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Resumo—Este artigo analisa a NP-completude do problema Edge Coloring através de uma cadeia de reducdo polinomial iniciada no
problema 3-Coloring. A metodologia utiliza a constru¢do de um Grafo Linha para demonstrar a pertinéncia a classe NP e estabelece a
NP-Dificuldade via reducdo do 3-SAT, baseada em Holyer. S@o apresentadas definicdes formais, contexto histérico e revisdo de trabalhos
fundamentais em teoria da complexidade computacional. O principal resultado demonstra que Edge Coloring é NP-completo por meio de
um método de reducio claro e acessivel. O trabalho oferece exemplos educacionais com ilustragdes visuais e explicagdes passo a passo
sobre gadgets 16gicos. Este material serve como recurso de aprendizagem para auxiliar estudantes na compreensao de redugdes polinomiais
e conceitos de NP-completude em Ciéncia da Computagio.

Palavras-chave—NP-completude, Coloragio de Arestas, Coloracdo de Vértices, Redugdes Polinomiais, Complexidade Computacional

Abstract—This article examines the NP-completeness of the Edge Coloring problem through a polynomial reduction chain starting from
the 3-Coloring problem. The methodology employs a Line Graph to demonstrate membership in NP and establishes NP-Hardness via
reductions from 3-SAT, following Holyer’s construction. We present formal definitions, historical context, and a review of fundamental
works in computational complexity theory. The main result demonstrates that Edge Coloring is NP-complete using a clear and accessible
reduction method. The work provides educational examples with visual illustrations and step-by-step explanations of logical gadgets. This
material serves as a learning resource to help students understand polynomial reductions and NP-completeness concepts in computer
science courses.
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como o 3-Coloring (Coloracdo de Vértices com 3 cores) e
o Edge Coloring (Coloracdo de Arestas), sdo centrais. O

I. INTRODUCAO

Teoria da Computacdo investiga os limites fundamen-
tais dos algoritmos, sendo a classe dos problemas
NP-Completos o cerne dos desafios praticos e tedricos da
area. O estudo desta classe é essencial para entender a in-
tratabilidade computacional, orientando o desenvolvimento
de heuristicas e algoritmos de aproximagdo para problemas
cruciais em otimizacao e inteligéncia artificial [1].
Nesse contexto, os problemas de coloracdo de grafos,
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3-Coloring consiste em determinar se os vértices de um grafo
podem ser coloridos com trés cores de forma que vértices
adjacentes ndo compartilhem a mesma cor. Historicamente,
ele ¢ um dos primeiros problemas a ter sua NP-completude
provada por reducdo do SAT (Satisfiability) [2]. J4 o Edge
Coloring questiona se as arestas de um grafo podem ser
coloridas com k cores de modo que arestas adjacentes (que
compartilham um vértice) tenham cores distintas.

Ambos os problemas, apesar de conceitualmente distintos,
compartilham uma estrutura computacional equivalente.
Enquanto o 3-Coloring possui aplicagdes cldssicas em
planejamento e alocagdo de frequéncia, o Edge Coloring é
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Figura 1: Grafo completo K3 — exemplo de grafo
nao-direcionado com 3 vértices.

fundamental em problemas de escalonamento, alocacdo de
recursos em redes e otimizagao de tempo [3].

Este artigo retine e organiza demonstracdes presentes
na literatura sobre a NP-completude do Edge Coloring,
com foco na clareza conceitual. A redug@o polinomial de
3-Coloring <, Edge Coloring € apresentada por meio do
conceito de Grafo Linha, destacando os elementos centrais
da transformagdo. O objetivo é oferecer um material que
apoie o estudo das técnicas de redugdo e sua importancia
dentro da Teoria da Computagao.

O trabalho expde a prova e discute o raciocinio envolvido
na construcdo, enfatizando aspectos que contribuem para o
ensino de complexidade computacional. As se¢des seguintes
apresentam os fundamentos necessdrios, a descricdo da
reducdo e as reflexdes que surgem a partir dessa andlise.

I1. PRELIMINARES

Comecamos revisitando alguns conceitos fundamentais
sobre grafos e problemas de coloracdo, essenciais para
compreender o desenvolvimento deste trabalho.

Um Grafo Ndo-Direcionado ¢é definido como uma
estrutura G = (V,E), onde V representa um conjunto finito
e ndo vazio de vértices, e E C {(u,v) |u,v € V,u #v} éo
conjunto de arestas que conectam esses vértices. Neste tipo
de grafo, as arestas ndo possuem orienta¢do, o que significa
que a aresta (u,v) é idéntica a aresta (v,u), estabelecendo
uma relacdo simétrica entre os vértices. Grafos ndo-
direcionados sdo particularmente uteis para modelar relagdes
miutuas, como amizades em redes sociais, conexdes entre
computadores em uma rede ou relagdes de adjacéncia em
mapas.

Dentro dessa estrutura, dizemos que dois vértices sdo
adjacentes se existe uma aresta conectando-os diretamente.
Esta relacdo de adjacéncia é fundamental para definir a
estrutura do grafo e suas propriedades. No grafo Kj
(Figura 1), todos os vértices sdo adjacentes entre si,
formando um tridngulo completo onde cada vértice possui
grau 2 (duas conexdes). O conjunto de vértices adjacentes a
um vértice v é denominado sua vizinhanga. A adjacéncia é
uma relacio bindria que determina a conectividade direta no
grafo, sendo essencial para definir caminhos, ciclos e outras
propriedades estruturais.

Da mesma forma, duas arestas sdo incidentes quando
compartilham um vértice em comum. Esta relacdo de
incidéncia conecta o conceito de vértices com o conceito
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Figura 2: Grafo exemplo para 3-Coloring — estrutura com
restri¢des de adjacéncia que permite coloragdo com 3 cores.

de arestas, criando a estrutura combinatéria do grafo. No
exemplo da Figura 1, qualquer par de arestas entre e,, e, €
e, compartilha um vértice, o que as torna incidentes entre si.
Uma aresta é dita incidente a um vértice quando este vértice
€ uma de suas extremidades. O grau de um vértice € definido
como o ndmero de arestas incidentes a ele, sendo esta uma
medida fundamental da centralidade do vértice no grafo.

Uma coloragdo de vértices é uma atribuigcdo de cores aos
vértices de um grafo por meio de uma fungdo c: V — C,
onde C representa um conjunto finito de cores disponiveis.
A notagdo c(v) indica a cor atribuida ao vértice v, isto é, o
resultado da funcdo quando aplicada a esse vértice. Dessa
forma, cada vértice recebe exatamente uma cor, permitindo
analisar propriedades estruturais do grafo a partir dessa
atribuicdo.

Uma coloracdo é dita propria quando nenhum par de
vértices adjacentes compartilha a mesma cor. Em termos
formais, isso significa que, para toda aresta (u,v) € E, deve
valer c(u) # ¢(v). A condicgo c(u) e c(v) serem diferentes
garante que vértices conectados ndo entrem em conflito
de cor, constituindo o requisito fundamental em problemas
classicos como o 3-Coloring.

A Figura 2 apresenta um grafo simples usado para ilustrar
relagdes de adjacéncia e incidéncia em um contexto de
coloragdo. O exemplo evidencia como diferentes conexdes
afetam as possibilidades de coloragfo de vértices e de arestas.

O conceito de Grafo Linha estabelece uma dualidade
entre vértices e arestas. Dado um grafo G = (V,E), seu
grafo linha L(G) = (V.,EL) é construido mapeando cada
aresta em E para um vértice em V, e dois vértices em
L(G) sdo adjacentes se as arestas correspondentes em G
compartilham um vértice [4]. Esta transformagdo permite
analisar propriedades das arestas do grafo original através do
estudo dos vértices do grafo linha.

No exemplo da Figura 3, o grafo linha de K3 € isomorfo
ao préprio Kz, ilustrando como a transformagdo preserva a
estrutura de adjacéncia. Isso acontece porque, em K3, todo
par de arestas compartilha um vértice. Por exemplo, ¢, € ¢
sdo adjacentes no grafo linha porque compartilhavam v, no
grafo original; o mesmo ocorre para os outros pares. Essa
correspondéncia direta entre incidéncia e adjacéncia € o que
torna o grafo linha uma ferramenta tao util em reducdes entre
problemas de coloracio.

No contexto de problemas de coloragdo, dois se destacam:
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Figura 3: Grafo linha L(K3) — arestas do grafo original
tornam-se vértices, e a incidéncia transforma-se em adjacéncia.
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Figura 4: Gadget baseado em K3, usado para impor restricdes de
coloracdo em reducdes para 3-Coloring.

o 3-Coloring (Coloracdo de Vértices com 3 cores) e o
Edge Coloring (Coloracao de Arestas). O primeiro é um
problema de decisdo que busca determinar se existe uma
fungdo ¢ : V — {1,2,3} tal que, para toda aresta (u,v) € E,
tenhamos c(u) # c¢(v) [3, 6]. Uma coloragio que satisfaz esta
propriedade é chamada de coloragdo propria. A restricao de
usar apenas trés cores torna este problema particularmente
desafiador, jd que muitos grafos exigem mais cores para uma
coloracdo propria, enquanto outros podem ser coloridos com
menos.

Os gadgets desempenham um papel central nas redugdes
polinomiais envolvendo problemas de coloracao. Um gadget
€ um pequeno subgrafo construido para impor restrigdes
locais sobre as escolhas de cor, funcionando como um
"componente 16gico" dentro de reducdes maiores. Esse
conceito aparece na técnica cldssica de Component Design,
frequentemente utilizada em redugdes para o problema 3-
Coloring.

O tridngulo K3 é um dos gadgets mais utilizados, pois
sua estrutura forca necessariamente trés cores distintas,
representando escolhas mutuamente exclusivas — como
valores 16gicos TRUE, FALSE e um estado base. A Figura 4
ilustra essa constru¢cdo diddtica amplamente adotada em
reducdes cléssicas.

J& o Edge Coloring (Figura 5) pergunta se é possivel
colorir as arestas de G usando até k cores, por meio de
uma fungdo ¢ : E — {1,2,...,k}, de forma que arestas
incidentes recebam cores diferentes. O nimero minimo de
cores necessdrias para essa coloragdo € o indice cromdtico,
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Figura 5: Edge Coloring vélido no K3 — cada aresta recebe uma
cor distinta: e, (azul), e, (verde), e, (vermelho).

denotado por ¢/ (G). Este problema tem aplicag3es praticas
em escalonamento de tarefas, alocag¢do de frequéncias em
redes wireless e design de torneios esportivos.

No ambito da complexidade computacional, destacamos
duas defini¢des centrais. Uma linguagem de decisdo L
pertence a classe NP-Completo se L estdi em NP e toda
linguagem em NP pode ser reduzida a L em tempo
polinomial [1, 2]. As reducdes sdo formalizadas pelo
conceito de Redugdo Polinomial, onde um problema A é
redutivel a um problema B (denotado por A <), B) se existe
uma transformacdo computdvel em tempo polinomial que
preserva respostas entre instincias dos dois problemas. Esta
no¢do de reducdo € a base para estabelecer relacdes de
dificuldade entre problemas e para construir hierarquias de
complexidade.

A importincia das reducdes polinomiais vai além do
aspecto tedrico, pois elas fornecem informacdes sobre
a estrutura dos problemas e permitem que algoritmos
desenvolvidos para um problema sejam adaptados para
outros.  No contexto educacional, compreender essas
redugdes € essencial para desenvolver uma intuicdo sobre
quais problemas sdo computacionalmente dificeis e por qué.

II1. TRABALHOS RELACIONADOS

No trabalho de Cook [2], estabeleceu-se a base da
NP-completude. Na pesquisa, mostrou-se como verificar
solugdes em tempo polinomial e construiu a primeira reducio
polinomial para o SAT. O objetivo foi entender quando
um problema permite conferir respostas em pouco tempo.
Os resultados sdo interessantes por terem aberto caminho
para Karp ampliar essa ideia, relacionando vérios problemas
classicos, incluindo o 3-Coloring, e mostrando como muitos
deles caem na mesma classe de complexidade.

No trabalho cléssico de Garey e Johnson [1], é detalhada a
complexidade do Graph 3-Colorability. Na obra, os autores
organizam a teoria da NP-completude e utilizam a técnica
de Component Design, que consiste em montar grafos a
partir de pecas pequenas que impdem restricdes locais.
Gadgets como o tridngulo K3 mostram como estruturas
pequenas conseguem impor escolhas de cor e controlar o
comportamento local do grafo, simulando literais e cldusulas.
Os resultados sdo interessantes por padronizar as reducdes
que conectam problemas centrais da computacio.

No survey escrito por Cao e outros autores [7], podemos
notar uma visdo geral desse tema. Na pesquisa, os autores
retinem resultados sobre algoritmos, limites estruturais,
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casos especiais e questdes abertas da coloracdo de arestas.
O objetivo do survey é organizar o que jd se sabe sobre o
problema, desde técnicas simples de recoloragao até métodos
mais atuais. Os resultados sdo interessantes por consolidar o
conhecimento disperso sobre limites superiores e conjecturas
da area.

No trabalho de Holyer [3], surge o resultado que estrutura
a base moderna dessa drea. Na pesquisa, o autor apresenta
a primeira prova de NP-completude do Edge Coloring,
mostrando que o problema permanece intrativel mesmo
quando restrito a grafos cibicos. A técnica usada envolve
montar blocos que forcam escolhas de cor que se propagam
pelo grafo inteiro. Os resultados sdo interessantes por revelar
que o indice cromatico capta decisdes combinatdrias fortes e
que o problema ndo se resume a uma variacdo simples da
coloracao de vértices.

No trabalho de Basavaraju e Chandran [8], hd um
resultado importante para a coloragdo de arestas aciclica
em grafos planares. Os autores demonstram que todo
grafo planar admite tal coloragdo com A(G) + 12 cores,
superando o limite anterior de 2A(G) +29. A prova utiliza
configuracdes inevitdveis em grafos planares e trocas de
cores para evitar ciclos bicromdticos, mostrando como o
indice cromatico aciclico reflete a estrutura desses grafos.

No estudo de Galby, Lima, Paulusma e Ries [9], trabalhos
mais novos reforcam essa visdo. Na pesquisa, o objetivo
foi classificar o k-Edge Coloring para grafos H-livres,
combinando reducdes com andlise estrutural para mapear
quando o problema é polinomial.

No trabalho de Sinnamon [10], sdo propostos algoritmos
para coloragdo de arestas que buscam ser acessiveis e
eficientes. O objetivo da autora € desenvolver métodos
simples e rapidos para produzir coloragdes com d + 1 cores,
onde d € o grau maximo do grafo. A técnica utilizada se
baseia em decomposi¢c@o recursiva e ciclos de Euler para
agilizar o processo. Os resultados demonstram que é possivel
obter boas solugdes de forma prética para grafos gerais em
aplicacdes reais.

Por fim, no trabalho de Raeisi e Gholami [11], a coloracdo
de arestas é aplicada a construcdo de grafos Tanner livres
de ciclos curtos para cédigos LDPC de peso-coluna trés,
melhorando a decodificagdo em canais ruidosos. O método
utiliza algoritmos de coloracdo eficientes para garantir
propriedades aciclicas nos grafos bipartidos. Os resultados
conectam a combinatdria grifica a aplicacdes praticas em
comunicagdes digitais.

IV. DESCRICAO DO PROBLEMA

Nesta se¢do, definimos formalmente os trés problemas que
aparecem na cadeia de reducdo. A Tabela 1 apresenta
a definicdo do problema 3-SAT, a Tabela 2 descreve o
problema 3-Coloring e a Tabela 3 formaliza o problema Edge
Coloring, indicando, em cada caso, a entrada e a pergunta
associadas.
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TABELA 1: DEFINICAO DO PROBLEMA 3-SAT

3-SAT (Satisfatibilidade Booleana)

Entrada: um conjunto X de varidveis; uma colecdo C de
clausulas sobre X onde, para cada ¢ € C, a cldusula possui
exatamente 3 literais (|c| = 3).

Pergunta: Determinar se existe uma atribui¢ao de valores as
varidveis em X de modo que cada cldusula em C tenha pelo
menos um literal verdadeiro.

Para fins de formalizagdo, define-se um literal como uma
varidvel booleana (x) ou sua negacdo (—x). Uma cldusula
é composta pela disjuncdo légica (operador OU) desses
literais. A especificidade do problema 3-SAT reside na
estrutura rigida onde cada cldusula deve conter estritamente
trés literais, o que permite a padroniza¢do dos componentes
gréficos (gadgets) utilizados na reducio.

A Tabela 1 define o 3-SAT, que serve como o elo de
conexao fundamental nesta prova. Diferente dos problemas
de coloracdo, que lidam com estruturas graficas, o 3-SAT
lida com légica pura. A restricdo de ter "exatamente trés
literais" € o que permite criar padrdoes geométricos fixos
(como tridngulos) nas redugdes para grafos.

TABELA 2: DEFINICAO DO PROBLEMA 3-COLORING

3-COLORACAO (3-COLORING)

Entrada: Um grafo G = (V,E).

Pergunta: Existe uma fungdo ¢ : V — {1,2,3} tal que
vértices adjacentes recebam cores distintas?

A Tabela 2 define formalmente o problema 3-Coloring.
A entrada é um grafo qualquer, e a pergunta questiona se
€ possivel colorir seus vértices usando apenas trés cores,
respeitando a regra bdsica de que vértices conectados por
uma aresta devem ter cores diferentes.

TABELA 3: DEFINICAO DO PROBLEMA EDGE COLORING

COLORACAO DE ARESTAS (EDGE COLORING)

Entrada: Um grafo G = (V,E) e um inteiro k.

Pergunta: Existe uma fungédo ¢ : E — {1,2,...,k} tal que
arestas incidentes recebam cores distintas?

A Tabela 3 define o problema Edge Coloring. Aqui,
a entrada inclui um grafo e também um nimero k que
representa a quantidade de cores disponiveis. A pergunta
busca saber se podemos colorir as arestas do grafo de forma
que arestas que compartilham um vértice comum recebam
cores diferentes. Note que enquanto no 3-Coloring colorimos
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Figura 7: Ilustragdo de uma festa como analogia para o 3-SAT.

vértices, no Edge Coloring colorimos arestas, mas ambos
impdem restri¢des de adjacéncia.

Os problemas de coloracdo de grafos representam uma
classe fundamental na teoria da computagdo, com aplicagdes
que vao desde o planejamento de hordrios até a alocacdo de
recursos em sistemas distribuidos. Nesta se¢ao, descrevemos
formalmente os dois problemas centrais deste trabalho: o
3-Coloring, um problema cldssico de coloragdo de vértices,
e o Edge Coloring, seu andlogo na coloracdo de arestas.
Ambos sdo problemas de decisdo NP-completos [1, 2, 3],
mas cada um apresenta desafios préprios.

Para tornar esses conceitos mais préximos do cotidiano,
podemos imaginar o 3-Coloring como o ato de colorir
um mapa usando apenas trés cores, garantindo que paises
vizinhos nunca compartilhem a mesma cor, como ilustrado
na Figura 6.

Em relagdo ao 3-SAT, € como organizar uma festa onde
o sucesso depende de satisfazer a todos. Para isso, o
organizador deve fazer vdrias escolhas bindrias (as varidveis),
como definir se "Havera Misica Ao Vivo?" (Sim ou Nio).
Cada convidado importante impde uma cldusula: ele s6
vem a festa se pelo menos uma de suas trés condigdes for
atendida. Por exemplo, um convidado pode exigir: "Eu vou
se tiver Musica Ao Vivo OU se o Amigo X ndo vier OU se
o Buffet for vegetariano." O desafio 3-SAT € encontrar uma
unica combinacdo de decisdes (uma configuracdo Sim/Nio
para todos os fatores) que satisfaca a exigéncia de todos os
convidados simultaneamente. Se essa combinagdo existir, a
festa pode ser realizada.Essa analogia é ilustrada na Figura 7.

Ja o Edge Coloring lembra a montagem da grade de
hordrios de uma escola: arestas representam aulas e vértices
representam professores ou salas. Aulas que usam o mesmo
recurso ndo podem ocorrer no mesmo hordrio, e por isso
precisam de cores diferentes, conforme ilustrado na Figura 8.

Essas analogias destacam como problemas abstratos da
computacdo surgem em situagdes reais.
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Figura 8: Grade escolar ilustrando o Edge Coloring.

V. DEMONSTRACAO E CONTRIBUICOES

Para provar que Edge Coloring ¢ NP-Completo € necessario
demonstrar duas condigdes:

» Edge Coloring € NP
» Edge Coloring € NP-Dificil

I) Edge Coloring € NP: Para demonstrar que o problema
pertence a AP, apresentamos um certificado de tamanho
polinomial e um algoritmo verificador deterministico capaz
de validar esse certificado em tempo polinomial [12].

Dado o seguinte certificado: uma coloragdo

c:E—1,2,... k. Um verificador examina todos os
pares distintos de arestas do grafo. Para cada par (ej,e»),
o algoritmo testa se elas compartilham um vértice (sdo
incidentes) e, caso positivo, confirma que c(e;) # c(ez).
Como existem no méiximo |E|*> pares de arestas para
verificar, o custo computacional ¢ limitado por O(|E|?), o
que garante a execu¢do em tempo polinomial.
II) Equivaléncia Estrutural (Grafo Linha): Uma forma
pedagégica de visualizar a pertinéncia a NP € através da
transformag@o para o Grafo Linha L(G). Essa construgdo
demonstra que o problema de Coloragdo de Arestas pode
ser modelado como um problema de Coloracdo de Vértices
(que sabemos estar em N/P). A transformagio mapeia cada
aresta de G em um vértice de L(G), e as adjacéncias entre
arestas incidentes em G tornam-se arestas entre vértices
em L(G). Assim, uma coloragdo prépria das arestas de
G corresponde diretamente a uma coloracdo prépria dos
vértices de L(G). Uma vez que o Grafo Linha pode ser
construido em tempo polinomial e a colora¢do de vértices
¢ um problema bem conhecido em AP, esta equivaléncia
estrutural reforca a classificacdo do problema de Edge
Coloring como pertencente a classe N'P.

Dado um grafo G = (V,E), construimos L(G) = (V.,EL)
onde:

* V, = E (cada aresta de G torna-se um vértice em L(g))
Comgrexemplp Husrative.c Figiyindidiaig dncgrato Ger
com vértices vy,vy,v3,v4 € arestas e, (ligando vi-12), ep
(n2-v3), e. (v1-13) € e4 (v3-v4). Observa-se que as arestas e
e ey compartilham o vértice v3, o que configura uma relagio
de incidéncia direta. Por sua vez, ¢, também € incidente com
e;, uma vez que ambas incidem em v3. Essas relacdes de
adjacéncia entre arestas no grafo original serdo representadas
como arestas no grafo linha L(G,y).

A Figura 10 mostra o grafo linha correspondente
L(Ge), onde cada aresta do grafo original torna-se um
vértice. A adjacéncia entre v, e vy reflete diretamente o
compartilhamento do vértice v3 pelas arestas e;, € eg no grafo
original.
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U1

U2 U3
€y

€d
Vg
Figura 9: Grafo Base (G.y)
Va
Uy Ve
Ud

Figura 10: Grafo Linha (L(G,y))

A propriedade fundamental, conforme Jensen e Toft [13],
€ que G admite uma k-colorac@o de arestas se e somente se
L(G) admite uma k-coloragdo de vértices. Esta equivaléncia
confirma que resolver Edge Coloring é redutivel a resolver
Vertex Coloring, reforgando sua pertinéncia a classe N'P.

a. Prova de Corretude da Equivaléncia

A seguir, apresenta-se a demonstracio de que G €
3-aresta-colorivel se e somente se L(G) é 3-vértice-colorivel.

Direcdo 1(=): Se G é 3-aresta-colorivel, entio L(G) é
3-vértice-colorivel.

Prova: Seja ¢ : E(G) — {vermelho,azul,verde} uma
coloragdo prépria das arestas de G. Para cada aresta
e € E(G), atribuimos a cor ¢(e) ao vértice correspondente
ve € V(L(G)). Se duas arestas e, € e. sdo incidentes ao
mesmo vértice vz em G, elas possuem cores diferentes, como
ilustrado na Figura 11. Logo, os vértices v e v, em L(G),
que sdo adjacentes, receberdo cores diferentes.

Dire¢do 2 («<): Se L(G) é 3-vértice-colorivel, entdo G é
3-aresta-colorivel.

Prova: Seja ¢’ : V(L(G)) — {1,2,3} uma colora¢do
prépria dos vértices de L(G), como mostrado na Figura 12.
Definimos a coloragdo das arestas de G tal que c(e) = ¢/(v,).
A preservacdo da adjacéncia garante que arestas incidentes
em G terdo cores distintas, validando a solucdo.

1Il) Edge Coloring € NP-Dificil: A demonstracdo da
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U1
€a €c
V2 U3
€b
€d
Vg
Figura 11: Coloragdo de arestas em Gy

Va

VUp Ve

V4

Figura 12: Coloracdo Vilida em L(G,y)
dificuldade deste problema usa o principio da transitividade

das redugdes polinomiais. Para mostrar que Edge Coloring
¢ tdo dificil quanto o 3-Coloring, construimos uma cadeia
de reducdo em duas etapas. Primeiro, reduzimos o 3-
Coloring para o 3-SAT, transformando restri¢cdes de cores em
clausulas booleanas. Depois, reduzimos o 3-SAT para o Edge
Coloring, simulando varidveis e cldusulas com um grafo
adequado. Pela transitividade, se 3-Coloring é NP-completo,
entdo Edge Coloring é NP-dificil.

A primeira etapa consiste na reducdo polinomial
3-Coloring <, 3-SAT. Dado um grafo G = (V,E) com n
vértices, constréi-se uma formula légica ¢ que codifica de
forma precisa as restricdes necessdrias para uma coloracio
prépria de G com trés cores [1]. Para cada vértice v; € V, sdo
criadas trés varidveis booleanas: x; | (representando a cor 1),
x;2 (cor 2) e x; 3 (cor 3).

A férmula ¢ € formada pela conjuncdo de dois tipos
de cldusulas, que juntas modelam as condi¢des de uma
coloracdo prépria. A garantia de cor Unica exige que
cada vértice v; receba pelo menos uma cor, representada
pela cldusula (x;1 Vxi2 Vx;3). Além disso, a restri¢do
de adjacéncia assegura que, para cada aresta (v;,v;) €
E, vértices adjacentes ndo compartilhem a mesma cor, o
que é modelado por trés cldusulas de conflito para cada
aresta: (-1 V 1), (—xio Voxjo) e (—wxis Voowgs).
Essas clausulas 16gicas correspondem diretamente a restricao
de exclusdo mutua representada no gadget da Figura 4,
demonstrando como condi¢des combinatérias sdo traduzidas
em restrigdes booleanas.
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Figura 13: Esquema do Gadget de Varidvel: a alternancia de cores
no ciclo simula a negagao légica (x vs —x).

Uma vez obtida a férmula satisfativel, avangamos para
a redugdo final para Edge Coloring. Esta etapa baseia-se
na construcio classica de Ian Holyer[3], que provou ser
NP-completo determinar se o indice cromdtico de um grafo
cibico € 3 ou 4. A reducio converte a férmula 16gica em um
grafo ctbico utilizando componentes modulares especificos,
denominados gadgets, que transportam valores de verdade
através de pares de arestas coloridas.

A construgdo utiliza duas estruturas principais que podem
ser compreendidas esquematicamente. A primeira é o
Componente de Varidvel, que funciona como um gerador de
verdade. Conforme ilustrado conceitualmente na Figura 13,
ele é constituido por um ciclo de arestas. Devido a
natureza da coloragdo de arestas, as cores devem se alternar
obrigatoriamente ao longo do ciclo. Se associarmos uma cor
ao valor "Verdadeiro" e outra ao "Falso", essa alternincia
garante a consisténcia logica: sempre que uma aresta
representa x, a adjacente representard —x.

O segundo elemento critico é o Componente de Cldusula,
que atua como um testador de satisfacdo. Este subgrafo
conecta-se as arestas dos ciclos das varidveis correspon-
dentes aos literais da cldusula. Sua propriedade topoldgica
fundamental, representada na Figura 14, € o bloqueio
condicional: o gadget é desenhado de tal forma que se torna
impossivel de colorir com apenas 3 cores se, € somente
se, todas as suas arestas de entrada carregarem a cor
correspondente ao valor "Falso".

Dessa forma, o grafo ctibico resultante completo s6 sera
3-aresta-colorivel se existir uma atribuicdo de verdade que
satisfaca a férmula 3-SAT original, evitando o conflito
nos gadgets de cldusula. Conclui-se, assim, que resolver
Edge Coloring € suficiente para resolver 3-SAT e, por
transitividade, o 3-Coloring.

Ressalta-se que o resultado em um grafo cubico fortalece
a conclusdo. Na teoria da complexidade, se um problema
¢ NP-Dificil para uma classe restrita de entradas (grafos
3-regulares), ele mantém essa propriedade para o caso geral
(grafos arbitrarios), visto que a classe restrita compde um
subconjunto do problema global, conforme o principio da
restri¢do descrito por Garey e Johnson [1]. Dessa forma, a
prova de Holyer fundamenta a classificacdo do problema de
Edge Coloring como NP-Dificil.
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Entrada A
(False)

Entrada B
(False)

Entrada C
(False)

Figura 14: Logica do Gadget de Clausula: o componente falha
(ndo é colorivel) apenas se receber "Falso" em todas as entradas.

Conclusdo Geral: Por (I) e (II) demonstramos a pertinéncia
a NP. Por (II) justificamos a dificuldade via redugio
transitiva baseada em Holyer. Logo, Edge Coloring é
NP-Completo.

b. Contribuicoes Pedagogicas

Este trabalho apresenta contribui¢des ao ensino de Teoria
da Computagdo ao esclarecer a distingdo entre equivaléncia
estrutural e reducdo de dificuldade. A utilizacdo do Grafo
Linha permite demonstrar que o problema de Coloragdo de
Arestas pode ser modelado como um problema de Coloracio
de Vértices, 0 que comprova sua pertinéncia a classe NP
conforme as definicdes de Garey e Johnson [1]. Em
contrapartida, a prova de dificuldade exige a constru¢do de
componentes 16gicos, ou gadgets, como estabelecido por
Holyer [3], evitando a confusdo comum sobre a direcio das
redugdes polinomiais.

A visualizagdo da transformacdo estrutural G — L(G)
[4], complementada por representacdes visuais, facilita
a compreensdo geométrica do processo. As ilustra¢des
auxiliam os estudantes a visualizar conceitos abstratos,
permitindo o entendimento das rela¢des entre problemas de
coloragdo e a logica de satisfatibilidade booleana.

VI. RESULTADOS E REFLEXOES

A andlise estrutural via Grafo Linha evidencia como
problemas de coloracdo de naturezas distintas (vértices e
arestas) compartilham uma base computacional comum [4].
Esta relagdo reforca o conceito de que problemas diferentes
podem pertencer a2 mesma classe de complexidade. A
equivaléncia demonstrada confirma que uma instancia de
coloragdo de arestas possui solugdo se, e somente se, a
instancia correspondente de coloracdo de vértices no grafo
linha também for solucionavel.

Uma reflexdo central deste estudo recai sobre a complexi-
dade da prova de NP-Dificuldade. Inicialmente, a intui¢do
geométrica sugere uma tentativa de reducdo direta entre os
problemas de coloragdo. No entanto, a investigacdo tedrica
revelou que a redugio padrdo 3-Coloring <, Edge Coloring
ndo € imediata em termos de construcio de gadgets
topologicos diretos. Foi necessdrio compreender que a
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literatura estabelece essa conexdo através de uma ponte
l16gica: a reducdo transitiva passando pelo problema 3-SAT.

Essa descoberta pedagdgica € valiosa: ela demonstra que,
embora problemas de grafos sejam visualmente similares,
a prova de sua dificuldade muitas vezes exige o retorno
aos fundamentos da légica booleana. A construcdo de
Holyer [3], utilizada neste trabalho, ilustra precisamente
como restrigdes locais em um grafo ctibico simulam portas
l6gicas, confirmando a intratabilidade do problema mesmo
em estruturas restritas.

Sob uma perspectiva pritica, a confirmacdo da
NP-completude do Edge Coloring para k = 3 indica a
necessidade de abordagens alternativas para a solucdo
exata em casos gerais [3]. Essa constatacdo direciona a
investigacdo para o uso de heuristicas e a andlise de casos
especiais tratdveis, como os grafos bipartidos, onde o
Teorema de Vizing assegura que o indice cromdtico iguala o
grau maximo [14]. Para o ensino, este resultado demonstra
que a classificacdo de complexidade orienta a escolha de
estratégias algoritmicas.

A contribui¢do pedagégica deste trabalho reside na
integracdo de técnicas de reducdo com suporte visual. A
constru¢do do Grafo Linha e a explica¢do dos componentes
de Holyer tornam a demonstrag¢do acessivel para estudantes
de graduagdo. A apresentacdo sequencial dos conceitos
permite a compreensao dos passos necessarios para estabele-
cer a NP-Completude de um problema, desde a verificacdo
via equivaléncia estrutural até a prova de dificuldade via
satisfatibilidade 16gica.

Os resultados destacam o Grafo Linha como ferramenta
pedagégica na teoria da computaciio [15]. Esta estrutura
facilita a compreensdo das reducdes polinomiais e serve
como ponte conceitual entre diferentes dreas da teoria dos
grafos. A metodologia adotada pode ser aplicada ao ensino
de outros tépicos, combinando formalismo matematico com
exemplos visuais para tornar conceitos abstratos tangiveis.

VII. CONSIDERACOES FINAIS

Este artigo estabeleceu a classificacio do problema Edge
Coloring como NP-Completo mediante uma abordagem
dupla. A pertinéncia a NP foi demonstrada através da
equivaléncia estrutural com o problema de Coloragdo de
Vértices via Grafo Linha, conforme teoria de Whitney
[4]. A condi¢do de NP-Dificuldade foi justificada pela
redu¢do polinomial a partir do problema 3-SAT, utilizando a
constru¢do de gadgets proposta por Holyer [3], o que valida
a relacdo transitiva com o problema 3-Coloring.

As contribuigdes pedagdgicas compreendem a formaliza-
¢do da prova de redutibilidade e a distincdo metodolégica
entre verificagdo e prova de dificuldade. A incorporacdo
de exemplos ilustrativos e a discussao sobre as implicagdes
praticas da intratabilidade computacional visam apoiar o
aprendizado. O material pode integrar cursos de teoria da
computagdo como exemplo de técnicas de reducdo e andlise
de complexidade.

O trabalho demonstra a viabilidade de apresentar con-
ceitos de teoria da computa¢do de maneira compreensivel
para estudantes de graduacdo. A abordagem baseada
em exemplos visuais constréi a intui¢do sobre reducdes
polinomiais e NP-completude [1].
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Para o ensino de complexidade computacional, este
recurso combina rigor tedrico com acessibilidade. A
estrutura apresentada permite acompanhar o processo de
redug¢do polinomial, desde a transformacdo inicial até a
prova de corretude, o que desenvolve a compreensdo dos
fundamentos da teoria da NP-completude [2].

Trabalhos futuros podem investigar variantes do problema,
como Edge Coloring em classes restritas de grafos ou
desenvolver materiais interativos para visualizacdo de
reducdes. A criacdo de recursos adicionais como videos
explicativos ou simulagdes poderia complementar o material
apresentado, ampliando o impacto educacional na drea de
complexidade computacional.
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