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Abstract— Particle swarm optimization (PSO) is a well-known metaheuristic, whose performance for solving global optimization prob-
lems has been thoroughly explored. It has been established that without proper manipulation of the inertia weight parameter, the search
for a global optima may fail. In order to handle this problem, we investigate the experimental performance of a PSO-based metaheuristic
known as HPSO-SSM, which uses a logistic map sequence to control the inertia weight to enhance the diversity in the search process, a
spiral-shaped mechanism as a local search operator, as well as two dynamic correction factors to the position formula. Thus, we present
an application of this variant for solving high-dimensional optimization problems, and evaluate its effectiveness against 24 benchmark
functions. A comparison between both methods showed that the proposed variant can escape from local optima, and demonstrates faster
convergence for almost every evaluated function.
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I. INTRODUCTION

G lobal optimization is the process of selecting a spe-
cific answer, out of a space of possibilities, that better

solves a given problem. For minimization problems, this is
often represented in the following way [1]:

Given: f : A→ R
Find: X∗ ∈ A such that f (X∗)≤ f (X) for all X ∈ A

Where f is defined as the objective function, or fitness
function, A ⊆ Rd denotes a decision space of d dimensions,
and each vector X∗ = (x1,x2, · · · ,xd) ∈ Rd represents a can-
didate solution. A solution that minimizes, or maximizes, the
objective function is called an optimal solution.

For a very broad range of applications, there are many the-
oretical and real-world problems that can be modeled in this
framework [2]. Therefore, algorithms that can efficiently
find optimal solutions for these problems become essential
for the science and engineering fields. This is specially true
for problems involving a high number of dimensions, which
exponentially expands the size of the search space, and in-
creases the computational cost for most optimization meth-
ods.

This paper presents a modification of the hybrid particle
swarm optimization with a spiral-shaped mechanism (HPSO-
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SSM), as presented in [3], for solving high-dimensional
global optimization problems. The effectiveness of the pro-
posed algorithm is evaluated against a set of well-known
benchmark test functions [4], with up to 5000 dimensions.

II. HPSO-SSM METAHEURISTIC

The particle swarm algorithm (PSO), proposed by [5], is
a metaheuristic based in the social behaviors of organisms,
similar to a bird flock or school of fish. A population of par-
ticles is created, each representing a candidate solution to the
chosen problem. Each of those particles has a position and
velocity, whose values are iteratively adjusted based on their
own best known previous position, as well as the current best
position of the swarm. This way, the search-space is explored
until a stop criteria is met.

Hybrid particle swarm optimization with spiral-shaped
mechanism (HPSO-SSM) [3] is a modification of the tradi-
tional PSO, originally designed for feature selection in ma-
chine learning tasks. It utilizes the logistic map sequence to
improve diversity, and a logarithmic spiral as a local search
operator.

In the following, we describe the general procedure for
this algorithm, as roughly described in Fig. 1, along with
the changes made in order to adapt it for global optimization
problems.

Firstly, the population of particles is created, with n in-
dividuals. During the whole procedure, the population size
is constant. For a given iteration t, the current position and
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Fig. 1: HPSO-SSM algorithm.

velocity of each particle i are given by, respectively:

xt
i = (xt

i1 , xt
i2 , · · · , xt

id)

vt
i = (vt

i1 , vt
i2 , · · · , vt

id)

The position and velocity vectors are initialized with ran-
dom values, uniformly distributed within the range of the
search-space.

At every iteration, the fitness of each particle is calculated,
using the position vector xi directly as the argument of the
objective function f . According the fitness value, the cur-
rent best known position for each particle, and the best know
position for the entire swarm, are updated, here denoted as:

Fitnessmin = f (xi)

pbesti = (pbesti1 , pbesti2 , · · · , pbestid)

gbest = (gbest1 , gbest2 , · · · , gbestd)

In order to guide the convergence of the result towards the
global optima, the HPSO-SSM algorithm utilizes the logistic
map to update the inertia weight w, as follows:

wt = µ×wt−1× (1−wt−1)

where µ is a positive constant (µ = 4). The characteristics
of randomness and ergodicity of the sequence enhance the
ability of the algorithm to escape locally optimal solutions.

Next, the flying velocities of each particle are updated, uti-
lizing the values of pbest and gbest to steer the swarm to-

wards the solution, according to the following formula:

vt+1
id = wt + vt

id

+ c1× r1i× (pbestid− xt
id)

+ c2× r2i× (gbestd− xt
id)

where c1 and c2 are position constants, usually set as c1 =
c2 = 2, and the variables r1i and r2i are random values, uni-
formly distributed, between 0 and 1.

In the HPSO-SSM method, there are two different ways
in which the particle positions are updated. The first makes
used of the spiral-shaped mechanism, and the second utilizes
a modification of the standard PSO position update formula.
The method to be used is determined by the variable p, a
random value between 0 and 1, chosen at every operation.
Should p > 0.8, the spiral-shaped mechanism is used, other-
wise, the modified update formula is used.

Per the spiral-shaped mechanism, the next position of a
particle is calculated with the following:

xt+1
id = |gbestd− xt

id |× exp(b× l)× cos(2πl)+gbestd

where b is a positive constant (b= 2), and l is a random value,
between -1 and 1. Otherwise, the position is updated using
the modified formula below:

xt+1
id =Rt

1× xt
id +Rt

2× vt+1
id

where R1 and R2 are dynamic correction factors, introduced
in the HPSO-SSM algorithm, in order to control the trade-off
between exploration and exploitation within the search.

Since that, in the HPSO-SSM algorithm, the position val-
ues are limited to the range between 0 and 1, the formulas for
the dynamic correction factors were slightly modified, in or-
der to preserve their functionality in the domain of the chosen
objective function. Therefore:

Rt
1 =

1

(1+ exp(a× (− min(SP)
max(SP) )))

t

Rt
2 = 1−Rt

1

SPt
i =

xt−1
i
M
×

[
xt−1

i
M

]T

M = max(|Amin|, |Amax|)

where a is a constant (a = 2), SP is the modified position
magnitude formula, and M is the normalization factor, in
which Amin and Amax denote the boundaries of the search-
space.

The search loop is executed either until a set fitness value
is reached, or for a fixed number of iterations. At the end,
the particle with the best known position yields the obtained
solution. However, the HPSO-SSM algorithm, as with the
traditional PSO, does not guarantee that an optimal solution
will be found.

III. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the HPSO-SSM al-
gorithm over global optimization problems with high dimen-
sions, the following experimentation was conducted. A set
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TABLE 1: TEXT FUNCTIONS UTILIZED IN THE EXPERIMENTATION.

Function Name Function Formula Search Range

Sphere f1(x) = ∑
d
i=1 x2

i [-100,100]
Sum-Square f2(x) = ∑

d
i=1 ix2

i [-10,10]
Schwefel’s 2.22 f3(x) = ∑

d
i=1 |xi|+∏

d
i=1 |xi| [-10,10]

Rotated hyper-ellipsoid f4(x) = ∑
d
i=1(∑

i
j=1 x j)

2 [-100,100]
Schwefel’s 2.21 f5(x) = max{|xi|,1≤ xi ≤ d} [-100,100]
Rosenbrock f6(x) = ∑

d−1
i=1 [100(xi+1− x2

i )+(xi−1)2] [-30,30]
Step f7(x) = ∑

d
i=1(bxi +0.5c)2 [-100,100]

Quartic f8(x) = ∑
d
i=1 ix4

i [-1.28,1.28]
Noise f9(x) = ∑

d
i=1 ix4

i + random[0,1) [-1.28,1.28]
Sum-Power f10(x) = ∑

d
i=1 |xi|i+1 [-1,1]

Rastrigin f11(x) = ∑
d
i=1[x

2
i −10cos(2πxi)+10] [-5.12,5.12]

Ackley f12(x) =−20exp(−0.2
√

1
d ∑

d
i=1 x2

i )− exp( 1
d ∑

d
i=1 cos(2πxi))+20+ e [-32,32]

Griewank f13(x) = 1
4000 ∑

d
i=1 x2

i −∏
d
i=1 cos( xi√

i
)+1 [-600,600]

Levy f14(x) = ∑
d−1
i=1 (xi−1)2[1+ sin2(3πxi+1)]+ sin2(3πx1)+ |xd −1|[1+ sin2(3πxn)] [-10,10]

Alpine f15(x) = ∑
d
i=1 |xi sin(xi)+0.1xi| [-10,10]

Inverted Cosine mixture f16(x) = 0.1d− (0.1∑
d
i=1 cos(5πxi)−∑

d
i=1 x2

i ) [-1,1]
Zakharov f17(x) = ∑

d
i=1 x2

i +(∑d
i=1 0.5ixi)

2 +(∑d
i=1 0.5ixi)

4 [-5,10]

Pathological f18(x) = ∑
d
i=2 0.5+ sin2(

√
100x2

i−1+x2
i )−0.5

1+0.001(x2
i−1−2xi−1xi+x2

i )
2 [-100,100]

Levy and Montalvo f19(x) = 0.1(sin2(3πx1)+∑
d−1
i=1 (xi−1)2(1+ sin2(3πxi+1))+(xd −1)2(1+ sin2(2πxd))) [-5,5]

Elliptic f20(x) = ∑
d
i=1(106)

i−1
d−1 x2

i [-100,100]
Easom f21(x) = (−1)d+1

∏
d
i=1 cos(xi) · exp(−∑

d
i=1(xi−π)2) [-100,100]

Salomon f22(x) = 1− cos(2π

√
∑

d
i=1 x2

i )+0.1
√

∑
d
i=1 x2

i [-100,100]

Schaffer f23(x) = 0.5+
sin2(

√
∑

d
i=1 x2

i )−0.5

(1+0.001(∑d
i=1 x2

i ))
2 [-100,100]

Stretched V-sine f24(x) = ∑
d−1
i=1 (x

2
i +2x2

i+1)
0.25 · ((sin50(x2

i + x2
i+1)

0.1)2 +1) [-10,10]

of 24 well-known benchmark functions was assembled, from
existing literature involving optimization algorithms [4], that
are delineated in Table 1. For all functions, the theoretical
optima is fmin = 0.

For all tests, each function was executed 30 times, for di-
mension sizes of d = {30,100,500,1000,5000}. The pop-
ulation size n was fixed to 30, and the maximum number
of iterations tmax was 500, for all simulations, resulting in
a maximum of 15000 fitness function evaluations per test.
In addition, the same control parameters were used for both
PSO and HPSO-SSM algorithms, as follows: the position
constants c1 and c2 were both set as 2, and the initial value
of the inertia weight w was set as 0.5. The HPSO-SSM con-
stants µ , a, and b were set to 4, 2, and 2, respectively.

Both algorithms, as well as the benchmark functions, were
coded in Python 3.6, and all experiments were performed on
the cloud-based environment Google Colaboratory [6].

a. Comparison with traditional PSO

First, a comparison is made between the traditional PSO and
the proposed HPSO-SSM method, for a low number of di-
mensions (d = 30). The mean of the fitness values reached
for each function, and their standard deviations, are arranged
in Table 2. It can be seen in Table 2 that for almost ev-
ery benchmark function, the HPSO-SSM method reaches the
global optima, with exception of six functions (i.e., f6, f9,
f14, f19, f22, and f23).

The PSO method, however, demonstrated results orders
of magnitude worse, only reaching global optima on two

TABLE 2: COMPARISON RESULTS BETWEEN PSO AND

HPSO-SSM, WITH 30 DIMENSIONS.

F PSO
(Mean ± Std Dev)

HPSO-SSM
(Mean ± Std Dev)

f1 1.67×103 ±3.73×103 0.00×100 ±0.00×100

f2 4.47×102 ±4.45×102 0.00×100 ±0.00×100

f3 3.04×101 ±1.49×101 0.00×100 ±0.00×100

f4 2.04×104 ±1.01×104 0.00×100 ±0.00×100

f5 2.92×101 ±8.04×100 0.00×100 ±0.00×100

f6 1.87×104 ±3.57×104 2.90×101 ±1.53×10−2

f7 1.67×103 ±3.73×103 0.00×100 ±0.00×100

f8 2.24×100 ±5.14×100 0.00×100 ±0.00×100

f9 1.49×101 ±5.26×100 1.24×101 ±9.40×10−1

f10 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f11 2.67×101 ±2.16×100 0.00×100 ±0.00×100

f12 1.00×100 ±1.52×100 0.00×100 ±0.00×100

f13 1.21×101 ±3.07×101 0.00×100 ±0.00×100

f14 3.66×101 ±5.19×101 5.77×101 ±1.99×100

f15 3.02×100 ±3.27×100 0.00×100 ±0.00×100

f16 2.91×10−1±2.14×10−1 0.00×100 ±0.00×100

f17 3.43×102 ±1.06×102 0.00×100 ±0.00×100

f18 2.99×100 ±8.96×10−1 0.00×100 ±0.00×100

f19 1.59×100 ±1.51×100 2.99×100 ±2.03×10−2

f20 9.69×107 ±1.05×108 0.00×100 ±0.00×100

f21 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f22 1.48×100 ±1.63×100 9.30×10−2±2.84×10−1

f23 3.63×10−1±7.88×10−2 2.09×10−1±1.97×10−1

f24 3.70×101 ±9.96×100 0.00×100 ±0.00×100
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Fig. 2: Convergence curves of PSO and HPSO-SSM on eight benchmark functions, with 30 dimensions.
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TABLE 3: RESULTS OBTAINED OVER 30 INDEPENDENT RUNS ON 100, 500, 1000, AND 5000 DIMENSIONS.

Function Mean ± Std Dev (d = 100) Mean ± Std Dev (d = 500) Mean ± Std Dev (d = 1000) Mean ± Std Dev (d = 5000)

f1 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f2 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f3 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f4 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f5 0.00×100 ±0.00×100 0.00×100 ±0.00×100 6.65×100 ±2.49×101 1.33×101 ±3.40×101

f6 9.90×101 ±2.56×10−2 4.99×102 ±2.99×10−2 9.99×102 ±3.07×10−2 5.00×103 ±1.50×10−1

f7 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f8 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f9 4.60×101 ±2.16×100 2.40×102 ±3.97×100 4.90×102 ±7.18×100 2.47×103 ±1.32×101

f10 0.00×100 ±0.00×100 0.00×100 ±0.00×100 3.44×10−1±8.77×10−1 8.90×10−1±1.78×100

f11 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f12 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f13 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f14 1.99×102 ±3.53×100 9.98×102 ±1.91×10−1 1.99×103 ±3.08×101 1.04×104 ±1.44×103

f15 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f16 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f17 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f18 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f19 9.99×100 ±1.41×10−2 5.00×101 ±2.80×10−3 1.00×102 ±5.22×10−3 5.00×102 ±8.51×10−3

f20 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f21 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f22 7.74×10−2±2.92×10−1 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

f23 1.36×10−1±2.10×10−1 1.86×10−1±2.30×10−1 3.14×10−1±2.24×10−1 3.30×10−1±2.33×10−1

f24 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100 0.00×100 ±0.00×100

occasions (i.e., f10, and f21). Nevertheless, it did display
marginally better results than the HPSO-SSM method for
only two functions, for which neither the PSO nor the HPSO-
SSM were able to reach the theoretical optima (i.e., f14 and
f19).

This results can be further illustrated by the convergence
curves of both algorithms, for eight selected benchmark
functions, displayed in Fig. 2. It can be seen that, for the
HPSO-SSM method, the convergence is much faster, and
there is no apparent tendency towards local optima for most
functions. For this benchmark, these partial results display
the advantages of proper control over the inertia weight pa-
rameter, and that the modified position update strategies can
yield a faster search.

b. Scalability over high dimensions

In order to verify the scalability of the HPSO-SSM method,
we ran tests over a higher number of dimensions (d =
{100,500,1000,5000}). The mean and standard deviation
of such experiment is shown in Table 3. It could be observed
that, for most of the benchmark functions, the HPSO-SSM
method was able to reach the global optima for any number
of evaluated dimensions. Although for five of the benchmark
functions, the method was not able to reach global optima
(i.e, f6, f9, f14, f19, and f23). Besides that, for two of the
benchmark functions (i.e. f5 and f10), the algorithm was only
able to reach the theoretical optima for dimension 100 and
500, with decreasing effectiveness on higher dimensions.

It should also be noted that, only in the case of function
f22, the method was only unable to reach the global optima
for dimension 100, but performed better on the ensuing num-
bers of dimensions. To better illustrate the changes in conver-
gence speed and robustness over increasing dimensions, the

convergence values of four selected benchmark functions, for
the first 50 iterations, are displayed in Fig. 3.

We can observe that, in Function f16, for which the algo-
rithm was always able to reach global optima, the conver-
gence speed is about the same for all dimensions. As for the
functions, for which the algorithm was unable to ever reach
global optima (i.e. f14 and f19), the convergence speed is
significant at first, however, once an apparent local optima
is reached, the search is unable to escape from it, in the re-
maining iterations. On a function for which the algorithm
was only able to reach the theoretical optima for lower di-
mensional sizes (i.e. f10), the convergence becomes more
sensitive to local optima as the dimension increases.

We also noted that, for most functions, the convergence
behavior of the algorithm remains the same, given a set
of control parameters, regardless of the number of dimen-
sions. Nonetheless, some changes in convergence behavior
was only observed for two functions (i.e. f5 and f10). This
suggests that, once the control parameters have been fine-
tuned for a specific function, the algorithm could be able to
reach a similar convergence speed for any number of dimen-
sions.

The observed changes in the convergence behavior over
higher dimensional functions suggests different approaches
for control parameter tuning. For example, one could per-
form partial executions of the algorithm, with gradual in-
creases in dimension, in order to find the tuned parameters.
A procedure like this could probably minimize the number
of iterations in order to find optimized control parameters.
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Fig. 3: Convergence curves of HPSO-SSM on four benchmark functions for the first 50 iterations, with 100, 500, 1000, and 5000
dimensions.

IV. FINAL CONSIDERATIONS

The hybrid particle swarm optimization with a spiral-shaped
mechanism (HPSO-SSM), a variant of the particle swarm op-
timization (PSO), has been introduced, and its use on solving
global optimization problems with a high number of dimen-
sions was demonstrated. The efficiency of the considered
method was tested against a set of 24 benchmark minimiza-
tion functions, and the results were compared against those
of the traditional PSO algorithm.

We have determined that the effectiveness of the proposed
method surpassed that of the traditional algorithm by orders
of magnitude, for most of the analyzed functions, both in
the achieved fitness values and in the speed of convergence.
The experiment results demonstrated that, for a consider-
able number of functions, the HPSO-SSM algorithm displays
similar convergence behavior and speed, even after consid-
erable increments in the number of dimensions. As future
works, a meta-optimization process of control parameters
could be investigated in order to get the best performance
of HPSO-SSM.
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