pode ser descrita ndo apenas como uma
atribuicao de rétulos, mas estruturalmente como uma particao
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Figura 7: Grafo G, Fonte: Bondy e Murty(1976

do conjunto de arestas E em k subconjuntos (E;,Ey, ..., Ex).
Desta forma, cada subconjunto E; representa as arestas de uma
mesma cor. Se as arestas de cada subconjunto E; forem nao
adjacentes, dizemos que a coloragdo € prépria [11]. Se um
grafo G admite uma coloracdo prépria com k cores, dizemos
que G € k-colorivel.

Sob a o6tica da Teoria dos Grafos, nota-se que esse
conjunto de arestas independentes corresponde exatamente
a definicdo de emparelhamento (matching) vista na secdo
anterior. Portanto, colorir as arestas de um grafo G equivale a
particionar sua estrutura em uma colec¢do de emparelhamentos
distintos (M1 My, ... ,Mk).

Por exemplo, considere o grafo G»( Figura 7). Podemos
definir uma coloragdo ¢ = ({a,b,c,d},{e, f},{g}). Pode-
mos interpretar essa particdo da seguinte forma: as arestas
a, b, ¢ e d colorimos com uma cor qualquer, digamos cy;
as arestas e e f recebem a cor ¢, e a aresta g recebe a cor
c3. Obviamente essa coloracao ndo € prépria uma vez que
existem arestas adjacentes que receberam a mesma cor(por
exemplo, as arestas a, b, ¢, d).

Por outro lado, considere a coloragio ¥ =
({a,g},{b,e},{c,f},{d}). Novamente, isso pode ser
interpretado como uma atribuicao de cores da seguinte forma:
a arestas a e g recebem a cor c|; as arestas b e e recebem a
cor c’z; as arestas ¢ e f recebem a cor c’3 e a aresta d recebe
a cor ¢j. Dessa vez, note que ndo existe arestas adjacentes
com uma mesma cor. Portanto, 4’ é uma coloragio prépria e
perceba que cada conjunto de arestas dessa particdo forma
um emparelhamento.

Dizemos ainda que uma determinada cor c € representada
em um vértice v, se existe alguma aresta incidente a v que
possua a cor c. Por exemplo, para o grafo G| e considerando
a coloragiio €” as cores ¢y, ¢z, c3 sdo representadas no vértice
V5, Uma vez que, as arestas e, f e g, incidem em vs5 e possuem
as cores c1, 2, C3.

Dessa perspectiva, surge um questionamento natural: “Qual
a menor quantidade de cores necessdria para pintar as arestas
deste grafo sem gerar conflitos de incidéncia?”. A resposta
define um dos pardmetros fundamentais da 4rea: o indice
cromdtico, denotado por '(G). Este parAmetro representa
o nimero minimo de emparelhamentos distintos necessarios
para cobrir todas as arestas de um grafo de forma valida.
No exemplo do grafo G», o leitor pode conferir que 4 € o
menor niimeros de cores possivel para realizar uma coloragcdo
propria em G,. Portanto /' (G,) = 4.

Ao buscarmos o indice cromdtico, deparamo-nos imediata-
mente com uma restri¢do fisica imposta pela prépria estrutura
do grafo. Considere o vértice mais “congestionado” do
sistema, isto €, aquele que possui 0 maior niimero de conexdes
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(a) Caminho termina em v3 (Grau > 2).

Verm. Azul Verm.
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(b) Extensdo: v3 agora tem as duas cores.
Figura 8: Ilustracdo esquemadtica da propriedade de extensibilidade.

(o grau mdximo, denotado por A(G)).

A 1dgica ¢é trivial: se olharmos novamente para o vértice v7
da Figura 1 (Secio 2), vemos que ele possui 4 conexdes. E
fisicamente impossivel colorir essas 4 arestas incidentes com
apenas 3 cores sem que duas delas compartilhem a mesma cor
e causem um conflito. Esse “gargalo” local impde, portanto,

um limite inferior global para todo o sistema:

x'(G) > A(G) (1)

Essa desigualdade estabelece que sdo necessdrias, pelo
menos, tantas cores quanto o grau maximo. A questdo central
que a teoria busca responder é: serd que esse minimo &
suficiente? Para alguns para alguns tipos de grafos, como
os grafos bipartidos, a resposta é afirmativa, como veremos a
seguir.

Para avangarmos da intui¢@o para a prova formal de que
grafos bipartidos atingem o limite inferior A(G), necessitamos
de uma ferramenta auxiliar que garanta a distribuicio
equilibrada de cores. Bondy e Murty apresentam um resultado
técnico fundamental, conhecido no livro como Lema 6.1.1
[11]. Para fins didaticos, chamaremos este resultado de Lema
das Duas Cores.

A intuicdo por trds deste lema € uma questao de paridade.
Sabemos que ciclos impares s@o as unicas estruturas que
impedem uma 2-coloragdo perfeita (onde arestas alternam
cores). Se removermos essa restricdo, ganhamos controle
sobre a incidéncia de cores nos vértices.

“Lema das Duas Cores: Seja G um grafo conexo
que ndo é um ciclo impar. Entdo, G possui uma
2-coloragdo de arestas na qual ambas as cores estdo
representadas em cada vértice de grau pelo menos
dois.”

Para visualizar a ideia construtiva deste lema, imagine que
nosso objetivo € tracar um caminho pelo grafo, pintando
as arestas alternadamente em Vermelho e Azul, conforme
ilustrado esquematicamente na Figura 8.

Ao passarmos por um vértice intermedidrio (como o vértice
vy na Figura 8-a), necessariamente entramos por uma cor e
saimos pela outra. Isso garante que v, possui ambas as cores
representadas. O problema surge apenas nos vértices que
habitam a extremidade do caminho (como o vértice v3), pois
eles estariam em contato com apenas uma aresta colorida
neste trajeto.

A genialidade do lema reside na extensibilidade, demons-
trada na parte (b) da Figura 8. Se o caminho termina em um
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vértice que ainda tem outras arestas ndo coloridas (ou seja,
grau > 2), podemos simplesmente expandir o caminho por
essa nova aresta usando a cor alternada.

Podemos repetir esse processo até que o caminho termine
em um vértice sem saida ou feche um ciclo. O lema
garante que, exceto no caso especifico do ciclo impar (onde
a alternancia de cores trava ao fechar o ciclo), sempre
conseguimos ajustar caminhos para que nenhum vértice de
grau igual ou maior que dois fique com uma cor s6.

Além da existéncia de coloragdes, ¢ importante definir uma
forma para compara-las. Dada uma k-coloracdo % de G,
denotamos por ¢(v) o niimero de cores distintas representadas
no vértice v.

Intuitivamente, um vértice ndo pode “ver” mais cores do
que o nimero de arestas que chegam a ele. Portanto, temos a
desigualdade trivial:

c(v) <d(v) 2

A igualdade c¢(v) = d(v) ocorre se, e somente se, a
coloragdo € prépria em torno de v (ou seja, todas as arestas
incidentes tém cores diferentes). Com base nisso, definimos
o conceito de melhoria (improvement). Dizemos que uma
colorago 4" é uma melhoria sobre %4 se a soma global de
cores distintas observadas pelos vértices aumenta:

Z d(v) > Z c(v) 3)

veVv veV

Uma k-coloracio € dita otima se ela ndo pode ser melhorada.
Esse conceito de “otimalidade” € a chave para as provas
construtivas que virdo a seguir: a ideia é comegar com uma
coloragdo qualquer e “melhora-la” iterativamente até atingir
uma coloragdo onde a regra de adjacéncia seja satisfeita para
o maior nimero possivel de vértices.

Com o conceito de otimizacao ja estabelecido, podemos
finalmente analisar quais os fatores que impedem uma
coloragdo de ser perfeita.

Suponha que atingimos uma k-coloragio 6tima 4. Agora,
imagine que essa coloracdo ainda nio é a “ideal” em um
vértice u: a cor i estd faltando em u, mas a cor j aparece
repetida. Isso indica um desequilibrio local.

Intuitivamente, gostariamos de trocar algumas arestas da
cor j por i para equilibrar a distribuicio. O Lema 6.1.2
de Bondy e Murty, aqui chamado de Lema do Obstdculo
em Ciclos fmpares, nos diz exatamente quando isso ndo é
possivel.

“Lema do Obstdculo em Ciclos Impares: Seja €
uma k-colorag@o 6tima de G. Se existe um vértice
u onde a cor i ndo aparece, mas a cor j aparece
pelo menos duas vezes, entdo a componente conexa
formada apenas pelas arestas dessas duas cores (i
e j) que contém u €, necessariamente, um ciclo
impar.’

A prova dessa afirmacdo conecta-se diretamente ao Lema
das Duas Cores e pode ser visualizada na Figura 9.

Perceba que No vértice u, temos duas arestas azuis (j) e
nenhuma vermelha (i), tentar consertar isso alterando as cores
ao longo do ciclo apenas deslocaria o problema para v; ou
vy, sem resolver o conflito globalmente. Se a componente
contendo u ndo fosse um ciclo impar, poderiamos aplicar a
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Falta Vermelho (7)

Figura 9: O obstéculo do ciclo impar.

16gica da extensibilidade vista anteriormente para re-colorir
essa componente de modo que u passasse a ter ambas as cores
(i e j). Isso faria com que o nimero de cores distintas em
u aumentasse (c(u) subiria em 1), sem prejudicar os outros
vértices, criando uma coloragdo “melhor”.

Como partimos da premissa de que a coloragdo original
ja era dJtima (impossivel de melhorar), essa re-coloragdo
é impossivel. Logo, a dnica explicacdo geométrica que
trava essa melhoria é que estamos presos na estrutura rigida
mostrada na Figura 9: um ciclo impar.

V. O TEOREMA DE KONIG

Com base na fundamentagdo estabelecida, alcan¢amos o
ponto de convergéncia desta primeira parte. Os lemas
anteriores construiram uma narrativa clara: a otimizagdo de
uma coloragdo sé é bloqueada estruturalmente pela presenga
de ciclos impares.

Para contextualizar a importancia do que vem a seguir, vale
ressaltar que, quando o matematico hingaro Dénes K&nig
publicou este resultado em 1916 [9], a Teoria dos Grafos
ainda nem existia como disciplina autdénoma. Kénig, que
mais tarde escreveria o primeiro livro-texto da area, chegou
a este teorema estudando a decomposi¢do de matrizes e
determinantes. Ele percebeu que certas estruturas algébricas
poderiam ser traduzidas geometricamente para o que hoje
chamamos de grafos bipartidos, provando que, nessas
estruturas “bem-comportadas”, a complexidade do problema
desaparece.

A elegincia da sua conexdo reside no fato de que, por
definicdo, a propriedade fundamental de um grafo bipartido
¢é a auséncia completa de ciclos de comprimento impar. Se a
Unica barreira topolégica para a otimizacao perfeita € o ciclo
fmpar, e os grafos bipartidos sdo desprovidos dessa estrutura,
a conclusdo légica € inevitdvel.

“Teorema de Konig (1916): Se G é um grafo
bipartido, entdo seu indice cromadtico é exatamente
igual ao seu grau maximo, ou seja, ' (G) = A(G)”

Para visualizar o porqué deste teorema funcionar, imagine
que os vértices do grafo estdo divididos em dois times rivais,

Time A e Time B, e as arestas representam partidas entre eles.

Em um grafo bipartido, um time nunca joga contra si mesmo;
as arestas sempre ligam A a B.

Se tentarmos colorir as arestas (agendar os jogos) e
encontrarmos um conflito que exige uma troca de cores em
cadeia, essa cadeia de trocas funcionaria como um movimento
de “ping-pong”, ilustrado na Figura 10.

Para que um conflito seja insoldvel (como vimos no Lema
anterior), essa cadeia precisaria fechar um ciclo impar mas
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Figura 10: Qualquer caminho de comprimento {mpar termina
necessariamente no time oposto.

se observarmos o movimento na figura veremos que Passo
1 (fmpar): Sai de A — Chega em B, Passo 2 (Par): Sai
de B — Volta para A, Passo 3 (fmpar).' Sai de A —
Chega em B. Isso mostra que se nosso intuito for fechar
um ciclo e voltar ao vértice de origem (que estd em A), é
necessdrio, obrigatoriamente, um nimero par de passos pois
€ impossivel sair de A e voltar para A com um nimero impar
de movimentos, pois estarfamos fisicamente no lado do Time
B.

Podemos concluir portanto que o ‘‘curto-circuito”
cromdtico do ciclo fmpar nunca acontece, sempre
conseguimos resolver os conflitos locais e organizar
as arestas em exatamente A rodadas (cores) perfeitas.

O Teorema de K&nig representa, como vimos, o cenario
ideal na coloragdo de arestas: uma classe de grafos onde a
topologia colabora perfeitamente com a alocagdo de recursos,
garantindo que o limite inferior natural (A) seja sempre
suficiente. Nesses casos, ndo ha desperdicio e a estrutura
bipartida assegura a inexisténcia dos conflitos ciclicos que
impediriam a otimizacao.

Contudo, a modelagem de sistemas complexos frequente-
mente nos confronta com grafos que ndo possuem essa
propriedade. O que acontece quando a restri¢do € levantada
e os ciclos impares, como um simples tridngulo, sdo
reintroduzidos na estrutura? A intui¢éo poderia sugerir que,
sem a garantia de K&nig, o nimero de cores necessarias
poderia crescer descontroladamente acima do grau maximo.

A resposta para o caso geral foi descoberta quase cinquenta
anos depois e revela um resultado surpreendente: mesmo na
presenca de ciclos impares e estruturas complexas, o “caos”
cromdtico é extremamente limitado. O indice cromético
nunca se afasta muito do ideal estabelecido por Kénig,
oscilando em um intervalo restrito de apenas dois valores
possiveis.

VI. O TEOREMA DE VIZING

O Teorema de Vizing [10] constitui um outro resultado
clssico no problema de coloragdo de arestas. Em seu trabalho,
ele mostrou que existia um limite superior para o indice
cromdtico de um multigrafo. Um multigrafo € um grafo
que possui mais de uma aresta que conecta um mesmo par de
vértices (veja a figura 2). Contudo, o presente trabalho trata
de grafos simples, entdo para cada par de vértices hd somente
uma aresta que os conecta. Sob essas hipéteses, o Teorema
de Vizing possui o seguinte enunciado:

“Seja G um grafo simples. Entdo vale a
desigualdade: A(G) <¥/'(G) <A(G)+1”
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Uma vez que o indice cromdtico de um grafo € um ntiimero
inteiro, o teorema diz que para qualquer grafo G simples,
o seu indice cromdtico ou € igual ao grau maximo de G
ou entdo é maior por uma unidade apenas. Esse ¢ um
resultado extremamente 1til na construg@o de algoritmos para
coloragdo prépria e minima, pois implica que precisamos
apenas examinar dois conjuntos de coloracdes, o que reduz
bastante o espaco de busca [16]. A primeira desigualdade
¢ trivial e pode ser vista na se¢do /V em (1). A dificuldade
reside na segunda desigualdade.

Na literatura existem vérios tipos de provas da segunda
parte: por indugdo e construgdo por exemplo. Neste texto
usaremos o tipo de demonstrag@o por contradigdo.

No enunciado do teorema temos duas proposi¢des: p =
"G é um grafo simples" e ¢ = "A(G) < %/(G) < A(G) +1".
Queremos mostrar que a ocorréncia de p implica q. A
estrutura da prova € a seguinte: assumimos que p ocorre mas
negamos a proposicdo g, ou seja, assumimos O contrario
daquilo que queremos provar, € assim teremos uma nova
proposicao diferente:

"Seja G um grafo simples. Entdo /' (G) > A(G) + 1"

Com base nessa proposicdo, nds faremos uma série de
dedugdes logicas validas, e eventualmente chegaremos a
conclusao de ser falso um fato ja provado ser verdade. Mas
isso € uma contradi¢@o, entdo a Unica explicacdo para essa
incoeréncia 16gica € ter suposto inicialmente que x'(G) >
A(G) + 1. Entdo se essa proposigdo € falsa, sua negacdo é
verdadeira e portanto: X'(G) < A(G) + 1. [17]

O teorema de Vizing divide os grafos que satisfazem as
hipéteses do teorema em duas classes, de acordo com seu
indice cromadtico; se um grafo G satisfaz ' (G) = A(G) ele
¢ dito ser de classe 1, se '(G) = A(G) + 1 ele é de classe 2
[18].

Para compreender melhor essa classificagdo, ¢ nitil

visualizar como a topologia do grafo impde restrigdes locais.

A distin¢do fundamental reside na capacidade da estrutura em
acomodar emparelhamentos sem gerar conflitos insoliveis.
Conforme ilustrado na Figura 11, um ciclo par (Cy), por
ser um grafo bipartido, permite uma alternancia perfeita de
indices (representados pelos nimeros 1 e 2), satisfazendo
x' (G) = A(G) = 2 e classificando-se como Classe 1. Em
contrapartida, um ciclo impar (Cs) apresenta um impasse
estrutural: ao tentar alternar os indices 1 e 2, a udltima
aresta conecta vértices que ja possuem incidéncias de ambos,
obrigando o uso de um terceiro indice (nimero 3). Isso resulta
emy'(G) =3=A(G)+1, caracterizando o grafo como Classe
2.

Uma curiosidade interessante é que Holyer [19] mostrou
que, dado um grafo G, decidir se ele € de Classe 1 ou de
Classe 2 € um problema NP-completo. De forma simplificada,
problemas NP-completos sdo problemas de decisdo cuja
solucdo, uma vez proposta, pode ser verificada de forma fécil,
porém encontrar sua solugdo € dificil [6]. Por exemplo, dada
uma coloragdo de arestas € qualquer sobre um grafo G, é
facil verificar se essa coloragdo € de Classe 1: basta checar se
a coloragdo é prépria e se utiliza exatamente A(G) cores. No
entanto, decidir se existe tal coloracio entre o enorme nimero
de possibilidades é um problema computacionalmente dificil.

Na se¢@o a seguir, veremos as demonstracdes dos dois
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1

Classe 1 (' =2)

Classe 2 (' =3)

Figura 11: Comparacdo visual utilizando numeracéo nas arestas: O
ciclo par (Cy4) usa apenas rétulos 1 e 2, enquanto o ciclo impar (Cs)
necessita do rétulo 3.

teoremas propostos.

VII. DEMONSTRACAO E CONTRIBUICOES

Estabelecidas as condi¢des estruturais e os lemas auxiliares
sobre a distribuicdo de cores, o texto avanga para a
formalizacdo dos dois pilares centrais da coloracdo de arestas.

Demonstra-se inicialmente o Teorema de Kénig, provando
que a auséncia de ciclos impares em grafos bipartidos garante
que o indice cromatico atinja seu limite inferior natural (A).
Subsequentemente, a andlise expande-se para a classe dos
grafos simples gerais. Mediante o método de redugdo ao
absurdo e argumentos de recolora¢do, demonstra-se o célebre
Teorema de Vizing. Este estabelece que, mesmo na presenca
de estruturas ciclicas impares, o indice cromdtico excede o
grau maximo em no maximo uma unidade.

Ambas as demonstragdes fundamentam-se na estrutura
l6gica apresentada por Bondy e Murty [11], utilizando
os conceitos de otimizagdo cromdtica e emparelhamentos
definidos preliminarmente.

O Teorema de Konig enuncia-se da seguinte maneira.

Teorema de Konig VII.1. Seja G um grafo bipartido. Entdo
a igualdade abaixo se verifica

X' (G)=A(G). )

Proof. A demonstracdo da igualdade utiliza o método de
reducdo ao absurdo. Assume-se a falsidade da tese para obter
uma contradi¢do estrutural.

Seja G um grafo bipartido e suponha-se, por contradi¢do,
que ¥'(G) > A(G). Considere ¢ = (E1,E3,...,Ex) uma A-
coloracdo 6tima das arestas de G. Como o grafo ndo é A-
colorivel propriamente, existe necessariamente um vértice u
onde o nimero de cores presentes € inferior ao grau do vértice,
satisfazendo a condi¢do

c(u) < d(u) &)

Essa desigualdade implica uma falha na distribui¢do das
cores em u. Especificamente, existem cores i e j tais que a cor
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Figura 12: Defeito cromético em u: repeticdo da cor j (azul) e
auséncia da cor i (vermelha).

i ndo esta representada em u (falta), enquanto a cor j aparece
pelo menos duas vezes (repeticdo). A Figura 12 ilustra essa
configuracao local, onde o vértice u possui duas arestas azuis
(j) e nenhuma aresta vermelha (7).

Aplica-se neste ponto o Lema das duas cores (Lema 6.1.2
de Bondy & Murty). Segundo este resultado, se tal falha
ocorre em uma coloragdo 6tima, a componente conexa do
subgrafo induzido apenas pelas cores i e j que contém u deve
ser, obrigatoriamente, um ciclo impar.

Entretanto, tal conclusdo gera uma contradi¢@o topoldgica
imediata com a natureza do grafo G. A defini¢do de grafo
bipartido exige que o conjunto de vértices possa ser dividido
em dois subconjuntos disjuntos, A e B, onde toda aresta
conecta um vértice de A a um de B.

Para que um ciclo exista, € necessdrio sair de uma
particdo e retornar a ela. Como cada passo na trilha
alterna de particio (A - B —- A — ...), retornar ao
vértice de origem exige necessariamente um nimero par de
passos. Consequentemente, é impossivel existir um ciclo de
comprimento impar em um grafo bipartido.

Visto que a existéncia do ciclo impar exigido pelo lema é
impossivel, a suposi¢do inicial de que X' (G) > A(G) revela-se
falsa. Portanto, conclui-se que ¥'(G) = A(G). O

Vejamos a seguir a demonstra¢do de um outro importante
teorema relacionado ao Problema de Colorag@o de Arestas
em Grafos.

Teorema de Vizing VIL.2. Seja G um grafo simples. Entdo:
A(G) <X(G) < AG) +1. (©)

Proof. Seja G um grafo simples. Suponha por absurdo que
X/(G) > A(G) +1. Seja ¥ = (EI;E27~-~7EA(G)+1) uma
(A4 1)-coloragdo das arestas de G e seja u um vértice tal
que:

c(u) < d(u) (7

Note que o vértice u existe, pois assumimos(por
contradi¢do) que o grafo G nao é (A4 1)-colorivel. Assim
deve existir pelo menos um vértice tal que uma mesma
cor esteja representada nele, exatamente o que o item (7)
exprime(Lembre que ¢(v) denota o nimero de cores distintas
representadas em um dado vértice v). Entdo, existem certas
cores i e i1 tais que: ip ndo estd representado em u, e i estd
representado pelo menos duas vezes em u. Esse fato ocorre
porque, para todo vértice de G, em particular para u, segue
que d(u) < A(G)+1 e a colorag@o que estamos usando possui
A(G) + 1 cores, logo pelo menos uma cor ndo é usada em
u, o que justifica a existéncia de iy. A existéncia da cor i1 €
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Figura 13: Grafo G com coloracio ¢y
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Figura 14: Grafo G com coloragio c|,

consequéncia de (5). Seja uv| uma aresta que possua a cor ij.
Agora considere a seguinte assercio:

(i): “Uma vez que d(v;) < A(G) + 1 existe uma
cor ip que ndo é representada em v;. Note que
ip necessariamente deve estar representada em u.
Do contrario, poderiamos recolorir a aresta uv;
com a cor ip € assim obter uma melhoria na nossa
coloragdo, o que contradiz a hipétese dela ser
Otima.”

Vejamos um exemplo para compreender melhor o item (i).
Considere o grafo G(figura 13), cujo grau maximo de vale
3(Naturalmente, o argumento também ¢é vélido se G fosse um
grafo maior, o que importa é olhar localmente para o vértice
u que sabemos que existe). Assim, a coloragcdo denotada por
co € composta por 4 cores, denotadas por i, onde:

co = {i05i17i27i3}

Note que, o somatério do nimero de cores distintas que
sdo representadas em cada vértice é 13, isto é, Y. c(v) = 13.
A cor preta ndo € representada no vértice em u € nem em vj.
Crie uma nova coloragéo c{, onde aresta uv; se torna da cor
preta e o restante das arestas permanecem inalteradas. Para
essa nova coloracao, o somatério do nimero de cores distintas
representadas em cada vértice € 14: Y. c/(v) = 14 (Figura 14).
Ou seja, conseguimos melhorar a nossa coloracdo cg, o que
€ uma contradigdo pois supomos que tal coloragio era Stima.
Portanto o item (i) é de fato verdadeiro.

Entdo sabemos que existe alguma aresta diferente de uv,
que possui a cor i, chamemos ela de uv,. Novamente, temos
que d(vi) < A(G) + 1, logo existe uma cor i3 que nio é
representada em v,. Por um raciocinio totalmente andlogo ao
feito em (i), a cor i3 deve necessariamente estar representada
em u, do contrdrio, seria possivel fazer uma melhoria na
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Vi—1 Vi

Figura 15: Estrutura gerada em u. Fonte: Bondy e Murty(1976)

coloragdo @ atribuindo a cor iy a aresta uv; € a cor i3 a aresta
uvy. Assim deve existir um aresta uv3 com a cor is.

Continuando com esse procedimento, construiremos uma
sequéncia de vértices vi,v;,... € uma sequéncia de cores
i1,i2,... que possui as seguintes propriedades:

(a) A aresta uv; possui a cor i;.
(b) A corijy ndo aparece na aresta uv;.

(c) Como estamos considerando um grafo simples finito,
u possui grau finito, e em algum momento as cores
comecardo a se repetir nas arestas de u.

Graficamente, podemos ver a estrutura construida(Figura
15). Nela podemos ver todas as arestas adjacentes a u, sendo
que a cor i; ¢ representada duas vezes e a cor ip ndo &
representada nenhuma vez. A cor iy ndo é representada em
v1 mas é representada em vy, a cor i3 ndo € representada
em v, porém ¢é representada em i3 do contririo, como ja
discutimos, seria possivel reatribuir cores as arestas do grafo
de modo a obter uma melhoria para a A(G) 4 1-coloragio, o
que geraria um contradi¢@o pois supomos que tal coloragdo é
maxima(e assim por diante para as demais cores). Agora
faremos recoloragdes no grafo G de forma a manter sua
otimalidade.

A primeira coloracdo se dard da seguinte forma: a aresta
uv; receberd a cor da aresta uv;y com 1 < j <k—1. Aqui, as
cores das arestas de uv; até uvy sdo todas distintas, e depois da
aresta vy as cores comegam a se repetir seguindo a propriedade
(c) dessa estrutura construida. Na pratica estamos apenas
deslocando as cores uma unidade no sentido anti-horario: a
aresta uvy_ receber a cor i, a aresta uvy_, recebe a cor ix_1
..., a aresta uv, recebe a cor i3, a aresta uv| recebe a cor iy
(Figura 16).

Note que a nova coloragio ¢’ = (E,E5, "'7E2(G)+1)
também é uma A(G) + 1-coloragdo Gtima, pois na estrutura
que construimos, a cor ij;; ndo aparece na aresta
uj(propriedade (b)). Ou seja a quantidade de cores distintas
representadas em cada vértice permanece inalterada. Por
exemplo, observe a aresta uv;. Antes a cor i ndo era
representada nela(do contrario terfamos uma contradi¢do),
isto €, nenhuma outra arestas diferente uv; possuia a cor
ip em vi. Agora surge a questdo: e se vj tiver uma aresta
wyq com a cor i1? Se isso ocorresse, ao colorir uv; com i
haveria uma melhoria na coloracdo(uma contradi¢io). Logo
estamos trocando uma cor(iy) que s aparece uma vez em
vy por outra(ir) que ird aparecer apenas uma vez em vi. O
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Figura 16: 1° recoloragao. Fonte: Bondy e Murty(1976)

Figura 17: Ciclo fmpar formado pela componente H’. Fonte:
Adaptado Bondy e Murty(1976).

Vi—1 Vi

Figura 18: 2° recoloracdo. Fonte: Bondy e Murty(1976)

mesmo vale para os demais vértices. Veja que a coloracédo sé
altera essa regido especifica, o restante do grafo permanece
da mesma forma.

Entdo estamos diante de uma A(G) + 1-coloracdo Gtima,
onde o vértice u possui uma cor que nio é representada nele(iy
por hipdtese) e um outra cor que € representada pelo menos 2
vezes(ix). Assim pelo Lema do Obstdculo em Ciclos fmpares
visto na sessdo IV, a componente conexa H' formada pelas
arestas das cores ig € iy, isto é, H' = G[El-’o UEI-’k} é um ciclo
impar e contém o vértice u(Figura 17).

Agora faremos uma segunda recoloracdo. Cada aresta
uv; receberd a cor ij; 1 com k < j <[ —1, e para aresta
uv; atribuimos a cor ir(Figura 18). A ldégica aqui é
muito semelhante a primeira parte, s6 que agora estamos
considerando as arestas que ndo foram coloridas na primeira
fase. Assim a aresta uvy receberd a cor iy, a aresta uvyy|
receberd a cor iryj..., a aresta uv;_; receberd a cor i;. O
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Figura 19: Ciclo fmpar formado pela componente H” . Fonte:
Bondy e Murty(1976)

Unico ponto a se atentar € que diferenca € cor iy a aresta uv;,
i$s0 ocorreu porque uma vez que o grau de u € finito, haverd
uma repeticdo de cor, isto é, haverd um / tal que i;1| = i,
onde i; € justamente uma cor que jid ocorreu em algum
vértice anterior. Perceba que essa segunda coloragio ¢ =
(E{’,Eé’,...,EZ(G)H) também é uma (A(G) + 1)-coloragédo
6tima por um argumento analogo ao aquele usado na primeira
coloracdo. Novamente, pelo Lema do Obstdculo em Ciclo
Impares, a componente: H” = G[E}, UE]']  um ciclo fmpar
e contém u(Figura 19).

Note que como a componente H' é conexa, entdo sempre
existird um caminho de u até v,_; e de vy_; até vy. No
nosso exemplo esse caminho é: uv;_1ww'v;. Esse caminho
continuard existindo na segunda coloracdo, pois nela nds
consideramos apenas as arestas com as cores de k até [ — 1,
e o caminho citado surge nas arestas de cores 1 até k— 1. E
importante notar que a cada recolora¢do, nés modificamos
apenas partes localizadas do grafo, o restante se mantém
inalterado. Desse modo, a componente H” contém o vértice
Vi € seu grau € um. Temos portanto uma contradi¢do, pois
H" é um ciclo impar e ndo pode ter vértices com grau um.
Essa falha 16gica surgiu porque supomos inicialmente que
%' (G) > A(G) + 1. Entéo segue que: ¥'(G) <A(G)+1, 0
que encerra a demonstragao.

O

Como foi dito na secdo VI, o Teorema possui uma grande
importancia para algoritmos de coloracdo de arestas. Apesar
desse topico principal deste trabalho, serd interessante tecer
alguns comentérios.

A estrutura que construimos na demonstracao(15), onde
temos um vértice central(x) e demais outros vértices adja-
centes que seguem algumas propriedades(VII) € conhecida
na literatura como Fan ou Vizing’s Fan(Fan de Vizing) [20].
Alguns autores definem essa estrutura explicitamente e outros
nao(como no caso do Bondy e Murty). Contudo, a vantagem
de definir essa estrutura e juntamente realizar a demonstragao
por construcdo do Teorema de Vizing é que obtemos um
algoritmo para coloragdo propria de arestas que utiliza no
maximo A(G) + 1 cores.

O algoritmo de coloragdo de arestas baseado na prova
construtiva do Teorema de Vizing € conhecido como
Algoritmo de Coloracdo de Arestas de Mista Gries, e leva
o nome dos autores que propuseram a rotina [21]. Uma
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Figura 20: Grafo G;.

implementagdo do algoritmo na linguagem de programagao
Python pode ser vista em [22].

Exemplo:

Vamos utilizar um exemplo para melhor visualizar a
aplicagdo pritica do Teorema de Vizing. Suponha que
desejamos colorir propriamente o grafo G da secdo I(figura
20)

Perceba que nesse grafo, A(G;) = 4. Portanto, pelo
Teorema de Vizing, o nlimero de cores necessdrias para colorir
o grafo propriamente nio serd maior que A(G))+1=4+1=
5. De fato, o leitor podera verificar que ndo € possivel colorir
esse grafo com menos de 5 cores. Definamos a coloragao
co = {io,i1,i2,i3}, onde cada i;(0 < j < 3) representa uma
cor distinta. A colorag¢do pode ser vista na figura:

Uma observagdo importante é que poderiamos ter um grafo
G cujo indice cromdtico fosse menor que A(G) + 1(segdo
VIII). Contudo isso ndo invalida o teorema pois o valor A(G) +
1 é um limite superior, ou seja, a garantia € que nao sera
preciso mais que A(G) + 1 cores para colorir um grafo G
simples e finito qualquer.

VIII. APLICACOES

A Coloragdo de Arestas de Grafos possui uma série de
aplicacdes praticas, tais como planejamento de rotas, traifego
em redes e muitas outras [23]. Nesta sec¢do trataremos de um
problema bastante interessante: O Problema de Programacao
de Tabelas Esportivas. Utilizaremos como referéncia o
trabalho de Januario (2015) [24].

Um torneio do tipo round a robin(todos contra todos), é
um competi¢do que envolve ¢ times diferentes que disputam
entre si uma quantidade j de jogos. Por exemplo, para
t =4 e j=1 teremos um torneio em que, cada time
disputa contra os demais 3 uma vez. Nesse cendrio 2
questionamentos poderiam surgir: como elaborar uma agenda
de jogos de modo que, os times ndo disputem ndo mais que
uma partida em uma mesma rodada e quantas rodadas seriam
necessarias? Podemos responder essas pergunta utilizando os
conhecimentos aprendidos até aqui sobre grafos.

Em primeiro lugar, note que podemos facilmente modelar
a estrutura do torneio da seguinte forma: defina um grafo
G = (V,E), onde os vértices representam os times do torneio
e as a arestas representam a as partidas que devem ocorrer
entre eles. Consideremos t =4 e j = 1, ou seja, 4 times 1?1,
t, 13 e t4 que disputam uma partida entre si. O grafo que
representa a estrutura desse torneio pode ser vista na figura
21.

Agora devemos encontrar uma forma de garantir que nas
rodadas que se seguirdo cada time jogue apenas uma partida.
Isso pode ser feito utilizando as técnicas de Coloragdo de
Arestas. Definimos entdo uma coloragdo % em que cada cor
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Figura 21: Grafo que representa o torneio
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Figura 22: Grafo que representa o torneio, colorido

representa uma rodada do torneio. Observe que buscamos
uma coloracgdo do grafo G que seja prépria. A coloragdo sendo
propria, garantimos que nenhuma aresta adjacente a qualquer
um dos vértices tenha a mesma cor, ou seja, cada partida
ocorrera em uma rodada diferente, e ndo haverdo conflitos.
Sendo assim, estamos aptos a resolver a questdo acerca

do niimero de rodadas necessdrias para realizar esse torneio.

Responder isso € equivalente a reponder: quantas cores sao
necessdrias para obter uma coloracdo prépria de G? Pelo
teorema de Vizing, sabemos que o melhor valor e que funciona
para todos os casos é A(G) 4+ 1 =3+ 1 =4 cores. Obviamente,
para valores maiores também ¢ possivel obter uma coloracio
prépria, mas € de interesse usar a menor niimero de cores,
pois implica que teremos um menor niimero de rodadas. Note
também que o grafo do torneio usado como exemplo pode
ser colorido propriamente com 3 cores, pois como ele é
bipartido, pelo Teorema de Kénig, ¥'(G) = A(G). Porém
o limite superior fornecido pelo Teorema de Vizing é melhor
no sentido de que, funciona para todos os casos possiveis,
mesmo se o grafo do torneio nao for bipartido.

O segundo passo seria entdo aplicar algum algoritmo
de colorac@o propria de arestas no grafo G(sabendo que
serd preciso nao mais que 4 cores) obtendo portanto, o
agendamento das partidas. Uma solu¢do pode ser vista na
figura 22. Note que, a coloragdo resolve o problema pois,
nunhum vértice(time) possui mais de uma aresta(partida) cuja
cor(horario) € o mesmo.

IX. RESULTADOS E REFLEXOES

A base tedrica da coloracdo de arestas encontra-se bem
consolidada na literatura, todavia a complexidade dos
argumentos construtivos e das técnicas de recoloracio
iterativa impoe frequentemente barreiras ao aprendizado em
nivel de graduacio.

O mérito central deste trabalho reside ndo apenas
na demonstracdo formal, mas na sistematizacdo visual
desses raciocinios. Ao decompor as restricdes estruturais
e os impeditivos topolégicos em diagramas sequenciais,
evidenciou-se a natureza local do problema. A andlise
permitiu demonstrar que, enquanto certas classes de grafos
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com propriedades especificas permitem uma alocagdo 6tima
de recursos garantindo que o indice cromdtico iguale o
grau maximo ()}’ = A), a generaliza¢do para estruturas mais
complexas acarreta, no pior caso, o incremento de apenas uma
cor adicional () < A+1).

A expectativa € que este material atue como um instrumento
pedagdgico facilitador, permitindo que estudantes das dreas de
Computacdo e Matemadtica transitem da intuicdo geométrica
para o rigor analitico das provas formais com maior fluidez e
compreensao.

X. CONSIDERACOES FINAIS

Este estudo revisitou o Problema de Coloragdo de Arestas,
partindo de suas raizes histéricas no Problema das Quatro
Cores até a formalizagdo contemporanea. A andlise
comparativa entre a estrutura rigida dos grafos bipartidos
e a flexibilidade dos grafos simples permitiu compreender
como propriedades topoldgicas (como a paridade de ciclos)
ditam os limites de alocacgdo de recursos.

Conclui-se que a abordagem geométrica e iterativa é
essencial para a compreensdo profunda do Indice Cromitico.
A dificuldade inerente em conciliar o rigor matemético
com a clareza didatica foi mitigada pelo uso extensivo de
representacdes visuais, que serviram como ancoras cognitivas
para as abstragdes logicas.

Como trabalhos futuros, sugere-se a expansao desta andlise
para o Teorema de Vizing generalizado para multigrafos,
onde a multiplicidade das arestas introduz novas varidveis
a desigualdade cromatica. Espera-se que este material
sirva como referéncia pedagdgica, facilitando o ensino de
Otimiza¢cdo Combinatéria e Teoria dos Grafos em cursos de
Computacao e Matematica.
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Resumo—Este artigo representa o relato de uma experiéncia pedagdgica desenvolvido na disciplina de Teoria dos Grafos no curso de
Ciéncia da Computacdo, ofertada no semestre 2025/2 na Universidade Federal do Tocantins. A aplicacéo pratica dos conceitos de grafos
aprendidos na disciplina partird de uma reproducio da demonstracdo dos Teoremas de Tutte-Berge e de Tutte, os quais representaram
grandes avangos na pesquisa de emparelhamentos em grafos. Mais especificamente, o estudo da condic@o de existéncia de emparelhamento
maximo e perfeito em um grafo qualquer. Estes estudos, por sua vez, abriram as portas para a resolu¢cdo de problemas cada vez mais
complexos, e a versatilidade de seus usos pode ser interpretada como complemento das conquistas trazidas pelo Teorema de Hall. A
explicacdo de tais conceitos serd feita com base nas principais dificuldades encontradas pelo corpo estudantil, demonstrando de forma
didatica e ilustrativa, por meio de imagens, a fim de reduzir a abstragdo inerente ao tema.

Palavras-chave—Teoria dos grafos, Teorema de Tutte-Berge, Teorema de Tutte, grafos maximos, barreiras, Semindrios Académicos,
Experiéncia Pedagégica.

Abstract—This paper reports on a pedagogical experience developed during the Graph Theory course within the Computer Science
program, offered in the second semester of 2025 at the Federal University of Tocantins. The practical application of the graph concepts
learned in the course involves reproducing the proofs of the Tutte-Berge and Tutte theorems, which represented major advancements in
graph matching research. More specifically, it focuses on the study of the existence conditions for maximum and perfect matchings in
arbitrary graphs. These studies, in turn, paved the way for solving increasingly complex problems, and the versatility of their applications
can be interpreted as a complement to the achievements brought by Hall’s Theorem. The explanation of these concepts is based on
the primary difficulties encountered by the student body, employing a didactic approach illustrated with images to reduce the inherent
abstraction of the subject matter.

Keywords—Graph Theory, Tutte-Berge Theorem, Tutte’s Theorem, Maximum Matchings, Barriers, Academic Seminars, Pedagogical
Experience.

bioinformatica. A capacidade de abstrair problemas do
mundo real em vértices e arestas, aplicando sobre eles
I. INTRODUCAO algoritmos eficientes de busca, fluxo e conexidade, ¢ uma

habilidade indispensdvel para o cientista da computacdo
q teoria dos Grafos € uma das grandes protagonistas que  moderno.

permeiam o mundo da computag@o, oferecendo uma Partindo deste contexto, o estudo dos emparelhamentos
linguagem universal para a modelagem de relacionamentos  pos grafos remonta a dezenas de anos repletas de contri-
e estruturas complexas. O estudo de grafos ndo se  pyjcdes. Redes sociais, problemas de atribuicdes de postos
limita apenas a abstragdo matematica; ele permeia solugdes  de trabalho, alocagdes de recursos ,entre outros, sdo 0s
para problemas reais e contemporaneos, variando desde a  problemas que os emparelhamentos enfrentaram, contudo, o
otimizagdo de rotas em sistemas de logistica e o design  foco deste artigo estd no emparelhamento maximo, ou seja,
de circuitos eletronicos até a andlise de redes sociais € a emparelhamento de maior cardinalidade possivel em um
grafo G. Como um dos maiores representantes do estudo do

Dados de contato: Artur Anderson Alves Corréa, alves.artur@uft.edu.br emparelhamento maximo, em 1935, Philip Hall apresenta o
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teorema de Hall, popularmente conhecido como o “Teorema
do casamento”. Esse nome popular adveio da natureza do
problema que partia da seguinte metafora: se todo grupo de
meninas em uma vila gostar coletivamente de pelo menos
tantos meninos quanto ha meninas no grupo, entdo cada
menina pode se casar com um menino de quem ela gosta.

Mais formalmente, temos que o teorema de Hall
apresentou as ferramentas necessdrias para as descobertas de
emparelhamentos maximos em grafos bipartidos.O Teorema
de Hall tem se mostrado uma ferramenta valiosa tanto na
teoria dos grafos quanto em outras dreas da matematica.
Ademais, em 1957 Claude Berge avancou o estudo do prob-
lema do emparelhamento médximo confirmando a relacio
crucial entre caminhos M-aumentantes e emparelhamentos
maximos. Relagdo esta, jd previamente apontada (mas nio
provada), por Konig em 1931 e Pettersen em 1891. Herdando
estas contribui¢des, William Thomas Tutte avanca com o
teorema de Tutte-Berge e o teorema de Tutte, descobrindo
uma férmula do tamanho de um emparelhamento méaximo
em um grafo qualquer e também uma condi¢éo de existéncia
para um emparelhamento perfeito.

Embora o Teorema de Hall tenha estabelecido um marco
fundamental, sua aplicabilidade direta restringe-se aos grafos
bipartidos, deixando uma lacuna significativa para estruturas
mais complexas onde a biparticdo ndo é garantida. E nesse
cendrio que a generalizagdo proposta por Tutte se torna
revoluciondria. Ao introduzir o conceito de componentes
impares resultantes da remocdo de vértices, o Teorema de
Tutte (1947) fornece uma condicio necessdria e suficiente
para a existéncia de um emparelhamento perfeito em um
grafo qualquer, superando as limitacdes impostas pela
necessidade de biparticdio. A férmula de Tutte-Berge,
consolidada posteriormente em 1958, expande essa visdo ao
quantificar a deficiéncia de um grafo, ou seja, determinar
o tamanho exato do emparelhamento maximo baseando-
se na estrutura topoldgica do grafo e na andlise de seus
subconjuntos criticos, conhecidos como barreiras.

Assim, partindo do reconhecimento da importancia desses
teoremas, o artigo se propde a reproducdo de resultados
ja adquiridos através de uma perspectiva pedagdgica e a
disseminagdo desse conhecimento aos alunos em escala
pessoal. Além disso, promove-se a introduc¢do de todos
0s conceitos necessdrios para o entendimento dos teoremas,
facilitando o acesso as nomenclaturas utilizadas no artigo.

Partindo para a estrutura, o artigo estd organizado
da seguinte maneira: na Secdo 2 (Preliminares), sio
definidos os conceitos bdsicos, como grafo, conexidade,
componentes e emparelhamento, estabelecendo a notacdo e
o vocabuldrio necessarios. Em seguida, a Secdo 3 (Trabalhos
Relacionados) apresenta uma revisdo bibliogréfica, situando
este trabalho em relacdo a outras abordagens pedagdgicas e
técnicas existentes na literatura. Avangando para a definicio
do escopo, a Secdo 4 (Descrigdo do Problema) detalha os
teoremas de Tutte-Berge e Tutte, bem como sua importancia
histérica. Ja na Secdo 5 (Demonstracdo e Contribuicoes),
encontra-se o nicleo do trabalho, contendo as demonstragdes
passo a passo dos teoremas escolhidos. Posteriormente,
a Secdo 6 (Resultados e Reflexoes) discute as dificuldades
encontradas durante o estudo, as estratégias de superacdo e
realiza discussdes quanto aos resultados, e, por fim, a Secdo
7 (Consideragées Finais) sintetiza os aprendizados e conclui
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Figura 1: Grafo G ilustrando vértices (v;), arestas (¢;), ciclos e
conectividade.

V1
[ ]

Figura 2: Representag@o de um grafo trivial, composto por um
unico vértice isolado.
°

°
(a) Gy (azul) (b) G, (vermelho) (c) G1AG,
Figura 3: Ilustragdo da diferenca simétrica.

a tematica.

II. PRELIMINARES

Um grafo G(V.E) é uma estrutura de dados formada por
dois conjuntos: um conjunto V chamado de vértices e um
conjunto E de elementos chamados de arestas; cada aresta
estd associada a dois vértices: o primeiro € a ponta inicial
da aresta e o segundo € a ponta final. Pode-se imaginar que
um grafo € um mapa rodovidrio idealizado: os vértices sido
cidades A e B e as arestas sdo estradas. Considere o grafo 1:

Chamamos de subgrafo um grafo formado por um
conjunto de vértices e arestas do grafo original. Assim,
considere um subgrafo H com os conjuntos de vértices V =
{vi,v2,v3} e arestas E = {e3,ep,e1}. A partir do subgrafo
H(V,E), podemos definir o conceito de caminho: um
caminho em grafos é uma sequéncia de vértices interligados
por arestas, onde o vértice final de uma aresta é o vértice
inicial da préxima.

Ou seja, o conjunto V = {vy,v,} é um caminho conectado
pela aresta e;. Como extensdo dessa ideia, temos o conceito
de ciclo: um ciclo em grafos é um caminho que comega
e termina no mesmo vértice, sem repetir outros vértices no
percurso. Ou seja, um exemplo de ciclo é V = {vy,v2,v3};
partindo de v; pela aresta e3, partindo de v3 pela aresta e, e
partindo de v; pela aresta e, temos um ciclo.

Continuamente, um grafo trivial € definido como um grafo
que possui exatamente um vértice e nenhuma aresta.

Matematicamente, se G = (V, E), entdo G é trivial se |V | =
1 e E = 0.Também, outro conceito que deve ser explicado
€ a diferenca simétrica. A diferenca simétrica de dois
grafos(denotado por G1AG;) € uma operagdo que resulta em
um novo grafo contendo apenas as arestas que sao exclusivas
de cada um dos grafos originais.

O grafo resultante da figura 3 (c) contém apenas as arestas
exclusivas de G (topo) e exclusivas de G, (fundo). A aresta
diagonal, presente em ambos, é removida.Além disso, um
grafo é conexo se existir um caminho entre qualquer par de
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Componente H (Conexo)

Figura 4: Exemplo de grafo desconexo. O componente H a

esquerda € conexo internamente, mas o vértice vs estd isolado.
Figura 5: Exemplos de emparelhamento em um mesmo grafo G:

(a) Emparelhamento nio méaximo (tamanho 2). Vértices v3 e vg ndo foram
emparelhados.

(b) Emparelhamento maximo (tamanho 3). Neste caso, ¢ um
emparelhamento perfeito.

vértices. Em outras palavras, € possivel ir de qualquer vértice
para qualquer outro vértice usando apenas as arestas do
grafo. Se ndo for possivel, o grafo é considerado desconexo.

Levando em conta o subgrafo H (a parte esquerda da
figura), é possivel ir de qualquer vértice a outro através de
suas arestas; isso significa que o subgrafo H é conexo.

Porém, considerando a Figura 4, é impossivel que v3
alcance vs. De fato, é impossivel que qualquer vértice do
componente H chegue até vs, pois nao hd qualquer aresta
que ligue o vértice vs aos outros vértices. Portanto, a figura
representa um grafo desconexo.

Seguindo adiante, iremos para o conceito de emparel-
hamento. Um emparelhamento é um conjunto de arestas
onde nenhuma delas compartilha o mesmo vértice. Em
termos simples, € uma selecio de conexdes onde cada vértice
do grafo estd ligado a, no maximo, um outro vértice.Isso
pode ser entendido como a formagdo de pares exclusivos
dentro de um grupo. Os vértices "selecionados”, isto é,
incidentes a uma aresta emparelhada sdo chamados de M-
saturados. Caso nio sejam, sdo chamados de M-insaturados.
A partir deste principio, podemos definir emparelhamento
mdximo que é a cardinalidade do maior emparelhamento
possivel no grafo.

As arestas em vermelho e tracejadas indicam os pares
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Figura 6: Emparelhamento maximo (e perfeito). As arestas em
vermelho e tracejadas indicam os pares exclusivos formados.

(a) Grafo G com B = {b},b,} destacado

1 vértice

O,

1 vértice

3 vértices (impar)

(b) G — B: trés componentes impares
Figura 7: Representagdo de uma barreira. A remogéo de B produz
mais componentes impares do que |B|.

Caminho M-alternante (e M-aumentante)

O O OSSO OO

M-Saturado

exclusivos formados. Em 5(a) temos um conjunto vélido,
mas que poderia ser maior. Em 5(b) temos o maior conjunto
possivel para este grafo.Além disso, temos o conceito de
emparelhamento perfeito. Diz-se que um emparelhamento
M € perfeito se todo vértice do grafo estiver saturado por
M. Naturalmente, todo emparelhamento perfeito é mdximo,
e todo emparelhamento maximo é maximal (isto é, nao pode
ser estendido adicionando-se arestas).

Avancando, um vértice essencial é aquele que todo empar-
elhamento maximo o cobre. Com a ideia de emparelhamento
determinada, podemos partir para o conceito de barreira:
Formalmente, dado um grafo G, um subconjunto de vértices
B ¢é chamado de barreira se a remocdo de B divide o grafo
em um nimero de componentes impares (componentes de
um grafo com uma quantidade {mpar de vértices) maior que
o tamanho do préprio conjunto B.

Ademais, deve-se introduzir conceito de caminho M-
alternante e caminho M-aumentante. Seja G um grafo geral,
E o conjunto de arestas de G e M um emparelhamento de G.
Um caminho M-alternante em G é um caminho cujas arestas
pertencem alternadamente a E\ M e a M. Um caminho M-
alternante cujos vértices extremos sdo ambos M-Saturados é
chamado caminho M-aumentante. Observe que um caminho
M-aumentante possui uma quantidade par de vértices.

Para a melhor compreensdo das férmulas apresentadas
a seguir no artigo, partimos das seguintes denominacdes:
A quantidade de arestas em um emparelhamento maximo
serd denotada por o (G). Além disso, denotaremos por
0o(G) como o nimero de componentes impares do grafo.
Também, chamaremos de grafos hipoemparelhdveis grafos
que ndo possuem emparelhamentos perfeitos, contudo,
qualquer subgrafo com qualquer vértice retirado possui
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(a) Grafo Hipoemparelhavel G

® OREEaNC ®
7
’ 1
\

\ / '\
B ® @

Possui 5 vértices (impar). Restam 4 vértices (par).
Impossivel ter emparelhamento perfeito. Emparelhamento perfeito

(b) Subgrafo G — {v;}

Figura 8: Ilustragdo de um grafo hipoemparelhavel.

def(G) = (o(G—S5)—15])

Figura 9: Representagdo matemadtica da deficiéncia

emparelhamento perfeito.

Em (a), o grafo original Cs ndo tem emparelhamento
perfeito devido a paridade. Em (b), apds a remogdo do
vértice v, o subgrafo restante admite um emparelhamento
perfeito (arestas vermelhas tracejadas).

O comportamento demonstrado se repete ndo importa qual
vértice seja retirado. Ademais, devemos definir a ideia
de deficiéncia. A deficiéncia mede quantos vértices nio
podem ser pareados, no pior caso, se tentarmos formar
um emparelhamento. Note que o(G-S) é o nimero de
componentes impares apdés a remocdo de S. Sabemos
que cada componente impar garante que pelo menos 1
vértice ficard sem par. Ou seja, a deficiéncia representa
quantos vértices ficam inevitavelmente "solitdrios" depois
que removemos S.

Com toda a introdugdo tedrica feita, partiremos para
uma pequena revisdo de literatura quanto aos problemas do
emparelhamento maximo e a evolugdo pedagégica do ensino
dos grafos.

II1. TRABALHOS RELACIONADOS

A literatura voltada ao ensino de Ciéncia da Computacio
e, especificamente, de Teoria dos Grafos, destaca que
a complexidade e o nivel de abstragdo dos conceitos
exigem estratégias pedagdgicas diversificadas. A pesquisa
bibliografica realizada para este artigo identificou duas
frentes principais de trabalhos relacionados: (i) experiéncias
didaticas e ferramentas de apoio ao ensino de grafos e
computagdo tedrica; e (ii) fundamentagdes tedricas modernas
sobre emparelhamento e os teoremas de Tutte.

No contexto de metodologias ativas, Lassance [1] relata
uma experiéncia similar a vivenciada na elaboracdo deste
artigo, aplicada a disciplina de Teoria da Computagdo. Os
autores destacam que a implementacdo de um Ciclo de
Semindrios, focando em tépicos de alta complexidade como
NP-Completude, resultou na maximiza¢do da compreensio
dos estudantes e no desenvolvimento da autonomia inves-
tigativa. Este artigo d4 continuidade a essa visdo, utilizando
a metodologia de semindrio para aprofundar o estudo de
emparelhamentos.
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Para mitigar as dificuldades de abstracdo, diversas
abordagens visuais tém sido propostas.  Santos et al.
[2] discutem a validagdo do sistema GraphViewer, uma
ferramenta de visualizag¢@o de algoritmos focada no ensino
de provas por inducdo em Teoria dos Grafos. Os autores
evidenciam que a visualizacdo passo a passo auxilia na
compreensdo de demonstragdes matemdticas rigorosas. A
ferramenta preenche uma lacuna especifica ao focar em
"demonstragdes por inducdo", uma 4drea onde os alunos
historicamente tém grande dificuldade de visualizacdo.

O estudo aplicou métricas rigorosas de Ganho de
Aprendizagem Absoluto (GAA) e Normalizado (GAN) para
medir a eficdcia da ferramenta. Em real¢do ao aumento do
desempenho, no primeiro experimento realizado, o grupo
que utilizou o GraphViewer (grupo de teste) obteve um
Ganho de Aprendizagem Normalizado (GAN) de 25,11%
,quase o dobro do ganho obtido pelo grupo de controle,
e 13,92% que ndo usou a ferramenta. Na mesma linha,
em um trabalho anterior, Santos et al. [3] apresentaram
o ambiente TBC-GRAFOS, demonstrando que o uso de
softwares graficos reduz indices de reprovacdo e agiliza a
compreensdo de algoritmos cldssicos, como os de busca e
caminho minimo.

Além de softwares, abordagens lidicas também se
mostram eficazes. Correa et al. [4] desenvolveram o jogo
de tabuleiro "Formigrafo", que utiliza a tematica de um
formigueiro para motivar o aprendizado do Problema do
Caminho Minimo. O trabalho refor¢a que a contextualizacdo
lddica facilita a introdug@o de conceitos abstratos de grafos
ponderados.

No que tange a fundamentac@o tedrica especifica deste
trabalho, a literatura apresenta evolugdes nas demonstra¢des
classicas de emparelhamento. Qu e West [5] publicaram
recentemente uma nova prova para a Férmula Generalizada
de Tutte-Berge aplicada a subgrafos f-limitados. O trabalho
utiliza o Teorema do f-Fator de Tutte para estabelecer uma
relagdo min-max, simplificando a compreensdo da férmula
classica quando f(v) = 1. Isso é, cada vértice pode estar
conectado a, no maximo, uma aresta dentro desse subgrafo.

Complementarmente, o livro do Douglas B. West[6] parte
de uma perspectiva mais tradicional através das técnicas de
provas matemdticas puras. Contudo, encara os problemas
de diversos angulos, iniciando pelo mais tradicional, sendo
ele o método da inducdo de vértices provando a suficiéncia
do teorema de Tutte. Apds isso, tomando uma via mais
original a resolu¢@o do teorema, provando-o pelo Teorema de
Hall. Aprofundando-se , a ideia geral € transformar o grafo
original em um grafo bipartido adequado e entdo aplicar Hall.

Tais contribuicdes denotam a importancia de encarar a
teoria dos grafos com uma visao didatica, a fim de facilitar
a compreensdo de temas abstratos. N3o sé isso, mas a
exploracdo de novas maneiras de provar os teoremas mostra
que o problema do emparelhamento maximo € relevante até
hoje e a sua discussio e compreensio é necessaria. Com isso
em mente, a seguir mudaremos o enfoque para o problema
em si, aprofundado nos teoremas de Tutte-Berge e Tutte.

IV. DESCRICAO DO PROBLEMA

Comecando com o primeiro dos teoremas escolhidos,
considerando um grafo G(S,E), sendo S o conjunto de
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«(G) = %min{v(G) —(o(G—S)—|S|)} ral que SV

Figura 10: Férmula de Tutte-Berge para emparelhamento

maximo.
o

Grupo Azul Grupo Laranja
(3 Amigos) (3 Amigos)

Sem conex&o direta

AN
N

®

Mediador (P)

Figura 11: O Problema do Buddy System. A remoc¢ao de P cria
dois componentes impares isolados.

vértices de G e ISI| a cardinalidade do conjunto, a férmula
do teorema de Tutte-Berge é dada por:

A intuicdo por tras da Férmula de Tutte-Berge baseia-se na
barreira estrutural causada pela paridade dos componentes.
Considere a remog¢ao de um conjunto de vértices U C V. O
grafo resultante G — U se fragmenta em varios componentes
conexos.

Com relagdo a natureza do problema, ele é classificado
como um problema de otimizacdo, pois determina o valor
mdximo de o/ (G). O objetivo € encontrar o conjunto U que
maximiza a deficiéncia para provar que o emparelhamento
ndo pode ser maior.

Diferente de muitos problemas em grafos gerais (como
Coloracdo ou Caminho Hamiltoniano) que sdo NP-Dificeis,
o problema do Emparelhamento Maximo pertence a classe
P (Tempo Polinomial). Um dos algoritmos mais eficientes
conhecidos para emparelhamento maximo em grafos gerais
¢ o algoritmo de Micali-Vazirani, cuja complexidade é
O(E+/V). Também, E possivel resolver diversos problemas
com o teorema de Tutte-Berge. Um exemplo cldssico é o
Problema da Formagdo de Equipes (Buddy System).

O problema consiste em formar o nimero maximo
possivel de duplas (emparelhamento mdximo) em um grupo
de pessoas, respeitando uma regra de compatibilidade:
uma dupla sé pode ser formada se houver uma aresta de
"amizade" entre as duas pessoas.

A Figura 11 ilustra um cendrio onde um emparelhamento
perfeito € impossivel devido a estrutura social do grupo.
Temos 7 pessoas divididas em: O Grupo Azul € composto
por 3 pessoas (Al, A2 e A3), todas amigas entre si. O
Grupo Laranja também possui 3 pessoas (B1, B2 e B3), que
igualmente sdo amigas entre si. Por fim, ha o Mediador P,
uma pessoa central que possui uma relacdo de amizade com
integrantes de ambos 0s grupos.

H4 uma incompatibilidade total entre os grupos: ninguém
do Azul é amigo de alguém do Laranja.

Andlise via Tutte-Berge: Se removermos o conjunto U =
{P}, o grafo se quebra em dois componentes conexos (0s
dois grupos), ambos com um nimero impar de vértices. O
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o(G-S5)<IS|, vScV

Figura 12: A condi¢@o do Teorema de Tutte.

O

o(G-S8)=3>|5]=1
Sem Emparelhamento Perfeito

Figura 13: Grafo K 3 violando a condigdo de Tutte.

Contagem Final:
Brancas: 8 Pretas: 6
Impossivel cobrir!

Figura 14: O Tabuleiro Mutilado. A remogio de dois cantos da
mesma cor quebra a paridade necessdria.

mediador unico ndo € suficiente para cobrir a demanda desses
componentes.

Agora, analisando o Teorema de Tutte, ele responde se
o grafo possui um emparelhamento perfeito. A condigéo é
apresentada na Figura 12:

Assim, um grafo possui um emparelhamento perfeito se
e somente se a condicdo acima for cumprida para todo
subconjunto S. A Figura 13 mostra uma violagcdo simples.

Seguindo, o problema de encontrar um emparelhamento
perfeito pertence a classe P. Um dos algoritmos fundamentais
€ o Algoritmo de Blossom (Edmonds, 1965), que lida com
"ciclos impares" contraindo-os em super-vértices.

Para entender a importancia da paridade, analisamos
o problema do tabuleiro de xadrez 4 x 4 "mutilado".
Removemos duas casas de cantos opostos (digamos, duas
pretas). Restam 14 casas: 8 brancas e 6 pretas (Figura 14).

Para que um emparelhamento perfeito existisse (cobertura
por dominds), precisariamos de um nimero igual de casas
brancas e pretas, pois cada dominé consome um par de cores
diferentes. Como restaram 8 casas brancas e apenas 6 pretas,
¢ impossivel cobrir o tabuleiro. Com toda a formulacio
tedrica dos teoremas explicada, podemos resumir e comparar
ambos através das seguintes tabelas:

Concluindo, o teorema de Tutte e Tutte-Berge possuem
diversos paralelos téoricos que serdo a seguir, aprofundados
e demonstrados.
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TABELA 1: RESUMO ESTRUTURAL: TEOREMAS DE TUTTE E
TUTTE-BERGE

Problema | Caracterizacdio de Emparelhamentos
Perfeitos (Tutte) e de Emparelhamentos

Miximos (Tutte—Berge).

Input Estrutura do grafo G: componentes
impares apds remoc¢do de subconjuntos
S C V(G); método estrutural baseado em

principios Min—-Max.

Output Tutte: G possui emparelhamento per-
feito se o(G —§) < |S| para todo S C
V(G).

Tutte-Berge: o tamanho maximo do
emparelhamento é J (|V(G)| — def(G)).

Caracterizagdo Min—Max:  relaciona
componentes {mpares, barreiras e defi-
ciéncia a estrutura de emparelhamentos;
fornece condicdo necessdria e suficiente
para emparelhamentos perfeitos e for-
mula exata para emparelhamentos méxi-
mos.

Resumo

TABELA 2: COMPARATIVO ENTRE OS TEOREMAS DE TUTTE E
TUTTE-BERGE

Aspecto

Tutte

Tutte-Berge

Objetivo principal

Determinar a existéncia
de um emparelhamento
perfeito.

Determinar o tamanho
médximo de um empar-
elhamento em qualquer
grafo.

Caracterizacdo

Existencial:  condi¢des
para a existéncia de em-
parelhamento perfeito.

Quantitativa: fornece a
cardinalidade de um em-
parelhamento maximo.

Conceitos
estruturais

Componentes ~ impares
e emparelhamentos
perfeitos.

Componentes impares,
emparelhamentos
méximos e barreiras.

V. DEMONSTRACAO E CONTRIBUICOES

As demonstragdes que serdo apresentadas sdo aquelas
descritas no livro Graduate Texts in Mathematics, conforme
citam Bondy e Murty [7] a respeito do Teorema de Tutte-
Berge e do Teorema de Tutte. Os teoremas em questao
sd0 a estrutura base para caracterizar emparelhamentos
mdaximos e perfeitos apresentando condicdes necessdrias e
suficientes. Além disso, as demonstracdes a seguir seguem
um tratamento bem préximo do exposto por Bondy e Murty,
mas apresentando-os de maneira mais clara.

O TEOREMA DE TUTTE-BERGE

Teorema V.1 (Bondy-Murty [7]).
TUTTE-BERGE
Todo grafo tem uma barreira.

O TEOREMA DE

Em um grafo bipartido, uma cobertura minima constitui
uma barreira do grafo. Porém, geralmente todo grafo tem
uma barreira. Este fato é conhecido como o Teorema de
Tutte-Berge. Entretanto, lembre-se de que um vértice v de um
grafo G € essencial se todo emparelhamento méximo cobre
v, € ndo essencial caso contrario. Assim, v € essencial se
o/(G—v) =d'(G) — 1 e ndo essencial se o' (G —v) = o' (G).
Dessa maneira, temos os seguintes lemas auxiliares para o
teorema:
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Figura 15: Tlustragio da indugfio com o emparelhamento M’
cobrindo tanto x quanto y

Legenda:

—_—M

—_——-

Figura 16: Tlustragdo dos componentes de GI[MAM'].

Lema 1 (16.8, Bondy—Murty [7]). O conjunto vazio é uma
barreira de todo grafo hipoemparelhdvel.

Lema 2 (16.9, Bondy—Murty [7]). Seja v um vértice
essencial de um grafo G e seja B uma barreira de G —v. Entdo
BU{v} é uma barreira de G.

Lema 3 (16.10, Bondy—Murty [7]). Seja G um grafo
conexo no qual nenhum vértice é essencial. Entdo G é
hipoemparelhavel.

Prova Como nenhum vértice de G é essencial, G ndo
tem um emparelhamento perfeito. Resta mostrar que todo
subgrafo com um vértice removido tem um emparelhamento
perfeito. Caso isso ndo ocorra, entdo cada emparelhamento
maximo deixa pelo menos dois vértices descobertos. Assim,
basta mostrar que para qualquer emparelhamento maximo e
quaisquer dois vértices em Go emparelhamento cobre pelo
menos um destes vértices. Estabelecemos isto por inducdo
na distancia entre estes dois vértices.
Considere um emparelhamento maximo M e dois vértices
x eyem G. Seja xPy um caminho xy-mais curto em G.
Suponha que nem x nem y sdo cobertos por M. Como M
€ méaximo, P tem comprimento de pelo menos dois. Seja v
um vértice interno de P. Como xPv € mais curto que P, o
vértice v é coberto por M, por inducdo. Por outro lado, como
v é ndo essencial, G tem um emparelhamento méximo M’ que
ndo cobre v. Além disso, como xPv e vPy sdo ambos mais
curtos que P, o emparelhamento M’ cobre tanto x quanto y,
novamente por indugdo.
O
O vértice interno v € coberto por M (pois xPv <
P), mas descoberto por M’ (pois v ndo é essencial).
Consequentemente, M’ cobre x e y.Os componentes de
G[MAM'] sdo caminhos e ciclos pares cujas arestas
pertencem alternadamente a M e M’ .
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Cada um dos vértices x,v,y € coberto por exatamente um
dos dois emparelhamentos e, portanto, ¢ uma extremidade de
um dos caminhos. Como os caminhos sio pares, x e y nao sao
extremidades do mesmo caminho. Além disso, os caminhos
que comecam em x e y ndo podem ambos terminar em v.

Podemos, portanto, supor que o caminho Q que comeca
em x ndo termina nem em v nem em y. Mas entdo o
emparelhamento M'AE(Q) é um emparelhamento maximo
que ndo cobre nem x nem v, contradizendo a hipétese de
inducdo e estabelecendo o lema.Também, deste teorema
podemos deduzir um dos mais importantes Coroldrios dos
teoremas de Tutte e Berge. Sendo ela, a formula de Tutte-
Berge.

Antes de entrar em célculos, serdo retomadas as defini¢des
ja dadas anteriormente e também, considere que o nimero
total de vértices de um grafo G, denotado por |V (G)|, pode
ser particionado em dois conjuntos: os vértices que sao
cobertos por um emparelhamento maximo M e os vértices
que permanecem descobertos.

Seja o (G) = |M| o tamanho do emparelhamento méximo.
O ndmero de vértices cobertos €, portanto, 2a/(G). O
nimero de vértices ndo cobertos é definido como a
deficiéncia do grafo, denotada por def(G). Assim, temos a
identidade fundamental:

[V(G)| =20/ (G) + def(G) (1)
Como ja dito anteriormente, O Teorema de Tutte-Berge
estabelece que a barreira para um emparelhamento perfeito
reside na existéncia de um subconjunto S C V(G) cuja
remog¢do cria mais componentes impares do que o proprio
|S| consegue cobrir. Cada componente impar em G — S deve,
necessariamente, ter pelo menos um vértice nao emparelhado
internamente ou conectado a um vértice de S.
No pior caso (o que maximiza os vértices descobertos), a
deficiéncia é dada por:

def(G) = G-S5)—|S 2
ef(G) = max {o(G—$) 5] @
Substituindo a equagdo (2) em (1), obtemos:

V(G)| =20/ (G G-—S5)—|S
V(6)| =20/(G) + max (0(G—$) - s}

Para isolar o (G), reorganizamos a equagdo. Note que
subtrair o valor maximo de um conjunto é equivalente a
somar o valor minimo do termo negativo:

20/(G) = |[V(G)| *SIC_HVa(é){O(G*S) —I8[}

min {|V(G)| - (o(G—S5)—|S])}

20/(G) =
*(G) SCV(G)

Finalmente, dividindo por 2, chegamos a férmula do
Corolario:

/ 1 .
() =5 min {V(G)—(o(G=9-1SD} B
Esta formulacdo confirma que o tamanho do em-
parelhamento maximo ¢é determinado pela "barreira" S
que minimiza a perda de vértices que ndo podem ser
emparelhados devido a estrutura topoldgica do grafo.
Isso nos leva ao seguinte coldrio:
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Corolario 1 (Bondy—Murty [7]). Para qualquer grafo G,

1
! .
o (G) =< min {|V(G)|—(o(G—=S)—|S])}.
(G) 2SQV(G){I (G)| = (o(G=5) =[S}

O resultado em questdo fornece a férmula de Tutte-Berge
que caracteriza o tamanho de qualquer emparelhamento
maximo em relagdo as barreiras correspondentes que
sintetiza o Teorema de Tutte-Berge.

TEOREMA DE TUTTE

Teorema V.2 (Bondy-Murty [7]). Um grafo G tem um
emparelhamento perfeito se, e somente se,

o(G—S8) <|S| paratodo S CV(G). 4)

Prova Demonstraremos ambas as dire¢des da equivaléncia.

Necessidade (=):

Suponha que G possui um emparelhamento perfeito M.
Devemos mostrar que o(G — S) < |S| para todo S C V(G).

Seja S C V(G) um subconjunto arbitrdrio de vértices.
Considere o grafo G — § obtido apds a remogdo de todos os
vértices de S e suas arestas incidentes. Seja C1,C3,...,C; 0
conjunto de componentes impares de G — S.

Para cada componente impar C;, o nimero de vértices
|V (C;)| é impar. Como M é um emparelhamento perfeito em
G, todos os vértices devem estar cobertos por M. Portanto,
cada componente impar C; deve ter pelo menos uma aresta de
M conectando um vértice interno de C; a um vértice em S (ja
que um nimero impar de vértices ndo pode ser perfeitamente
emparelhado internamente).

Formalmente: como |V (C;)| é impar e M é perfeito em
G, existe pelo menos um vértice v; € V(C;) tal que v; estd
emparelhado com algum vértice s; € S.

Como as arestas de M sdo disjuntas nos vértices (cada
vértice aparece em no maximo uma aresta), os vértices
51,82,...,5t € § que estdo emparelhados com vértices
das componentes impares devem ser distintos. Portanto,
precisamos de pelo menos k vértices em S para cobrir todas
as componentes impares.

Logo, k=0(G—S) < |S

, como querfamos demonstrar.

Suficiéncia (<):

Suponha, por contradi¢io, que o(G — S) < |S| para todo
S C V(G), mas G ndo possui emparelhamento perfeito.

Como G nio possui emparelhamento perfeito, seja M* um
emparelhamento mdximo de G. Seja U C V(G) o conjunto
de vértices ndo cobertos por M*. Por hipétese, |U| > 1 (se
|U| = 0, entdo M* seria perfeito, contradi¢do).

Pelo Teorema de Tutte-Berge (Coroldrio 1), existe uma
barreira B C V(G) tal que

def(G) = o(G—B) —|B| =|U|. (5)
Como |U| > 1, temos:
o(G-B)—|B|>1 = o(G-B)>|B|+1>|B|.

Tomando S = B, obtemos que o(G — S) > S|, o que
contradiz diretamente a hipétese de que o(G — S) < |S| para
todo S CV(G).

Portanto, nossa suposicdo inicial estava errada, e G deve
possuir um emparelhamento perfeito. (I
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C; (3 vértices)

C, (1 vértice) 0

Violacdo da condicio de Tutte:

e Temos o(G —S) = 3 componentes impares: Ci,Cz,C3
e Temos |S| =2 vértices disponiveis

e Como o(G—S)=3>2=|S|, a condigio (4) é violada
Portanto, G nao possui emparelhamento perfeito

Figura 17: Ilustracdo da violag¢do da condicdo de Tutte.

A condig¢ao de Tutte (4) € uma caracterizacio necessdria e
suficiente para a existéncia de emparelhamentos perfeitos em
grafos gerais, generalizando o Teorema de Hall para grafos
ndo-bipartidos. A desigualdade o(G —S) < |S| captura uma
restri¢gdo estrutural fundamental: cada componente impar
resultante da remocdo de S necessita de pelo menos um
vértice de S para completar o emparelhamento, e ndo pode
haver mais componentes impares do que vértices disponiveis
em S.

A Figura 17 ilustra um caso concreto onde a condi¢do
de Tutte falha. Os componentes C;,C>,C3 sdo componentes
impares de G — S, cada um contendo respectivamente 3, 1 e
3 vértices.

Para que exista um emparelhamento perfeito em G, cada
componente impar precisaria estar conectada a pelo menos
um vértice distinto em S (pois um conjunto com nimero
impar de vértices ndo pode ser perfeitamente emparelhado
internamente). Entretanto, como temos 3 componentes im-
pares mas apenas S| = 2 vértices em S, é matematicamente
impossivel satisfazer todos os emparelhamentos necessarios.

Este exemplo demonstra que a desigualdade o(G —
S) > |S| constitui uma obstrugdo estrutural a existéncia
de emparelhamentos perfeitos. Finalmente, é provada o
teorema de Tutte-Berge e o teorema de Tutte, que terdo
seus resultados novamente avaliados e pensados na préxima
sessdo.

VI. RESULTADOS E REFLEXOES

O trabalho realizado nesse artigo considerou grafos com
énfase na andlise de suas propriedades de emparelhamento.
Nos casos apresentados, foram mostrados cendrios que nio
admitem emparelhamento perfeito, de tal forma descobrindo
as condicdes que impedem sua ocorréncia. Nesse tema,
conceitos como componentes impares, barreiras e remogao
de vértices constituiram elementos fundamentais para a
formulag@o dos critérios analisados. De maneira especifica,
observou-se de que forma a remocao de um subconjunto S C
V(G) influencia o nimero de componentes impares de G —
S, fornecendo elementos fundamentais para a compreensio
estrutural do grafo.

O principal resultado identificado corresponde a car-
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acterizacdo dos grafos que permitem a existéncia de
um emparelhamento perfeito, conforme estabelecido pelo
Teorema de Tutte. Esse teorema determina que um grafo G
possui emparelhamento perfeito se, e somente se, para todo
subconjunto S C V(G), o nimero de componentes impares
de G — S satisfaz a relagdo:

o(G=5)<|S|

O estudo comprova que a condicio de Tutte possui
natureza necessaria e suficiente, servindo como uma conexao
entre caracteristicas globais (como a presenca de um
emparelhamento maximo) e as propriedades locais que
resultam da particdo do grafo em seus componentes impares.
Adicionalmente, o Teorema de Tutte—Berge permitiu
quantificar o tamanho de um emparelhamento mdaximo
mesmo em situacdes nas quais o grafo ndo admite
emparelhamento perfeito. Essa quantidade é dada por:

o' (G) = %Sénvi(nG){lV(G)\ —(o(G=5) =S}

e a deficiéncia do grafo € definida por:

def(G) = shax (o(G—5)—18])

Esse resultado complementa o Teorema de Tutte ao oferecer
uma medida precisa do grau de impossibilidade estrutural
que impede o grafo de possuir um emparelhamento perfeito.
A andlise desses teoremas também permitiu identificar
aspectos adicionais cruciais para a compreensao da teoria de
emparelhamentos. Notou-se que as barreiras desempenham
um papel essencial na caracterizacdo dos grafos hipoem-
parelhdveis, contribuindo para a andlise de estruturas que
impossibilitam a constru¢do de emparelhamentos perfeitos.

Partindo para a perspectiva pedagdgica, o cardter alta-
mente figurativo das explicacdes do teorema e os exemplos
como o Buddy System,tabuleiro multilado foram propostos
como um material pedagégico para facilitar a compreensio
dos alunos. Estes exemplos sdo feitos trazendo objetos
e situagdes cotidianas como metédforas para a ldgica dos
teoremas, retirando do aluno a carga tedrica que os livros
didéticos possuem.

No caso do buddy system, o problema poderia ser
demonstrado de forma pratica dividindo a sala de aula
entre times azul e laranja, também escolhendo um aluno
como mediador. Dessa forma, o problema engajaria os
alunos a aprofundarem seus pensamentos com a camada da
experiéncia, escapando dos limite da teoria. Assim, 0 mesmo
tipo de atividade pode ser feita com o tabuleiro multilado,
dividindo a sala em grupos e distribuindo tabuleiros, o que
motiva o aluno a ver como os grafos estdo presentes no
dia a dia. Isso ndo significa porém, o completo abandono
da teoria, pois ferramentas como o GraphViewer[2] ja
citada anteriormente, permite a visualizacdo da prova dos
algoritmos o que aumenta a capacidade de aprendizado dos
alunos, como demonstrado no préprio estudo.

Com tudo isso posto , a secdo de considera¢des finais
apresentard o resumo dos resultados, cumprimento dos
objetivos, contribui¢des do estudo, limitacdes da pesquisa e
sugestdes futuras para pesquisas.
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VII. CONCLUSOES FINAIS

Os resultados obtidos permitiram caracterizar de maneira
precisa as condicdes estruturais que determinam a existéncia
ou inexisténcia de emparelhamentos perfeitos em grafos. O
Teorema de Tutte mostrou-se fundamental nesse processo,
uma vez que estabelece a relacdo entre o numero de
componentes impares e o tamanho dos subconjuntos de
vértices removidos.

Constatou-se, além disso, que o Teorema de Tutte—Berge
complementa essa andlise ao quantificar o tamanho de um
emparelhamento mdximo mesmo quando o grafo ndo admite
emparelhamento perfeito. Assim, verificou-se que ambos os
teoremas fornecem uma descri¢do abrangente e operacional
da estrutura dos emparelhamentos em grafos gerais.

Todos os objetivos tragados no inicio do estudo foram
alcangados. O objetivo geral, que consistia em entender as
condigdes que asseguram a existéncia de emparelhamentos
perfeitos, foi cumprido por meio do exame detalhado das
demonstragdes e implicacdes dos Teoremas de Tutte e
Tutte—Berge.

Os objetivos especificos também foram atendidos: o
papel dos componentes impares foi elucidado, a nogdo de
deficiéncia foi analisada como medida estrutural relevante,
o conceito de barreira foi discutido no contexto de grafos
hipoemparelhdveis e a relagdo entre esses elementos e a
formagdo de emparelhamentos maximos foi cuidadosamente
explorada. Esses resultados demonstram que a investigacio
se desenvolveu de acordo com o que havia sido proposto.

O estudo apresenta contribui¢des tedricas ao sistematizar
dois resultados centrais da teoria de emparelhamentos, desta-
cando as relacdes entre componentes impares, barreiras e
deficiéncia. A discussdo reforga a relevancia das formulagdes
de Tutte para a compreensdo estrutural dos grafos e evidencia
a profundidade de suas implica¢des matematicas.

Sob uma perspectiva pratica, os resultados discutidos
fornecem ferramentas analiticas importantes para problemas
de alocag@o, otimizacdo, modelagem combinatdria e desenho
de redes. A aplicabilidade dos teoremas de Tutte em
diferentes dreas, como ciéncia da computacao e pesquisa op-
eracional, demonstra a utilidade das formulacdes estudadas.

Este estudo apresenta como principal limitacdo seu
foco estritamente tedrico, ndo abordando algoritmos com-
putacionais para o cdlculo de emparelhamentos maximos
nem implementagdes praticas relacionadas. Além disso,
nao foram consideradas generaliza¢des contemporaneas dos
resultados de Tutte, como fatores k-regulares ou formulagdes
baseadas em programacio linear. Tais escolhas restringiram
deliberadamente o escopo do trabalho, mantendo-o alinhado
aos objetivos propostos, embora reduzam sua abrangéncia
aplicada.

Com base nas limitagdes observadas, temos algumas
possiveis pesquisas futuras. Uma possibilidade € explorar
algoritmos eficientes para encontrar emparelhamentos ma-
ximos e perfeitos, analisando seu desempenho em grafos
grandes ou especificos. Outra vertente, envolve estudar a
aplicacdo dos teoremas em classes particulares de grafos,
como bipartidos por exemplo.

Além disso, futuras pesquisas podem aprofundar as
generalizacdes dos resultados apresentados, investigando
fatores k-regulares, decomposi¢des estruturais e conexdes
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com métodos algébricos e combinatdrios modernos. Esses
caminhos podem ampliar tanto o alcance tedrico quanto a
aplicabilidade prética dos conceitos discutidos.
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Resumo—Os problemas de agendamento constituem uma classe essencial de desafios em otimizag¢do e computagdo, especialmente em
sistemas operacionais, processamento paralelo e aplicagdes em tempo real. Apesar de sua ampla utiliza¢do pratica, diversas variantes
permanecem computacionalmente intratdveis, mesmo sob fortes restri¢des estruturais. Este artigo investiga a NP-completude de duas
versdes especificas do problema de escalonamento: o agendamento com tempo de execugdo unitirio e o agendamento com dois
processadores em tarefas de duracdo igual a uma ou duas unidades. A fundamentac@o tedrica baseia-se em redugdes polinomiais cldssicas,
em particular a partir do problema 3-SAT, que permite codificar atribuicdes 16gicas diretamente nas restri¢des de precedéncia e capacidade
dos processadores. Além disso, transformagdes adicionais entre versdes restritas do problema sio utilizadas para preservar a equivaléncia
estrutural das solugdes. As contribuicdes incluem uma reconstru¢do didética das provas originais, a andlise dos mecanismos que geram
dureza computacional e uma discussdo sobre as implicagdes praticas desses resultados em sistemas reais de escalonamento. Os resultados
apresentados na literatura refor¢am que mesmo cendrios aparentemente simples apresentam comportamento NP-completo.

Palavras-chave—NP-completude; Agendamento; Redug¢do polinomial; 3-SAT; Complexidade computacional.

Abstract—Scheduling problems constitute a fundamental class of challenges in optimization and computing, particularly in operating
systems, parallel processing, and real-time applications. Despite their wide practical use, many variants remain computationally
intractable, even under strong structural restrictions. This article investigates the NP-completeness of two specific versions of the
scheduling problem: scheduling with unit processing time and scheduling on two processors with tasks of duration one or two time
units. The theoretical foundation relies on classical polynomial-time reductions, especially from the 3-SAT problem, which allows
logical assignments to be encoded directly into precedence constraints and processor-capacity limitations. Furthermore, additional
transformations between restricted versions of the problem are employed to preserve the structural equivalence of solutions. The
contributions include a didactic reconstruction of the original proofs, an analysis of the mechanisms that give rise to computational
hardness, and a discussion of the practical implications of these results in real scheduling systems. The results presented in the literature
reinforce that even seemingly simple scenarios exhibit NP-complete behavior.

Keywords—NP-completeness; Scheduling; Polynomial reduction; 3-SAT; Computational complexity.

ao classificar problemas quanto ao custo de suas solucdes,

destacando as classes P, AP e NP-completo. Problemas

I. INTROUDUCAO NP-completos sdo aqueles para os quais ndo se conhece

algoritmo polinomial e, a0 mesmo tempo, qualquer problema

Teoria da Computacdo estabelece os fundamentos em AP pode ser reduzido a eles em tempo polinomial.

formais para compreender os limites do que pode ser  Assim, demonstrar que um problema pertence a essa classe
calculado de maneira eficiente. Nesse contexto, a teoria  significa evidenciar sua provavel intratabilidade.

da complexidade computacional desempenha papel central
Nesse contexto, os problemas de agendamento (schedu-

ling problems) ocupa posi¢do de destaque. Eles modelam
Dados de contato: Neci Oneides da Silva Fialho Neta, neci.silva@uftedu.br  situacdes onde tarefas devem ser distribuidas ao longo do
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tempo ou entre multiplos processadores, respeitando restri-
¢des de precedéncia, limites de durag¢do e capacidade. Tais
problemas surgem em sistemas operacionais, manufatura,
computagdo paralela, arquiteturas multinicleo e otimizacio
industrial. Entretanto, mesmo versdes altamente restritas do
escalonamento podem exibir comportamento computacional
complexo.

O presente artigo aborda duas variantes especificas:
(i) o agendamento em que todas as tarefas possuem
tempo de execucdo unitdrio e (ii) o agendamento em dois
processadores com tarefas de duracdo igual a 1 ou 2
unidades. Apesar da simplicidade aparente dessas restri¢des,
ambas as versdes sdo NP-completas.

O propésito deste trabalho é apresentar uma andlise
das provas de NP-completude desses dois problemas,
contextualizando-as dentro da Teoria da Computagdo e
explicando, passo a passo, como redugdes polinomiais, es-
pecialmente a partir do problema 3-SAT, permitem codificar
instancias loégicas dentro de modelos de escalonamento.
Além disso, discute-se como restrigdes de precedéncia,
janelas de execucdo e limitagdes de processadores funcionam
como dispositivos para simular atribui¢des booleanas.

As principais contribuicdes deste artigo sdo a recons-
trucdo diddtica das demonstragdes cldssicas, tornando-as
mais acessiveis a estudantes e pesquisadores; a andlise
conceitual dos mecanismos responsaveis pela complexidade
computacional dos problemas estudados; a integracio entre
teoria e pratica, discutindo implicag¢des para sistemas reais de
escalonamento e algoritmos modernos; e a organizagao clara
e sistemdtica das relacdes entre as variantes do problema,
destacando cadeias de redugdes e interdependéncias.

Com isso, o artigo busca ndo apenas demonstrar
formalmente a NP-completude das variantes analisadas, mas
também oferecer uma compreensdo mais profunda sobre
por que tais problemas permanecem intratdveis mesmo em
cendrios simples.

Para organizar a discussdo, o artigo estd estruturado da
seguinte forma: na Sec¢fo II (Preliminares), apresentam-se
os conceitos preliminares necessarios para compreender a
complexidade dos problemas estudados, incluindo defini¢des
formais, modelos de agendamento e a cadeia de redugdes
utilizada. A Secdo III (Trabalhos Relacionados) revisa
trabalhos cldssicos e contemporaneos relacionados ao tema,
situando P2 e P3 no contexto mais amplo da teoria de
escalonamento. A Se¢do IV (Descricio do Problema)
descreve formalmente as variantes analisadas e suas apli-
cacdes, ilustrando seus aspectos combinatérios. Na Secdo V
(Demonstragdo e Contribuicdes) sdo desenvolvidas as provas
de NP-completude de P2 e P3, com énfase nas reducdes
polinomiais que conectam esses problemas ao 3-SAT. A
Secdo VI (Resultados e Reflexdes) apresenta reflexdes
e interpretacdes sobre os resultados obtidos, destacando
implicacOes tedricas e pedagdgicas. Por fim, a Secdo VII
(Consideragoes Finais) retne as consideracdes finais e
aponta possiveis dire¢des para investigagdes futuras.

II. PRELIMINARES

As preliminares apresentadas nesta se¢do tém o objetivo
de estabelecer todas as defini¢des, notacdes e convengdes
formais utilizadas ao longo deste trabalho. Como as de-

52

RIBEIRO et al.
TABELA 1: DESCRICAO FORMAL DO PROBLEMA 3-SAT.

3-SAT

Entrada:
conjuntiva,

Uma férmula booleana ¢ em forma normal

O=CiNCA---NC,

onde cada cldusula possui exatamente trés literais:

C,'Z(fl\/fzv&), ij{x,—\x}.

Objetivo: Decidir se existe uma atribuicio de valores
verdade as varidveis que satisfaca todas as cldusulas de @.
Saida: S1M, se @ ¢ satisfativel; NAO, caso contrério.

monstracdes de NP-completude reconstruidas aqui envolvem
cadeias de reducdes, relagdes de precedéncia, funcdes de
escalonamento e estruturas légicas, € importante que os
simbolos e conceitos empregados sejam apresentados de
modo claro e unificado antes de aparecerem nas segdes
posteriores.

Para iniciar, adotamos as classes de complexidade usuais
da Teoria da Computacdo. A classe P contém todos
os problemas de decisdo soluciondveis por algoritmos
deterministicos cujo tempo de execugdo € polinomial no
tamanho da entrada. A classe AP redne problemas
cujas solugdes podem ser verificadas em tempo polinomial
por um verificador deterministico, dado um -certificado
apropriado. Um problema 7 é dito NP-completo se satisfaz
duas condi¢des: (i) T € AP; e (ii) para todo problema
7' ja conhecido por ser NP-completo, existe uma reduco
polinomial de 7t para T. Denotamos tal redugéo pela notagao:

/
T <, T,

que indica que qualquer instincia de ' pode ser transfor-
mada, em tempo polinomial, em uma instincia equivalente
de 7. Essa notagdo serd empregada repetidas vezes ao longo
deste artigo.

Como ponto de partida das redugdes, utilizamos o
problema 3-S AT, cuja importincia histdrica foi estabelecida
por Cook em 1971 [1]. Empregamos as notagdes padrio:
varidveis booleanas x1, . . . ,Xp, que sdo entidades que podem
assumir os valores verdadeiro ou falso; literais ¢ € {x;,—x;},
onde cada literal representa uma varidvel booleana ou sua
negacio; cldusulas Cj = ({1 V €2V £3), que sdo disjungdes
de exatamente trés literais; e formulas booleanas em forma
normal conjuntiva (CNF) da forma

O=CiAC A+ ACy,

que consistem em conjungdes de multiplas cldusulas. Uma
féormula € satisfativel quando existe uma atribuicdo de
valores as varidveis booleanas que torna todas as cldusulas
verdadeiras. Como o problema 3-SAT é o ponto de origem
da cadeia de reducdes analisada, apresentamos a seguir sua
definicdo formal apresentada na tabela 1.

Passamos agora ao modelo formal de agendamento
adotado em todas as variantes do problema. Uma instancia
¢ composta por um conjunto de tarefas S = {Jj,...,J,},
uma relagdo parcial < indicando precedéncias (por exemplo,
J < J' significa que J deve terminar antes do inicio de
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J'), uma funcdo duragio W : S — Z* que associa a cada
tarefa seu tempo de execu¢do em unidades de tempo, um

nimero de processadores k, € um horizonte de tempo . Um
escalonamento € descrito por uma fungdo

f:8=1{0,1,....t—1},

que define para cada tarefa seu instante de inicio dentro
do intervalo de tempo disponivel, onde f(J) determina o
instante de inicio de J. Esse escalonamento é valido quando
satisfaz: (i) f(J)+W(J) < f(J') sempre que J < J'; (ii)
em cada unidade de tempo, no maximo k tarefas executam
simultaneamente; e (iii) todas as tarefas terminam antes do
tempo limite 7. Essa notacdo serd usada constantemente nas
defini¢des e nas construgdes das redugdes.

As variantes especificas de escalonamento reconstruidas
neste trabalho s@o as mesmas introduzidas por Ullman
(1975) [2]. O problema P2 consiste em escalonar tarefas
com duracdo unitdria sobre k processadores, sob um
conjunto arbitrdrio de precedéncias. O problema P3 envolve
dois processadores e tarefas cujas duracdes pertencem ao
conjunto {1,2}. O problema P4 é semelhante a P2,
exceto pelo fato de que, em vez de um numero fixo
de processadores, cada unidade de tempo possui uma
capacidade prépria cg,cq,...,c;—1. J4 o problema PS5
corresponde a uma versdo onde todos os processadores
devem permanecer ocupados durante toda a execugdo, isto
é, exatamente k tarefas devem estar em execucdo em cada
instante.

Como as redugdes de Ullman empregam estruturas
visuais e padrdes temporais especificos, adotamos também
notacdes auxiliares internas as construcdes. Cadeias verticais
de tarefas representam literais ou suas negacdes; barras
sobre varidveis, como ¥;, indicam negagdo; blocos D;;
agrupam tarefas associadas a cldusulas ou a estruturas
auxiliares; e, na redug@o para P3, os termos banda e quebra
designam segmentos longos e curtos de execugdo no segundo
processador, respectivamente. O par de tarefas J' e J, ambas
de duracdo 2, serd utilizado para preservar precedéncias ao
converter instancias de P5 para P3. Finalmente, o termo
certificado sera entendido sempre como um escalonamento
candidato cuja verificagdo € realizada em tempo polinomial.

Com todas essas convengdes estabelecidas, apresentamos
a cadeia de redugdes que estrutura a demonstragdo da NP-
completude dos problemas estudados:

3-SAT <, P4 <, P5 <, P2, P5 <, P3.
Cada ocorréncia do simbolo <, serd detalhada nas secoes
subsequentes, com construcdes explicitas e demonstracdes
de validade. Assim, esta secdo reine todo o aparato
matemdatico necessdrio para sustentar as provas desenvolvi-
das ao longo do artigo.

II1. TRABALHOS RELACIONADOS

Os estudos sobre a complexidade de problemas de escalo-
namento possuem uma trajetéria consolidada na literatura,
e o presente trabalho se insere nesse contexto ao analisar
variantes restritas que permanecem NP-completas. O
trabalho de referéncia fundamental é o de Ullman [2],
cujo objetivo foi demonstrar formalmente que versdes
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simplificadas do problema de scheduling continuam a exibir
dureza combinatéria. Por meio de reducdes formais iniciadas
em 3-SAT, o autor constrdi progressivamente instancias dos
problemas P4, PS5, P2 e P3, utilizando cadeias de tarefas,
precedéncias rigidas e janelas de execucdo que representam
diretamente a l6gica das férmulas booleanas. Seu principal
resultado € estabelecer que tanto o agendamento com tempos
unitdrios quanto o agendamento em dois processadores com
tarefas de duragdo 1 ou 2 sdo NP-completos, servindo como
base tedrica direta para as andlises reconstruidas neste artigo.

O survey classico de Graham, Lawler, Lenstra e Rinnooy
Kan [3] também estd intimamente relacionado a este
trabalho. Seu objetivo foi organizar e classificar modelos
deterministicos de escalonamento, descrevendo algoritmos,
limites de complexidade, estruturas de precedéncia e
resultados de aproximacdo. A metodologia consiste em
sistematizar o campo usando a notacdo de trés campos
(a|Bly), além de situar diversos problemas dentro de
categorias de tratabilidade ou NP-dificuldade. O survey
demonstra que a interacdo entre precedéncias e multiplas
madaquinas € uma das principais fontes de intratabilidade, o
que contextualiza de maneira abrangente os problemas P2 e
P3 analisados aqui.

Outro trabalho relevante é o de Brucker e Kravchenko [4],
cujo foco € o escalonamento em mdaquinas paralelas quando
todos os tempos de processamento sdo iguais. Seu objetivo
foi investigar como a presenga de precedéncias e janelas
temporais afeta a complexidade do problema. Por meio de
redugdes polinomiais baseadas em problemas cldssicos de
particionamento, os autores demonstram que mesmo instin-
cias homogéneas tornam-se NP-dificeis quando combinadas
com dependéncias. Essa conclusdo refor¢a diretamente o
caso de P2 estudado neste artigo.

Também se destaca a obra de Pinedo [5], cujo objetivo
¢ oferecer uma visdo abrangente dos modelos de escalo-
namento utilizados em sistemas industriais, computacionais
e de producdo. E uma referéncia técnica essencial
para compreender como modelos com muiltiplas maquinas,
precedéncias e janelas temporais se comportam na pratica,
contextualizando os cendrios tedricos tratados neste trabalho.

Por fim, o trabalho de Baptiste, Leung e Smith
[6] aprofunda limites de complexidade em modelos de
escalonamento com restricdes de precedéncia, janelas de
disponibilidade e multiplas mdaquinas. Seu objetivo é
mapear rigorosamente a fronteira entre casos polinomiais
e NP-dificeis, empregando técnicas de constru¢do temporal
similares as utilizadas por Ullman. Seus resultados
mostram que até variantes aparentemente simples tornam-
se NP-completas quando precedéncias e tempos variados
interagem, conectando-se diretamente as redugdes que
caracterizam P3.

Coletivamente, esses estudos situam claramente P2 e P3
dentro do panorama tedrico do escalonamento, refor¢cando
que tais variantes representam casos emblemadticos na
fronteira entre tratabilidade e intratabilidade na Teoria da
Computacao.

Em complemento a esses estudos especificos de esca-
lonamento, a monografia classica de Garey e Johnson [7]
fornece o pano de fundo teérico geral sobre NP-completude e
técnicas de redugdo polinomial. Embora trate de uma ampla
variedade de problemas e ndo se concentre exclusivamente
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TABELA 2: DESCRICAO FORMAL DO PROBLEMA P2.

RIBEIRO et al.
TABELA 3: DESCRICAO FORMAL DO PROBLEMA P3.

P2 - Escalonamento com tempo de execuc¢io unitario

Entrada: Um conjunto de n tarefas, cada uma levando
exatamente 1 unidade de tempo para ser concluida. Ha
relacdes de precedéncia entre algumas tarefas, existem m
processadores idénticos disponiveis e um tempo maximo
total D para executar todas elas.

Objetivo: Decidir se existe uma forma de agendar todas
as tarefas nos m processadores de modo que todas sejam
concluidas até o tempo limite D.

Saida: SiMm, se existe um escalonamento que termina todas
as tarefas dentro de D; NAO, caso contrario.

P3 - Escalonamento com tempos de execuc¢ao variados

Entrada: Um conjunto de n tarefas, cada uma com um
tempo de execugdo definido. HA4 relacdes de precedéncia
entre certas tarefas. Existem m processadores idénticos
disponiveis e um tempo limite total D para concluir todas
as tarefas.

Objetivo: Determinar se existe um escalonamento valido
que aloque todas as tarefas aos m processadores de forma
a respeitar as precedéncias e terminar tudo até o tempo D.
Saida: S1M, se existe tal escalonamento dentro de D; NAO,
€aso contrario.

em modelos de escalonamento como P2 e P3, essa obra é
uma referéncia util para o enquadramento conceitual deste
trabalho, especialmente no que diz respeito a definicdo
formal das classes P, AP e dos problemas NP-completos.
Além da literatura técnica sobre escalonamento, este
trabalho também se apoia em produgdes pedagdgicas da
area de Teoria da Computagdo. O artigo de Lassance et
al. [8] discute praticas de ensino envolvendo decidibilidade,
NP-completude e transformacdes polinomiais, oferecendo
uma base diddtica que auxiliou na organizacdo conceitual
dos fundamentos tedricos utilizados, ainda que ndo trate
diretamente dos problemas de scheduling analisados aqui.

IV. DESCRICAO DO PROBLEMA

Os problemas de agendamento tratam da organizagdo de
um conjunto de tarefas ao longo do tempo ou entre
multiplos recursos, respeitando restricdes estruturais como
precedéncia, duracdo e capacidade de processamento. Em
sua formulacdo cldssica, busca-se determinar em que
momento cada tarefa deve ser executada, de modo a cumprir
dependéncias e limitag¢des de recursos, garantindo que todas
sejam concluidas antes de um tempo maximo permitido. As
variantes analisadas neste trabalho — o agendamento com
tempo de execug@o unitario (P2) e o agendamento em dois
processadores com tarefas de duracdo igual a uma ou duas
unidades (P3) — representam versdes restritas desse modelo
geral, mas preservam a complexidade combinatdria presente
em cendrios mais amplos.

A definicdo formal do problema de escalonamento com
tempo unitario é apresentada na tabela 2.

Embora o problema P2 trate exclusivamente de tarefas
com durac@o unitdria, o que permite certas simplificagcdes
em sua andlise estrutural, muitas aplicagdes praticas exigem
considerar tarefas com tempos distintos de execucdo. Essa
generalizacdo leva naturalmente a formulacio do problema
P3, apresentada a seguir na tabela 3.

Enquanto P2 e P3 representam variantes fundamentais
do modelo de escalonamento com restri¢des de precedéncia
e limite global de tempo, a andlise de sua complexidade
costuma recorrer a versdes intermedidrias mais expressivas.
Entre elas destacam-se os problemas P4 e P5, que
introduzem novos elementos — como tempos de liberacio
e prazos individuais — permitindo construir redu¢des mais
detalhadas e modularizadas ao longo da prova de NP-
completude.
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TABELA 4: DESCRICAO FORMAL DO PROBLEMA P4.

P4 — Escalonamento com tempos de liberacao

Entrada: Um conjunto de n tarefas, cada uma com um
tempo de duragdo e um instante minimo no qual estd
autorizada a comecar; algumas tarefas devem ocorrer antes
de outras; ha m processadores idénticos disponiveis; e existe
um limite total D para finalizar todas as tarefas.

Objetivo: Determinar se hd uma forma de escalonar todas
as tarefas nos m processadores, respeitando os tempos de
liberacdo, as precedéncias e o tempo maximo permitido.
Saida: S1M, se existe um escalonamento valido dentro de D;
NAO, caso contrario.

TABELA 5: DESCRICAO FORMAL DO PROBLEMA P5.

P5 - Escalonamento com precedéncias arbitrarias

Entrada: Um conjunto de n tarefas, cada uma com
tempo de duragdo e um prazo individual; um conjunto
de dependéncias indicando quais tarefas devem anteceder
outras; e m processadores idénticos disponiveis.

Objetivo: Determinar se existe um escalonamento que
respeite tanto os prazos individuais como todas as dependén-
cias entre as tarefas.

Saida: S1M, se existe um escalonamento valido que satisfaca
todos os prazos e dependéncias; NAO, caso contrdrio.

Para estabelecer a complexidade computacional dos
problemas P2 e P3, utilizamos dois problemas intermediarios
nas redugdes, conforme proposto por Ullman [2]: P4
(escalonamento com tempos de liberagcdo),definido formal-
mente na tabela 4, e P5 (escalonamento com precedéncias
arbitrdrias),apresentado na tabela 5. Estes servem como
etapas intermedidrias na cadeia de redugdes que parte
do problema 3-SAT e culmina na demonstragdo de NP-
completude de P2 e P3.

Embora P4 e P5 compartilhem a estrutura bésica de
problemas de escalonamento, diferenciam-se pelas restri¢oes
especificas que impdem. Enquanto P4 introduz tempos
de liberagdo como restricdes adicionais ao inicio das
tarefas, P5 generaliza as relacdes de precedéncia e incorpora
prazos individuais para cada tarefa. Essa progressdao na
complexidade das restricdes € fundamental para a cadeia de
reducdes, permitindo que se estabeleca a NP-dificuldade de
P2 através de transformagdes sucessivas partindo do 3-SAT.

Uma forma intuitiva de visualizar esses problemas € por
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Figura 1: Linha de producio ilustrando dependéncias, capacidade
limitada e fluxo sequencial — elementos que caracterizam os
problemas de escalonamento P2 e P3.

meio de uma linha de produgdo simplificada, como ilustrado
na Figura 1. Nessa representacio, o material bruto entra pela
esquerda e percorre trés etapas de processamento (A, B e C)
até tornar-se produto acabado. Cada estag@o representa um
conjunto de tarefas que deve ser executado em uma ordem
especifica, pois A precisa concluir sua parte antes que B
possa comecar, € 0 mesmo vale para a transi¢do de B para
C. Essa metafora captura precisamente a ideia de restricdes
de precedéncia presentes nos problemas de escalonamento.
Além disso, cada operador da linha sé consegue manipular
uma pega por vez, analogamente ao limite de capacidade dos
processadores ou miquinas em um modelo computacional.
Ao observarmos a linha em funcionamento, percebemos
que, mesmo que as pecas tenham tamanhos semelhantes,
pequenas dependéncias ou variacdes de duragdo podem
provocar bloqueios, esperas desnecessdrias ou gargalos —
efeitos que modelam diretamente a complexidade de P2 e
P3.

No contexto dessa metafora, o problema P2 corresponde
a uma situacdo em que todas as tarefas duram exatamente
uma unidade de tempo. Isso seria equivalente a imaginar que
cada operador leva sempre 0 mesmo tempo para processar
qualquer peca que receba. Ainda assim, dependéncias rigidas
entre etapas podem impedir um fluxo continuo, e o desafio
consiste em verificar se existe uma forma de organizar
essas execugdes dentro de um limite global de tempo. Ja
o problema P3 se aproxima de uma linha de producio
com dois operadores trabalhando simultaneamente, mas com
tarefas que podem durar uma ou duas unidades de tempo.
Nesse cendrio, algumas pecas exigem mais trabalho em
uma etapa especifica, o que gera desequilibrios e requer um
planejamento cuidadoso para evitar que o segundo operador
fique sobrecarregado ou ocioso em momentos criticos.

Esses modelos, embora simples, surgem naturalmente
em sistemas operacionais, computacdo paralela, engenharia
industrial e processamento em tempo real. A analogia da
linha de produgdo evidencia de forma clara como neles
coexistem dois fatores cruciais: a necessidade de obedecer
a dependéncias estritas e a limitacdo de recursos. Mesmo
exemplos cotidianos, como essa sequéncia organizada de
operagdes A—B—C, sdo suficientes para ilustrar como a
ordem de execugdo e a duragdo das tarefas influenciam
diretamente a viabilidade de um cronograma. Basta imaginar
um operador ficando sem pecas para trabalhar devido ao
atraso na etapa anterior — um fendmeno equivalente a
espera imposta pela precedéncia entre tarefas — ou dois
operadores disputando o processamento simultaneo de pegas,
representando o conflito pela capacidade dos processadores.

Assim, a metafora da linha de produg@o ajuda a visualizar
por que os problemas P2 e P3, apesar de parecerem simples,
capturam estruturas ldégicas suficientemente ricas para
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simular decisdes combinatérias complexas. Em particular, a
interacdo entre tempos de execucao, dependéncias e recursos
limitados cria padrdes que ndo apenas se aproximam do fluxo
real de sistemas industriais, mas também constituem o ndcleo
das dificuldades tedricas que tornam esses problemas NP-
completos.

V. DEMONSTRACAO E CONTRIBUICOES

Nesta secao apresentamos, as provas de NP-completude das
duas variantes de escalonamento estudadas: o problema
de tempo de execugdo unitdrio (P2) e o problema de dois
processadores com tarefas de duragdo 1 ou 2 (P3). A
demonstragdo é organizada em duas etapas principais para
cada problema: (i) prova de NP-pertinéncia (isto €, mostrar
que o problema pertence 2 classe A P) e (ii) prova de NP-
dificuldade (isto é, mostrar que o problema € ao menos
tao dificil quanto um problema base conhecido como NP-

completo).

a. P2 ¢ NPe P3 € NP

Para demonstrar que os problemas P2 e P3 pertencem a
classe AP, utilizamos o conceito de verificador polinomial.
Em ambos os casos, o certificado natural € um possivel
escalonamento das tarefas: para cada tarefa J, o certificado
descreve o instante de inicio f(J) e, no caso de P3, também
o processador onde ela é executada.

Dado esse certificado, o verificador deve apenas conferir
se o escalonamento obedece a todas as restricdes impostas
pelo problema. O procedimento consiste em:

1. verificar se cada tarefa termina antes do limite de tempo
1

2. verificar todas as relagdes de precedéncia, confirmando
que, para cada J < J’, o término de J ocorre antes ou no
momento do inicio de J';

3. para cada unidade de tempo, contar quantas tarefas es-
tao sendo executadas simultaneamente, garantindo que
esse valor ndo ultrapassa o nimero de processadores
disponiveis (em P3, exatamente dois).

Cada uma dessas verificacdes pode ser feita em tempo
polinomial no nimero de tarefas e no nimero de relacdes de
precedéncia. Especificamente, a validacdo das precedéncias
requer verificar cada relagdo individualmente, com comple-
xidade O(| < |), onde | < | é o nimero de relacdes de
precedéncia. A verificagdo de sobrecarga por unidade de
tempo pode ser feita em O(n-7), mantendo-se contadores
para cada instante. Nao € necessdrio explorar todas as
possiveis execucdes, mas apenas validar a execugdo proposta
no certificado. Portanto, existe um verificador deterministico
polinomial tanto para P2 quanto para P3, o que implica:

P2 € NP e P3 € NP.

b. P2 € NP-Dificil

A prova de NP-dificuldade de P2 segue a estratégia de
reduzir um problema cldssico NP-completo, o 3-SAT, a uma
instancia de escalonamento com tempo de execucao unitario.
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A ideia € construir um conjunto de tarefas, precedéncias e
limites de tempo tais que:

3-SAT é satisfativel <= P2 admite escalonamento valido.

Como abordado na Secdo IV (Descri¢dao do Problema), a
demonstragdo completa é feita em etapas, por meio de P4 e
P5.

Etapa 1: 3-SAT <, P4

Define-se inicialmente um problema intermedidrio, P4, que
¢ uma versdo do escalonamento com tempo unitdrio, mas
com nimero de processadores variando ao longo do tempo.
Em vez de um k fixo, P4 recebe uma sequéncia de
capacidades c, c1, . ..,c—1, indicando quantas tarefas podem
ser executadas em cada unidade de tempo.

A redugio 3-SAT <, P4 constréi um conjunto de tarefas
cuja viabilidade de escalonamento reflete diretamente a
satisfatibilidade da férmula. Para cada variavel x; sdo
criadas duas cadeias disjuntas, uma associada a x; e outra
a —;, ligadas por restrigdes de precedéncia internas. A
escolha de qual cadeia iniciar primeiro, e de qual literal serd
“verdadeiro”, € forgcada por tarefas auxiliares y; € —y; que, via
precedéncias e pela ocupacgdo precisa dos slots de capacidade
impostos pela sequéncia c¢;, garantem que exatamente uma
das duas cadeias progrida.

Em seguida, para cada cldusula C; com trés literais,
introduz-se um bloco de sete tarefas Djy,...,Dj7 e arestas
de precedéncia que as conectam as cadeias de varidveis.
O instante critico de execugdo dessas tarefas s6 pode ser
alcancado se pelo menos uma das cadeias correspondentes
a literais verdadeiros ja estiver sido escalonada; caso
contrdrio, a capacidade disponivel naquele momento torna-
se insuficiente e o escalonamento quebra. A sequéncia
de capacidades cy,...,c;—1 € escolhida de forma a apertar
o espaco de processamento: em cada unidade de tempo
o nimero de posicdes é exatamente o necessdrio para
comportar as tarefas “verdadeiras” e as auxiliares, de modo
que qualquer desvio da codificagdo correta — isto &,
qualquer tentativa de satisfazer simultaneamente x; € —x; ou
de falsificar todas as cldusulas — impede a conclusdo de
todas as tarefas dentro do horizonte dado.

A complexidade desta construg@o € polinomial: para uma
instancia de 3-SAT com m varidveis e n clausulas, o nimero
total de tarefas geradas é da ordem de O(m? +n), assim como
o ndmero de relacdes de precedéncia. A constru¢do pode
ser implementada por algoritmos que percorrem variaveis e
clausulas com lacos aninhados de profundidade constante,
resultando em tempo polinomial no tamanho da férmula
original.

Comentdrio: a constru¢do faz com que “rodar” certas
tarefas em tempos especificos corresponda exatamente a
atribuir verdadeiro ou falso as varidveis. Se a férmula é
satisfativel, existe um modo de encaixar todas as tarefas
dentro do limite de tempo; se ndo é, faltard espago em algum
instante, e o escalonamento serd impossivel.

A Figura 2 ilustra a estrutura tipica utilizada na reducio 3-
SAT — P4. Cada literal € convertido em uma cadeia vertical
de tarefas — cadeias sem barra representam literais positivos,
enquanto cadeias com barra representam negativas. Os
blocos D;; funcionam como pontos de verificagdo para cada
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Figura 2: Estrutura geral da redugdo de uma instincia de 3-SAT
para o problema P4. Figura retirada de Ullman [2].

clausula, garantindo que apenas escalonamentos compativeis
com uma atribuicdo satisfatéria permitam preencher os
instantes criticos impostos pelas capacidades temporais.
Embora vérios blocos aparecam na figura, apenas um bloco
D;; por clausula desempenha o papel de validar a cldusula;
os demais sdo estruturas auxiliares introduzidas para forcar o
alinhamento temporal da construgdo.

Para tornar a construcdo mais intuitiva, a Figura 2
apresenta um exemplo concreto de como uma férmula 3-
SAT € convertida em cadeias de tarefas no problema P4. A
férmula booleana correspondente ao diagrama é:

o = ()C1 VxyV —\X3) AN (x1 V —x3 \/X4).

Nessa representacdo, cada literal aparece como uma
cadeia vertical de tarefas. Cadeias sem barra correspondem
ao literal positivo (como x14,x24,X34), €enquanto cadeias com
barra representam o literal negado (como X33,X32,%31). AS
relagdes de precedéncia ligam os elementos de cada cadeia,
garantindo que a posicdo temporal em que uma tarefa pode
ser executada codifica a escolha “verdadeiro” ou “falso” para
cada varidvel.

Além das cadeias de literais, o diagrama inclui vérios
blocos D;;. Esses blocos tém fung¢des distintas dentro da
redugdo. Apenas alguns deles correspondem diretamente as
clausulas da férmula; os demais fazem parte da estrutura
geral da constru¢do e servem para controlar capacidade
temporal, sincronizar cadeias ou criar janelas de execucdo
obrigatérias. Assim, embora muitos blocos aparecam no
diagrama, somente dois deles representam efetivamente as
clausulas da férmula de exemplo.

Para cada cldusula C;, Ullman [2] insere exatamente um
bloco D;; que atua como ponto de verificagdo: esse bloco s6
pode ser executado caso pelo menos um dos trés literais da
cldusula tenha sido marcado como verdadeiro pela estrutura
de precedéncia construida. A indexag@o segue o padrio
usado no artigo: o indice i refere-se a varidvel principal
associada ao bloco, enquanto j indica a cldusula da qual
aquele bloco participa.

No exemplo da figura, as duas cldusulas da férmula
aparecem como: D4 (clausula 1), D,3 (cldusula 2).

Os demais blocos, como Djy,Dj,...,Dy7, ndo represen-
tam cldusulas. Eles compdem apenas a estrutura auxiliar da
redu¢do e ndo t€m correspondéncia com férmulas booleanas;
funcionam como “slots de tempo” usados para forcar a
organizagdo correta das cadeias de varidveis.

Dessa forma, a Figura 2 ilustra como cada literal, cada
cldusula e cada restri¢do temporal sdo traduzidos para tarefas
do problema P4, permitindo que a satisfatibilidade de ¢
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seja refletida diretamente na existéncia de um escalonamento
viavel.

Etapa 2: P4 <, P5

O problema P5 é definido como uma versdo de P2 com
a restricdo adicional de que todos os processadores devem
estar ocupados em todas as unidades de tempo; isto é, o
nimero de tarefas é exatamente n = kt e o escalonamento
deve preencher completamente a capacidade disponivel.

Para reduzir P4 a PS5, transforma-se o cronograma de
capacidades varidveis cp,...,c;—1 em um quadro de k
processadores constantes simplesmente completando, em
cada instante i, as k — ¢; posicdes ociosas com tarefas
“de preenchimento”. Essas tarefas sdo introduzidas em
nimero exato para que, em cada unidade de tempo, o total
de tarefas ativas seja exatamente k; além disso, elas sdo
conectadas por uma Unica cadeia de precedéncias lineares
que as obriga a executar sequencialmente, impedindo que
sobreponham ou conflitem com as tarefas originais. Como
suas durac¢des sdo unitdrias e suas janelas de execucdo sao
rigidamente controladas, qualquer escalonamento valido de
PS5 descarta automaticamente as tarefas de preenchimento e
recupera, nos instantes restantes, um escalonamento valido
para P4; reciprocamente, todo escalonamento de P4 pode ser
estendido a um de P5 incluindo as tarefas de preenchimento
nos slots vazios.

Esta transformacdo € polinomial: o nimero de tarefas de
preenchimento adicionadas € proporcional a diferenca entre
a capacidade maxima e o nimero de tarefas ja previstas em
P4. Como o horizonte de tempo ¢ e as capacidades ¢; sdo
limitados por fun¢des polinomiais no tamanho da instincia
de P4, o tempo de construcdo é polinomial.

Comentério: essa etapa padroniza a capacidade ao longo
do tempo, transformando capacidades varidveis em um
nimero fixo de processadores que precisam estar sempre
ocupados.

Etapa 3: P5 <, P2

Por fim, observa-se que P5 é apenas um caso particular de

P2: trata-se do mesmo problema de escalonamento com

tempo de execug@o unitdrio, mas com a condicdo adicional

de n = kz. Portanto, qualquer instancia de P5 é uma instancia

de P2 com uma restricdo extra, e a redugdo € imediata, com

complexidade linear no tamanho da instancia de PS5.
Juntando as etapas, temos:

3-SAT <, PA <, P5 <, P2,
onde cada redugdo é computdvel em tempo polinomial, o que

implica que P2 é NP-dificil. Como ja foi mostrado que P2
pertence a NP, conclui-se que P2 é NP-completo.

c. P3 € NP-Dificil

Para demonstrar que P3 é NP-dificil, utiliza-se P5 como
problema intermedidrio. A ideia é reduzir uma instancia de
PS5 para uma instancia de P3, de forma que:

P5 é solucionavel <= P3 construida € solucionavel.
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A construgdo explora a presenca de dois processadores e
tarefas com pesos 1 ou 2 para criar um padrao de bandas e
quebras no segundo processador.

Etapa: P5 <, P3

Dada uma instincia de P5 com tempo limite #, nimero
de processadores k e conjunto de tarefas S de tamanho kz
parcialmente ordenado por <, constrdi-se uma instancia de
P3 sobre dois processadores de velocidade s = 2 da seguinte
forma.

Primeiro, cria-se uma sequéncia continua de tarefas X; de
peso 1 que ocupam exclusivamente o primeiro processador
durante todo o horizonte ¢, impedindo qualquer outra tarefa
de executar nele. Em seguida, no segundo processador,
dispdem-se tarefas ¥;; também de peso 1 de modo a gerar um
padrdo regular de “quebras” e “bandas”: apds cada intervalo
de 2k unidades de tempo livres (banda), insere-se uma Unica
unidade de tempo ocupada (quebra), repetindo esse ciclo até
cobrir o horizonte total.

Cada tarefa original J € S é substituida por um par (J',J),
ambas de peso 2. A precedénciaJ’ < J garante que J s6 possa
iniciar ap6s J’' terminar, e as relagdes J < K do conjunto
original tornam-se J < K’ na nova instincia, preservando
a ordem parcial. O peso 2 impede que qualquer dessas
tarefas seja executada durante uma quebra (apenas uma
unidade de tempo livre); portanto, J' e J sdo forcadas a se
alinharem inteiramente dentro de uma banda de 2k unidades
consecutivas. Como cada banda oferece exatamente 2k
unidades de capacidade e o nimero total de tarefas de peso
2 é 2kt, o preenchimento completo de todas as bandas
corresponde biunivocamente a um escalonamento valido de
P5: cada par (J',J) posicionado numa banda representa a
execucdo da tarefa original J num dos k processadores de
PS5, enquanto as quebras funcionam como divisores naturais
entre os k instantes de tempo.

Esta constru¢@o é polinomial: o nimero total de tarefas
em P3 é limitado por uma funcio polinomial no nimero
de tarefas e no horizonte de tempo da instancia de P5.
Especificamente, sdo criadas O(kt) tarefas, e a construgéo
pode ser implementada por lacos que percorrem o conjunto
de tarefas originais e o intervalo de tempo sem recursio
excessiva.

O efeito desta construgdo € o seguinte: as tarefas X;
garantem que o primeiro processador esteja sempre ocupado,
enquanto as tarefas Y;; consomem parte do tempo do
segundo processador, de modo que restam segmentos de
tempo continuos (bandas) suficientemente longos apenas
para acomodar as tarefas de peso 2 (J) e pequenos espacos
(quebras) onde se encaixam as tarefas J'. Adicionalmente,
devido as dependéncias, cada tarefa J deve ser executada na
banda correspondente ao instante em que seria processada na
solucdo de P35, enquanto J' ocupa a quebra associada.

Com isso, qualquer solucdo para a instdncia de P3
construida induz um escalonamento vélido para a instancia
original de P5 (interpretando cada banda como uma unidade
de tempo de P5). Reciprocamente, qualquer solugdo de P5
pode ser “expandida” para uma solucdo de P3, alocando J’
nas quebras e J nas bandas apropriadas.

Comentdrio: as bandas funcionam como “janelas com-
pactadas” que representam cada unidade de tempo da
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Figura 3: Organizacdo das tarefas na redug@o do problema P5 para
P3. Figura retirada de Ullman [2].

instancia original de P5. Preencher corretamente essas
bandas com tarefas de peso 2 equivale a decidir, para cada
unidade de tempo, quais tarefas estdo sendo executadas no
modelo com k processadores.

A Figura 3 mostra como a redugdo de P5 para P3
utiliza dois processadores para reproduzir o comportamento
temporal de uma instancia original. O primeiro processador
permanece ocupado continuamente pelas tarefas X;, en-
quanto o segundo alterna entre segmentos curtos (quebras),
que acomodam as tarefas J', e segmentos longos (bandas),
nos quais sdo escalonadas as tarefas J de duragcdo 2. Cada
banda corresponde exatamente a uma unidade de tempo
da instancia de PS5, preservando precedéncias e garantindo
que o escalonamento resultante em P3 reflita corretamente a
execugdo original em P5.

Como P5 é NP-completo e P5 <, P3 com complexidade
polinomial, segue que P3 é NP-dificil. J4 demonstramos
anteriormente que P3 pertence a NP, portanto P3 é NP-
completo.

d. Comentdrios Finais sobre a Demonstracdo

As provas apresentadas mostram que tanto P2 quanto
P3 ndo sdo apenas variantes artificiais, mas modelos
ricos o suficiente para simular a légica de um problema
canonico como o 3-SAT. As construgdes utilizadas exploram
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intensivamente a codificacdo de varidveis e atribui¢des como
escolhas de tarefas executadas em tempos especificos, o uso
de precedéncia para impor dependéncias logicas, e o controle
do nimero de processadores (ou da capacidade por unidade
de tempo) para forcar o preenchimento exato de janelas de
execucao.

Esses mecanismos fazem com que qualquer tentativa de
encontrar um algoritmo geral e eficiente para P2 ou P3
esbarre na mesma dificuldade encontrada para 3-SAT e
outros problemas NP-completos. Assim, as demonstragdes
de NP-completude justificam, do ponto de vista teérico, o
uso de heuristicas e algoritmos aproximados em problemas
préticos de escalonamento.

VI. RESULTADOS E REFLEXOES

A andlise das variantes P2 e P3 permitiu confirmar formal-
mente sua classificacdo como problemas NP-completos, por
meio da reconstru¢do detalhada das redugdes apresentadas
por Ullman (1975). A replicacdo dessas provas evidenciou
como estruturas aparentemente simples (tarefas de duracio
unitdria, dois processadores e precedéncias bdsicas) sdo
suficientes para simular o comportamento 16gico de féormulas
booleanas.  Esse resultado reforca um dos principios
fundamentais da Teoria da Computacdo: a dificuldade com-
putacional ndo depende apenas da complexidade aparente
do modelo, mas da capacidade de representar decisdes
combinatdrias por meio das restri¢des do problema.

Do ponto de vista metodolégico, o processo revelou
desafios relevantes. A cadeia de reducdes 3-SAT — P4 —
P5 — P2 exigiu um entendimento cuidadoso das construcdes
intermedidrias, especialmente na definicdo das capacidades
varidveis de P4 e no uso das tarefas auxiliares que forcam a
codificac@o de varidveis e clausulas. J4 a reducdo PS5 — P3
mostrou-se particularmente dificil devido a alternancia entre
“bandas” e “quebras”, que exige atencdo a sincronizacio
temporal e a0 mapeamento entre segmentos de tempo e
precedéncias. Esses aspectos demonstram que provas de NP-
completude vao além de manipulacdes algébricas: tratam-se
de construcdes conceituais sofisticadas que demandam rigor,
visualizacdo estrutural e compreensdo profunda dos modelos
envolvidos.

As contribui¢des deste trabalho situam-se tanto no campo
da compreensdo tedrica quanto no campo pedagdgico. Ao
reorganizar e explicar as redugdes de forma sistemadtica,
com figuras, comentdrios e interpretacdes intuitivas, o
estudo oferece um material mais acessivel a estudantes
e pesquisadores que desejam compreender NP-completude
aplicada a problemas de escalonamento. Além disso, ao
contextualizar os problemas P2 e P3 dentro da Teoria da
Computacdo, o trabalho evidencia como redugdes podem
servir como ferramenta para analisar casos reais de sistemas
operacionais, arquiteturas de processadores, computacio
paralela e engenharia de produg@o.

No ambito académico, a aplicabilidade desta investigacdo
é ampla. A reconstru¢do diddtica das provas pode
servir como apoio em disciplinas de Estruturas de Dados,
Andlise de Algoritmos, Teoria da Computacdo, Sistemas
Operacionais e Escalonamento. O estudo também pode
auxiliar estudantes na compreensao de redugcdes polinomiais,
frequentemente uma das maiores dificuldades no apren-
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dizado de NP-completude, oferecendo exemplos concretos,
visuais e contextualizados. Por fim, a exposicdo das
limitagdes tedricas desses modelos reforga a importancia de
heuristicas, algoritmos aproximados e métodos experimen-
tais em cendrios reais onde solu¢des exatas sdo invidveis.
Assim, os resultados alcancados ndo apenas reafirmam
a NP-completude das variantes analisadas, mas também
destacam o valor formativo do tema, demonstrando como
problemas classicos podem ser reinterpretados, visualizados
e aplicados em contextos educacionais e praticos. O trabalho,
portanto, contribui tanto para o rigor cientifico quanto para o
fortalecimento do ensino da complexidade computacional.

VII. CONSIDERACOES FINAIS

Este trabalho teve como objetivo analisar, formalizar e
demonstrar a NP-completude das variantes de escalonamento
P2 e P3, com base nas constru¢des apresentadas por Ullman
(1975). A partir da reconstrucdo detalhada das reducgdes a
partir do 3-SAT — passando pelos problemas intermedidrios
P4 e PS5, foi possivel compreender, de maneira estruturada
e visual, como modelos de escalonamento aparentemente
simples podem capturar a complexidade combinatéria de
problemas booleanos cldssicos. Em sintese, demonstrou-
se que tanto P2 quanto P3 pertencem a classe AP e sdo
NP-dificeis, concluindo-se formalmente que ambos sdo NP-
completos.

Durante o desenvolvimento da pesquisa, algumas dificul-
dades se mostraram centrais. A primeira refere-se a prépria
interpretacdo das construcdes utilizadas nas redugdes, que
exigem uma leitura atenta dos padrdes de precedéncia,
capacidade e sincroniza¢do temporal criados para simular
varidveis e cldusulas. A segunda diz respeito ao esforgco
de transformar essas construgdes abstratas em explicagdes
claras, diagramas compreensiveis e justificativas coerentes,
mas essencial para consolidar o entendimento.  Além
disso, adaptar as provas originais para uma perspectiva
didética, mantendo rigor matemadtico, demandou uma revisao
cuidadosa da literatura e um tratamento sistemdtico das
etapas envolvidas.

Apesar dessas dificuldades, os resultados obtidos ampliam
a compreensao académica sobre reducdo polinomial e sobre
o cardter intratdvel de problemas de escalonamento. A
abordagem adotada reforca o valor pedagdgico das provas
de NP-completude, especialmente quando apoiadas por es-
quemas visuais e interpretagdes intuitivas. O estudo também
evidencia que a complexidade computacional permanece
relevante ndo apenas em termos tedricos, mas também como
fundamento para decisdes praticas em sistemas operacionais,
arquiteturas de processadores e modelos de produgéo.

Como perspectivas futuras, sugere-se aprofundar a andlise
de variacdes modernas dos problemas de escalonamento,
incluindo modelos com preempgdo, janelas de tempo
flexiveis, pesos multiplos e ambientes heterogéneos. Outra
linha de investigacdo envolve a exploracdo de algoritmos
aproximados e heuristicas, fundamentais para aplicacdes
reais nas quais solucdes exatas sdo invidveis devido a NP-
completude. Por fim, estudos comparativos entre provas
classicas e abordagens contemporaneas de complexidade
podem contribuir para o ensino, permitindo compreender
como a teoria evoluiu e como esses problemas permanecem
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centrais na ciéncia da computagao.

Assim, este trabalho ndo apenas consolida formalmente
a NP-completude de P2 e P3, mas também contribui para
o fortalecimento do entendimento tedrico e pedagdgico
sobre reducdes polinomiais, oferecendo bases sélidas para
investigacdes futuras e para a aplicagdo pratica desses
conceitos em diferentes dreas da computagao.
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Resumo—Este estudo reproduz uma prova final do Teorema de Brooks, um dos resultados fundamentais para a Coloragao de Grafos, visando
ndo apenas a consolidacdo do conhecimento tedrico, mas também para a producao de um material diddtico de apoio para a comunidade
académica, traduzindo a complexidade da prova por meio de exemplos ilustrativos, figuras e explica¢des detalhadas. O teorema estabelece
um limite superior para o nimero cromético % (G) de qualquer grafo conexo com o seu grau méximo A(G), tal que o grafo analisado ndo seja
um ciclo impar e nem um grafo completo. A metodologia utilizada foi a prova por contradi¢éo, assumindo um contraexemplo minimal,
integrada com duas técnicas cruciais, juntamente com ilustra¢cdes para facilitar o ensino. A prova € iniciada com o Lema Estrutural de
Lovaész, o qual € aplicado para resolver o caso dos grafos A-regulares e ndo completos. E também, a utilizacao da justificativa de Cadeias de
Kempe permite demonstrar que a falha estrutural da coloragio s6 € possivel em casos excepcionais onde o grafo é completo ou um ciclo
fmpar. O resultado € a confirmagio de % (G) < A(G) para todo grafo conexo, exceto os casos proibidos.

Palavras-chave—Teoria dos Grafos, Coloragdo de Grafos, Teorema de Brooks, Nimero Cromatico

Abstract—This study reproduces a complete proof of Brooks’ Theorem, one of the fundamental results in Graph Coloring. The aim is
not only to consolidate theoretical knowledge but also to produce didactic support material for the academic community, translating the
complexity of the proof through illustrative examples, figures, and detailed explanations. The theorem establishes an upper bound for the
chromatic number Y(G) of any connected graph with its maximum degree A(G), such that the analyzed graph is neither an odd cycle nor a
complete graph. The methodology employed is proof by contradiction, assuming a minimal counterexample, integrated with two crucial
techniques, along with illustrations to facilitate teaching. The proof begins with Lovdsz’s Structural Lemma, which is applied to resolve the
case of A-regular and non-complete graphs. Furthermore, the use of Kempe Chains justification allows us to demonstrate that the structural
failure of the coloring is only possible in exceptional cases where the graph is complete or an odd cycle. The result is the confirmation that
%(G) < A(G) for every connected graph, except for the forbidden cases.

Keywords—Graph Theory, Graph Coloring, Brooks’ Theorem, Chromatic Number

ainda seja investigada através de conhecimentos tedricos
aprofundados sobre grafos [1].

I. INTRODUCAO A coloragdo de grafos se trata de um caso especial o qual
atribuimos rétulos, que sdo as cores. Elas estdo sujeitas a
restricdes e podem ser aplicadas em vértices e arestas, de
forma que os vértices e as arestas adjacentes ndo possuam a
mesma cor [2]. Inicialmente, esta ideia despertou no homem
o desejo de buscar novas maneiras de expressar diferentes
tipos de regides. O registro de desenhos e escritas gréficas
com a insercdo de cores nos mapas originou a cartografia [3].

Teoria dos Grafos possui destaque e importancia pela
grande variedade de problemas. O interesse principal
deste campo € resolver os problemas utilizando algoritmos
eficientes, preocupando-se com a capacidade computacional.
A busca por solugdes eficientes move esta drea para que

Dados de contato: Matheus Silva Pontes, matheus.pontes @uft.edu.br Em 1852, por meio da coloragdo dos mapas, se deu inicio a
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histéria do problema das 4 cores. O matemdtico, advogado e
boténico Francis Guthrie formulou uma conjectura afirmando
que qualquer mapa pode ser colorido utilizando apenas 4
cores. Francis apresentou este problema para seu irmao
mais novo, Frederick Guthrie, que mostrou para o seu
professor De Morgan. O docente, entusiasmado, encaminhou
este problema em suas cartas, despertando o interesse
dos académicos. Esta ideia propagou-se, impulsionando
discussdes e novos desenvolvimentos [4]. Em 1976,
Kenneth Appel e Wolfgang Haken conseguiram apresentar
a demonstracdo do Teorema das 4 Cores com o auxilio de
computadores [3].

Os conceitos e problemas desenvolvidos na coloracdo de
grafos, como o Teorema das 4 Cores e a coloragdo de vértices
e arestas, foram fundamentais para a resolucdo de problemas
reais e de jogos. Entre as aplicagdes de destaque estdo a
divisdo de terras [3], a organizagdo da grade de horarios, a
solu¢do de um sudoku utilizando um algoritmo guloso de
coloracdo de vértices e o transporte de produtos reagentes [2].

Acerca deste caso, este artigo visa reproduzir resultados
da literatura e oferecer uma contribuicdo pedagdgica da
demonstracdo do Teorema de Brooks. O teorema estabelece
um limite superior do ndmero cromadtico ¥(G) em fungéo
do grau méaximo A(G) do grafo. Dessa forma, busca-
se apresentar explicacdes mais claras e sustentadas com
exemplos e figuras ilustrativas. Assim, este material servird
como um contetddo pedagdgico de apoio para a comunidade
académica.

Quanto & organizacgdo deste estudo, a secdo II estabelece
0s conceitos basicos sobre grafos e coloragdo, essenciais
para a compreensdo do Teorema de Brooks acompanhados
de exemplos detalhados. A secdo III expde as fontes
pedagdgicas e técnicas que apresentam propostas alinhadas a
deste trabalho.

Em seguida, a secdo IV descreve o Teorema de Brooks
detalhadamente sobre os problemas lidicos relacionados, suas
aplicagdes e complexidades. A secdo V inicia a exposi¢do
de sua prova com a apresentacdo de dois lemas, Lema
Estrutural de Lovész e Cadeias de Kempe. Essas técnicas
sdo fundamentais para o desenvolvimento do argumento.

Posteriormente, a secdo VI destaca as consideracdes
relevantes sobre o teorema, adversidades encontradas durante
a escrita deste artigo, solugdes para contornar os desafios
e destaques deste estudo para o meio académico. Por fim,
a secdo VII realiza uma sintese dos principais aspectos,
acompanhada de sugestdes de melhorias dos resultados
obtidos, extensdes de trabalhos futuros e temas relacionados
nao explorados em profundidade.

E de suma importancia ressaltar que os grafos utilizados
para as defini¢cdes e provas neste material serdo finitos e
simples. Nessa perspectiva, a secdo seguinte apresenta as
nog¢des bésicas sobre grafos e coloracdo necessdrias para a
apresentacdo do problema.

II. PRELIMINARES

Nesta secdo, os conceitos fundamentais sobre os grafos
serdo introduzidos e utilizados neste trabalho, os quais foram
utilizados como base o livro pedagégico do Jayme [1]. A
terminologia e as notacdes serdo apresentadas posteriormente
nos problemas.
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V4

Figura 1: Representagio do grafo Gj.

V2

Vi

Vs
Figura 2: Ilustracdo da vizinhan¢a N(v;) e do grau maximo A(G).

Um grafo G = (V,E) consiste em um conjunto finito néo
vazio de V e um conjunto E de pares ordenados distintos de
V. Os elementos de V sdo os vértices e os de E sdo as arestas
de um grafo. Cada aresta e € E € denotada por um par de
vértices (v,w), onde v e w séio os extremos da aresta e e sdo
ditas adjacentes. E dito que a aresta e ¢ incidente aos vértices
vew.

Um conjunto de vértices de um grafo é denotado
por V(G), e um conjunto de arestas de um grafo é
denotado por E(G). A Figura 1 ilustra um grafo G| =
(V,E), tal que V(Gl) = {V17V27V37V4,V5} € E(Gl) =
{(vi,v2), (v3,v4), (va,v2), (va,v1), (v3,v5), (v2,v3) }

A vizinhanga de um vértice v € V, denotada por N(v),
¢é definida como o conjunto de vértices adjacentes a v. O
grau de v, representado por d(v), corresponde a cardinalidade
IN(v)|. O grau mdximo de G, denotado por A(G), é o
maior valor de grau encontrado entre todos os vértices de V.
Esses conceitos podem ser visualizados na Figura 2. Como
exemplo, considere a andlise do vértice v;. Sua vizinhanga
¢ dada por N(vi) = {v2,v3,v4,vs}, de modo que seu grau
é d(vi) =|N(v1)| =4. Ao observar os demais vértices do
grafo, obtemos, por exemplo, d(v2) = 2, d(v3) = 3, entre
outros. Como d(vy) =4 é o maior grau entre todos os vértices,
concluimos que o grau maximo é A(G) = 4.

Dizemos que um grafo G € conexo se existir um caminho
entre quaisquer dois vértices, como exemplificado no grafo
a esquerda da Figura 3. Em contrapartida, um vértice v é
denominado vértice de corte quando a sua remocdo torna G
desconexo. Este caso € ilustrado na Figura 3 onde o grafo da
direita mostra um vértice de corte vs3.

Um ciclo C,, € um caminho vy, ..., Vg, Vi1 tal que vy = viaq
e k > 3. Em um grafo nio direcionado, todo ciclo deve possuir
no minimo 3 vértices. Se o caminho for denominado simples,
o ciclo também € simples. Um ciclo simples € um ciclo onde o
caminho inicia e termina no mesmo vértice [1]. Um ciclo par
€ aquele que possui ndmero par de vértices e arestas, enquanto
um ciclo fmpar possui nimero {mpar de arestas e vértices. A

ISSN: 2675-3588



Vértice de Corte
(Sua remocdo desconecta

o grafo)
V2 .
1
Vi \ V4
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Figura 3: Esquerda: Exemplo de grafo conexo. Direita: O grafo G3
com vértice de corte v3.

Vi Vi V2

V2 V3
V4 V3

Ciclo Par
(4 vértices, 4 arestas)

Ciclo fmpar
(3 vértices, 3 arestas)

Vi

V4

Grafo Aciclico
(Sem ciclos)

Figura 4: Exemplos de ciclos e um grafo aciclico.

Figura 4 ilustra um exemplo de ciclo par com 4 vértices e um
ciclo impar com 3 vértices. Um grafo que néo possui ciclos
¢ chamado de grafo aciclico, o qual estd exemplificado na
Figura 4.

Um grafo € dito completo quando cada par de vértices é
conectado por uma tnica aresta. E utilizada uma notagio K,
para designar um grafo completo com »n vértices. A Figura
5 mostra um grafo completo K4, e cada vértice é ligado por
uma Unica aresta com todos os outros vértices.

Uma k-coloragdo (propria) de G é uma fungdo c¢: V —
{1,2,...,k} tal que c¢(u) # c(v) para toda aresta {u,v} € E.
Observe que uma k-coloragdo de vértices de um grafo € a
atribui¢do de k cores aos seus vértices de forma que quaisquer
dois vértices adjacentes (conectados por uma aresta) recebam
cores diferentes [1], podemos observar isso na Figura 6.

O niimero cromdtico de um grafo G, denotado por x(G), é
0 menor inteiro k o qual G admite uma k-coloracao [1]. Entao,
o nimero cromdtico de um grafo € o menor nimero de cores
necessdrias para colorir todos os seus vértices de forma que
nenhum par de vértices adjacentes tenham a mesma cor. Este
conceito € ilustrado na Figura 7, com um grafo que tem o
nimero cromatico igual a 4.
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V3 V2

V4
Grafo Completo Ky
(4 vértices, 6 arestas)

Figura 5: Exemplo de um Grafo Completo K.

c(vi)=1
Vi

V2 V3
c(v)=2 c(v3)=3

Figura 6: Uma 3-coloracgdo prépria vélida para o grafo G-

Vi ) Corl

Cor 4

V2 V3
Cor 2 Cor 3

Figura 7: Grafo com nimero cromadtico igual a 4.

III. TRABALHOS RELACIONADOS

Vale destacar os trabalhos relacionados com o mesmo tema
e problema deste estudo. Dentre eles, o artigo de Cranston e
Rabern [5] apresenta diferentes demonstragdes do Teorema
de Brooks. O objetivo € ilustrar as técnicas principais da
coloragdo de grafos, como coloragdo gulosa, cadeia de Kempe,
lema de Kernel e hitting sets, com o intuito de torna-las
acessiveis. Para isso, os autores desejaram mostrar as suas
provas favoritas. Cada tépico das provas € apresentado em
ordem de complexidade, cada um € autocontido e pode ser
lido em qualquer ordem. Este trabalho sera utilizado como
base para a demonstracdo do Teorema de Brooks neste estudo.

Além disso, Sajith e Saxena [6] demonstram duas provas
do Teorema de Brooks. A primeira prova ¢ feita modificando
a prova de Melkinov e Vizing [7] e de Wilson [8] que provam
por contradi¢do, porém € alterada para ser construtiva e
resultar em um algoritmo de tempo linear. E a segunda prova
combina com os elementos das demonstragdes de Zajac [9]
e do Bondy [10, 11], garantindo uma prova mais simples e
resultando também em um algoritmo de tempo linear. Os
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autores, Sajith e Saxena, consideram essas provas mais faceis
de serem ensinadas em aulas de Ciéncia da Computacio.

Amiroch et al. [12] projetam um novo método para
criacdo de carddpios alimenticios utilizando a coloragdo de
vértices. Eles combinaram o algoritmo de Welsh-Powell
[13] com uma técnica de combina¢do matematica a qual
gera uma diversidade de carddpios que seguem diretrizes
de baixa caloria. Para comprovar a eficicia da abordagem,
simularam de forma dinidmica com a ferramenta MatLab
para criarem trés carddpios distintos com necessidades
nutricionais especificas. Adicionalmente, para a organizacao
e diversificagdo de carddpios nutricionalmente balanceados,
empregam o conceito de caminhos disjuntos de grafos. Este
estudo tem destaque pela solucio de lidar com problemas em
planejamento alimentar e pelo fornecimento de informacdes
importantes para trabalhos futuros.

F. Radmehr et al. [14] focam em utilizar uma abordagem
baseada em investigacdo para explorar o ensino e a
aprendizagem sobre coloracao de vértices para os alunos de
graduagdo em matemadtica. Para isso, desenvolveram sete
tarefas baseadas em investigac@o para ensinar o tema para
os alunos e buscam descrever o engajamento deles. Como
resultado, os discentes se entretiveram bastante com as tarefas
e perceberam o quio importante essas priticas podem ser
para o desenvolvimento de conhecimentos conceituais sobre
matemdtica. Os autores promovem que essas tarefas sejam
empregadas em cursos de matemadtica discreta de graduacio
para aprimorar o conhecimento matematico.

Rajagaspar e Senthil [15] buscam divulgar a ideia inicial
sobre grafos e coloracdo de vértices. Eles investigam como a
coloracdo de vértices pode ser usada para modelar problemas
praticos, como escalonamento de hordarios, alocacdo de
recursos, networking e mineracdo de dados.

Cabe mencionar o artigo de Yasser e Bianchini [16] como
referéncia para contribui¢do pedagdgica. Este fator € essencial
para a escrita deste trabalho, dado que buscamos tornar este
material acessivel para a comunidade académica que deseja
entender sobre o Teorema de Brooks e se aprofundar na
coloragdo de grafos.

Partindo disso, segue na préxima se¢do o detalhamento do
problema, descrevendo o seu tipo, complexidade, problemas
lddicos relacionados, o contexto em que se enquadra,
utilizando exemplos ilustrativos com explicagdes.

IV. DESCRICAO DO PROBLEMA

A coloragdo de grafos possui uma ampla variedade de
aplicagdes praticas em diferentes dreas. Um exemplo cldssico
¢é a coloragdao de mapas, em que regides adjacentes devem
receber cores distintas [17]. Além desse caso bem conhecido,
problemas de coloragdo em vértices surgem em diversas
situacdes reais, como na alocagdo de frequéncias em redes
de comunicac¢do, onde transmissores préximos ndo podem
operar na mesma frequéncia, e no escalonamento de tarefas
que nao podem ocorrer simultaneamente [18]. Outro uso
importante aparece em compiladores [19], durante a etapa
de alocacdo de registradores, € em sistemas de hordrios
académicos, garantindo que disciplinas que compartilham
alunos ndo sejam ofertadas no mesmo periodo [13]. Além
disso, é aplicado em problemas lidicos como a resolugao
do sudoku, que pode ser modelado como um problema de
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Teorema Vilido: G Excecio: Cs
w
1 ”
w2 W3 up Us
u3 Uy
wy ws
A=3,x=3 A=2,x=3
x<h (x>A)

Figura 8: Visualizacido do Teorema de Brooks: Uma excecéo (ciclo
fmpar) e um caso valido.

coloracao de grafos [20].

Neste estudo, trabalharemos com coloragdo de vértices
formulada como um problema de decisdo. Em termos gerais,
quando o grafo G é completo ou ciclo impar satisfaz ¥ (G) <
A(G) + 1. Porém, o Teorema de Brooks mostra que se um
grafo G ndo é completo e nem ciclo impar, entdo ¥ (G) < A(G)
[17]. A Figura 8 ilustra o grafo G para o qual o Teorema de
Brooks é valido para sua estrutura, diferente do grafo Cs, que
€ um ciclo impar.

O Teorema de Brooks insere-se no contexto mais amplo
de resultados que buscam relacionar propriedades estruturais
dos grafos (como conectividade, presenca de ciclos, graus dos
vértices) com sua coloracéo. Ele fornece um critério poderoso
para limitar a complexidade cromadtica, com aplicacdes desde
problemas de escalonamento (scheduling) até alocacdo de
recursos e alocacdo de registradores.

Determinar o nimero cromdtico exato é considerado um
problema NP-completo [21]. Existem muitas técnicas de
coloragdo de vértices para provar o Teorema de Brooks que
podem se estender em varias direcdes [5]. Neste estudo,
buscamos utilizar duas técnicas para realizar a demonstragdo
do teorema.

Assim, embora o Teorema de Brooks forneca um limite
garantido de A(G) cores (exceto nos casos excepcionais), ele
nao fornece necessariamente um algoritmo polinomial para
determinar se o grafo admite colora¢cdo com menos cores do
que as previstas pelo limite. Em muitos cendrios, algoritmos
gulosos (greedy) podem se aproximar desse limite, mas nio
ha garantias de optimalidade em geral.

V. DEMONSTRACAO E CONTRIBUICOES

Antes de iniciar a prova do teorema, apresentam-se dois lemas
principais para a contextualizagcdo do problema: o Lema de
Lovasz e Cadeias de Kempe.

Lema 1 (Estrutura de Lovasz). Seja G um grafo 2-conexo
com 8(G) > 3. Se G ndo for completo, entdo G contém um
caminho induzido de trés vértices, digamos u,v,w, tal que
G\ {u,w} é conexo.

Proof. Para demonstrar este lema, utilizaremos a técnica de
constru¢do. Como G é conexo e ndo é completo, sabemos
que existe algum caminho induzido de trés vértices [5]. Se G
for 3-conexo, a remog¢ao de quaisquer dois vértices (1, w) nao
desconecta o grafo, entdo qualquer caminho induzido serve.
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Figura 9: Visualizagdo da estrutura: Os contornos tracejados
indicam os blocos B; e B; que se encontram no vértice de
articulacdo x.

O caso critico ocorre quando G ndo € 3-conexo. Neste
caso, existe um conjunto de corte de tamanho 2. Seja {v,x}
este conjunto de corte, onde v serd o vértice central do nosso
caminho desejado.

Considere o grafo H = G —v. Como {v,x} é um corte
em G, entdo x deve ser um vértice de corte em H (ou H
é desconexo, mas como G é 2-conexo, H deve ser conexo
e x € quem articula os componentes). O grafo H pode ser
decomposto em seus blocos (subgrafos maximais 2-conexos).
A estrutura desses blocos forma uma arvore (o "grafo de
blocos"). Uma drvore com pelo menos uma aresta possui pelo
menos duas folhas (blocos finais). Sejam B e B; dois blocos
finais (endblocks) de H. Pela propriedade de 2-conexidade
de G: Cada bloco final de H deve conter pelo menos um
vértice adjacente a v que ndo seja x. Se ndo houvesse tal
vizinho, a remog¢do apenas de x em G desconectaria aquele
bloco do resto do grafo, o que contradiz o fato de G ser 2-
conexo (que exige remogdo de 2 vértices para desconectar).
Sejam u € V(B1) e w € V(B,) vizinhos de v (com u, w # x).
O caminho u — v —w € induzido (pois u e w estdo em blocos
diferentes separados por x, logo ndo hé aresta direta entre eles,
a menos que passem por x, mas estamos olhando vizinhanca
direta) podemos ver isso na figura 9. Agora verificamos a
conectividade de G’ = G\ {u,w}.

* O grafo H = G — v é conexo.

* 1 e w ndo sdo vértices de corte em H (pois pertencem a
blocos finais e ndo sdo a articulagdo x). Logo, H \ {u,w}
permanece conexo.

* Ao readicionarmos v (para formar G’), precisamos
garantir que v se conecte a H \ {u, w}.

* Como o grau 8(G) > 3, o vértice v tem grau pelo menos
3. Dois vizinhos sdo u e w. Logo, v tem pelo menos mais
um vizinho (podendo ser x ou outro vértice em H). Isso
garante que v ndo fica isolado, como visto na Figura 10.

Portanto, G\ {u,w} é conexo. O

O procedimento construtivo descrito na demonstragdo acima
é formalizado no Algoritmo [1].

Lema 2 (Corretude do Algoritmo 1). Seja G um grafo 2-
conexo, ndo completo, com 8(G) > 3. O Algoritmo 1 retorna,
em tempo finito, uma tripla de vértices (u,v,w) tal que o
caminho u—v —w é induzido e o grafo G' = G\ {u,w} é
conexo.

ISSN: 2675-3588

ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 07, NO. 02, FEBRUARY 2026

X
U % @)

O
v

Figura 10: Conectividade de G' = G\ {u,w}.

Algorithm 1 Busca de Caminho Induzido com Extremidades
Removiveis(Método de Lovasz)

Require: Grafo 2-conexo G com 8(G) > 3, ndo completo.
Ensure: Caminho induzido u —v —w tal que G\ {u,w} é
COonexo.
> Caso base trivial

if G é 3-conexo then

Encontrar qualquer caminho induzido u —v —w.

return (u,v,w)
end if

bl A

> Passo 1: Identificar o corte e definir o centro v
5: Encontrar um par de corte {v,x} em G.
> Nota: v serd o centro do nosso caminho.
> Passo 2: Decomposi¢do em blocos
6: Construir H = G — v e obter sua arvore de blocos-corte.
7: Sejam Bj e B, dois blocos finais de H (separados por x).
> Passo 3: Selecionar as pontas u e w
8: Escolher u € V(By) \ {x} tal que u seja vizinho de v.
9: Escolher w € V(B;) \ {x} tal que w seja vizinho de v.
> Verificacdo Implicita: Como u,w estdo em blocos
separados por Xx,
> ndo hd aresta direta u —w, logo o caminho é induzido.
10: return (u,v,w)

Proof. A terminacdo do algoritmo é garantida, pois todas as
operagdes (busca de componentes, identificagdao de blocos e
cortes) sdo executadas em grafos finitos com complexidade
polinomial. Resta demonstrar a corretude da saida em dois
casos.

Caso 1: G é 3-conexo (Linhas 1-4). Pela defini¢do de
k-conectividade, a remoc¢ao de menos de k vértices nao
desconecta o grafo. Como k = 3, a remog¢do do conjunto
{u,w} (tamanho 2) resulta em um grafo G’ conexo. Como G
nao é completo, existe pelo menos um caminho induzido de
comprimento 2. Logo, a saida é valida.

Caso 2: G nio ¢é 3-conexo (Linhas 5-13). Neste caso, o
algoritmo identifica um par de corte {v,x}. Definimos H =
G —v. Como G € 2-conexo, H € conexo e x € um vértice de
corte em H (separando os blocos finais By € By).

+ Existéncia dos vértices u e w: Pela 2-conectividade de
G, cada bloco final B; de H deve possuir pelo menos um
vértice adjacente a v que ndo seja x. Caso contrério, {x}
seria um corte em G, contradizendo a hipétese inicial.
Logo, a escolhade u € V(B;)\ {x} e w € V(B2) \ {x}
nas linhas 9-10 é sempre possivel.

* Caminho Induzido: Os vértices u e w pertencem a
blocos distintos de H, articulados apenas por x. Como
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u # x e w # x, qualquer caminho entre u e w em H deve
passar por x. Logo, ndo existe aresta direta (1, w) em G.
Assim, o caminho # — v — w € induzido.

* Conectividade de G’ = G\ {u,w}: A conectividade é
preservada em duas etapas:

1. Conectividade de H: Em uma decomposi¢do em
blocos, os vértices que ndo sdo de articulacdo
(como u e w dentro de blocos finais) nio
desconectam o grafo ao serem removidos. Portanto,
H\ {u,w} permanece conexo.

2. Reconexdo de v: O vértice v € readicionado
para formar G'. Como §(G) >3, d(v) >3. O
algoritmo remove dois vizinhos (# e w). Logo,
resta pelo menos um vizinho de v em H (seja x ou
outro vértice). Isso garante que v se conecta ao
componente conexo restante H \ {u, w}.

Portanto, G\ {u,w} é conexo e o algoritmo estd correto. [J

Lema 3 (Cadeia de Kempe). Em uma coloragdo propria de
um grafo G, uma cadeia de Kempe (i, j) é uma componente
conexa do subgrafo induzido pelos vértices coloridos com as
coresie j[5] Setrocarmos as cores deie j simultaneamente
em todos os vértices dessa componente, obtemos novamente
uma coloragdo propria de G.

A demonstracdo do Teorema de Brooks segue a
abordagem de contradi¢do assumindo um contraexemplo
minimal [5], combinada com duas técnicas fundamentais:
a Estrutura de Lovasz e as Cadeias de Kempe. Ademais,
estdo incluidas explicagdes intermedidrias e observacdes
pedagdgicas para facilitar o entendimento da estrutura légica
da prova. Segue o teorema e a demonstragdo abaixo:

Teorema 1. Seja G um grafo conexo. Se G ndo é um ciclo
impar e nem um grafo completo, entdo ¥ (G) < A(G).

Proof. Suponha, por contradicao, que G € um contraexemplo
minimal ao teorema, ou seja, G é um grafo conexo A-regular
com o menor nimero de vértices tal que x(G) > A e que ndo é
um ciclo impar nem um grafo completo. Como G é minimal,
todo subgrafo préprio H C G satisfaz x(H) < A.

Escolha um vértice arbitrario v € V(G). Entdo G —v é A-
colorivel. Pelo Lema 1, G — v possui pelo menos dois blocos
terminais. Sejam u e w vértices ndo-cortantes pertencentes
a blocos terminais distintos. Além disso, considerando
novamente o Lema 1 existe um caminho induzido u —v —w
tal que G — {u,w} permanece conexo. A Figura 11 ilustra a
estrutura inicial do grafo para a demonstragao.

Colore u e w com a mesma cor, pois sdo vértices ndo
adjacentes, e entdo colorimos G — {u,w} gulosamente. A
ordem utilizada segue a Estrutura de Lovasz: comegamos a
coloracdo a partir dos blocos terminais de G — v, movendo-os
em direcao ao vértice v. Dessa forma, cada vértice (exceto
v) € colorido quando todos os seus vizinhos posteriores na
ordem j4 foram coloridos, o que garante a coloracdo. A Figura
12 mostra a coloracdo de u e w e colorindo gulosamente.

Ap6s a coloragdo de todos os vértices de G — {u,w}, se
alguma cor fica disponivel para v, obtemos uma coloracdo
usando A cores, encerrando a prova. Caso contrdrio, cada
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Figura 11: Estrutura inicial: vértices u e w em blocos terminais
distintos de G —v.

Figura 12: Coloragdo imediata apds a colorac@o gulosa: todos os
vértices, exceto v, jd foram coloridos e u € w compartilham a mesma
cor.

uma das A cores aparece em N(v). Para liberar uma cor,
empregamos cadeias de Kempe, explicito no Lema 3.

Para cada cor i € {1,...,A}, considere v; o vizinho de v
usando a cor i. Por um argumento semelhante, para cada v;,
cada cor diferente de i aparece em um vizinho de v;; se nao,
poderiamos recolorir v; e colorir v com i. Para cada par de
cores i e j, seja C; ; a cadeia de Kempe (i, j) contendo v;.

A partir desta constru¢do, formulamos as seguintes
afirmagdes que descrevem configura¢des impossiveis para
um contraexemplo minimal:

» Afirmacao 1: Para qualquer par de cores i e j, a cadeia
de Kempe que comega em um vértice da cor i e a cadeia
que comec¢a em um vértice da cor j t€m que ser a mesma
componente conexa. Porque, se fossem cadeias diferentes,
poderiamos fazer uma troca na cadeia de Kempe onde
estd o vértice da cor i. Esta troca inverteria as cores
nesse componente, € com isso faria a cor i desaparecer
da vizinhanga de v. A Figura 13 ilustra a situago antes da
troca, com componentes de Kempe (i, j) disjuntos contendo
v; (esquerda) e v; (direita), e a Figura 14 ilustra 0 momento
em que troca é realizada no componente de v;. Agora, v;
e vj usam a cor j (azul), e a cor i (vermelho) estd livre em
N(v). O vértice v pode ser colorido com i, contradizendo o
contraexemplo minimal.

» Afirmacao 2: Qualquer cadeia de Kempe precisa ser um
caminho simples, isto é, ela ndo pode ter ramificagdes, ndo
pode ter vértices com grau maior que 2 dentro da cadeia. Se
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Figura 13: Afirmagdo 1: Antes da Troca (Violagdo C; j # C; ;).
v
/ .
g %

o---0----0 0----0---0

Figura 14: Afirmacao 1: Depois da Troca.

Figura 15: Ilustracdo da Afirmacdo 2. Fonte: Adaptado de
Cranston e Rabern [5]

uma cadeia tivesse um vértice com grau 3, poderia recolorir
apenas uma parte da cadeia de modo a liberar uma cor para
um vértice vizinho de v, e de novo conseguiriamos colorir v,
destruindo o contraexemplo. A Figura 14 consiste em uma
adaptacao do trabalho de Cranston e Rabern [5] e ilustra a
interpretacdo da afirmagdo em questio.

» Afirmacao 3: Duas cadeias que partem do mesmo vértice
v; e usam cores diferentes sé podem se encontrar no proprio
v; € em nenhum outro lugar. Se houvesse qualquer outro
vértice u que estivesse ao mesmo tempo em C; j € em Cy,
entdo u teria vizinhos em cores j e k dentro das cadeias,
0 que novamente permitiria recolorir parte das cadeias e
liberar a cor i na vizinhanga de v. Com isso, G deixaria
de ser um contraexemplo. A Figura 16 também € uma
adaptagdo do trabalho de Cranston e Rabern [5] e esclarece
a afirmacdo discutida.

» Afirmacfo 4: Agora juntamos todas as trés propriedades
e mostramos que elas ndo podem valer a0 mesmo tempo.
Escolhemos trés vizinhos de v, chamados vy, v € v3, cada
um com uma cor diferente. Pela estrutura do grafo, existe
um vértice u na cadeia C ». E como v; e v3 usam as cores
1 e 3, também existe uma cadeia C; 3 conectando esses dois
vértices. Realizamos uma troca de Kempe na cadeia Cj 3:
os vértices de cor 1 viram 3, e os de cor 3 viram 1. Depois
da troca, o vértice u, que antes s6 estava na cadeia Cj >,
passa a estar a0 mesmo tempo na cadeia C} , e na cadeia
C} 5. Mas isso contradiz a Afirmagio 3, que dizia que esse
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Figura 16: Ilustracdo da Afirmacdo 3. Fonte: Adaptado de
Cranston e Rabern [5]

v2 (2)

u(2) vz (3)

Figura 17: Afirmacdo 4: ANTES da troca em Cj 3. u pertence a
cadeia Cj 5 e v| estd conectado a v3 na cadeia C 3.

v2(2)

u(2) v (1)
Figura 18: Afirmacao 4: DEPOIS da Troca em Cj 3.
u€Ci,NCys.

tipo de interse¢do s6 pode ocorrer no préprio vi. Como

encontramos essa interse¢ao, as trés afirmacdes ndo podem

ser todas verdade. Logo, o contraexemplo minimal ndo
pode ser valido e o Teorema de Brooks € valido. Observe

a Figura 17, ela mostra o momento antes da troca em Cj 3,

V1, V2, Vv3 sdo vizinhos de v, u (cor 2) é um vizinho de v; (cor

1) e faz parte da cadeia C ». A Figura 18 ilustra 0 momento

onde a troca é realizada, v’1 agora tem cor 3, u ainda tem cor

2 e vy tem cor 2. O vértice u agora pertence a C ; e C; 3,

violando a Afirmacio 3 (C; ;NC; = v)).

As Afirmagdes 1, 2 e 3 descrevem propriedades que qualquer
contraexemplo minimal precisaria ter. Mas a Afirmagao
4 mostra que essas trés condi¢des juntas levam a uma
contradi¢do depois de uma troca de Kempe.

Com isso, existe uma troca vélida que libera uma cor
em N(v). ApGs a troca, colorimos v com a cor liberada e,
temos um grafo A-colorivel. Isto contradiz o contraexemplo
minimal, logo, ndo existe um contraexemplo para este teorema
e, portanto:

x(G) <A(G)
O

O contraexemplo precisa ser A-regular, pois a coloragdo
gulosa produziria uma A-coloracdo de G, contradizendo
%(G) > A. As técnicas de Lovész e da cadeia de Kempe
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garantem um vértice especial que pode ser controlado no
entorno, uma vez que € possivel colorir partindo de blocos
terminais, e sempre existe uma troca de cores possivel para
resolver conflitos locais. Ademais, na Afirmagéo 4 se afirma
que tem vizinhos v; € v, ndo adjacentes, porque 0s vizinhos
de v ndo formam clique. Se fosse um clique, o grafo seria
completo, porém € uma excecdo para o teorema. Logo, os
vizinhos de v ndo podem formar um clique.

Na seguinte secao, serdo relatadas as contribuicdes
adicionais dos autores, dificuldades encontradas, solucdo
para as adversidades e como este problema possui potenciais
pedagogicos para o meio académico.

VI. RESULTADOS E REFLEXOES

O trabalho de Cranston e Rabern [5] destaca-se pela
abordagem clara e ilustrativa para apresentar o teorema. Este
foi utilizado como base para a demonstracdo desenvolvida
neste estudo. Os autores evidenciam as buscas de suas
provas favoritas do Teorema de Brooks, expondo as técnicas
principais da coloracdo de vértices usadas para auxiliar nas
demonstragdes. Cabe ressaltar que possuiam o objetivo de
apresentar as provas, destacando suas vantagens e extensdes
de cada uma. A organizacdo deste trabalho permite a
leitura independente de suas secdes, uma vez que cada
secdo apresenta, de forma autossuficiente, as técnicas e a
demonstra¢do. Ademais, o artigo explicita outros autores que
adotaram estratégias diferentes para as provas baseado na
demonstragdo apresentada em cada se¢@o.

A ilustragdo dos conceitos abstratos e as pesquisas
apresentadas no trabalho de Cranston e Rabern [5] contribuem
para o meio académico. Essas contribui¢cdes possibilitam
a construcdo de novos temas para trabalhos futuros,
aprimorando os argumentos e definindo novas abordagens.
Embora os autores ndo descrevam as suas adversidades
encontradas durante o processo da elaboragdo do artigo, eles
salientam a relevancia das contribuicdes recebidas por meio
de comentdrios e sugestdes de outros pesquisadores. Os
feedbacks e as avaliacdes foram cruciais para o refinamento
da escrita e para a atualizacdo do problema apresentado.

As maiores dificuldades vistas na escrita deste trabalho
estiveram relacionadas a escolha dos métodos para realizar
a demonstracdo.  Algumas abordagens requerem um
conhecimento mais apurado em Teoria dos Grafos. A intengdo

¢é expor ao menos dois lemas de maneira coerente e didatica.

Este problema expandiu-se na prova do problema e dos lemas
auxiliares, buscando ajudar no desenvolvimento da resolug¢ao
do Teorema de Brooks. Além disso, houve dificuldade
na construcio de ilustragdes que representassem de forma
clara cada conceito apresentado sobre grafos e das técnicas
aplicadas.

Para contornar essas adversidades, foram feitas pesquisas
aprofundadas em artigos académicos que mostravam a
prova completa do Teorema de Brooks. Estes trabalhos
utilizam diferentes lemas com suas técnicas de demonstracao
adequadas para uma conclusdo correta. Para a elaboragdo das
figuras ilustrativas, demandou mais andlise sobre materiais
didéticos que abordam nog¢des basicas de grafos acompanhada
de exemplos pedagdgicos e explicativos. A partir disso, foram
selecionados os lemas adequados para este trabalho. Dessa
maneira, este material busca servir como um suporte didatico
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para os académicos que desejam se aprofundar no assunto de
coloracao dos grafos.

A coloracio de grafos tem grande potencial para aplicagdes
pedagdgicas e académica. Essa drea é utilizada para
modelagem de problemas reais, constru¢do de ferramentas
computacionais e desenvolvimento de algoritmos de colora-
¢d0 [22]. Ademais, a demonstracdo apresentada pode servir
como base para a constru¢do de teses e dissertacdes que
explorem classificagdes de grafos e diferentes técnicas de
colorag@o.

VII. CONSIDERACOES FINAIS

Portanto, este estudo contextualiza o cendrio sobre coloracio
de grafos, destaca os conceitos fundamentais e basicos sobre
grafos para esclarecer o problema e a demonstra¢do do
Teorema de Brooks. O teorema estabelece que, se um grafo
G tal que G ndo seja completo nem ciclo impar, entdo satisfaz
%(G) < A(G). Para demonstrar o problema, foi utilizada a
prova por contradi¢do assumindo um contraexemplo minimal.
A abordagem foi apoiada por duas técnicas essenciais: o
Lema Estrutural de Lovéasz e cadeia de Kempe.

Adicionalmente, foram destacados outros trabalhos
relacionados ao tema, os quais mostram diferentes formas
de demonstragdo e técnicas elaboradas ou modificadas pelos
autores. As contribui¢des evidenciam que o estudo de
coloragdo de vértices permanece relevante para a resolugao
de problemas reais. Para a construg¢do deste trabalho, uma
pesquisa aprofundada de artigos, que exploram o mesmo
problema, foi necessdria com o intuito de reproduzir os
resultados da literatura, buscando tornar o ensino mais
acessivel e descomplicado.

A construcdo da demonstracdo, a sintese das técnicas e a
elaboragdo das ilustracdes foram os desafios encontrados ao
longo deste estudo. Isso se deve ao fato de que se priorizou a
apresentagdo de uma explicagdo compreensivel e coesa para
a comunidade académica.

A coloragdo de grafos apresenta potencial para o
desenvolvimento de trabalhos futuros, principalmente no que
se refere a aplicacdo em problemas reais e a estruturacio de
algoritmos. Como perspectiva de melhoria dos resultados
apresentados, destaca-se a possivel inclusdo da prova baseada
em Coloracdo de Listas (List Coloring) ou do lema de Kernel
[51, que sdo técnicas mais modernas da literatura. No entanto,
essas abordagens ndo foram implementadas no presente artigo
devido a sua maior complexidade conceitual. Sua inclusio
exigiria um detalhamento adicional de preliminares e poderia
comprometer a acessibilidade do material para o escopo desta
disciplina.
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Resumo—Este artigo apresenta uma abordagem pedagdgica para o estudo do problema Hitting Set, com o intuito de reproduzir e tornar
acessivel a demonstracao cldssica de sua NP-completude, conforme estabelecida na literatura especializada. Diferentemente de trabalhos
que visam propor novos resultados tedricos inéditos, o objetivo central desta pesquisa € preencher uma lacuna didatica, detalhando
minuciosamente a redugdo polinomial a partir do problema Vertex Cover (Problema Alvo) para o Hitting Set (Problema Atacado). A
metodologia adotada inicia-se com uma revisdo dos conceitos fundamentais, incluindo as defini¢des formais das classes P e NP, bem como
o conceito de certificado e verificacdo eficiente. Em seguida, uma prova inspirada na de Richard Karp é construida passo a passo, com
énfase na visualiza¢do da transformacdo das instancias de grafos para colecdes de conjuntos através de diagramas de “antes e depois”.
Adicionalmente, introduz-se o “Dilema dos Observadores”, uma analogia original para ilustrar a complexidade combinatéria. Por fim,
discutem-se aplicagdes praticas em bioinformatica e engenharia de software, consolidando o material como um recurso de apoio eficaz ao
ensino de Teoria da Computagio.

Palavras-chave—Hitting Set, NP-Completo, Vertex Cover, Reducdo Polinomial, Teoria da Computagio.

Abstract—This paper presents a pedagogical approach to the study of the Hitting Set problem, aiming to reproduce and make accessible the
classic demonstration of its NP-completeness, as established in the specialized literature. Unlike works aiming to propose novel theoretical
results, the central objective of this research is to bridge a didactic gap by meticulously detailing the polynomial reduction from the Vertex
Cover problem to the Hitting Set problem. The adopted methodology begins with a review of fundamental concepts, including formal
definitions of the P and NP classes, as well as the concepts of certificates and efficient verification. Subsequently, a proof inspired by
Richard Karp is constructed step-by-step, emphasizing the visualization of transforming graph instances into set collections using “before
and after” diagrams. Additionally, the “Observer’s Dilemma” is introduced—an original analogy to illustrate combinatorial complexity.
Finally, practical applications in bioinformatics and software engineering are discussed, consolidating the material as an effective support
resource for teaching Theory of Computation.

Keywords—Hitting Set, NP-Complete, Vertex Cover, Polynomial Reduction, Theory of Computation.

a dificuldade de um problema pode ser “traduzida” para

o conceito de reducdo polinomial é frequentemente uma

I. INTRODUCAO barreira de aprendizado que exige mais do que apenas
defini¢des matemadticas, exige visualizagdo e intuicao. Entre

ensino de Teoria da Computacdo, especificamente  os diversos problemas estudados no ambito da classe NP,
O no tépico de NP-Completude, impde desafios signi- o Hitting Set ocupa papel significativo, tanto por sua
ficativos aos estudantes de graduagdo devido ao alto nivel relevancia tedrica quanto por sua ampla gama de aplicagdes
de abstragdo exigido. Compreender formalmente como  préticas conforme discutido por Karp [1] ao apresentar sua
formulagao cldssica no estudo dos problemas NP-Completos.

Tendo em vista a unido de referéncias cldssicas amplamente

Dados de contato:  Benedito Jaime Melo Moraes Junior, bened-  adotadas, é perceptivel que esses materiais frequentemente
ito.jaime @uft.edu.br
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apresentam a prova de NP-completude do Hitting Set
de forma condensada, com poucos recursos visuais e
saltos 16gicos que pressupdem um alto grau de maturidade
matematica do leitor. Na pratica de sala de aula, observa-se
que estudantes de graduacao tém dificuldade em acompanhar
esses argumentos sem um material intermedidrio que detalhe
a redugdo passo a passo, com exemplos graduais e analogias
concretas. Assim, identifica-se uma lacuna didética entre a
literatura de referéncia, voltada a um piblico mais avangado,
e as necessidades de estudantes em disciplinas introdutdrias
de Teoria da Computagdo.

Neste contexto, este trabalho visa oferecer uma repro-
ducao pedagégica da prova de NP-Completude do problema
Hitting Set. Utilizando a redug@o cldssica a partir do
Vertex Cover (Cobertura de Vértices) [2], buscamos detalhar
as etapas légicas e fornecer recursos visuais que auxiliem
o entendimento da literatura técnica padrdo, facilitando
a assimilacdo dos conceitos fundamentais por estudantes
iniciantes. Dessa forma, como uma contribui¢cdo pedagdgica,
este trabalho apresenta recursos para facilitar o aprendizado
dos conceitos de Teoria da Computagdo. O material inclui
uma prova da NP-Completude do problema Hitting Set,
desdobrando os aspectos técnicos para maior clareza. Para
tornar os conceitos abstratos mais tangiveis, sao fornecidas
figuras e exemplos que ilustram tanto o processo de redugdo
polinomial quanto a verificacdo das solugdes. Como parte
de uma estratégia lddica, o estudo incorpora um problema
ilustrativo (o “Dilema dos Observadores™), que aproxima o
conceito de complexidade combinatéria do cotidiano dentro
da complexidade explorada na NP-Completude. Por fim,
a compreensdo da classe NP é refor¢ada com a inclusdo
de pseudocddigo e andlise de verificagdo, demonstrando
formalmente a eficiéncia do algoritmo que checa a validade
de uma solucao candidata.

A estrutura deste trabalho foi organizada para guiar o
leitor desde os fundamentos até a prova formal. Iniciamos
revisando os conceitos basilares de grafos e complexi-
dade relacionados ao problema estudado. Em seguida,
contextualizamos o problema na literatura, para entdo
definirmos o Hitting Set e apresentarmos a demonstracio
técnica visual, encerrando com uma reflexdo sobre as
estratégias de aprendizado adotadas, seguindo a metodologia
de semindrios proposta por Lassance, Bianchini e Santos [3].
O objetivo central deste trabalho, portanto, ndo é apresentar
novos resultados tedricos sobre Hitting Set, mas organizar
uma rota de aprendizagem que torne a prova cldssica
de sua NP-completude acessivel a estudantes iniciantes,
complementando os livros-texto tradicionais, com énfase em
recursos de visualizacdo que mostrem a transformacio das
instancias, demonstra¢des que gradualmente aproximem o
estudante da prova completa e conexdes explicitas entre a
prova abstrata e aplicagdes concretas.

II. PRELIMINARES

Para fundamentar a demonstragio que serd desenvolvida, re-
visamos nesta secdo 0s conceitos essenciais e estabelecemos
a notacao utilizada. As defini¢des aqui apresentadas seguem
as convengdes de Sipser [4] e Garey & Johnson [2].

O primeiro conceito fundamental é o de grafo, uma
estrutura matemdtica amplamente utilizada para modelar

72

POVOA et al.

€] €2

Vi V3
€3

Figura 1: Representacdo de um grafo ndo direcionado G = (V,E).
As arestas sdo rotuladas como ¢;, e os vértices como v;.

relagdes entre objetos, como ligacdes entre computadores
em uma rede, estradas ligando cidades ou conexdes entre
paginas da web. Formalmente, um grafo é denotado por
G = (V,E), onde V representa o conjunto de vértices (ou
nds), que sdo os pontos do grafo, e E representa o conjunto de
arestas, que sdo as conexdes entre pares de vértices. Em um
grafo simples e ndo direcionado, cada aresta é um par nio
ordenado {u,v}, indicando apenas que existe uma ligagdo
entre u e v, sem sentido de direcdo. Esse tipo de estrutura é
especialmente conveniente para problemas de cobertura, pois
permite enxergar relagdes de conexdo de maneira clara.

Para a reducdo proposta que serd apresentada mais adiante,
¢ crucial entender também o conceito de incidéncia e de
grau. Dizemos que uma aresta {u,v} € E é incidente
aos vértices u e v, isto €, ela “toca” exatamente esses
dois vértices. O grau de um vértice, por sua vez, € o
nimero de arestas incidentes a ele e indica quantas conexdes
diretas aquele ponto possui dentro do grafo. A Figura 1
apresenta uma ilustracdo visual desses componentes: 0s
circulos representam os vértices (V) e as linhas representam
as arestas (E). No exemplo, o vértice v3 possui grau 2, pois
estd ligado a vy e vy; esse tipo de contagem serd reutilizado
mais adiante quando mapearemos vértices e arestas para
conjuntos e elementos na reducio para o problema Hitting
Set.

Além do conceito de grafos utilizado, é necessario abordar
que o contexto deste trabalho exige a definicdo clara do
ambiente de Complexidade Computacional de forma que
facilite a compreensao dentro do &mbito contetddo-aluno.

Finalmente, para realizar a prova de NP-Completude,
utilizaremos o conceito de reducdo e um problema base. O
problema escolhido como ponto de partida € o Vertex Cover.
Sua NP-Completude foi demonstrada por Richard Karp [1],
sendo uma das mais aceitas no contexto de cobertura de
grafos. Ele é definido pela seguinte instincia e questdo: dado
um grafo G = (V,E) e um inteiro k, é possivel escolher um
subconjunto de vértices C C V (com |C| < k) tal que todas as
arestas de E tenham pelo menos uma extremidade em C?

Entrada: Um grafo simples G = (V,E) e um inteiro k € N.

Questdo: Existe um subconjunto C CV com |C| < k tal que,
para toda aresta {u,v} € E, vale u € C ou v € C? (Ou
seja, cada aresta de G possui a0 menos uma extremidade
emC.)
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Este problema servird de alicerce para a construcdo do
Hitting Set nas segdes subsequentes, pois a prova de NP-
Completude serd obtida por meio de uma reducédo polinomial
de Vertex Cover para Hitting Set. De maneira geral, o Hitting
Set recebe como entrada um universo finito de elementos e
uma cole¢@o de subconjuntos desse universo, e pergunta se
existe um subconjunto H com tamanho limitado por k que
intercepte todos esses subconjuntos, isto €, que contenha pelo
menos um elemento em comum com cada um deles. Na
prética, o Hitting Set pode ser visto como uma generalizacio
de problemas de cobertura em grafos, na qual arestas e
vértices sao substituidos por subconjuntos e elementos de um
universo arbitrario.

Entrada: Um conjunto finito U (universo), uma cole¢do

S =1{81,52,...,Sn} de subconjuntos de U € um inteiro

positivo k € N.

Questao: Existe um subconjunto H C U com cardinalidade

|H| < k tal que H intercepte todos os conjuntos de S?
(Ou seja, HNS; # 0 paratodo S; € S).

II1. TRABALHOS RELACIONADOS

A fundamentag@o deste artigo baseia-se em trés eixos princi-
pais: desenvolvimentos recentes em algoritmos e aplicacdes
para o problema de Hirting Set, abordagens contemporaneas
para ensino de complexidade computacional e o apoio da
literatura basilar para estabelecer relacio com as praticas
pedagégicas na disciplina de Teoria da Computacdo. A
seguir, destacam-se as obras diretamente relacionadas a
proposta.

Do ponto de vista técnico, estudos recentes sobre geracio
de Hitting Sets minimos e sobre aplicagdes em biologia
de sistemas evidenciam que o Hitting Set permanece um
problema central tanto na pesquisa tedrica quanto em
cendrios aplicados por Gainer-Dewar, Vera-Licona e Haus[5,
6]. Esses trabalhos discutem algoritmos em contextos
reais, reforcando a importancia de compreender, mesmo em
nivel introdutério, por que o problema € intratdvel e quais
estratégias praticas sdo adotadas na literatura recente.

E importante ressaltar que busca-se a inspiracio basilar
em trabalhos como o de Garey e Johnson [2], referéncia em
intratabilidade para denotarmos o entendimento em materiais
recentes, pois fornecem a definicdo formal do Hitting Set
e sua classificagcdo como problema NP-Completo, baseada
na equivaléncia com o Set Cover. O trabalho seminal de
Karp [1] é utilizado para contextualizar historicamente as
redugdes polinomiais, técnica central aplicada neste artigo,
bem como para situar o Hitting Set no panorama dos
problemas intratdveis.

No eixo de aplicagdes, resultados como os de Gainer-
Dewar e Vera-Licona [5] e de Haus et al. [6] ilustram o uso
de hitting sets na anélise de redes bioldgicas e em ambientes
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de alto desempenho, o que contribui para motivar o estudo
do problema junto a estudantes da drea de computagdo e a
visdo da aplicabilidade no tom pedagdgico. Ao mostrar que
a mesma estrutura combinatdria aparece em contextos atuais
de pesquisa, esses trabalhos ajudam a conectar o contetido
tedrico da disciplina com problemas concretos de interesse
cientifico e tecnoldgico.

Os trabalhos de Chvatal [7], Ammann e Offutt [8] trazem
abordagens que alimentam a discussdo de aplicabilidade
pratica. Chvatal discute heuristicas gulosas como forma
de contornar a intratabilidade em problemas de cobertura,
enquanto Ammann e Offutt conectam a teoria abstrata a
préitica de testes de software, justificando a relevancia do
Hitting Set para a formacdo de futuros profissionais.

Do ponto de vista pedagdgico, o artigo de Lassance,
Bianchini e Santos [3], que descreve o “Ciclo de Sem-
indrios em Teoria da Computacdo”, serviu como referéncia
metodoldgica direta. Dessa experiéncia, foi adotada a
ideia de decompor a prova em ‘“Problema Atacado” (Vertex
Cover) e “Problema Alvo” (Hitting Set), bem como a
&nfase na construcio de recursos visuais e exemplos guiados
como suporte a aprendizagem em disciplinas introdutdrias.
Em complemento, trabalhos que exploram o uso de
visualizacdes, animacdes e ferramentas interativas para o
ensino de NP-Completude, indicam uma tendéncia recente
de tornar as reducdes mais acessiveis por meio de abordagens
ativas e multimodais, Crescenz e Marchetti [9, 10].

Em conjunto, essas referéncias ndo apenas sustentam
a prova tedrica apresentada nas secdes seguintes mas
abordam de maneira recente, ¢ fundamentam a escolha
de uma abordagem fortemente didética, alinhada com
préticas contemporaneas de ensino de complexidade e com
aplicacdes atuais do problema de Hitting Set.

IV. DESCRICAO DO PROBLEMA

O Hitting Set € um dos problemas mais dinamicos na teoria
da complexidade, justamente pela sua objetividade que serve
como um bom drive de verificacdo entre problemas tratveis
e intratidveis. Sua classificagdo como NP-Completo foi
estabelecida originalmente por Richard Karp em sua lista
seminal de 21 problemas [1], devido a sua equivaléncia direta
com o problema Set Cover. Posteriormente, Garey e Johnson
[2] consolidaram sua importancia como um problema ilustre
para provas de reducdo, dada a sua estrutura combinatéria
limpa e versatil.

Para compreender a natureza deste problema, € essencial
distinguir inicialmente entre as versdes de otimizagdo e
decisdo. Em sua forma natural, o Hitting Set € um
problema de otimizacdo que busca responder: “Qual é o
menor nimero de elementos necessdrios para atingir todos
os subconjuntos?”. No entanto, para a classificacio na classe
NP, utilizamos a versdo de decisdo, que impde um limite
superior k. A questdo central torna-se: “E possivel atingir
todos os conjuntos utilizando no maximo k elementos?”.

Formalmente, seguindo a notagdo proposta por Garey
e Johnson [2], seja U um conjunto finito, chamado de
universo, e seja S = {S1,52,...,S,} uma colecdo finita de
subconjuntos de U, isto é, S; C U para todo 1 <i < m. Seja
ainda k € N um inteiro ndo negativo. O problema HITTING
SET na forma de decisdo é definido da seguinte maneira:
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TABELA 1: INTRATABILIDADE: COMPARACAO DO NUMERO DE
OPERACOES NECESSARIAS CONFORME A ENTRADA 1 CRESCE.

Entrada  Polinomial ~ Exponencial
() (n?) 2"
10 100 1.024
30 900 ~ 1 bilhdo
50 2.500 ~ 100

100 10.000 ~ 100

Um subconjunto H C U que satisfaz H N S; # 0 para todo
S; € § é chamado de hitting set (ou conjunto atingidor) para a
colecdo S. Assim, o objetivo do problema € decidir se existe
um hitting set de tamanho no maximo k. Nesta notagdo, U
representa o conjunto de todos os elementos disponiveis, S é
a familia de subconjuntos que devem ser “atingidos”, H é o
conjunto solucdo candidato e k € o limite maximo permitido
para o tamanho de H.

A complexidade computacional inerente a esta defini¢do
impde desafios praticos severos. Para encontrar a solucdo
com exatiddo, a abordagem mais intuitiva € a chamada Forga
Bruta. O conceito é simples: o computador testa todas
as combinacgdes possiveis de elementos para ver qual é a
menor que funciona. E como tentar abrir um cadeado de
segredo testando todas as senhas, uma por uma: 000, 001,
002... Embora a For¢a Bruta seja correta, ela € extremamente
lenta por sua natureza combinatéria. Dado um universo U
com 7z elementos, o nimero total de subconjuntos possiveis
que podem ser formados é 2" (incluindo o conjunto vazio).
O algoritmo precisa, essencialmente, percorrer todas as 2"
possibilidades, ou pelo menos um grande subconjunto delas,
para encontrar a solucdo 6tima. O ndimero de combinagdes
cresce exponencialmente (2"), tornando a resolucéo invidvel
para qualquer instincia que ndo seja muito pequena [2].
Dessa forma, a Tabela 1 ilustra como esse tempo de
execucdo aumenta rapidamente, por meio da comparacio
do nimero de operacdes necessdrias conforme a entrada
cresce, baseando-se em andlises assintéticas classicas [4]. A
poténcia 2" aparece porque, para cada elemento do universo
U com n elementos, hd duas possibilidades independentes:
ou ele entra no subconjunto H ou nio entra.

Diante da impossibilidade de verificar todas as opg¢des,
pois o nimero de combinag¢des cresce de forma exponencial,
como ilustrado na Tabela 1, cientistas da computacio
recorrem a algoritmos de aproximagdo [7]. A ideia € aceitar
abrir mao da garantia de solucdo 6tima em troca de um
algoritmo que rode em tempo polinomial e produza solucdes
“boas o suficiente” na pratica.

De forma explicativa e alinhada a metodologia de ensino
proposta por Lassance, Bianchini e Santos [3], adotamos
aqui uma estratégia passo a passo voltada ao entendimento
dos estudantes. A ideia é construir a solucdo de forma
interativa, sempre observando a instincia em um quadro ou
diagrama: em cada passo, o aluno identifica quais conjuntos
ainda ndo foram atingidos e escolhe um elemento que ajude
a cobrir os casos restantes, atualizando o desenho a cada
escolha.

Do ponto de vista algoritmico, essa construgdo iterativa
pode ser vista como uma versdo simplificada de uma
abordagem gulosa cldssica [7]: a cada passo, escolhe-se
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TABELA 2: COMPARACAO ENTRE ABORDAGENS PARA O
HITTING SET. (n= |U|, ASSUMINDO m &~ n PARA

SIMPLIFICACAO).
. Complexidade Qualidade da
Abordagem de Tempo Solucdo
Enumerac@o Completa 0(2,,) Exata (6tima, mas
(Forca Bruta) invidvel para n grande)
Construgdo Iterativa 0(112) Em geral ndo 6tima, mas

Orientada (passo a passo) utilizdvel na pratica

um elemento que contribui para cobrir muitos conjuntos
ainda ndo atingidos. Esse tipo de estratégia ndo garante,
em geral, a melhor solucdo possivel (ao contrario da Forga
Bruta, que é exata porém invidvel para entradas grandes
[2]), mas apresenta duas vantagens fundamentais: (i) seu
tempo de execugdo € polinomial, o que a torna utilizdvel
em instincias reais, e (ii) existem resultados tedricos que
limitam qudo pior a solucdo obtida pode ser em relacdo a
solucdo 6tima [7]. Para fins de andlise didatica e comparacio
de crescimento, assumimos aqui um cendrio onde o nimero
de subconjuntos m € proporcional ao tamanho do universo n,
permitindo expressar a complexidade apenas em fung¢do de 7.
A Tabela 2 resume esse contraste entre a exatiddo da Forga
Bruta e a praticidade das abordagens iterativas.

Contudo, em cendrios industriais onde a exatiddo é inego-
cidvel (como no diagnéstico médico ou em configuracdes
de seguranca critica), depender apenas de aproximacgdes
pode ser insuficiente. Para esses casos, a industria recorre
a Complexidade Parametrizada (FPT - Fixed-Parameter
Tractability). Nesta abordagem, a complexidade é analisada
em funcdo de dois valores: o tamanho da entrada n e um
parametro fixo k — que, neste problema, corresponde ao
tamanho da solugdo buscada. A estratégia é confinar a
“explosdo combinatdria” exclusivamente a esse parametro k,
mantendo o tempo polinomial em relagdo a n. Algoritmos
FPT com complexidade do tipo O(2* - n) exemplificam bem
essa vantagem: considere uma base de dados com n =
1.000 elementos onde buscamos um subconjunto de tamanho
k = 10. Enquanto a abordagem FPT exigiria apenas =~
10% operagdes, sendo resolvida em cerca de 1 milissegundo
(supondo 10° operagdes/s), a forca bruta (2) exigiria 2!:000
operagdes, o que levaria um tempo superior a idade do
universo para ser concluido. Essa abordagem permite lidar
com a intratabilidade de forma cirtirgica em instancias reais,
sem sacrificar a precisdo dos resultados [11].

Apesar da dificuldade geral, existem excecgdes interes-
santes. Se restringirmos a instdncia de modo que cada
subconjunto em S tenha tamanho méximo 2 (isto é, |S;| <
2 para todo S; € §), o problema torna-se idéntico ao
Vertex Cover, que, apesar de ainda ser NP-Completo,
permite andlises mais detalhadas e solugdes aproximadas
bem estudadas em questdo literdria.

Para visualizar a definicdo formal na prética, considere
a instancia apresentada na Figura 2. Neste exemplo,
temos o universo U = {1,2,3,4,5} e a colecio S =
{{1,2,3},{2,4},{3,4},{4,5}} com k = 2. A resposta é
afirmativa, pois o conjunto H = {2,4} possui tamanho 2
e intersecta todos os subconjuntos de S. Os elementos da
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S1={1,2, 3}

S2={4, 5

Figura 2: Representacdo visual de S, no qual H = {2,4} é Hirting
Set.

solugdo H = {2,4} estdo destacados em vermelho; note
que cada elipse (conjunto) contém pelo menos um elemento
vermelho.

Apesar da dificuldade geral, existem excecdes interes-
santes. Se restringirmos a instincia de modo que cada
subconjunto em S tenha tamanho méximo 2 (isto é, |S;| <
2 para todo S; € §), o problema torna-se idéntico ao
Vertex Cover, que, apesar de ainda ser NP-Completo,
permite andlises mais detalhadas e solugdes aproximadas
bem estudadas na literatura.

Para visualizar a definicdo formal na pratica, considere a
instancia apresentada na Figura 2. Neste exemplo, temos o
universo U = {1,2,3,4,5} eacolecdo S = {{1,2,3},{4,5}}
com k = 2. A resposta é afirmativa, pois o conjunto H =
{2,4} possui tamanho 2 e intersecta todos os subconjuntos
de S. Os elementos da solugdo H = {2,4} estdo destacados
em vermelho; note que cada elipse (conjunto) contém pelo
menos um elemento vermelho.

Para facilitar a intui¢@o sobre a complexidade combinat6-
ria, propomos uma analogia original denominada “O Dilema
dos Observadores”. A ideia é traduzir a defini¢do formal do
Hitting Set para uma narrativa concreta, em que os elementos
do universo e os subconjuntos ganham interpretagdo no
mundo real. Essa analogia € inspirada no classico problema
de Crew Scheduling (Escalonamento de Tripulacdes), citado
por Garey e Johnson [2] como uma aplicagdo canodnica de
problemas de cobertura de conjuntos.

“Uma equipe de bidlogos precisa confirmar a
presenca de 5 espécies raras de pdssaros (S| a
S5) em uma reserva. Eles tém 10 observadores
disponiveis. Cada observador é especialista em
identificar um subconjunto diferente de espécies.
A equipe tem or¢amento para contratar no maximo
k observadores. A pergunta é: ¢é possivel formar
um time com < k pessoas que identifique todas as
espécies?”

Nessa analogia, o conjunto de observadores é o universo
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Arara Tucano
7 - N e - N
'\Paulol '\ Bia !
/ /
Solucao
H = {Ana,Rui}

Coruja

Figura 3: Ana cobre Arara e Tucano; Rui cobre a Coruja. O
envelope verde destaca o conjunto solu¢do H = {Ana,Rui} .

U e cada espécie define um subconjunto S; de quem pode
avistd-la. Um conjunto de observadores contratados ¢ um
Hitting Set. A Figura 3 ilustra uma instincia desse dilema.

A personagem Ana (em vermelho) é uma generalista que
cobre duas espécies (Arara e Tucano). Porém, ao escolhé-
la, ainda precisamos cobrir a Coruja, que s6 € vista pelo
Rui. Assim, uma solugdo possivel seria o time {Ana,Rui}
(tamanho 2). Outra opg¢do seria ignorar a Ana e contratar
apenas especialistas dedicados: {Paulo,Bia,Rui} (tamanho
3).

O “dilema” computacional € que ndo existe uma regra
simples (como “sempre escolha quem cobre mais”) que
garanta a melhor solu¢io em todos os casos. O computador
precisa verificar as diversas combinagdes (Generalistas
vs. Especialistas) para garantir que o orcamento k seja
respeitado.

Além do interesse tedrico, o Hitting Set modela desafios
reais onde a eficiéncia € critica. Na bioinformaética, é
aplicado na selecdo de marcadores genéticos [1]. Na
engenharia de software, € utilizado para minimizar suites de
teste [8]. Como o problema é NP-Completo, a inviabilidade
da forca bruta valida o uso das heuristicas de aproximagio
como a abordagem padrdo na industria.

Essa analogia faz sentido em relacdo ao problema
de Hitting Set porque traduz, quase literalmente, cada
componente da definicdo formal para elementos intuitivos
da histdria, permitindo ao estudante “ver” o problema em
vez de apenas manipuld-lo simbolicamente. Do ponto de
vista matemadtico, o universo U do Hitting Set corresponde
ao conjunto de observadores disponiveis, enquanto cada
subconjunto S; € § € interpretado como o grupo de
observadores capazes de identificar a espécie i. Um hitting
set H C U é um conjunto com elementos que intersecta
todos os S;; na analogia, isso significa escolher um time de
observadores tal que, para cada espécie rara, pelo menos
um membro do time consiga identificd-la. O parametro
k que limita o tamanho de H € modelado diretamente
pelo orcamento maximo de observadores que podem ser
contratados.
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Além de respeitar essa correspondéncia estrutural, o
dilema também ajuda a construir intuicdo sobre a comple-
xidade do problema. Por um lado, evidencia o cariter
combinatério: hd muitas formas possiveis de escolher
subconjuntos de observadores, e nem todas cobrem todas
as espécies, o que espelha o grande espaco de solucdes
candidatas no Hitting Set.  Por outro lado, ilustra o
perigo de decisdes puramente locais: escolher a observadora
“generalista” Ana parece uma boa escolha quando se olha
apenas para o nimero de espécies cobertas, mas nio resolve
o caso da Coruja, exigindo a presenga do especialista Rui.
Dessa forma, a narrativa mostra que a melhor decisdo local
nem sempre leva a melhor solucdo global, um ponto central
em problemas NP-Dificeis.

E imperativo, contudo, delimitar o escopo desta analogia
ludica para evitar simplificagdes excessivas. O “Dilema dos
Observadores” atua estritamente como um facilitador para
a compreensdo do enunciado e das restricdes do problema,
ndo substituindo a formalizagdo matematica necessaria para
a andlise de complexidade. Em cendrios cotidianos ou
administrativos, como o descrito na narrativa, a intuicdo
humana frequentemente encontra padrdes que facilitam a
resolucdo. No entanto, a classificacio de NP-Completude
lida com instincias arbitrarias de “pior caso”, onde tais
padrdes intuitivos inexistem ou sdo enganosos. Portanto,
a analogia serve como porta de entrada cognitiva, mas o
rigor algébrico — detalhado na demonstra¢do da Secdo V
— permanece insubstituivel para a validacdo cientifica da
intratabilidade.

Em sintese, o “Dilema dos Observadores” funciona como
um modelo mental que o aluno pode reutilizar nas secdes
seguintes: sempre que se deparar com a notacdo U, S, H ¢ k,
pode lembrar de observadores, espécies e orgcamento, 0 que
reduz a carga cognitiva e facilita a compreensio das provas
formais.

V. DEMONSTRACAO E CONTRIBUICOES TEC-
NICAS

Esta secdo apresenta a sistematizacdo da prova de NP-
Completude do Hitting Set. Diferentemente dos manuais
técnicos que priorizam a concisdo, optamos aqui por uma
abordagem expandida, detalhando os passos ldgicos que
frequentemente sdo omitidos na literatura especializada [2].

Para classificar formalmente um problema como NP-
Completo, € necessdrio satisfazer simultaneamente duas
condigdes: provar que HS € NP, e que HS € NP-Dificil.
Essas provas serdo feitas a seguir.

Lema 1. O problema HS pertence a N'P.

Proof. Seguindo esse fluxo 1égico, o primeiro passo é
demonstrar que o problema pertence a classe N'P. Isso
exige a existéncia de um algoritmo que, dada uma solucio
candidata (certificado), consiga verificar sua validade em
tempo eficiente, conforme a defini¢do formal de verificadores
polinomiais estabelecida por Sipser [4]. No contexto do
Hitting Set, considere uma instancia definida por um universo
de elementos U, uma colecdo S de subconjuntos de U e um
inteiro k [2]. O certificado é um subconjunto candidato H C
U. O algoritmo verificador recebe a instincia (U,S,k) e o
certificado H, respondendo “Sim” apenas se duas condi¢des
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forem satisfeitas: (1) o tamanho de H respeita o limite k
(ie., |H| <k); e (2) H intersecta todos os subconjuntos
de S. Abaixo apresentamos o algoritmo que realiza essa
verificagao:
Algoritmo Verificador (U, S, H, k)
Inicio
Se (tamanho (H) > k)
Retorne Falso;
Fim-Se

entdo

Para cada §; em § faga
Verifica se a intersegdo é vazia
Se (HN §; == 0) entado

Retorne Falso;

Fim-Se

Fim-Para

Retorne Verdadeiro;

Fim

Para realizar a andlise de eficiéncia deste algoritmo
(tecnicamente chamada de andlise assintdtica [4]), definimos
n como o tamanho total da entrada recebida pelo algoritmo
(a soma dos tamanhos de U, S, H e a representacdo de
k). E ficil analisar que a verificagio de tamanho é uma
operagdo linear O(n), pois, no pior caso, o algoritmo precisa
percorrer a lista de elementos de H para contd-los, e o
tamanho de H nunca excede o tamanho total da entrada n. J&
a Verificacdo de Cobertura € a etapa dominante: sua estrutura
de repeti¢do obriga a comparagio dos elementos de H com os
de cada subconjunto em S, resultando em uma complexidade
quadrética O(n?). Como n? é um polindmio, garantimos que
a verificacdo € eficiente.

Desta forma, no pior cendrio possivel, essa estrutura
faz o algoritmo comparar sistematicamente os elementos,
resultando em um ndmero total de operag¢des proporcional ao
produto m x n (onde n € o tamanho do universo). Em termos
de complexidade, isso é representado pela notagdo O(nz),
indicando que o tempo cresce quadraticamente em relacdo
ao tamanho da entrada [4]. Como uma fun¢do quadritica é
um polindmio (e ndo uma exponencial como 2"), garantimos
que a verificacdo é computacionalmente vidvel, confirmando
assim que o Hitting Set pertence a classe NP [2].

O

Uma vez estabelecida a NP-Pertinéncia, o préximo
passo do nicleo da prova reside na demonstracio de
NP-Dificuldade. A estratégia utilizada é a redugdo
polinomial, onde transformamos instancias de um problema
conhecido como NP-Dificil (Problema Alvo) em instancias
do problema que queremos classificar (Problema Atacado).
Para este artigo, reduziremos o Vertex Cover ao Hitting Set
(VC <, HS).

Lema 2. O problema HS é NP-Dificil.

Proof. Com o problema de partida formalmente definido,
passamos a construcdo da redugdo. O objetivo desta etapa
€ demonstrar um algoritmo que transforme, em tempo
polinomial, qualquer instincia de Vertex Cover em uma
instancia equivalente de Hitting Set [1]. Essa transformacio
deve garantir que a estrutura topolégica do grafo seja
preservada na forma de conjuntos, de modo que a existéncia
de uma solucdo em um problema implique diretamente a
existéncia de solucao no outro [4].
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CAM

Problema Alvo: Vertex Cover
(Cobrir arestas com vértices)
G = (V,E)

Redugio polinomial (<)

~
Problema Atacado: Hitting Set
( conjuntos com elementos)
U=V, S=F

Figura 4: Esquema da redugdo: transformamos a estrutura do
grafo (Atacado) em uma estrutura de conjuntos (Alvo).

Seguindo este raciocinio, no Vertex Cover devemos
garantir que cada aresta seja coberta por um vértice. No
Hitting Set, a obrigacdo € garantir que cada subconjunto seja
interceptado por um elemento. Portanto, a estratégia consiste
em converter cada aresta (que conecta dois vértices) em
um subconjunto (contendo dois elementos) [2]. O esquema
conceitual dessa estratégia é apresentado na Figura 4.

E fundamental observar que a reducio proposta realiza
uma traducdo da estrutura topoldgica do grafo para uma
estrutura combinatdéria de conjuntos. Neste contexto, a
estrutura combinatdria refere-se a organiza¢do de elemen-
tos baseada estritamente em relacdes de pertinéncia e
agrupamento, abstraindo qualquer no¢do de conectividade
espacial ou adjacéncia visual tipica dos grafos. A relacdo
de adjacéncia entre vértices, representada pelas arestas, €
remapeada para uma relacio de inclusdo em subconjuntos.

Desta maneira, a restricdo topoldgica de “cobrir uma
aresta” (garantir que uma conexio seja vigiada) é refor-
mulada como a necessidade algébrica de “interceptar um
subconjunto” (garantir que um grupo contenha um elemento
selecionado). O mapeamento € definido da seguinte maneira:
o universo U € constituido pelos vértices de V; a colegdo S é
formada convertendo cada aresta {u,v} em um subconjunto
contendo exatamente esses vértices; e o pardmetro de
otimizagdo k’ preserva seu valor original (k' = k). A Figura
5 ilustra essa transformagdo por meio da conversao da aresta
{1,2} no subconjunto S; = {1,2}.

A corretude desta reducdo depende da prova de que
a instdncia construida preserva a resposta da original.
Demonstramos isso através de duas proposi¢des:

Proposicao 1 (Ida =-): Se G possui um Vertex Cover de
tamanho k, entdo S possui um Hitting Set de tamanho &.

Seja C C V o Vertex Cover. Escolhemos H = C. Para
qualquer conjunto S; € S, sabemos pela constru¢cdo que ele
corresponde a uma aresta {u,v} € E. Como C cobre todas
as arestas, ele deve conter u ou v. Logo, H contém u ou v,
interceptando S;. Portanto, H é¢ um Hitting Set vélido.

Proposicao 2 (Volta <): Se S possui um Hitting Set de
tamanho k, entdo G possui um Vertex Cover de tamanho k.

Seja H C U o Hitting Set.  Escolhemos C = H.
Para qualquer aresta e = {u,v} € E, existe um conjunto
correspondente S, = {u,v} em S. Como H atinge todos os
conjuntos, ele deve conter # ou v. Logo, C contém uma
extremidade da aresta e. Portanto, C cobre todas as arestas
de G.

A Figura 6 ilustra a equivaléncia légica. No caso
mostrado, a aresta {1,2} € coberta no Vertex Cover pelo
vértice 1 (destacado em vermelho). Na construgdo do Hitting
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No Grafo (Vertex Cover)

Aresta {1,2}
OEIERE

(Relagdo de Adjacéncia)

Parametro k

Conservado:
K=k=2

Transformacgdo

(_

Na Colecio (Hitting Set) /'
Subconjunto S; = {1,2} o

o @

(Relagdo de Pertinéncia)

Figura 5: Visualizacdo da Construgdo: A aresta conectando 1 e 2
no grafo é convertida em um conjunto S; = {1,2}.

Vertex Cover

v" Coberta

i

IEquivaléncia (=)

Hitting Set

@ @

Figura 6: Cobrir a aresta {1,2} com o vértice 1 (vermelho)
corresponde a atingir o conjunto {1,2} com o elemento 1.

v’ Atingido

Set, o conjunto correspondente S, = {1,2} é atingido pelo
mesmo elemento 1, preservando a equivaléncia entre as duas
estruturas.

Desta forma, a partir das provas demonstradas da
Proposicao 1 e Proposicao 2, podemos concluir que HS €
NP-Dificil.

O

Lema 3. O problema HS é NP-Completo.

Proof. Para demonstrar que um problema ¢ NP-Completo,
é preciso demonstrar que ele pertenca simultaneamente as
classes NP e NP-Dificil. Essas demonstragdes foram feitas
e provadas respectivamente no Lema 1 e Lema 2.
Desta forma, podemos concluir que o problema Hitting Set
é NP-Completo.
O

Como contribui¢do pedagégica final, € importante alertar
sobre uma armadilha comum no estudo de redugdes: a
direcdo da prova. Estudantes frequentemente tentam reduzir
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Figura 7: ANTES (Vertex Cover): O grafo de entrada com k = 3.
Os vértices em vermelho {2, 3,4} cobrem todas as arestas.

Universo: U ={1,2,3,4,5}

Colecao S (baseada nas arestas):
{1,2},{1,3},{2,3},
{2,5},{3,4},{4,5}

Solu¢io Mapeada:
H=1{2,3,4}

Figura 8: DEPOIS (Hitting Set): A instancia resultante. O
conjunto H = {2,3,4} intercepta todos os subconjuntos listados.

0 problema novo para o problema conhecido (HS <, VO).
Isso provaria apenas que o HS é “ficil” o suficiente para
ser resolvido pelo VC, mas ndo que ele é “dificil”. A prova
de NP-Dificuldade exige o oposto: mostrar que o problema
novo € capaz de simular qualquer instancia do problema

dificil conhecido (VC <, HS).

VI. RESULTADOS E REFLEXOES

A elaborac@o deste artigo permitiu consolidar o entendi-
mento sobre a hierarquia de complexidade e as técnicas de
reducdo polinomial. Mais do que a demonstracao formal, o
principal produto deste trabalho € a sistematizag¢do didatica
apresentada, que busca preencher lacunas de compreensio
comuns em estudantes iniciantes. A visualizacdo do
mapeamento entre instdncias mostrou-se uma ferramenta
poderosa para tangibilizar a abstrag@o algébrica.

Uma reflexdo critica sobre a metodologia adotada revela
que a escolha do Vertex Cover como problema de partida
(Problema Atacado) foi determinante para a clareza da
exposicdo. Embora a literatura cldssica frequentemente
utilize redugdes a partir de problemas 16gicos como o 3-
SAT, essa abordagem exige que o estudante transite entre o
dominio da légica booleana e a teoria dos conjuntos, o que
adiciona uma carga cognitiva extra. Ao optarmos por uma
reducdo grafo-para-conjunto (VC <, HS), mantivemos a
natureza visual do problema, permitindo que a transformacao
seja verificada "a olho nu", como ilustrado na sequéncia da
Figura 7 e Figura 8.

A construcdo dessas contribui¢cdes pedagdgicas foi o
foco central. Em vez de presumir conhecimento prévio,
dedicamos as segdes iniciais a explicar termos essenciais
utilizando analogias. Um dos pontos altos foi o uso do
“Dilema dos Observadores” para explicar os fundamentos
tedricos: utilizamos essa analogia para concretizar que
verificar uma solugd@o (conferir a equipe contratada) € rapido,
mas encontrar a solu¢do 6tima (testar todas as combinagdes)
¢é exponencialmente dificil. Essa distin¢do € crucial para que
o estudante compreenda a natureza da classe NP ndo como
uma medida de "impossibilidade", mas como uma medida de
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"custo de busca".

Ainda sobre a estratégia ludica, € pertinente observar que
o “Dilema dos Observadores” também serve para ilustrar
as limitacdes das abordagens intuitivas. Em sala de aula,
é comum que alunos sugiram algoritmos gulosos (como
contratar sempre a pessoa mais versatil) como solucdo geral.
A modelagem do problema permitiu demonstrar que, em
cendrios de complexidade NP-Completa, a intui¢do local
falha diante da necessidade de uma otimizacdo global,
validando a necessidade de rigor matemdtico na andlise de
algoritmos.

No entanto, o processo de elabora¢do deste material ndo
foi isento de dificuldades. O maior desafio encontrado nio
foi a complexidade técnica da prova em si — pois a reducdo
de Vertex Cover é direta— mas sim o desafio de transposicéo
didatica: explicar os fundamentos sem recorrer a jargdes
herméticos que afastam o leitor iniciante. A estratégia
adotada de explicar cada conceito técnico (como a andlise
assintdtica) imediatamente antes de sua aplicacdo mostrou-
se essencial para manter a clareza e a acessibilidade do texto.

Quanto a aplicabilidade académica, este trabalho foi
feito para servir como um material complementar para
futuros alunos da disciplina de Teoria da Computagdo.
Acreditamos que a exposi¢do visual da redugdo e a discussio
sobre as nuances entre decis@o e otimizagdo oferecem um
ponto de entrada mais suave para o tema. Tanto este
artigo quanto as referéncias discutidas podem ser usados
como um guia introdutdrio e acessivel para quem precisa
entender como uma prova de NP-Completude € estruturada
na prética, cumprindo o objetivo de facilitar o aprendizado e
desmistificar a teoria.

VII. CONCLUSAO

A elaboracdo deste estudo permitiu atingir o objetivo
principal de demonstrar a NP-Completude do problema
Hitting Set de forma pedagdgica seguindo o rigor exigido
pela literatura cldssica. A prova foi estruturada em duas
etapas fundamentais: a verificacdo de pertinéncia a classe
NP, realizada através da analise de um algoritmo verificador
polinomial, e a demonstracdo de NP-Dificuldade, executada
por meio da reducdo candnica a partir do Vertex Cover.
Este resultado tedrico ndo é apenas um rétulo classificatorio;
ele carrega uma implicagdo pratica profunda: a menos que
P = NP, ndo existem algoritmos eficientes para resolver o
Hitting Set de forma exata em todos os casos, validando a
necessidade de abordagens aproximadas.

Do ponto de vista pedagdgico, o material foi aplicado
em uma turma de Teoria da Computagdo, envolvendo
aproximadamente 20 estudantes de graduagdo.! Em uma
atividade de semindrio, os alunos foram convidados a
reconstruir a redugdo VC <, HS utilizando os diagramas
apresentados e a reproducdo guiada das etapas da prova,
antes do contato direto com os livros-texto formais. Nessa
dinamica, as interacdes e discussdes em sala facilitaram
o compartilhamento de diferentes formas de explicar a
reducdo, em uma linguagem mais préxima dos préprios estu-
dantes, mediadas pela equipe de pesquisadores. Observou-se
que os alunos passaram a demonstrar maior seguranga para

IRelato de aplicacio didética conforme descrito na secio de Resultados
e Reflexdes.
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Problema Alvo: Redugdo <, Problema Atacado:
Vertex Cover Hitting Set
Explica
Facilita Modela
Metodologia: Aplicagdes Reais:

Reducio Visual Bioinformatica

Figura 9: Mapa sintese da abordagem: A metodologia visual
conecta o problema base ao alvo.

explicar, com suas préprias palavras, o papel do certificado
em NP e o encadeamento l6gico da redugdo, apoiados
por estratégias visuais organizadas em slides interativos,
com tempo de exposicdo limitado para evitar sobrecarga
cognitiva.  Ainda que esses registros nao constituam
um estudo quantitativo rigoroso, eles fornecem indicios
qualitativos de que a abordagem visual e narrativa contribuiu
para reduzir a sensagdo de “salto conceitual” frequentemente
associada as provas de NP-completude [9, 10].

Para além da demonstracio matematica, o contributo
mais expressivo deste trabalho reside na sua proposta
pedagégica. Conforme as diretrizes da disciplina, buscou-se
transpor a barreira da abstra¢do que frequentemente dificulta
o aprendizado de Teoria da Computagdo. A introducio
do “Dilema dos Observadores” serviu como uma ponte
cognitiva, traduzindo a aridez da notacdo de conjuntos
para um problema tangivel de gestdo de recursos. Essa
analogia facilitou a intui¢do sobre a assimetria fundamental
da complexidade: a facilidade de verificar uma solucio
dada (auditar uma equipe contratada) em contraste com a
dificuldade de encontrar a solucdo 6tima (testar todas as
combinagdes de equipes).

Para consolidar a jornada de aprendizado proposta, a
Figura 9 apresenta um mapa conceitual que resume a
estrutura 1égica desenvolvida no artigo, conectando a teoria
de base, a prova de reducdo e as aplicacdes praticas.

Embora a sistematizacdo proposta tenha éxito em seus
objetivos didaticos, o trabalho apresenta limitagdes no seu
escopo, concentrando-se majoritariamente no aspecto tedrico
da classificagdo de complexidade. Nao foram exploradas,
nesta etapa, implementagdes computacionais de algoritmos
de aproximacgdo como a Heuristica Gulosa [7] ou algoritmos
parametrizados (FPT), que constituem a abordagem padrdo
para lidar com a intratabilidade do problema em cendarios
industriais reais [8, 1]. Adicionalmente, a reducio
restringiu-se ao caminho cldssico via Vertex Cover, sem
explorar redugdes alternativas que poderiam oferecer outras
perspectivas.

Como desdobramento natural deste estudo, trabalhos
futuros podem focar na vertente experimental, implemen-
tando e comparando o desempenho de algoritmos exatos
(para instancias pequenas) versus algoritmos aproximativos
(para instincias grandes). Outra via promissora seria o
aprofundamento em classes especiais de instincias, como
aquelas com restricdes de cardinalidade nos subconjuntos,
investigando cendrios onde o problema se torna tratdvel e
enriquecendo ainda mais o repertdrio de exemplos didaticos
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disponiveis para o ensino de Computagao.
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Resumo—Este artigo analisa a NP-completude do problema Edge Coloring através de uma cadeia de reducdio polinomial iniciada no
problema 3-Coloring. A metodologia utiliza a constru¢do de um Grafo Linha para demonstrar a pertinéncia a classe NP e estabelece a
NP-Dificuldade via reducdo do 3-SAT, baseada em Holyer. Sdo apresentadas defini¢cdes formais, contexto histérico e revisdo de trabalhos
fundamentais em teoria da complexidade computacional. O principal resultado demonstra que Edge Coloring ¢ NP-completo por meio de
um método de reducdo claro e acessivel. O trabalho oferece exemplos educacionais com ilustragcdes visuais e explicacdes passo a passo
sobre gadgets 16gicos. Este material serve como recurso de aprendizagem para auxiliar estudantes na compreensdo de redugdes polinomiais
e conceitos de NP-completude em Ciéncia da Computago.

Palavras-chave—NP-completude, Coloracao de Arestas, Colorag¢do de Vértices, Redu¢gdes Polinomiais, Complexidade Computacional

Abstract—This article examines the NP-completeness of the Edge Coloring problem through a polynomial reduction chain starting from
the 3-Coloring problem. The methodology employs a Line Graph to demonstrate membership in NP and establishes NP-Hardness via
reductions from 3-SAT, following Holyer’s construction. We present formal definitions, historical context, and a review of fundamental
works in computational complexity theory. The main result demonstrates that Edge Coloring is NP-complete using a clear and accessible
reduction method. The work provides educational examples with visual illustrations and step-by-step explanations of logical gadgets. This
material serves as a learning resource to help students understand polynomial reductions and NP-completeness concepts in computer
science courses.

Keywords—NP-completeness, Edge Coloring, Vertex Coloring, Polynomial Reductions, Computational Complexity

como o 3-Coloring (Coloracdo de Vértices com 3 cores) e
o Edge Coloring (Coloragdao de Arestas), sdo centrais. O

I. INTRODUCAO

Teoria da Computacdo investiga os limites fundamen-
tais dos algoritmos, sendo a classe dos problemas
NP-Completos o cerne dos desafios préticos e tedricos da
area. O estudo desta classe é essencial para entender a in-
tratabilidade computacional, orientando o desenvolvimento
de heuristicas e algoritmos de aproximagdo para problemas
cruciais em otimizacao e inteligéncia artificial [1].
Nesse contexto, os problemas de coloracdo de grafos,

Dados de contato: Ana Jilia Campos Vieira, campos.ana@uft.edu.br
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3-Coloring consiste em determinar se os vértices de um grafo
podem ser coloridos com trés cores de forma que vértices
adjacentes ndo compartilhem a mesma cor. Historicamente,
ele é um dos primeiros problemas a ter sua NP-completude
provada por reducdo do SAT (Satisfiability) [2]. J4 o Edge
Coloring questiona se as arestas de um grafo podem ser
coloridas com k cores de modo que arestas adjacentes (que
compartilham um vértice) tenham cores distintas.

Ambos os problemas, apesar de conceitualmente distintos,
compartilham uma estrutura computacional equivalente.
Enquanto o 3-Coloring possui aplicagdes cldssicas em
planejamento e alocagdo de frequéncia, o Edge Coloring é
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Figura 1: Grafo completo K3 — exemplo de grafo
nao-direcionado com 3 vértices.

fundamental em problemas de escalonamento, alocacdo de
recursos em redes e otimizagdo de tempo [3].

Este artigo retine e organiza demonstracdes presentes
na literatura sobre a NP-completude do Edge Coloring,
com foco na clareza conceitual. A reduc@o polinomial de
3-Coloring <, Edge Coloring € apresentada por meio do
conceito de Grafo Linha, destacando os elementos centrais
da transformag@o. O objetivo é oferecer um material que
apoie o estudo das técnicas de redugdo e sua importancia
dentro da Teoria da Computagao.

O trabalho expde a prova e discute o raciocinio envolvido
na construcdo, enfatizando aspectos que contribuem para o
ensino de complexidade computacional. As secdes seguintes
apresentam os fundamentos necessdrios, a descricdo da
reducdo e as reflexdes que surgem a partir dessa andlise.

I1. PRELIMINARES

Comecamos revisitando alguns conceitos fundamentais
sobre grafos e problemas de coloracdo, essenciais para
compreender o desenvolvimento deste trabalho.

Um Grafo Ndo-Direcionado ¢é definido como uma
estrutura G = (V,E), onde V representa um conjunto finito
e ndo vazio de vértices, e E C {(u,v) |u,v € V,u #v} éo
conjunto de arestas que conectam esses vértices. Neste tipo
de grafo, as arestas ndo possuem orienta¢do, o que significa
que a aresta (u,v) é idéntica a aresta (v,u), estabelecendo
uma relacdo simétrica entre os vértices. Grafos ndo-
direcionados sdo particularmente uteis para modelar relagdes
mutuas, como amizades em redes sociais, conexdes entre
computadores em uma rede ou relagdes de adjacéncia em
mapas.

Dentro dessa estrutura, dizemos que dois vértices sdo
adjacentes se existe uma aresta conectando-os diretamente.
Esta relacdo de adjacéncia é fundamental para definir a
estrutura do grafo e suas propriedades. No grafo Kj
(Figura 1), todos os vértices sdo adjacentes entre si,
formando um tridngulo completo onde cada vértice possui
grau 2 (duas conexdes). O conjunto de vértices adjacentes a
um vértice v é denominado sua vizinhanga. A adjacéncia é
uma relacio bindria que determina a conectividade direta no
grafo, sendo essencial para definir caminhos, ciclos e outras
propriedades estruturais.

Da mesma forma, duas arestas sdo incidentes quando
compartilham um vértice em comum. Esta relacdo de
incidéncia conecta o conceito de vértices com o conceito
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Figura 2: Grafo exemplo para 3-Coloring — estrutura com
restri¢des de adjacéncia que permite coloragdo com 3 cores.

de arestas, criando a estrutura combinatéria do grafo. No
exemplo da Figura 1, qualquer par de arestas entre e,, e, €
e, compartilha um vértice, o que as torna incidentes entre si.
Uma aresta ¢ dita incidente a um vértice quando este vértice
€ uma de suas extremidades. O grau de um vértice € definido
como o ndmero de arestas incidentes a ele, sendo esta uma
medida fundamental da centralidade do vértice no grafo.

Uma coloragdo de vértices é uma atribuigcdo de cores aos
vértices de um grafo por meio de uma fungdo c: V — C,
onde C representa um conjunto finito de cores disponiveis.
A notagdo ¢(v) indica a cor atribuida ao vértice v, isto é, o
resultado da fun¢@o quando aplicada a esse vértice. Dessa
forma, cada vértice recebe exatamente uma cor, permitindo
analisar propriedades estruturais do grafo a partir dessa
atribuicdo.

Uma coloracdo é dita propria quando nenhum par de
vértices adjacentes compartilha a mesma cor. Em termos
formais, isso significa que, para toda aresta (u,v) € E, deve
valer ¢(u) # ¢(v). A condic¢do c(u) e c(v) serem diferentes
garante que vértices conectados ndo entrem em conflito
de cor, constituindo o requisito fundamental em problemas
classicos como o 3-Coloring.

A Figura 2 apresenta um grafo simples usado para ilustrar
relagdes de adjacéncia e incidéncia em um contexto de
coloragdo. O exemplo evidencia como diferentes conexdes
afetam as possibilidades de coloragfo de vértices e de arestas.

O conceito de Grafo Linha estabelece uma dualidade
entre vértices e arestas. Dado um grafo G = (V,E), seu
grafo linha L(G) = (Vi,EL) é construido mapeando cada
aresta em E para um vértice em V, e dois vértices em
L(G) sdo adjacentes se as arestas correspondentes em G
compartilham um vértice [4]. Esta transformagdo permite
analisar propriedades das arestas do grafo original através do
estudo dos vértices do grafo linha.

No exemplo da Figura 3, o grafo linha de K3 € isomorfo
ao préprio Kz, ilustrando como a transformacgdo preserva a
estrutura de adjacéncia. Isso acontece porque, em K3, todo
par de arestas compartilha um vértice. Por exemplo, ¢, € e,
sdo adjacentes no grafo linha porque compartilhavam v, no
grafo original; o0 mesmo ocorre para os outros pares. Essa
correspondéncia direta entre incidéncia e adjacéncia € o que
torna o grafo linha uma ferramenta tio util em reducdes entre
problemas de coloracio.

No contexto de problemas de coloragao, dois se destacam:
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Figura 3: Grafo linha L(K3) — arestas do grafo original
tornam-se vértices, e a incidéncia transforma-se em adjacéncia.

BASE

TRUE FALSE

Figura 4: Gadget baseado em K3, usado para impor restricdes de
coloracdo em reducdes para 3-Coloring.

o 3-Coloring (Coloragdo de Vértices com 3 cores) e o
Edge Coloring (Coloracdo de Arestas). O primeiro é um
problema de decisdo que busca determinar se existe uma
fungéo ¢ : V — {1,2,3} tal que, para toda aresta (u,v) € E,
tenhamos c(u) # c¢(v) [3, 6]. Uma coloragdo que satisfaz esta
propriedade é chamada de coloragdo propria. A restricdo de
usar apenas trés cores torna este problema particularmente
desafiador, ja que muitos grafos exigem mais cores para uma
coloracdo propria, enquanto outros podem ser coloridos com
menos.

Os gadgets desempenham um papel central nas reducdes
polinomiais envolvendo problemas de coloracao. Um gadget
€ um pequeno subgrafo construido para impor restri¢des
locais sobre as escolhas de cor, funcionando como um
"componente 16gico" dentro de redugdes maiores. Esse
conceito aparece na técnica classica de Component Design,
frequentemente utilizada em reducdes para o problema 3-
Coloring.

O tridngulo Kz € um dos gadgets mais utilizados, pois
sua estrutura forca necessariamente trés cores distintas,
representando escolhas mutuamente exclusivas — como
valores l6gicos TRUE, FALSE e um estado base. A Figura 4
ilustra essa constru¢do didatica amplamente adotada em
reducdes cldssicas.

J4 o Edge Coloring (Figura 5) pergunta se € possivel
colorir as arestas de G usando até k cores, por meio de
uma fungdo ¢ : E — {1,2,...,k}, de forma que arestas
incidentes recebam cores diferentes. O nimero minimo de
cores necessdrias para essa coloragcdo € o indice cromdtico,
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Figura 5: Edge Coloring vélido no K3 — cada aresta recebe uma
cor distinta: e, (azul), ¢, (verde), e, (vermelho).

denotado por /(G). Este problema tem aplicagdes praticas
em escalonamento de tarefas, alocagdo de frequéncias em
redes wireless e design de torneios esportivos.

No ambito da complexidade computacional, destacamos
duas defini¢des centrais. Uma linguagem de decisdo L
pertence a classe NP-Completo se L estdi em NP e toda
linguagem em NP pode ser reduzida a L em tempo
polinomial [1, 2]. As reducdes sdo formalizadas pelo
conceito de Redugdo Polinomial, onde um problema A é
redutivel a um problema B (denotado por A <), B) se existe
uma transformacdo computdvel em tempo polinomial que
preserva respostas entre instancias dos dois problemas. Esta
no¢do de redugcdo € a base para estabelecer relacdes de
dificuldade entre problemas e para construir hierarquias de
complexidade.

A importincia das reducdes polinomiais vai além do
aspecto tedrico, pois elas fornecem informacdes sobre
a estrutura dos problemas e permitem que algoritmos
desenvolvidos para um problema sejam adaptados para
outros. No contexto educacional, compreender essas
reducdes € essencial para desenvolver uma intuicdo sobre
quais problemas sdo computacionalmente dificeis e por qué.

II1. TRABALHOS RELACIONADOS

No trabalho de Cook [2], estabeleceu-se a base da
NP-completude. Na pesquisa, mostrou-se como verificar
solugdes em tempo polinomial e construiu a primeira redugao
polinomial para o SAT. O objetivo foi entender quando
um problema permite conferir respostas em pouco tempo.
Os resultados s@o interessantes por terem aberto caminho
para Karp ampliar essa ideia, relacionando vérios problemas
cléssicos, incluindo o 3-Coloring, e mostrando como muitos
deles caem na mesma classe de complexidade.

No trabalho cléssico de Garey e Johnson [1], € detalhada a
complexidade do Graph 3-Colorability. Na obra, os autores
organizam a teoria da NP-completude e utilizam a técnica
de Component Design, que consiste em montar grafos a
partir de pegas pequenas que impdem restricdes locais.
Gadgets como o tridngulo K3 mostram como estruturas
pequenas conseguem impor escolhas de cor e controlar o
comportamento local do grafo, simulando literais e clausulas.
Os resultados s@o interessantes por padronizar as reducdes
que conectam problemas centrais da computacio.

No survey escrito por Cao e outros autores [7], podemos
notar uma visdo geral desse tema. Na pesquisa, os autores
retinem resultados sobre algoritmos, limites estruturais,
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casos especiais e questdes abertas da coloracdo de arestas.
O objetivo do survey € organizar o que jd se sabe sobre o
problema, desde técnicas simples de recoloragdo até métodos
mais atuais. Os resultados sdo interessantes por consolidar o
conhecimento disperso sobre limites superiores e conjecturas
da drea.

No trabalho de Holyer [3], surge o resultado que estrutura
a base moderna dessa drea. Na pesquisa, 0 autor apresenta
a primeira prova de NP-completude do Edge Coloring,
mostrando que o problema permanece intrativel mesmo
quando restrito a grafos cibicos. A técnica usada envolve
montar blocos que forcam escolhas de cor que se propagam
pelo grafo inteiro. Os resultados sdo interessantes por revelar
que o indice cromatico capta decisdes combinatdrias fortes e
que o problema ndo se resume a uma variacdo simples da
coloracao de vértices.

No trabalho de Basavaraju e Chandran [8], hd um
resultado importante para a coloragdo de arestas aciclica
em grafos planares. Os autores demonstram que todo
grafo planar admite tal coloragdo com A(G) + 12 cores,
superando o limite anterior de 2A(G) +29. A prova utiliza
configuracdes inevitdveis em grafos planares e trocas de
cores para evitar ciclos bicromdticos, mostrando como o
indice cromatico aciclico reflete a estrutura desses grafos.

No estudo de Galby, Lima, Paulusma e Ries [9], trabalhos
mais novos reforcam essa visdo. Na pesquisa, o objetivo
foi classificar o k-Edge Coloring para grafos H-livres,
combinando reducdes com andlise estrutural para mapear
quando o problema é polinomial.

No trabalho de Sinnamon [10], sdo propostos algoritmos
para coloragdo de arestas que buscam ser acessiveis e
eficientes. O objetivo da autora € desenvolver métodos
simples e rapidos para produzir coloragdes com d + 1 cores,
onde d é o grau maximo do grafo. A técnica utilizada se
baseia em decomposi¢c@o recursiva e ciclos de Euler para
agilizar o processo. Os resultados demonstram que é possivel
obter boas solugdes de forma prética para grafos gerais em
aplicacdes reais.

Por fim, no trabalho de Raeisi e Gholami [11], a coloracdo
de arestas € aplicada a construcdo de grafos Tanner livres
de ciclos curtos para cédigos LDPC de peso-coluna trés,
melhorando a decodificacdo em canais ruidosos. O método
utiliza algoritmos de coloracdo eficientes para garantir
propriedades aciclicas nos grafos bipartidos. Os resultados
conectam a combinatdria grifica a aplicacdes praticas em
comunicagdes digitais.

IV. DESCRICAO DO PROBLEMA

Nesta se¢do, definimos formalmente os trés problemas que
aparecem na cadeia de reducdo. A Tabela 1 apresenta
a definicdo do problema 3-SAT, a Tabela 2 descreve o
problema 3-Coloring e a Tabela 3 formaliza o problema Edge
Coloring, indicando, em cada caso, a entrada e a pergunta
associadas.
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TABELA 1: DEFINICAO DO PROBLEMA 3-SAT

3-SAT (Satisfatibilidade Booleana)

Entrada: um conjunto X de varidveis; uma colecdo C de
clausulas sobre X onde, para cada ¢ € C, a cldusula possui
exatamente 3 literais (|c| = 3).

Pergunta: Determinar se existe uma atribui¢do de valores as
varidveis em X de modo que cada cldusula em C tenha pelo
menos um literal verdadeiro.

Para fins de formalizagdo, define-se um literal como uma
varidvel booleana (x) ou sua negacao (—x). Uma cldusula
é composta pela disjuncdo légica (operador OU) desses
literais. A especificidade do problema 3-SAT reside na
estrutura rigida onde cada cldusula deve conter estritamente
trés literais, o que permite a padroniza¢do dos componentes
gréficos (gadgets) utilizados na reducio.

A Tabela 1 define o 3-SAT, que serve como o elo de
conexao fundamental nesta prova. Diferente dos problemas
de coloracdo, que lidam com estruturas gréficas, o 3-SAT
lida com légica pura. A restricdo de ter "exatamente trés
literais" € o que permite criar padrdoes geométricos fixos
(como tridngulos) nas redugdes para grafos.

TABELA 2: DEFINICAO DO PROBLEMA 3-COLORING

3-COLORACAO (3-COLORING)

Entrada: Um grafo G = (V,E).

Pergunta: Existe uma fungdo ¢ : V — {1,2,3} tal que
vértices adjacentes recebam cores distintas?

A Tabela 2 define formalmente o problema 3-Coloring.
A entrada é um grafo qualquer, e a pergunta questiona se
€ possivel colorir seus vértices usando apenas trés cores,
respeitando a regra bdsica de que vértices conectados por
uma aresta devem ter cores diferentes.

TABELA 3: DEFINICAO DO PROBLEMA EDGE COLORING

COLORACAO DE ARESTAS (EDGE COLORING)

Entrada: Um grafo G = (V,E) e um inteiro k.

Pergunta: Existe uma fungdo ¢ : E — {1,2,...,k} tal que
arestas incidentes recebam cores distintas?

A Tabela 3 define o problema Edge Coloring. Aqui,
a entrada inclui um grafo e também um nudmero k£ que
representa a quantidade de cores disponiveis. A pergunta
busca saber se podemos colorir as arestas do grafo de forma
que arestas que compartilham um vértice comum recebam
cores diferentes. Note que enquanto no 3-Coloring colorimos
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Figura 7: Ilustragdo de uma festa como analogia para o 3-SAT.

vértices, no Edge Coloring colorimos arestas, mas ambos
impdem restri¢des de adjacéncia.

Os problemas de coloragdo de grafos representam uma
classe fundamental na teoria da computagdo, com aplicagdes
que vao desde o planejamento de hordrios até a alocacdo de
recursos em sistemas distribuidos. Nesta se¢ao, descrevemos
formalmente os dois problemas centrais deste trabalho: o
3-Coloring, um problema cldssico de coloragdo de vértices,
e o Edge Coloring, seu andlogo na coloracdo de arestas.
Ambos sdo problemas de decisdo NP-completos [1, 2, 3],
mas cada um apresenta desafios proprios.

Para tornar esses conceitos mais préximos do cotidiano,
podemos imaginar o 3-Coloring como o ato de colorir
um mapa usando apenas trés cores, garantindo que paises
vizinhos nunca compartilhem a mesma cor, como ilustrado
na Figura 6.

Em relacdo ao 3-SAT, é como organizar uma festa onde
o sucesso depende de satisfazer a todos. Para isso, o
organizador deve fazer vdrias escolhas bindrias (as varidveis),
como definir se "Haverd Misica Ao Vivo?" (Sim ou Nao).
Cada convidado importante impde uma cldusula: ele sé
vem a festa se pelo menos uma de suas trés condigdes for
atendida. Por exemplo, um convidado pode exigir: "Eu vou
se tiver Musica Ao Vivo OU se o Amigo X ndo vier OU se
o Buffet for vegetariano." O desafio 3-SAT € encontrar uma
Unica combinag@o de decisdes (uma configuragdo Sim/Nao
para todos os fatores) que satisfaca a exigéncia de todos os
convidados simultaneamente. Se essa combinagio existir, a
festa pode ser realizada.Essa analogia ¢ ilustrada na Figura 7.

Ja o Edge Coloring lembra a montagem da grade de
hordrios de uma escola: arestas representam aulas e vértices
representam professores ou salas. Aulas que usam o mesmo
recurso ndo podem ocorrer no mesmo horario, e por isso
precisam de cores diferentes, conforme ilustrado na Figura 8.

Essas analogias destacam como problemas abstratos da
computagdo surgem em situacdes reais.
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Figura 8: Grade escolar ilustrando o Edge Coloring.

V. DEMONSTRACAO E CONTRIBUICOES

Para provar que Edge Coloring é NP-Completo é necessario
demonstrar duas condigdes:

» Edge Coloring € NP
» Edge Coloring € NP-Dificil

I) Edge Coloring € NP: Para demonstrar que o problema
pertence a AP, apresentamos um certificado de tamanho
polinomial e um algoritmo verificador deterministico capaz
de validar esse certificado em tempo polinomial [12].

Dado o seguinte certificado: uma coloragdo

c:E—1,2,... k. Um verificador examina todos os
pares distintos de arestas do grafo. Para cada par (ej,e»),
o algoritmo testa se elas compartilham um vértice (sdo
incidentes) e, caso positivo, confirma que c(e;) # c(ez).
Como existem no mdximo |E|> pares de arestas para
verificar, o custo computacional é limitado por O(|E|?), o
que garante a execucdo em tempo polinomial.
II) Equivaléncia Estrutural (Grafo Linha): Uma forma
pedagégica de visualizar a pertinéncia a NP € através da
transformac@o para o Grafo Linha L(G). Essa construgdo
demonstra que o problema de Coloragdo de Arestas pode
ser modelado como um problema de Coloragdo de Vértices
(que sabemos estar em NP). A transformagio mapeia cada
aresta de G em um vértice de L(G), e as adjacéncias entre
arestas incidentes em G tornam-se arestas entre vértices
em L(G). Assim, uma colora¢do prépria das arestas de
G corresponde diretamente a uma coloracdo prépria dos
vértices de L(G). Uma vez que o Grafo Linha pode ser
construido em tempo polinomial e a colora¢do de vértices
¢ um problema bem conhecido em AP, esta equivaléncia
estrutural reforca a classificacdo do problema de Edge
Coloring como pertencente a classe N'P.

Dado um grafo G = (V,E), construimos L(G) = (V;,E})
onde:

* Vi = E (cada aresta de G torna-se um vértice em L(g))
Comgrexemplp Upsrative. & gy indilana dipaafo Ger
com vértices vy,vy,v3,v4 € arestas e, (ligando vi-12), ep
(n2-v3), e (v1-13) € e4 (v3-v4). Observa-se que as arestas e
e e4 compartilham o vértice v3, o que configura uma relacdo
de incidéncia direta. Por sua vez, ¢, também € incidente com
e, uma vez que ambas incidem em v3. Essas relagdes de
adjacéncia entre arestas no grafo original serdo representadas
como arestas no grafo linha L(G,y).

A Figura 10 mostra o grafo linha correspondente
L(Ge), onde cada aresta do grafo original torna-se um
vértice. A adjacéncia entre v, e v, reflete diretamente o
compartilhamento do vértice v3 pelas arestas e, € ey no grafo
original.
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U1

V2 U3
€b

€d
Uy
Figura 9: Grafo Base (G..)
Vg
Vp Ve
vd

Figura 10: Grafo Linha (L(G,y))

A propriedade fundamental, conforme Jensen e Toft [13],
€ que G admite uma k-colorac@o de arestas se e somente se
L(G) admite uma k-coloragdo de vértices. Esta equivaléncia
confirma que resolver Edge Coloring é redutivel a resolver
Vertex Coloring, reforgando sua pertinéncia a classe N'P.

a. Prova de Corretude da Equivaléncia

A seguir, apresenta-se a demonstracio de que G ¢é
3-aresta-colorivel se e somente se L(G) é 3-vértice-colorivel.

Direcdo 1(=): Se G é 3-aresta-colorivel, entio L(G) é
3-vértice-colorivel.

Prova: Seja ¢ : E(G) — {vermelho,azul,verde} uma
coloragdo prépria das arestas de G. Para cada aresta
e € E(G), atribuimos a cor ¢(e) ao vértice correspondente
ve € V(L(G)). Se duas arestas e, € e. sdo incidentes ao
mesmo vértice vz em G, elas possuem cores diferentes, como
ilustrado na Figura 11. Logo, os vértices v e v, em L(G),
que sdo adjacentes, receberdo cores diferentes.

Direcdo 2 (<): Se L(G) é 3-vértice-colorivel, entdo G é
3-aresta-colorivel.

Prova: Seja ¢’ : V(L(G)) — {1,2,3} uma coloragdo
prépria dos vértices de L(G), como mostrado na Figura 12.
Definimos a coloragdo das arestas de G tal que c(e) = ¢/(v,).
A preservacdo da adjacéncia garante que arestas incidentes
em G terdo cores distintas, validando a solucdo.

IIl) Edge Coloring € NP-Dificil: A demonstracdo da
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U1

U2 U3
€b

CF
Figura 11: Coloragdo de arestas em Gy

Va

Up Ve

Vd

Figura 12: Coloracdo Vilida em L(G,y)
dificuldade deste problema usa o principio da transitividade

das redugdes polinomiais. Para mostrar que Edge Coloring
¢ tdo dificil quanto o 3-Coloring, construimos uma cadeia
de reducdo em duas etapas. Primeiro, reduzimos o 3-
Coloring para o 3-SAT, transformando restri¢cdes de cores em
clausulas booleanas. Depois, reduzimos o 3-SAT para o Edge
Coloring, simulando varidveis e cldusulas com um grafo
adequado. Pela transitividade, se 3-Coloring é NP-completo,
entdo Edge Coloring é NP-dificil.

A primeira etapa consiste na reducdo polinomial
3-Coloring <, 3-SAT. Dado um grafo G = (V,E) com n
vértices, constréi-se uma férmula légica ¢ que codifica de
forma precisa as restricdes necessdrias para uma coloracio
propria de G com trés cores [1]. Para cada vértice v; € V, sdo
criadas trés varidveis booleanas: x; | (representando a cor 1),
x;2 (cor 2) e x; 3 (cor 3).

A férmula ¢ € formada pela conjuncdo de dois tipos
de cldusulas, que juntas modelam as condi¢des de uma
coloracdo prépria. A garantia de cor Unica exige que
cada vértice v; receba pelo menos uma cor, representada
pela cldusula (x;1 V xi2 Vx;3). Além disso, a restri¢do
de adjacéncia assegura que, para cada aresta (v;,v;) €
E, vértices adjacentes ndo compartilhem a mesma cor, o
que é modelado por trés cldusulas de conflito para cada
aresta: (ﬁxi,l V —|xj‘1), (ﬁxi’z V —|)Cj_’2) € (—\x,‘73 V —|Xj73).
Essas clausulas 16gicas correspondem diretamente a restricao
de exclusdo mutua representada no gadget da Figura 4,
demonstrando como condi¢des combinatérias sdo traduzidas
em restrigdes booleanas.
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Figura 13: Esquema do Gadget de Varidvel: a alternancia de cores
no ciclo simula a negagéo légica (x vs —x).

Uma vez obtida a férmula satisfativel, avangamos para
a redugdo final para Edge Coloring. Esta etapa baseia-se
na constru¢do cldssica de Ian Holyer[3], que provou ser
NP-completo determinar se o indice cromético de um grafo
cibico € 3 ou 4. A reducido converte a férmula I6gica em um
grafo cibico utilizando componentes modulares especificos,
denominados gadgets, que transportam valores de verdade
através de pares de arestas coloridas.

A construgdo utiliza duas estruturas principais que podem
ser compreendidas esquematicamente. A primeira € o
Componente de Varidvel, que funciona como um gerador de
verdade. Conforme ilustrado conceitualmente na Figura 13,
ele é constituido por um ciclo de arestas. Devido a
natureza da coloragdo de arestas, as cores devem se alternar
obrigatoriamente ao longo do ciclo. Se associarmos uma cor
ao valor "Verdadeiro" e outra ao "Falso", essa alternancia
garante a consisténcia ldgica: sempre que uma aresta
representa x, a adjacente representard —x.

O segundo elemento critico é o Componente de Cldusula,
que atua como um testador de satisfacdo. Este subgrafo
conecta-se as arestas dos ciclos das varidveis correspon-
dentes aos literais da cldusula. Sua propriedade topoldgica
fundamental, representada na Figura 14, é o bloqueio
condicional: o gadget é desenhado de tal forma que se torna
impossivel de colorir com apenas 3 cores se, ¢ somente
se, todas as suas arestas de entrada carregarem a cor
correspondente ao valor "Falso".

Dessa forma, o grafo ctibico resultante completo sé serda
3-aresta-colorivel se existir uma atribuicdo de verdade que
satisfaga a férmula 3-SAT original, evitando o conflito
nos gadgets de cldusula. Conclui-se, assim, que resolver
Edge Coloring € suficiente para resolver 3-SAT e, por
transitividade, o 3-Coloring.

Ressalta-se que o resultado em um grafo cubico fortalece
a conclusdo. Na teoria da complexidade, se um problema
€ NP-Dificil para uma classe restrita de entradas (grafos
3-regulares), ele mantém essa propriedade para o caso geral
(grafos arbitrarios), visto que a classe restrita compde um
subconjunto do problema global, conforme o principio da
restri¢do descrito por Garey e Johnson [1]. Dessa forma, a
prova de Holyer fundamenta a classificacdo do problema de
Edge Coloring como NP-Dificil.
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Entrada A
(False)

Entrada C
(False)

Entrada B
(False)

Figura 14: Légica do Gadget de Clausula: o componente falha
(ndo é colorivel) apenas se receber "Falso" em todas as entradas.

Conclusdo Geral: Por (I) e (I) demonstramos a pertinéncia
a NP. Por (II) justificamos a dificuldade via redugio
transitiva baseada em Holyer. Logo, Edge Coloring é
NP-Completo.

b. Contribuicoes Pedagdgicas

Este trabalho apresenta contribui¢des ao ensino de Teoria
da Computacdo ao esclarecer a disting@o entre equivaléncia
estrutural e reducdo de dificuldade. A utilizacdo do Grafo
Linha permite demonstrar que o problema de Coloragdo de
Arestas pode ser modelado como um problema de Coloracgio
de Vértices, 0 que comprova sua pertinéncia a classe NP
conforme as definicdes de Garey e Johnson [1]. Em
contrapartida, a prova de dificuldade exige a constru¢do de
componentes 16gicos, ou gadgets, como estabelecido por
Holyer [3], evitando a confusdo comum sobre a dire¢do das
redugdes polinomiais.

A visualizagdo da transformacdo estrutural G — L(G)
[4], complementada por representacdes visuais, facilita
a compreensdo geométrica do processo. As ilustracdes
auxiliam os estudantes a visualizar conceitos abstratos,
permitindo o entendimento das relagdes entre problemas de
coloragdo e a logica de satisfatibilidade booleana.

VI. RESULTADOS E REFLEXOES

A andlise estrutural via Grafo Linha evidencia como
problemas de coloracdo de naturezas distintas (vértices e
arestas) compartilham uma base computacional comum [4].
Esta relagdo reforgca o conceito de que problemas diferentes
podem pertencer a mesma classe de complexidade. A
equivaléncia demonstrada confirma que uma instdncia de
coloracdo de arestas possui solucdo se, e somente se, a
instancia correspondente de coloracdo de vértices no grafo
linha também for soluciondvel.

Uma reflexdo central deste estudo recai sobre a complexi-
dade da prova de NP-Dificuldade. Inicialmente, a intui¢do
geométrica sugere uma tentativa de reducgdo direta entre os
problemas de colora¢do. No entanto, a investigagdo tedrica
revelou que a redugio padrdo 3-Coloring <, Edge Coloring
ndo é imediata em termos de construgdo de gadgets
topologicos diretos. Foi necessdrio compreender que a
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literatura estabelece essa conexdo através de uma ponte
l16gica: a reducdo transitiva passando pelo problema 3-SAT.

Essa descoberta pedagdgica € valiosa: ela demonstra que,
embora problemas de grafos sejam visualmente similares,
a prova de sua dificuldade muitas vezes exige o retorno
aos fundamentos da légica booleana. A construcdo de
Holyer [3], utilizada neste trabalho, ilustra precisamente
como restricdes locais em um grafo cibico simulam portas
l6gicas, confirmando a intratabilidade do problema mesmo
em estruturas restritas.

Sob uma perspectiva pritica, a confirmacdo da
NP-completude do Edge Coloring para k = 3 indica a
necessidade de abordagens alternativas para a solucdo
exata em casos gerais [3]. Essa constatacdo direciona a
investigacdo para o uso de heuristicas e a andlise de casos
especiais tratdveis, como os grafos bipartidos, onde o
Teorema de Vizing assegura que o indice cromdtico iguala o
grau maximo [14]. Para o ensino, este resultado demonstra
que a classificacdo de complexidade orienta a escolha de
estratégias algoritmicas.

A contribuicdo pedagdgica deste trabalho reside na
integracdo de técnicas de reducdo com suporte visual. A
constru¢do do Grafo Linha e a explica¢do dos componentes
de Holyer tornam a demonstrag¢do acessivel para estudantes
de graduagdo. A apresentacdo sequencial dos conceitos
permite a compreensao dos passos necessarios para estabele-
cer a NP-Completude de um problema, desde a verificacdo
via equivaléncia estrutural até a prova de dificuldade via
satisfatibilidade 16gica.

Os resultados destacam o Grafo Linha como ferramenta
pedagégica na teoria da computaciio [15]. Esta estrutura
facilita a compreensdo das reducdes polinomiais e serve
como ponte conceitual entre diferentes dreas da teoria dos
grafos. A metodologia adotada pode ser aplicada ao ensino
de outros tépicos, combinando formalismo matematico com
exemplos visuais para tornar conceitos abstratos tangiveis.

VII. CONSIDERACOES FINAIS

Este artigo estabeleceu a classificacio do problema Edge
Coloring como NP-Completo mediante uma abordagem
dupla. A pertinéncia a NP foi demonstrada através da
equivaléncia estrutural com o problema de Coloragdo de
Vértices via Grafo Linha, conforme teoria de Whitney
[4]. A condi¢do de NP-Dificuldade foi justificada pela
redu¢do polinomial a partir do problema 3-SAT, utilizando a
constru¢do de gadgets proposta por Holyer [3], o que valida
a relacdo transitiva com o problema 3-Coloring.

As contribuigdes pedagdgicas compreendem a formaliza-
¢do da prova de redutibilidade e a distincdo metodolégica
entre verificagdo e prova de dificuldade. A incorporacdo
de exemplos ilustrativos e a discussdo sobre as implicagdes
praticas da intratabilidade computacional visam apoiar o
aprendizado. O material pode integrar cursos de teoria da
computagdo como exemplo de técnicas de reducdo e andlise
de complexidade.

O trabalho demonstra a viabilidade de apresentar con-
ceitos de teoria da computa¢do de maneira compreensivel
para estudantes de graduacdo. A abordagem baseada
em exemplos visuais constréi a intui¢do sobre reducdes
polinomiais e NP-completude [1].
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Para o ensino de complexidade computacional, este
recurso combina rigor tedérico com acessibilidade. A
estrutura apresentada permite acompanhar o processo de
redug¢do polinomial, desde a transformacdo inicial até a
prova de corretude, o que desenvolve a compreensdo dos
fundamentos da teoria da NP-completude [2].

Trabalhos futuros podem investigar variantes do problema,
como Edge Coloring em classes restritas de grafos ou
desenvolver materiais interativos para visualizacdo de
redugdes. A criagdo de recursos adicionais como videos
explicativos ou simulagdes poderia complementar o material
apresentado, ampliando o impacto educacional na drea de
complexidade computacional.
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