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Resumo—Este artigo analisa a NP-completude do problema Edge Coloring através de uma cadeia de redução polinomial iniciada no
problema 3-Coloring. A metodologia utiliza a construção de um Grafo Linha para demonstrar a pertinência à classe NP e estabelece a
NP-Dificuldade via redução do 3-SAT, baseada em Holyer. São apresentadas definições formais, contexto histórico e revisão de trabalhos
fundamentais em teoria da complexidade computacional. O principal resultado demonstra que Edge Coloring é NP-completo por meio de
um método de redução claro e acessível. O trabalho oferece exemplos educacionais com ilustrações visuais e explicações passo a passo
sobre gadgets lógicos. Este material serve como recurso de aprendizagem para auxiliar estudantes na compreensão de reduções polinomiais
e conceitos de NP-completude em Ciência da Computação.

Palavras-chave—NP-completude, Coloração de Arestas, Coloração de Vértices, Reduções Polinomiais, Complexidade Computacional

Abstract—This article examines the NP-completeness of the Edge Coloring problem through a polynomial reduction chain starting from
the 3-Coloring problem. The methodology employs a Line Graph to demonstrate membership in NP and establishes NP-Hardness via
reductions from 3-SAT, following Holyer’s construction. We present formal definitions, historical context, and a review of fundamental
works in computational complexity theory. The main result demonstrates that Edge Coloring is NP-complete using a clear and accessible
reduction method. The work provides educational examples with visual illustrations and step-by-step explanations of logical gadgets. This
material serves as a learning resource to help students understand polynomial reductions and NP-completeness concepts in computer
science courses.
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I. INTRODUÇÃO

A Teoria da Computação investiga os limites fundamen-
tais dos algoritmos, sendo a classe dos problemas

NP-Completos o cerne dos desafios práticos e teóricos da
área. O estudo desta classe é essencial para entender a in-
tratabilidade computacional, orientando o desenvolvimento
de heurísticas e algoritmos de aproximação para problemas
cruciais em otimização e inteligência artificial [1].

Nesse contexto, os problemas de coloração de grafos,
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como o 3-Coloring (Coloração de Vértices com 3 cores) e
o Edge Coloring (Coloração de Arestas), são centrais. O
3-Coloring consiste em determinar se os vértices de um grafo
podem ser coloridos com três cores de forma que vértices
adjacentes não compartilhem a mesma cor. Historicamente,
ele é um dos primeiros problemas a ter sua NP-completude
provada por redução do SAT (Satisfiability) [2]. Já o Edge
Coloring questiona se as arestas de um grafo podem ser
coloridas com k cores de modo que arestas adjacentes (que
compartilham um vértice) tenham cores distintas.

Ambos os problemas, apesar de conceitualmente distintos,
compartilham uma estrutura computacional equivalente.
Enquanto o 3-Coloring possui aplicações clássicas em
planejamento e alocação de frequência, o Edge Coloring é
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Figura 1: Grafo completo K3 — exemplo de grafo
não-direcionado com 3 vértices.

fundamental em problemas de escalonamento, alocação de
recursos em redes e otimização de tempo [3].

Este artigo reúne e organiza demonstrações presentes
na literatura sobre a NP-completude do Edge Coloring,
com foco na clareza conceitual. A redução polinomial de
3-Coloring ≤p Edge Coloring é apresentada por meio do
conceito de Grafo Linha, destacando os elementos centrais
da transformação. O objetivo é oferecer um material que
apoie o estudo das técnicas de redução e sua importância
dentro da Teoria da Computação.

O trabalho expõe a prova e discute o raciocínio envolvido
na construção, enfatizando aspectos que contribuem para o
ensino de complexidade computacional. As seções seguintes
apresentam os fundamentos necessários, a descrição da
redução e as reflexões que surgem a partir dessa análise.

II. PRELIMINARES

Começamos revisitando alguns conceitos fundamentais
sobre grafos e problemas de coloração, essenciais para
compreender o desenvolvimento deste trabalho.

Um Grafo Não-Direcionado é definido como uma
estrutura G = (V,E), onde V representa um conjunto finito
e não vazio de vértices, e E ⊆ {(u,v) | u,v ∈ V,u 6= v} é o
conjunto de arestas que conectam esses vértices. Neste tipo
de grafo, as arestas não possuem orientação, o que significa
que a aresta (u,v) é idêntica à aresta (v,u), estabelecendo
uma relação simétrica entre os vértices. Grafos não-
direcionados são particularmente úteis para modelar relações
mútuas, como amizades em redes sociais, conexões entre
computadores em uma rede ou relações de adjacência em
mapas.

Dentro dessa estrutura, dizemos que dois vértices são
adjacentes se existe uma aresta conectando-os diretamente.
Esta relação de adjacência é fundamental para definir a
estrutura do grafo e suas propriedades. No grafo K3
(Figura 1), todos os vértices são adjacentes entre si,
formando um triângulo completo onde cada vértice possui
grau 2 (duas conexões). O conjunto de vértices adjacentes a
um vértice v é denominado sua vizinhança. A adjacência é
uma relação binária que determina a conectividade direta no
grafo, sendo essencial para definir caminhos, ciclos e outras
propriedades estruturais.

Da mesma forma, duas arestas são incidentes quando
compartilham um vértice em comum. Esta relação de
incidência conecta o conceito de vértices com o conceito

Figura 2: Grafo exemplo para 3-Coloring — estrutura com
restrições de adjacência que permite coloração com 3 cores.

de arestas, criando a estrutura combinatória do grafo. No
exemplo da Figura 1, qualquer par de arestas entre ea, eb e
ec compartilha um vértice, o que as torna incidentes entre si.
Uma aresta é dita incidente a um vértice quando este vértice
é uma de suas extremidades. O grau de um vértice é definido
como o número de arestas incidentes a ele, sendo esta uma
medida fundamental da centralidade do vértice no grafo.

Uma coloração de vértices é uma atribuição de cores aos
vértices de um grafo por meio de uma função c : V → C,
onde C representa um conjunto finito de cores disponíveis.
A notação c(v) indica a cor atribuída ao vértice v, isto é, o
resultado da função quando aplicada a esse vértice. Dessa
forma, cada vértice recebe exatamente uma cor, permitindo
analisar propriedades estruturais do grafo a partir dessa
atribuição.

Uma coloração é dita própria quando nenhum par de
vértices adjacentes compartilha a mesma cor. Em termos
formais, isso significa que, para toda aresta (u,v) ∈ E, deve
valer c(u) 6= c(v). A condição c(u) e c(v) serem diferentes
garante que vértices conectados não entrem em conflito
de cor, constituindo o requisito fundamental em problemas
clássicos como o 3-Coloring.

A Figura 2 apresenta um grafo simples usado para ilustrar
relações de adjacência e incidência em um contexto de
coloração. O exemplo evidencia como diferentes conexões
afetam as possibilidades de coloração de vértices e de arestas.

O conceito de Grafo Linha estabelece uma dualidade
entre vértices e arestas. Dado um grafo G = (V,E), seu
grafo linha L(G) = (VL,EL) é construído mapeando cada
aresta em E para um vértice em VL, e dois vértices em
L(G) são adjacentes se as arestas correspondentes em G
compartilham um vértice [4]. Esta transformação permite
analisar propriedades das arestas do grafo original através do
estudo dos vértices do grafo linha.

No exemplo da Figura 3, o grafo linha de K3 é isomorfo
ao próprio K3, ilustrando como a transformação preserva a
estrutura de adjacência. Isso acontece porque, em K3, todo
par de arestas compartilha um vértice. Por exemplo, ea e eb
são adjacentes no grafo linha porque compartilhavam v2 no
grafo original; o mesmo ocorre para os outros pares. Essa
correspondência direta entre incidência e adjacência é o que
torna o grafo linha uma ferramenta tão útil em reduções entre
problemas de coloração.

No contexto de problemas de coloração, dois se destacam:
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Figura 3: Grafo linha L(K3) — arestas do grafo original
tornam-se vértices, e a incidência transforma-se em adjacência.

Figura 4: Gadget baseado em K3, usado para impor restrições de
coloração em reduções para 3-Coloring.

o 3-Coloring (Coloração de Vértices com 3 cores) e o
Edge Coloring (Coloração de Arestas). O primeiro é um
problema de decisão que busca determinar se existe uma
função c : V → {1,2,3} tal que, para toda aresta (u,v) ∈ E,
tenhamos c(u) 6= c(v) [5, 6]. Uma coloração que satisfaz esta
propriedade é chamada de coloração própria. A restrição de
usar apenas três cores torna este problema particularmente
desafiador, já que muitos grafos exigem mais cores para uma
coloração própria, enquanto outros podem ser coloridos com
menos.

Os gadgets desempenham um papel central nas reduções
polinomiais envolvendo problemas de coloração. Um gadget
é um pequeno subgrafo construído para impor restrições
locais sobre as escolhas de cor, funcionando como um
"componente lógico" dentro de reduções maiores. Esse
conceito aparece na técnica clássica de Component Design,
frequentemente utilizada em reduções para o problema 3-
Coloring.

O triângulo K3 é um dos gadgets mais utilizados, pois
sua estrutura força necessariamente três cores distintas,
representando escolhas mutuamente exclusivas — como
valores lógicos TRUE, FALSE e um estado base. A Figura 4
ilustra essa construção didática amplamente adotada em
reduções clássicas.

Já o Edge Coloring (Figura 5) pergunta se é possível
colorir as arestas de G usando até k cores, por meio de
uma função c : E → {1,2, . . . ,k}, de forma que arestas
incidentes recebam cores diferentes. O número mínimo de
cores necessárias para essa coloração é o índice cromático,

Figura 5: Edge Coloring válido no K3 — cada aresta recebe uma
cor distinta: ea (azul), eb (verde), ec (vermelho).

denotado por χ′(G). Este problema tem aplicações práticas
em escalonamento de tarefas, alocação de frequências em
redes wireless e design de torneios esportivos.

No âmbito da complexidade computacional, destacamos
duas definições centrais. Uma linguagem de decisão L
pertence à classe NP-Completo se L está em NP e toda
linguagem em NP pode ser reduzida a L em tempo
polinomial [1, 2]. As reduções são formalizadas pelo
conceito de Redução Polinomial, onde um problema A é
redutível a um problema B (denotado por A ≤p B) se existe
uma transformação computável em tempo polinomial que
preserva respostas entre instâncias dos dois problemas. Esta
noção de redução é a base para estabelecer relações de
dificuldade entre problemas e para construir hierarquias de
complexidade.

A importância das reduções polinomiais vai além do
aspecto teórico, pois elas fornecem informações sobre
a estrutura dos problemas e permitem que algoritmos
desenvolvidos para um problema sejam adaptados para
outros. No contexto educacional, compreender essas
reduções é essencial para desenvolver uma intuição sobre
quais problemas são computacionalmente difíceis e por quê.

III. TRABALHOS RELACIONADOS

No trabalho de Cook [2], estabeleceu-se a base da
NP-completude. Na pesquisa, mostrou-se como verificar
soluções em tempo polinomial e construiu a primeira redução
polinomial para o SAT. O objetivo foi entender quando
um problema permite conferir respostas em pouco tempo.
Os resultados são interessantes por terem aberto caminho
para Karp ampliar essa ideia, relacionando vários problemas
clássicos, incluindo o 3-Coloring, e mostrando como muitos
deles caem na mesma classe de complexidade.

No trabalho clássico de Garey e Johnson [1], é detalhada a
complexidade do Graph 3-Colorability. Na obra, os autores
organizam a teoria da NP-completude e utilizam a técnica
de Component Design, que consiste em montar grafos a
partir de peças pequenas que impõem restrições locais.
Gadgets como o triângulo K3 mostram como estruturas
pequenas conseguem impor escolhas de cor e controlar o
comportamento local do grafo, simulando literais e cláusulas.
Os resultados são interessantes por padronizar as reduções
que conectam problemas centrais da computação.

No survey escrito por Cao e outros autores [7], podemos
notar uma visão geral desse tema. Na pesquisa, os autores
reúnem resultados sobre algoritmos, limites estruturais,
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casos especiais e questões abertas da coloração de arestas.
O objetivo do survey é organizar o que já se sabe sobre o
problema, desde técnicas simples de recoloração até métodos
mais atuais. Os resultados são interessantes por consolidar o
conhecimento disperso sobre limites superiores e conjecturas
da área.

No trabalho de Holyer [3], surge o resultado que estrutura
a base moderna dessa área. Na pesquisa, o autor apresenta
a primeira prova de NP-completude do Edge Coloring,
mostrando que o problema permanece intratável mesmo
quando restrito a grafos cúbicos. A técnica usada envolve
montar blocos que forçam escolhas de cor que se propagam
pelo grafo inteiro. Os resultados são interessantes por revelar
que o índice cromático capta decisões combinatórias fortes e
que o problema não se resume a uma variação simples da
coloração de vértices.

No trabalho de Basavaraju e Chandran [8], há um
resultado importante para a coloração de arestas acíclica
em grafos planares. Os autores demonstram que todo
grafo planar admite tal coloração com ∆(G) + 12 cores,
superando o limite anterior de 2∆(G)+ 29. A prova utiliza
configurações inevitáveis em grafos planares e trocas de
cores para evitar ciclos bicromáticos, mostrando como o
índice cromático acíclico reflete a estrutura desses grafos.

No estudo de Galby, Lima, Paulusma e Ries [9], trabalhos
mais novos reforçam essa visão. Na pesquisa, o objetivo
foi classificar o k-Edge Coloring para grafos H-livres,
combinando reduções com análise estrutural para mapear
quando o problema é polinomial.

No trabalho de Sinnamon [10], são propostos algoritmos
para coloração de arestas que buscam ser acessíveis e
eficientes. O objetivo da autora é desenvolver métodos
simples e rápidos para produzir colorações com d +1 cores,
onde d é o grau máximo do grafo. A técnica utilizada se
baseia em decomposição recursiva e ciclos de Euler para
agilizar o processo. Os resultados demonstram que é possível
obter boas soluções de forma prática para grafos gerais em
aplicações reais.

Por fim, no trabalho de Raeisi e Gholami [11], a coloração
de arestas é aplicada à construção de grafos Tanner livres
de ciclos curtos para códigos LDPC de peso-coluna três,
melhorando a decodificação em canais ruidosos. O método
utiliza algoritmos de coloração eficientes para garantir
propriedades acíclicas nos grafos bipartidos. Os resultados
conectam a combinatória gráfica a aplicações práticas em
comunicações digitais.

IV. DESCRIÇÃO DO PROBLEMA

Nesta seção, definimos formalmente os três problemas que
aparecem na cadeia de redução. A Tabela 1 apresenta
a definição do problema 3-SAT, a Tabela 2 descreve o
problema 3-Coloring e a Tabela 3 formaliza o problema Edge
Coloring, indicando, em cada caso, a entrada e a pergunta
associadas.

TABELA 1: DEFINIÇÃO DO PROBLEMA 3-SAT

3-SAT (Satisfatibilidade Booleana)

Entrada: um conjunto X de variáveis; uma coleção C de
cláusulas sobre X onde, para cada c ∈ C, a cláusula possui
exatamente 3 literais (|c|= 3).

Pergunta: Determinar se existe uma atribuição de valores às
variáveis em X de modo que cada cláusula em C tenha pelo
menos um literal verdadeiro.

Para fins de formalização, define-se um literal como uma
variável booleana (x) ou sua negação (¬x). Uma cláusula
é composta pela disjunção lógica (operador OU) desses
literais. A especificidade do problema 3-SAT reside na
estrutura rígida onde cada cláusula deve conter estritamente
três literais, o que permite a padronização dos componentes
gráficos (gadgets) utilizados na redução.

A Tabela 1 define o 3-SAT, que serve como o elo de
conexão fundamental nesta prova. Diferente dos problemas
de coloração, que lidam com estruturas gráficas, o 3-SAT
lida com lógica pura. A restrição de ter "exatamente três
literais" é o que permite criar padrões geométricos fixos
(como triângulos) nas reduções para grafos.

TABELA 2: DEFINIÇÃO DO PROBLEMA 3-COLORING

3-COLORAÇÃO (3-COLORING)

Entrada: Um grafo G = (V,E).

Pergunta: Existe uma função c : V → {1,2,3} tal que
vértices adjacentes recebam cores distintas?

A Tabela 2 define formalmente o problema 3-Coloring.
A entrada é um grafo qualquer, e a pergunta questiona se
é possível colorir seus vértices usando apenas três cores,
respeitando a regra básica de que vértices conectados por
uma aresta devem ter cores diferentes.

TABELA 3: DEFINIÇÃO DO PROBLEMA EDGE COLORING

COLORAÇÃO DE ARESTAS (EDGE COLORING)

Entrada: Um grafo G = (V,E) e um inteiro k.

Pergunta: Existe uma função c : E → {1,2, . . . ,k} tal que
arestas incidentes recebam cores distintas?

A Tabela 3 define o problema Edge Coloring. Aqui,
a entrada inclui um grafo e também um número k que
representa a quantidade de cores disponíveis. A pergunta
busca saber se podemos colorir as arestas do grafo de forma
que arestas que compartilham um vértice comum recebam
cores diferentes. Note que enquanto no 3-Coloring colorimos
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Figura 6: Mapa ilustrando a restrição de adjacência no 3-Coloring.

Figura 7: Ilustração de uma festa como analogia para o 3-SAT.

vértices, no Edge Coloring colorimos arestas, mas ambos
impõem restrições de adjacência.

Os problemas de coloração de grafos representam uma
classe fundamental na teoria da computação, com aplicações
que vão desde o planejamento de horários até a alocação de
recursos em sistemas distribuídos. Nesta seção, descrevemos
formalmente os dois problemas centrais deste trabalho: o
3-Coloring, um problema clássico de coloração de vértices,
e o Edge Coloring, seu análogo na coloração de arestas.
Ambos são problemas de decisão NP-completos [1, 2, 3],
mas cada um apresenta desafios próprios.

Para tornar esses conceitos mais próximos do cotidiano,
podemos imaginar o 3-Coloring como o ato de colorir
um mapa usando apenas três cores, garantindo que países
vizinhos nunca compartilhem a mesma cor, como ilustrado
na Figura 6.

Em relação ao 3-SAT, é como organizar uma festa onde
o sucesso depende de satisfazer a todos. Para isso, o
organizador deve fazer várias escolhas binárias (as variáveis),
como definir se "Haverá Música Ao Vivo?" (Sim ou Não).
Cada convidado importante impõe uma cláusula: ele só
vem à festa se pelo menos uma de suas três condições for
atendida. Por exemplo, um convidado pode exigir: "Eu vou
se tiver Música Ao Vivo OU se o Amigo X não vier OU se
o Buffet for vegetariano." O desafio 3-SAT é encontrar uma
única combinação de decisões (uma configuração Sim/Não
para todos os fatores) que satisfaça a exigência de todos os
convidados simultaneamente. Se essa combinação existir, a
festa pode ser realizada.Essa analogia é ilustrada na Figura 7.

Já o Edge Coloring lembra a montagem da grade de
horários de uma escola: arestas representam aulas e vértices
representam professores ou salas. Aulas que usam o mesmo
recurso não podem ocorrer no mesmo horário, e por isso
precisam de cores diferentes, conforme ilustrado na Figura 8.

Essas analogias destacam como problemas abstratos da
computação surgem em situações reais.

Figura 8: Grade escolar ilustrando o Edge Coloring.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Para provar que Edge Coloring é NP-Completo é necessário
demonstrar duas condições:

• Edge Coloring ∈ NP
• Edge Coloring ∈ NP-Difícil

I) Edge Coloring ∈ NP: Para demonstrar que o problema
pertence a NP , apresentamos um certificado de tamanho
polinomial e um algoritmo verificador determinístico capaz
de validar esse certificado em tempo polinomial [12].

Dado o seguinte certificado: uma coloração
c : E→ 1,2, . . . ,k. Um verificador examina todos os
pares distintos de arestas do grafo. Para cada par (e1,e2),
o algoritmo testa se elas compartilham um vértice (são
incidentes) e, caso positivo, confirma que c(e1) 6= c(e2).
Como existem no máximo |E|2 pares de arestas para
verificar, o custo computacional é limitado por O(|E|2), o
que garante a execução em tempo polinomial.
II) Equivalência Estrutural (Grafo Linha): Uma forma
pedagógica de visualizar a pertinência a NP é através da
transformação para o Grafo Linha L(G). Essa construção
demonstra que o problema de Coloração de Arestas pode
ser modelado como um problema de Coloração de Vértices
(que sabemos estar em NP). A transformação mapeia cada
aresta de G em um vértice de L(G), e as adjacências entre
arestas incidentes em G tornam-se arestas entre vértices
em L(G). Assim, uma coloração própria das arestas de
G corresponde diretamente a uma coloração própria dos
vértices de L(G). Uma vez que o Grafo Linha pode ser
construído em tempo polinomial e a coloração de vértices
é um problema bem conhecido em NP , esta equivalência
estrutural reforça a classificação do problema de Edge
Coloring como pertencente à classe NP .

Dado um grafo G = (V,E), construímos L(G) = (VL,EL)
onde:

• VL = E (cada aresta de G torna-se um vértice em L(G))
• EL = {(e1,e2) | e1,e2 ∈ E são incidentes em G}Como exemplo ilustrativo, a Figura 9 mostra um grafo Gex

com vértices v1,v2,v3,v4 e arestas ea (ligando v1-v2), eb
(v2-v3), ec (v1-v3) e ed (v3-v4). Observa-se que as arestas eb
e ed compartilham o vértice v3, o que configura uma relação
de incidência direta. Por sua vez, eb também é incidente com
ec, uma vez que ambas incidem em v3. Essas relações de
adjacência entre arestas no grafo original serão representadas
como arestas no grafo linha L(Gex).

A Figura 10 mostra o grafo linha correspondente
L(Gex), onde cada aresta do grafo original torna-se um
vértice. A adjacência entre vb e vd reflete diretamente o
compartilhamento do vértice v3 pelas arestas eb e ed no grafo
original.
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Figura 9: Grafo Base (Gex)

Figura 10: Grafo Linha (L(Gex))

A propriedade fundamental, conforme Jensen e Toft [13],
é que G admite uma k-coloração de arestas se e somente se
L(G) admite uma k-coloração de vértices. Esta equivalência
confirma que resolver Edge Coloring é redutível a resolver
Vertex Coloring, reforçando sua pertinência à classe NP .

a. Prova de Corretude da Equivalência

A seguir, apresenta-se a demonstração de que G é
3-aresta-colorível se e somente se L(G) é 3-vértice-colorível.

Direção 1(⇒): Se G é 3-aresta-colorível, então L(G) é
3-vértice-colorível.

Prova: Seja c : E(G) → {vermelho,azul,verde} uma
coloração própria das arestas de G. Para cada aresta
e ∈ E(G), atribuímos a cor c(e) ao vértice correspondente
ve ∈V (L(G)). Se duas arestas eb e ec são incidentes ao
mesmo vértice v3 em G, elas possuem cores diferentes, como
ilustrado na Figura 11. Logo, os vértices vb e vc em L(G),
que são adjacentes, receberão cores diferentes.

Direção 2 (⇐): Se L(G) é 3-vértice-colorível, então G é
3-aresta-colorível.

Prova: Seja c′ : V (L(G)) → {1,2,3} uma coloração
própria dos vértices de L(G), como mostrado na Figura 12.
Definimos a coloração das arestas de G tal que c(e) = c′(ve).
A preservação da adjacência garante que arestas incidentes
em G terão cores distintas, validando a solução.

III) Edge Coloring ∈ NP-Difícil: A demonstração da

Figura 11: Coloração de arestas em Gex

Figura 12: Coloração Válida em L(Gex)
dificuldade deste problema usa o princípio da transitividade
das reduções polinomiais. Para mostrar que Edge Coloring
é tão difícil quanto o 3-Coloring, construímos uma cadeia
de redução em duas etapas. Primeiro, reduzimos o 3-
Coloring para o 3-SAT, transformando restrições de cores em
cláusulas booleanas. Depois, reduzimos o 3-SAT para o Edge
Coloring, simulando variáveis e cláusulas com um grafo
adequado. Pela transitividade, se 3-Coloring é NP-completo,
então Edge Coloring é NP-difícil.

A primeira etapa consiste na redução polinomial
3-Coloring ≤p 3-SAT. Dado um grafo G = (V,E) com n
vértices, constrói-se uma fórmula lógica φ que codifica de
forma precisa as restrições necessárias para uma coloração
própria de G com três cores [1]. Para cada vértice vi ∈V , são
criadas três variáveis booleanas: xi,1 (representando a cor 1),
xi,2 (cor 2) e xi,3 (cor 3).

A fórmula φ é formada pela conjunção de dois tipos
de cláusulas, que juntas modelam as condições de uma
coloração própria. A garantia de cor única exige que
cada vértice vi receba pelo menos uma cor, representada
pela cláusula (xi,1 ∨ xi,2 ∨ xi,3). Além disso, a restrição
de adjacência assegura que, para cada aresta (vi,v j) ∈
E, vértices adjacentes não compartilhem a mesma cor, o
que é modelado por três cláusulas de conflito para cada
aresta: (¬xi,1 ∨ ¬x j,1), (¬xi,2 ∨ ¬x j,2) e (¬xi,3 ∨ ¬x j,3).
Essas cláusulas lógicas correspondem diretamente à restrição
de exclusão mútua representada no gadget da Figura 4,
demonstrando como condições combinatórias são traduzidas
em restrições booleanas.
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Figura 13: Esquema do Gadget de Variável: a alternância de cores
no ciclo simula a negação lógica (x vs ¬x).

Uma vez obtida a fórmula satisfatível, avançamos para
a redução final para Edge Coloring. Esta etapa baseia-se
na construção clássica de Ian Holyer[3], que provou ser
NP-completo determinar se o índice cromático de um grafo
cúbico é 3 ou 4. A redução converte a fórmula lógica em um
grafo cúbico utilizando componentes modulares específicos,
denominados gadgets, que transportam valores de verdade
através de pares de arestas coloridas.

A construção utiliza duas estruturas principais que podem
ser compreendidas esquematicamente. A primeira é o
Componente de Variável, que funciona como um gerador de
verdade. Conforme ilustrado conceitualmente na Figura 13,
ele é constituído por um ciclo de arestas. Devido à
natureza da coloração de arestas, as cores devem se alternar
obrigatoriamente ao longo do ciclo. Se associarmos uma cor
ao valor "Verdadeiro" e outra ao "Falso", essa alternância
garante a consistência lógica: sempre que uma aresta
representa x, a adjacente representará ¬x.

O segundo elemento crítico é o Componente de Cláusula,
que atua como um testador de satisfação. Este subgrafo
conecta-se às arestas dos ciclos das variáveis correspon-
dentes aos literais da cláusula. Sua propriedade topológica
fundamental, representada na Figura 14, é o bloqueio
condicional: o gadget é desenhado de tal forma que se torna
impossível de colorir com apenas 3 cores se, e somente
se, todas as suas arestas de entrada carregarem a cor
correspondente ao valor "Falso".

Dessa forma, o grafo cúbico resultante completo só será
3-aresta-colorível se existir uma atribuição de verdade que
satisfaça a fórmula 3-SAT original, evitando o conflito
nos gadgets de cláusula. Conclui-se, assim, que resolver
Edge Coloring é suficiente para resolver 3-SAT e, por
transitividade, o 3-Coloring.

Ressalta-se que o resultado em um grafo cúbico fortalece
a conclusão. Na teoria da complexidade, se um problema
é NP-Difícil para uma classe restrita de entradas (grafos
3-regulares), ele mantém essa propriedade para o caso geral
(grafos arbitrários), visto que a classe restrita compõe um
subconjunto do problema global, conforme o princípio da
restrição descrito por Garey e Johnson [1]. Dessa forma, a
prova de Holyer fundamenta a classificação do problema de
Edge Coloring como NP-Difícil.

Figura 14: Lógica do Gadget de Cláusula: o componente falha
(não é colorível) apenas se receber "Falso" em todas as entradas.

Conclusão Geral: Por (I) e (II) demonstramos a pertinência
a NP . Por (III) justificamos a dificuldade via redução
transitiva baseada em Holyer. Logo, Edge Coloring é
NP-Completo.

b. Contribuições Pedagógicas

Este trabalho apresenta contribuições ao ensino de Teoria
da Computação ao esclarecer a distinção entre equivalência
estrutural e redução de dificuldade. A utilização do Grafo
Linha permite demonstrar que o problema de Coloração de
Arestas pode ser modelado como um problema de Coloração
de Vértices, o que comprova sua pertinência à classe NP
conforme as definições de Garey e Johnson [1]. Em
contrapartida, a prova de dificuldade exige a construção de
componentes lógicos, ou gadgets, como estabelecido por
Holyer [3], evitando a confusão comum sobre a direção das
reduções polinomiais.

A visualização da transformação estrutural G → L(G)
[4], complementada por representações visuais, facilita
a compreensão geométrica do processo. As ilustrações
auxiliam os estudantes a visualizar conceitos abstratos,
permitindo o entendimento das relações entre problemas de
coloração e a lógica de satisfatibilidade booleana.

VI. RESULTADOS E REFLEXÕES

A análise estrutural via Grafo Linha evidencia como
problemas de coloração de naturezas distintas (vértices e
arestas) compartilham uma base computacional comum [4].
Esta relação reforça o conceito de que problemas diferentes
podem pertencer à mesma classe de complexidade. A
equivalência demonstrada confirma que uma instância de
coloração de arestas possui solução se, e somente se, a
instância correspondente de coloração de vértices no grafo
linha também for solucionável.

Uma reflexão central deste estudo recai sobre a complexi-
dade da prova de NP-Dificuldade. Inicialmente, a intuição
geométrica sugere uma tentativa de redução direta entre os
problemas de coloração. No entanto, a investigação teórica
revelou que a redução padrão 3-Coloring ≤p Edge Coloring
não é imediata em termos de construção de gadgets
topológicos diretos. Foi necessário compreender que a
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literatura estabelece essa conexão através de uma ponte
lógica: a redução transitiva passando pelo problema 3-SAT.

Essa descoberta pedagógica é valiosa: ela demonstra que,
embora problemas de grafos sejam visualmente similares,
a prova de sua dificuldade muitas vezes exige o retorno
aos fundamentos da lógica booleana. A construção de
Holyer [3], utilizada neste trabalho, ilustra precisamente
como restrições locais em um grafo cúbico simulam portas
lógicas, confirmando a intratabilidade do problema mesmo
em estruturas restritas.

Sob uma perspectiva prática, a confirmação da
NP-completude do Edge Coloring para k = 3 indica a
necessidade de abordagens alternativas para a solução
exata em casos gerais [3]. Essa constatação direciona a
investigação para o uso de heurísticas e a análise de casos
especiais tratáveis, como os grafos bipartidos, onde o
Teorema de Vizing assegura que o índice cromático iguala o
grau máximo [14]. Para o ensino, este resultado demonstra
que a classificação de complexidade orienta a escolha de
estratégias algorítmicas.

A contribuição pedagógica deste trabalho reside na
integração de técnicas de redução com suporte visual. A
construção do Grafo Linha e a explicação dos componentes
de Holyer tornam a demonstração acessível para estudantes
de graduação. A apresentação sequencial dos conceitos
permite a compreensão dos passos necessários para estabele-
cer a NP-Completude de um problema, desde a verificação
via equivalência estrutural até a prova de dificuldade via
satisfatibilidade lógica.

Os resultados destacam o Grafo Linha como ferramenta
pedagógica na teoria da computação [15]. Esta estrutura
facilita a compreensão das reduções polinomiais e serve
como ponte conceitual entre diferentes áreas da teoria dos
grafos. A metodologia adotada pode ser aplicada ao ensino
de outros tópicos, combinando formalismo matemático com
exemplos visuais para tornar conceitos abstratos tangíveis.

VII. CONSIDERAÇÕES FINAIS

Este artigo estabeleceu a classificação do problema Edge
Coloring como NP-Completo mediante uma abordagem
dupla. A pertinência a NP foi demonstrada através da
equivalência estrutural com o problema de Coloração de
Vértices via Grafo Linha, conforme teoria de Whitney
[4]. A condição de NP-Dificuldade foi justificada pela
redução polinomial a partir do problema 3-SAT, utilizando a
construção de gadgets proposta por Holyer [3], o que valida
a relação transitiva com o problema 3-Coloring.

As contribuições pedagógicas compreendem a formaliza-
ção da prova de redutibilidade e a distinção metodológica
entre verificação e prova de dificuldade. A incorporação
de exemplos ilustrativos e a discussão sobre as implicações
práticas da intratabilidade computacional visam apoiar o
aprendizado. O material pode integrar cursos de teoria da
computação como exemplo de técnicas de redução e análise
de complexidade.

O trabalho demonstra a viabilidade de apresentar con-
ceitos de teoria da computação de maneira compreensível
para estudantes de graduação. A abordagem baseada
em exemplos visuais constrói a intuição sobre reduções
polinomiais e NP-completude [1].

Para o ensino de complexidade computacional, este
recurso combina rigor teórico com acessibilidade. A
estrutura apresentada permite acompanhar o processo de
redução polinomial, desde a transformação inicial até a
prova de corretude, o que desenvolve a compreensão dos
fundamentos da teoria da NP-completude [2].

Trabalhos futuros podem investigar variantes do problema,
como Edge Coloring em classes restritas de grafos ou
desenvolver materiais interativos para visualização de
reduções. A criação de recursos adicionais como vídeos
explicativos ou simulações poderia complementar o material
apresentado, ampliando o impacto educacional na área de
complexidade computacional.
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