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Resumo—Este artigo apresenta uma abordagem pedagógica para o estudo do problema Hitting Set, com o intuito de reproduzir e tornar
acessível a demonstração clássica de sua NP-completude, conforme estabelecida na literatura especializada. Diferentemente de trabalhos
que visam propor novos resultados teóricos inéditos, o objetivo central desta pesquisa é preencher uma lacuna didática, detalhando
minuciosamente a redução polinomial a partir do problema Vertex Cover (Problema Alvo) para o Hitting Set (Problema Atacado). A
metodologia adotada inicia-se com uma revisão dos conceitos fundamentais, incluindo as definições formais das classes P e NP, bem como
o conceito de certificado e verificação eficiente. Em seguida, uma prova inspirada na de Richard Karp é construída passo a passo, com
ênfase na visualização da transformação das instâncias de grafos para coleções de conjuntos através de diagramas de “antes e depois”.
Adicionalmente, introduz-se o “Dilema dos Observadores”, uma analogia original para ilustrar a complexidade combinatória. Por fim,
discutem-se aplicações práticas em bioinformática e engenharia de software, consolidando o material como um recurso de apoio eficaz ao
ensino de Teoria da Computação.

Palavras-chave—Hitting Set, NP-Completo, Vertex Cover, Redução Polinomial, Teoria da Computação.

Abstract—This paper presents a pedagogical approach to the study of the Hitting Set problem, aiming to reproduce and make accessible the
classic demonstration of its NP-completeness, as established in the specialized literature. Unlike works aiming to propose novel theoretical
results, the central objective of this research is to bridge a didactic gap by meticulously detailing the polynomial reduction from the Vertex
Cover problem to the Hitting Set problem. The adopted methodology begins with a review of fundamental concepts, including formal
definitions of the P and NP classes, as well as the concepts of certificates and efficient verification. Subsequently, a proof inspired by
Richard Karp is constructed step-by-step, emphasizing the visualization of transforming graph instances into set collections using “before
and after” diagrams. Additionally, the “Observer’s Dilemma” is introduced—an original analogy to illustrate combinatorial complexity.
Finally, practical applications in bioinformatics and software engineering are discussed, consolidating the material as an effective support
resource for teaching Theory of Computation.

Keywords—Hitting Set, NP-Complete, Vertex Cover, Polynomial Reduction, Theory of Computation.

I. INTRODUÇÃO

O ensino de Teoria da Computação, especificamente
no tópico de NP-Completude, impõe desafios signi-

ficativos aos estudantes de graduação devido ao alto nível
de abstração exigido. Compreender formalmente como

Dados de contato: Benedito Jaime Melo Moraes Junior, bened-
ito.jaime@uft.edu.br

a dificuldade de um problema pode ser “traduzida” para
o conceito de redução polinomial é frequentemente uma
barreira de aprendizado que exige mais do que apenas
definições matemáticas, exige visualização e intuição. Entre
os diversos problemas estudados no âmbito da classe NP ,
o Hitting Set ocupa papel significativo, tanto por sua
relevância teórica quanto por sua ampla gama de aplicações
práticas conforme discutido por Karp [1] ao apresentar sua
formulação clássica no estudo dos problemas NP-Completos.
Tendo em vista a união de referências clássicas amplamente
adotadas, é perceptível que esses materiais frequentemente

ISSN: 2675-3588 71



HITTING SET: UMA ABORDAGEM PEDAGÓGICA PÓVOA et al.

apresentam a prova de NP-completude do Hitting Set
de forma condensada, com poucos recursos visuais e
saltos lógicos que pressupõem um alto grau de maturidade
matemática do leitor. Na prática de sala de aula, observa-se
que estudantes de graduação têm dificuldade em acompanhar
esses argumentos sem um material intermediário que detalhe
a redução passo a passo, com exemplos graduais e analogias
concretas. Assim, identifica-se uma lacuna didática entre a
literatura de referência, voltada a um público mais avançado,
e as necessidades de estudantes em disciplinas introdutórias
de Teoria da Computação.

Neste contexto, este trabalho visa oferecer uma repro-
dução pedagógica da prova de NP-Completude do problema
Hitting Set. Utilizando a redução clássica a partir do
Vertex Cover (Cobertura de Vértices) [2], buscamos detalhar
as etapas lógicas e fornecer recursos visuais que auxiliem
o entendimento da literatura técnica padrão, facilitando
a assimilação dos conceitos fundamentais por estudantes
iniciantes. Dessa forma, como uma contribuição pedagógica,
este trabalho apresenta recursos para facilitar o aprendizado
dos conceitos de Teoria da Computação. O material inclui
uma prova da NP-Completude do problema Hitting Set,
desdobrando os aspectos técnicos para maior clareza. Para
tornar os conceitos abstratos mais tangíveis, são fornecidas
figuras e exemplos que ilustram tanto o processo de redução
polinomial quanto a verificação das soluções. Como parte
de uma estratégia lúdica, o estudo incorpora um problema
ilustrativo (o “Dilema dos Observadores”), que aproxima o
conceito de complexidade combinatória do cotidiano dentro
da complexidade explorada na NP-Completude. Por fim,
a compreensão da classe NP é reforçada com a inclusão
de pseudocódigo e análise de verificação, demonstrando
formalmente a eficiência do algoritmo que checa a validade
de uma solução candidata.

A estrutura deste trabalho foi organizada para guiar o
leitor desde os fundamentos até a prova formal. Iniciamos
revisando os conceitos basilares de grafos e complexi-
dade relacionados ao problema estudado. Em seguida,
contextualizamos o problema na literatura, para então
definirmos o Hitting Set e apresentarmos a demonstração
técnica visual, encerrando com uma reflexão sobre as
estratégias de aprendizado adotadas, seguindo a metodologia
de seminários proposta por Lassance, Bianchini e Santos [3].
O objetivo central deste trabalho, portanto, não é apresentar
novos resultados teóricos sobre Hitting Set, mas organizar
uma rota de aprendizagem que torne a prova clássica
de sua NP-completude acessível a estudantes iniciantes,
complementando os livros-texto tradicionais, com ênfase em
recursos de visualização que mostrem a transformação das
instâncias, demonstrações que gradualmente aproximem o
estudante da prova completa e conexões explícitas entre a
prova abstrata e aplicações concretas.

II. PRELIMINARES

Para fundamentar a demonstração que será desenvolvida, re-
visamos nesta seção os conceitos essenciais e estabelecemos
a notação utilizada. As definições aqui apresentadas seguem
as convenções de Sipser [4] e Garey & Johnson [2].

O primeiro conceito fundamental é o de grafo, uma
estrutura matemática amplamente utilizada para modelar
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e1 e2

e3

Figura 1: Representação de um grafo não direcionado G = (V,E).
As arestas são rotuladas como ei, e os vértices como vi.

relações entre objetos, como ligações entre computadores
em uma rede, estradas ligando cidades ou conexões entre
páginas da web. Formalmente, um grafo é denotado por
G = (V,E), onde V representa o conjunto de vértices (ou
nós), que são os pontos do grafo, e E representa o conjunto de
arestas, que são as conexões entre pares de vértices. Em um
grafo simples e não direcionado, cada aresta é um par não
ordenado {u,v}, indicando apenas que existe uma ligação
entre u e v, sem sentido de direção. Esse tipo de estrutura é
especialmente conveniente para problemas de cobertura, pois
permite enxergar relações de conexão de maneira clara.

Para a redução proposta que será apresentada mais adiante,
é crucial entender também o conceito de incidência e de
grau. Dizemos que uma aresta {u,v} ∈ E é incidente
aos vértices u e v, isto é, ela “toca” exatamente esses
dois vértices. O grau de um vértice, por sua vez, é o
número de arestas incidentes a ele e indica quantas conexões
diretas aquele ponto possui dentro do grafo. A Figura 1
apresenta uma ilustração visual desses componentes: os
círculos representam os vértices (V ) e as linhas representam
as arestas (E). No exemplo, o vértice v3 possui grau 2, pois
está ligado a v1 e v2; esse tipo de contagem será reutilizado
mais adiante quando mapearemos vértices e arestas para
conjuntos e elementos na redução para o problema Hitting
Set.

Além do conceito de grafos utilizado, é necessário abordar
que o contexto deste trabalho exige a definição clara do
ambiente de Complexidade Computacional de forma que
facilite a compreensão dentro do âmbito conteúdo-aluno.

Finalmente, para realizar a prova de NP-Completude,
utilizaremos o conceito de redução e um problema base. O
problema escolhido como ponto de partida é o Vertex Cover.
Sua NP-Completude foi demonstrada por Richard Karp [1],
sendo uma das mais aceitas no contexto de cobertura de
grafos. Ele é definido pela seguinte instância e questão: dado
um grafo G = (V,E) e um inteiro k, é possível escolher um
subconjunto de vértices C⊆V (com |C| ≤ k) tal que todas as
arestas de E tenham pelo menos uma extremidade em C?

Problema: VERTEX COVER (VC)

Entrada: Um grafo simples G = (V,E) e um inteiro k ∈ N.

Questão: Existe um subconjunto C⊆V com |C| ≤ k tal que,
para toda aresta {u,v} ∈ E, vale u ∈ C ou v ∈ C? (Ou
seja, cada aresta de G possui ao menos uma extremidade
em C.)
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Este problema servirá de alicerce para a construção do
Hitting Set nas seções subsequentes, pois a prova de NP-
Completude será obtida por meio de uma redução polinomial
de Vertex Cover para Hitting Set. De maneira geral, o Hitting
Set recebe como entrada um universo finito de elementos e
uma coleção de subconjuntos desse universo, e pergunta se
existe um subconjunto H com tamanho limitado por k que
intercepte todos esses subconjuntos, isto é, que contenha pelo
menos um elemento em comum com cada um deles. Na
prática, o Hitting Set pode ser visto como uma generalização
de problemas de cobertura em grafos, na qual arestas e
vértices são substituídos por subconjuntos e elementos de um
universo arbitrário.

Problema: HITTING SET (HS)

Entrada: Um conjunto finito U (universo), uma coleção
S = {S1,S2, . . . ,Sm} de subconjuntos de U e um inteiro
positivo k ∈ N.

Questão: Existe um subconjunto H ⊆U com cardinalidade
|H| ≤ k tal que H intercepte todos os conjuntos de S?
(Ou seja, H ∩Si 6= /0 para todo Si ∈ S).

III. TRABALHOS RELACIONADOS

A fundamentação deste artigo baseia-se em três eixos princi-
pais: desenvolvimentos recentes em algoritmos e aplicações
para o problema de Hitting Set, abordagens contemporâneas
para ensino de complexidade computacional e o apoio da
literatura basilar para estabelecer relação com as práticas
pedagógicas na disciplina de Teoria da Computação. A
seguir, destacam-se as obras diretamente relacionadas à
proposta.

Do ponto de vista técnico, estudos recentes sobre geração
de Hitting Sets mínimos e sobre aplicações em biologia
de sistemas evidenciam que o Hitting Set permanece um
problema central tanto na pesquisa teórica quanto em
cenários aplicados por Gainer-Dewar, Vera-Licona e Haus[5,
6]. Esses trabalhos discutem algoritmos em contextos
reais, reforçando a importância de compreender, mesmo em
nível introdutório, por que o problema é intratável e quais
estratégias práticas são adotadas na literatura recente.

É importante ressaltar que busca-se a inspiração basilar
em trabalhos como o de Garey e Johnson [2], referência em
intratabilidade para denotarmos o entendimento em materiais
recentes, pois fornecem a definição formal do Hitting Set
e sua classificação como problema NP-Completo, baseada
na equivalência com o Set Cover. O trabalho seminal de
Karp [1] é utilizado para contextualizar historicamente as
reduções polinomiais, técnica central aplicada neste artigo,
bem como para situar o Hitting Set no panorama dos
problemas intratáveis.

No eixo de aplicações, resultados como os de Gainer-
Dewar e Vera-Licona [5] e de Haus et al. [6] ilustram o uso
de hitting sets na análise de redes biológicas e em ambientes

de alto desempenho, o que contribui para motivar o estudo
do problema junto a estudantes da área de computação e a
visão da aplicabilidade no tom pedagógico. Ao mostrar que
a mesma estrutura combinatória aparece em contextos atuais
de pesquisa, esses trabalhos ajudam a conectar o conteúdo
teórico da disciplina com problemas concretos de interesse
científico e tecnológico.

Os trabalhos de Chvátal [7], Ammann e Offutt [8] trazem
abordagens que alimentam a discussão de aplicabilidade
prática. Chvátal discute heurísticas gulosas como forma
de contornar a intratabilidade em problemas de cobertura,
enquanto Ammann e Offutt conectam a teoria abstrata à
prática de testes de software, justificando a relevância do
Hitting Set para a formação de futuros profissionais.

Do ponto de vista pedagógico, o artigo de Lassance,
Bianchini e Santos [3], que descreve o “Ciclo de Sem-
inários em Teoria da Computação”, serviu como referência
metodológica direta. Dessa experiência, foi adotada a
ideia de decompor a prova em “Problema Atacado” (Vertex
Cover) e “Problema Alvo” (Hitting Set), bem como a
ênfase na construção de recursos visuais e exemplos guiados
como suporte à aprendizagem em disciplinas introdutórias.
Em complemento, trabalhos que exploram o uso de
visualizações, animações e ferramentas interativas para o
ensino de NP-Completude, indicam uma tendência recente
de tornar as reduções mais acessíveis por meio de abordagens
ativas e multimodais, Crescenz e Marchetti [9, 10].

Em conjunto, essas referências não apenas sustentam
a prova teórica apresentada nas seções seguintes mas
abordam de maneira recente, e fundamentam a escolha
de uma abordagem fortemente didática, alinhada com
práticas contemporâneas de ensino de complexidade e com
aplicações atuais do problema de Hitting Set.

IV. DESCRIÇÃO DO PROBLEMA

O Hitting Set é um dos problemas mais dinâmicos na teoria
da complexidade, justamente pela sua objetividade que serve
como um bom drive de verificação entre problemas tratáveis
e intratáveis. Sua classificação como NP-Completo foi
estabelecida originalmente por Richard Karp em sua lista
seminal de 21 problemas [1], devido à sua equivalência direta
com o problema Set Cover. Posteriormente, Garey e Johnson
[2] consolidaram sua importância como um problema ilustre
para provas de redução, dada a sua estrutura combinatória
limpa e versátil.

Para compreender a natureza deste problema, é essencial
distinguir inicialmente entre as versões de otimização e
decisão. Em sua forma natural, o Hitting Set é um
problema de otimização que busca responder: “Qual é o
menor número de elementos necessários para atingir todos
os subconjuntos?”. No entanto, para a classificação na classe
NP , utilizamos a versão de decisão, que impõe um limite
superior k. A questão central torna-se: “É possível atingir
todos os conjuntos utilizando no máximo k elementos?”.

Formalmente, seguindo a notação proposta por Garey
e Johnson [2], seja U um conjunto finito, chamado de
universo, e seja S = {S1,S2, . . . ,Sm} uma coleção finita de
subconjuntos de U , isto é, Si ⊆U para todo 1 ≤ i ≤ m. Seja
ainda k ∈ N um inteiro não negativo. O problema HITTING
SET na forma de decisão é definido da seguinte maneira:
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TABELA 1: INTRATABILIDADE: COMPARAÇÃO DO NÚMERO DE

OPERAÇÕES NECESSÁRIAS CONFORME A ENTRADA n CRESCE.

Entrada
(n)

Polinomial
(n2)

Exponencial
(2n)

10 100 1.024
30 900 ≈ 1 bilhão
50 2.500 ≈ 1015

100 10.000 ≈ 1030

Um subconjunto H ⊆U que satisfaz H ∩Si 6= /0 para todo
Si ∈S é chamado de hitting set (ou conjunto atingidor) para a
coleção S. Assim, o objetivo do problema é decidir se existe
um hitting set de tamanho no máximo k. Nesta notação, U
representa o conjunto de todos os elementos disponíveis, S é
a família de subconjuntos que devem ser “atingidos”, H é o
conjunto solução candidato e k é o limite máximo permitido
para o tamanho de H.

A complexidade computacional inerente a esta definição
impõe desafios práticos severos. Para encontrar a solução
com exatidão, a abordagem mais intuitiva é a chamada Força
Bruta. O conceito é simples: o computador testa todas
as combinações possíveis de elementos para ver qual é a
menor que funciona. É como tentar abrir um cadeado de
segredo testando todas as senhas, uma por uma: 000, 001,
002... Embora a Força Bruta seja correta, ela é extremamente
lenta por sua natureza combinatória. Dado um universo U
com n elementos, o número total de subconjuntos possíveis
que podem ser formados é 2n (incluindo o conjunto vazio).
O algoritmo precisa, essencialmente, percorrer todas as 2n

possibilidades, ou pelo menos um grande subconjunto delas,
para encontrar a solução ótima. O número de combinações
cresce exponencialmente (2n), tornando a resolução inviável
para qualquer instância que não seja muito pequena [2].
Dessa forma, a Tabela 1 ilustra como esse tempo de
execução aumenta rapidamente, por meio da comparação
do número de operações necessárias conforme a entrada
cresce, baseando-se em análises assintóticas clássicas [4]. A
potência 2n aparece porque, para cada elemento do universo
U com n elementos, há duas possibilidades independentes:
ou ele entra no subconjunto H ou não entra.

Diante da impossibilidade de verificar todas as opções,
pois o número de combinações cresce de forma exponencial,
como ilustrado na Tabela 1, cientistas da computação
recorrem a algoritmos de aproximação [7]. A ideia é aceitar
abrir mão da garantia de solução ótima em troca de um
algoritmo que rode em tempo polinomial e produza soluções
“boas o suficiente” na prática.

De forma explicativa e alinhada à metodologia de ensino
proposta por Lassance, Bianchini e Santos [3], adotamos
aqui uma estratégia passo a passo voltada ao entendimento
dos estudantes. A ideia é construir a solução de forma
interativa, sempre observando a instância em um quadro ou
diagrama: em cada passo, o aluno identifica quais conjuntos
ainda não foram atingidos e escolhe um elemento que ajude
a cobrir os casos restantes, atualizando o desenho a cada
escolha.

Do ponto de vista algorítmico, essa construção iterativa
pode ser vista como uma versão simplificada de uma
abordagem gulosa clássica [7]: a cada passo, escolhe-se

TABELA 2: COMPARAÇÃO ENTRE ABORDAGENS PARA O

HITTING SET. (n = |U |, ASSUMINDO m≈ n PARA

SIMPLIFICAÇÃO).

Abordagem Complexidade
de Tempo

Qualidade da
Solução

Enumeração Completa
(Força Bruta) O(2n) Exata (ótima, mas

inviável para n grande)

Construção Iterativa
Orientada (passo a passo) O(n2) Em geral não ótima, mas

utilizável na prática

um elemento que contribui para cobrir muitos conjuntos
ainda não atingidos. Esse tipo de estratégia não garante,
em geral, a melhor solução possível (ao contrário da Força
Bruta, que é exata porém inviável para entradas grandes
[2]), mas apresenta duas vantagens fundamentais: (i) seu
tempo de execução é polinomial, o que a torna utilizável
em instâncias reais, e (ii) existem resultados teóricos que
limitam quão pior a solução obtida pode ser em relação à
solução ótima [7]. Para fins de análise didática e comparação
de crescimento, assumimos aqui um cenário onde o número
de subconjuntos m é proporcional ao tamanho do universo n,
permitindo expressar a complexidade apenas em função de n.
A Tabela 2 resume esse contraste entre a exatidão da Força
Bruta e a praticidade das abordagens iterativas.

Contudo, em cenários industriais onde a exatidão é inego-
ciável (como no diagnóstico médico ou em configurações
de segurança crítica), depender apenas de aproximações
pode ser insuficiente. Para esses casos, a indústria recorre
à Complexidade Parametrizada (FPT - Fixed-Parameter
Tractability). Nesta abordagem, a complexidade é analisada
em função de dois valores: o tamanho da entrada n e um
parâmetro fixo k — que, neste problema, corresponde ao
tamanho da solução buscada. A estratégia é confinar a
“explosão combinatória” exclusivamente a esse parâmetro k,
mantendo o tempo polinomial em relação a n. Algoritmos
FPT com complexidade do tipo O(2k · n) exemplificam bem
essa vantagem: considere uma base de dados com n =
1.000 elementos onde buscamos um subconjunto de tamanho
k = 10. Enquanto a abordagem FPT exigiria apenas ≈
106 operações, sendo resolvida em cerca de 1 milissegundo
(supondo 109 operações/s), a força bruta (2n) exigiria 21.000

operações, o que levaria um tempo superior à idade do
universo para ser concluído. Essa abordagem permite lidar
com a intratabilidade de forma cirúrgica em instâncias reais,
sem sacrificar a precisão dos resultados [11].

Apesar da dificuldade geral, existem exceções interes-
santes. Se restringirmos a instância de modo que cada
subconjunto em S tenha tamanho máximo 2 (isto é, |Si| ≤
2 para todo Si ∈ S), o problema torna-se idêntico ao
Vertex Cover, que, apesar de ainda ser NP-Completo,
permite análises mais detalhadas e soluções aproximadas
bem estudadas em questão literária.

Para visualizar a definição formal na prática, considere
a instância apresentada na Figura 2. Neste exemplo,
temos o universo U = {1,2,3,4,5} e a coleção S =
{{1,2,3},{2,4},{3,4},{4,5}} com k = 2. A resposta é
afirmativa, pois o conjunto H = {2,4} possui tamanho 2
e intersecta todos os subconjuntos de S. Os elementos da
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Figura 2: Representação visual de S, no qual H = {2,4} é Hitting
Set.

solução H = {2,4} estão destacados em vermelho; note
que cada elipse (conjunto) contém pelo menos um elemento
vermelho.

Apesar da dificuldade geral, existem exceções interes-
santes. Se restringirmos a instância de modo que cada
subconjunto em S tenha tamanho máximo 2 (isto é, |Si| ≤
2 para todo Si ∈ S), o problema torna-se idêntico ao
Vertex Cover, que, apesar de ainda ser NP-Completo,
permite análises mais detalhadas e soluções aproximadas
bem estudadas na literatura.

Para visualizar a definição formal na prática, considere a
instância apresentada na Figura 2. Neste exemplo, temos o
universo U = {1,2,3,4,5} e a coleção S = {{1,2,3},{4,5}}
com k = 2. A resposta é afirmativa, pois o conjunto H =
{2,4} possui tamanho 2 e intersecta todos os subconjuntos
de S. Os elementos da solução H = {2,4} estão destacados
em vermelho; note que cada elipse (conjunto) contém pelo
menos um elemento vermelho.

Para facilitar a intuição sobre a complexidade combinató-
ria, propomos uma analogia original denominada “O Dilema
dos Observadores”. A ideia é traduzir a definição formal do
Hitting Set para uma narrativa concreta, em que os elementos
do universo e os subconjuntos ganham interpretação no
mundo real. Essa analogia é inspirada no clássico problema
de Crew Scheduling (Escalonamento de Tripulações), citado
por Garey e Johnson [2] como uma aplicação canônica de
problemas de cobertura de conjuntos.

“Uma equipe de biólogos precisa confirmar a
presença de 5 espécies raras de pássaros (S1 a
S5) em uma reserva. Eles têm 10 observadores
disponíveis. Cada observador é especialista em
identificar um subconjunto diferente de espécies.
A equipe tem orçamento para contratar no máximo
k observadores. A pergunta é: é possível formar
um time com ≤ k pessoas que identifique todas as
espécies?”

Nessa analogia, o conjunto de observadores é o universo

Arara Tucano

Coruja

Solução
H = {Ana,Rui}

Paulo BiaAna

Rui

Figura 3: Ana cobre Arara e Tucano; Rui cobre a Coruja. O
envelope verde destaca o conjunto solução H = {Ana,Rui} .

U e cada espécie define um subconjunto Si de quem pode
avistá-la. Um conjunto de observadores contratados é um
Hitting Set. A Figura 3 ilustra uma instância desse dilema.

A personagem Ana (em vermelho) é uma generalista que
cobre duas espécies (Arara e Tucano). Porém, ao escolhê-
la, ainda precisamos cobrir a Coruja, que só é vista pelo
Rui. Assim, uma solução possível seria o time {Ana,Rui}
(tamanho 2). Outra opção seria ignorar a Ana e contratar
apenas especialistas dedicados: {Paulo,Bia,Rui} (tamanho
3).

O “dilema” computacional é que não existe uma regra
simples (como “sempre escolha quem cobre mais”) que
garanta a melhor solução em todos os casos. O computador
precisa verificar as diversas combinações (Generalistas
vs. Especialistas) para garantir que o orçamento k seja
respeitado.

Além do interesse teórico, o Hitting Set modela desafios
reais onde a eficiência é crítica. Na bioinformática, é
aplicado na seleção de marcadores genéticos [1]. Na
engenharia de software, é utilizado para minimizar suítes de
teste [8]. Como o problema é NP-Completo, a inviabilidade
da força bruta valida o uso das heurísticas de aproximação
como a abordagem padrão na indústria.

Essa analogia faz sentido em relação ao problema
de Hitting Set porque traduz, quase literalmente, cada
componente da definição formal para elementos intuitivos
da história, permitindo ao estudante “ver” o problema em
vez de apenas manipulá-lo simbolicamente. Do ponto de
vista matemático, o universo U do Hitting Set corresponde
ao conjunto de observadores disponíveis, enquanto cada
subconjunto Si ∈ S é interpretado como o grupo de
observadores capazes de identificar a espécie i. Um hitting
set H ⊆ U é um conjunto com elementos que intersecta
todos os Si; na analogia, isso significa escolher um time de
observadores tal que, para cada espécie rara, pelo menos
um membro do time consiga identificá-la. O parâmetro
k que limita o tamanho de H é modelado diretamente
pelo orçamento máximo de observadores que podem ser
contratados.
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Além de respeitar essa correspondência estrutural, o
dilema também ajuda a construir intuição sobre a comple-
xidade do problema. Por um lado, evidencia o caráter
combinatório: há muitas formas possíveis de escolher
subconjuntos de observadores, e nem todas cobrem todas
as espécies, o que espelha o grande espaço de soluções
candidatas no Hitting Set. Por outro lado, ilustra o
perigo de decisões puramente locais: escolher a observadora
“generalista” Ana parece uma boa escolha quando se olha
apenas para o número de espécies cobertas, mas não resolve
o caso da Coruja, exigindo a presença do especialista Rui.
Dessa forma, a narrativa mostra que a melhor decisão local
nem sempre leva à melhor solução global, um ponto central
em problemas NP-Difíceis.

É imperativo, contudo, delimitar o escopo desta analogia
lúdica para evitar simplificações excessivas. O “Dilema dos
Observadores” atua estritamente como um facilitador para
a compreensão do enunciado e das restrições do problema,
não substituindo a formalização matemática necessária para
a análise de complexidade. Em cenários cotidianos ou
administrativos, como o descrito na narrativa, a intuição
humana frequentemente encontra padrões que facilitam a
resolução. No entanto, a classificação de NP-Completude
lida com instâncias arbitrárias de “pior caso”, onde tais
padrões intuitivos inexistem ou são enganosos. Portanto,
a analogia serve como porta de entrada cognitiva, mas o
rigor algébrico — detalhado na demonstração da Seção V
— permanece insubstituível para a validação científica da
intratabilidade.

Em síntese, o “Dilema dos Observadores” funciona como
um modelo mental que o aluno pode reutilizar nas seções
seguintes: sempre que se deparar com a notação U , S, H e k,
pode lembrar de observadores, espécies e orçamento, o que
reduz a carga cognitiva e facilita a compreensão das provas
formais.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES TÉC-
NICAS

Esta seção apresenta a sistematização da prova de NP-
Completude do Hitting Set. Diferentemente dos manuais
técnicos que priorizam a concisão, optamos aqui por uma
abordagem expandida, detalhando os passos lógicos que
frequentemente são omitidos na literatura especializada [2].

Para classificar formalmente um problema como NP-
Completo, é necessário satisfazer simultaneamente duas
condições: provar que HS ∈ NP , e que HS ∈ NP-Difícil.
Essas provas serão feitas a seguir.

Lema 1. O problema HS pertence a NP .

Proof. Seguindo esse fluxo lógico, o primeiro passo é
demonstrar que o problema pertence à classe NP . Isso
exige a existência de um algoritmo que, dada uma solução
candidata (certificado), consiga verificar sua validade em
tempo eficiente, conforme a definição formal de verificadores
polinomiais estabelecida por Sipser [4]. No contexto do
Hitting Set, considere uma instância definida por um universo
de elementos U , uma coleção S de subconjuntos de U e um
inteiro k [2]. O certificado é um subconjunto candidato H ⊆
U . O algoritmo verificador recebe a instância (U,S,k) e o
certificado H, respondendo “Sim” apenas se duas condições

forem satisfeitas: (1) o tamanho de H respeita o limite k
(i.e., |H| ≤ k); e (2) H intersecta todos os subconjuntos
de S. Abaixo apresentamos o algoritmo que realiza essa
verificação:
Algoritmo Verificador(U, S, H, k)
Início

Se (tamanho(H) > k) então
Retorne Falso;

Fim-Se

Para cada Si em S faça
Verifica se a interseção é vazia
Se (H ∩ Si == /0) então

Retorne Falso;
Fim-Se

Fim-Para

Retorne Verdadeiro;
Fim

Para realizar a análise de eficiência deste algoritmo
(tecnicamente chamada de análise assintótica [4]), definimos
n como o tamanho total da entrada recebida pelo algoritmo
(a soma dos tamanhos de U , S, H e a representação de
k). É fácil analisar que a verificação de tamanho é uma
operação linear O(n), pois, no pior caso, o algoritmo precisa
percorrer a lista de elementos de H para contá-los, e o
tamanho de H nunca excede o tamanho total da entrada n. Já
a Verificação de Cobertura é a etapa dominante: sua estrutura
de repetição obriga a comparação dos elementos de H com os
de cada subconjunto em S, resultando em uma complexidade
quadrática O(n2). Como n2 é um polinômio, garantimos que
a verificação é eficiente.

Desta forma, no pior cenário possível, essa estrutura
faz o algoritmo comparar sistematicamente os elementos,
resultando em um número total de operações proporcional ao
produto m×n (onde n é o tamanho do universo). Em termos
de complexidade, isso é representado pela notação O(n2),
indicando que o tempo cresce quadraticamente em relação
ao tamanho da entrada [4]. Como uma função quadrática é
um polinômio (e não uma exponencial como 2n), garantimos
que a verificação é computacionalmente viável, confirmando
assim que o Hitting Set pertence à classe NP [2].

Uma vez estabelecida a NP-Pertinência, o próximo
passo do núcleo da prova reside na demonstração de
NP-Dificuldade. A estratégia utilizada é a redução
polinomial, onde transformamos instâncias de um problema
conhecido como NP-Difícil (Problema Alvo) em instâncias
do problema que queremos classificar (Problema Atacado).
Para este artigo, reduziremos o Vertex Cover ao Hitting Set
(VC ≤p HS).

Lema 2. O problema HS é NP-Difícil.

Proof. Com o problema de partida formalmente definido,
passamos à construção da redução. O objetivo desta etapa
é demonstrar um algoritmo que transforme, em tempo
polinomial, qualquer instância de Vertex Cover em uma
instância equivalente de Hitting Set [1]. Essa transformação
deve garantir que a estrutura topológica do grafo seja
preservada na forma de conjuntos, de modo que a existência
de uma solução em um problema implique diretamente a
existência de solução no outro [4].
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Problema Alvo: Vertex Cover
(Cobrir arestas com vértices)

G = (V,E)

Problema Atacado: Hitting Set
( conjuntos com elementos)

U = V, S = E

Redução polinomial (≤p)

Figura 4: Esquema da redução: transformamos a estrutura do
grafo (Atacado) em uma estrutura de conjuntos (Alvo).

Seguindo este raciocínio, no Vertex Cover devemos
garantir que cada aresta seja coberta por um vértice. No
Hitting Set, a obrigação é garantir que cada subconjunto seja
interceptado por um elemento. Portanto, a estratégia consiste
em converter cada aresta (que conecta dois vértices) em
um subconjunto (contendo dois elementos) [2]. O esquema
conceitual dessa estratégia é apresentado na Figura 4.

É fundamental observar que a redução proposta realiza
uma tradução da estrutura topológica do grafo para uma
estrutura combinatória de conjuntos. Neste contexto, a
estrutura combinatória refere-se à organização de elemen-
tos baseada estritamente em relações de pertinência e
agrupamento, abstraindo qualquer noção de conectividade
espacial ou adjacência visual típica dos grafos. A relação
de adjacência entre vértices, representada pelas arestas, é
remapeada para uma relação de inclusão em subconjuntos.

Desta maneira, a restrição topológica de “cobrir uma
aresta” (garantir que uma conexão seja vigiada) é refor-
mulada como a necessidade algébrica de “interceptar um
subconjunto” (garantir que um grupo contenha um elemento
selecionado). O mapeamento é definido da seguinte maneira:
o universo U é constituído pelos vértices de V ; a coleção S é
formada convertendo cada aresta {u,v} em um subconjunto
contendo exatamente esses vértices; e o parâmetro de
otimização k′ preserva seu valor original (k′ = k). A Figura
5 ilustra essa transformação por meio da conversão da aresta
{1,2} no subconjunto Si = {1,2}.

A corretude desta redução depende da prova de que
a instância construída preserva a resposta da original.
Demonstramos isso através de duas proposições:

Proposição 1 (Ida⇒): Se G possui um Vertex Cover de
tamanho k, então S possui um Hitting Set de tamanho k.

Seja C ⊆ V o Vertex Cover. Escolhemos H = C. Para
qualquer conjunto Si ∈ S, sabemos pela construção que ele
corresponde a uma aresta {u,v} ∈ E. Como C cobre todas
as arestas, ele deve conter u ou v. Logo, H contém u ou v,
interceptando Si. Portanto, H é um Hitting Set válido.

Proposição 2 (Volta ⇐): Se S possui um Hitting Set de
tamanho k, então G possui um Vertex Cover de tamanho k.

Seja H ⊆ U o Hitting Set. Escolhemos C = H.
Para qualquer aresta e = {u,v} ∈ E, existe um conjunto
correspondente Se = {u,v} em S. Como H atinge todos os
conjuntos, ele deve conter u ou v. Logo, C contém uma
extremidade da aresta e. Portanto, C cobre todas as arestas
de G.

A Figura 6 ilustra a equivalência lógica. No caso
mostrado, a aresta {1,2} é coberta no Vertex Cover pelo
vértice 1 (destacado em vermelho). Na construção do Hitting

No Grafo (Vertex Cover)

1 2
Aresta {1,2}

(Relação de Adjacência)

Transformação

Na Coleção (Hitting Set)

1 2

Subconjunto Si = {1,2}

(Relação de Pertinência)

Parâmetro k
Conservado:
k′ = k = 2

Figura 5: Visualização da Construção: A aresta conectando 1 e 2
no grafo é convertida em um conjunto Si = {1,2}.

Vertex Cover

1 2 X Coberta

Equivalência (⇐⇒ )

Hitting Set

1 2 X Atingido

Figura 6: Cobrir a aresta {1,2} com o vértice 1 (vermelho)
corresponde a atingir o conjunto {1,2} com o elemento 1.

Set, o conjunto correspondente Se = {1,2} é atingido pelo
mesmo elemento 1, preservando a equivalência entre as duas
estruturas.

Desta forma, a partir das provas demonstradas da
Proposição 1 e Proposição 2, podemos concluir que HS ∈
NP-Difícil.

Lema 3. O problema HS é NP-Completo.

Proof. Para demonstrar que um problema é NP-Completo,
é preciso demonstrar que ele pertença simultaneamente as
classes NP e NP-Difícil. Essas demonstrações foram feitas
e provadas respectivamente no Lema 1 e Lema 2.

Desta forma, podemos concluir que o problema Hitting Set
é NP-Completo.

Como contribuição pedagógica final, é importante alertar
sobre uma armadilha comum no estudo de reduções: a
direção da prova. Estudantes frequentemente tentam reduzir
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3

1 2

4 5

Figura 7: ANTES (Vertex Cover): O grafo de entrada com k = 3.
Os vértices em vermelho {2,3,4} cobrem todas as arestas.

Universo: U = {1,2,3,4,5}

Coleção S (baseada nas arestas):
{1,2},{1,3},{2,3},
{2,5},{3,4},{4,5}

Solução Mapeada:
H = {2,3,4}

Figura 8: DEPOIS (Hitting Set): A instância resultante. O
conjunto H = {2,3,4} intercepta todos os subconjuntos listados.

o problema novo para o problema conhecido (HS ≤p VC).
Isso provaria apenas que o HS é “fácil” o suficiente para
ser resolvido pelo VC, mas não que ele é “difícil”. A prova
de NP-Dificuldade exige o oposto: mostrar que o problema
novo é capaz de simular qualquer instância do problema
difícil conhecido (VC ≤p HS).

VI. RESULTADOS E REFLEXÕES

A elaboração deste artigo permitiu consolidar o entendi-
mento sobre a hierarquia de complexidade e as técnicas de
redução polinomial. Mais do que a demonstração formal, o
principal produto deste trabalho é a sistematização didática
apresentada, que busca preencher lacunas de compreensão
comuns em estudantes iniciantes. A visualização do
mapeamento entre instâncias mostrou-se uma ferramenta
poderosa para tangibilizar a abstração algébrica.

Uma reflexão crítica sobre a metodologia adotada revela
que a escolha do Vertex Cover como problema de partida
(Problema Atacado) foi determinante para a clareza da
exposição. Embora a literatura clássica frequentemente
utilize reduções a partir de problemas lógicos como o 3-
SAT, essa abordagem exige que o estudante transite entre o
domínio da lógica booleana e a teoria dos conjuntos, o que
adiciona uma carga cognitiva extra. Ao optarmos por uma
redução grafo-para-conjunto (VC ≤p HS), mantivemos a
natureza visual do problema, permitindo que a transformação
seja verificada "a olho nu", como ilustrado na sequência da
Figura 7 e Figura 8.

A construção dessas contribuições pedagógicas foi o
foco central. Em vez de presumir conhecimento prévio,
dedicamos as seções iniciais a explicar termos essenciais
utilizando analogias. Um dos pontos altos foi o uso do
“Dilema dos Observadores” para explicar os fundamentos
teóricos: utilizamos essa analogia para concretizar que
verificar uma solução (conferir a equipe contratada) é rápido,
mas encontrar a solução ótima (testar todas as combinações)
é exponencialmente difícil. Essa distinção é crucial para que
o estudante compreenda a natureza da classe NP não como
uma medida de "impossibilidade", mas como uma medida de

"custo de busca".
Ainda sobre a estratégia lúdica, é pertinente observar que

o “Dilema dos Observadores” também serve para ilustrar
as limitações das abordagens intuitivas. Em sala de aula,
é comum que alunos sugiram algoritmos gulosos (como
contratar sempre a pessoa mais versátil) como solução geral.
A modelagem do problema permitiu demonstrar que, em
cenários de complexidade NP-Completa, a intuição local
falha diante da necessidade de uma otimização global,
validando a necessidade de rigor matemático na análise de
algoritmos.

No entanto, o processo de elaboração deste material não
foi isento de dificuldades. O maior desafio encontrado não
foi a complexidade técnica da prova em si — pois a redução
de Vertex Cover é direta — mas sim o desafio de transposição
didática: explicar os fundamentos sem recorrer a jargões
herméticos que afastam o leitor iniciante. A estratégia
adotada de explicar cada conceito técnico (como a análise
assintótica) imediatamente antes de sua aplicação mostrou-
se essencial para manter a clareza e a acessibilidade do texto.

Quanto à aplicabilidade acadêmica, este trabalho foi
feito para servir como um material complementar para
futuros alunos da disciplina de Teoria da Computação.
Acreditamos que a exposição visual da redução e a discussão
sobre as nuances entre decisão e otimização oferecem um
ponto de entrada mais suave para o tema. Tanto este
artigo quanto as referências discutidas podem ser usados
como um guia introdutório e acessível para quem precisa
entender como uma prova de NP-Completude é estruturada
na prática, cumprindo o objetivo de facilitar o aprendizado e
desmistificar a teoria.

VII. CONCLUSÃO

A elaboração deste estudo permitiu atingir o objetivo
principal de demonstrar a NP-Completude do problema
Hitting Set de forma pedagógica seguindo o rigor exigido
pela literatura clássica. A prova foi estruturada em duas
etapas fundamentais: a verificação de pertinência à classe
NP , realizada através da análise de um algoritmo verificador
polinomial, e a demonstração de NP-Dificuldade, executada
por meio da redução canônica a partir do Vertex Cover.
Este resultado teórico não é apenas um rótulo classificatório;
ele carrega uma implicação prática profunda: a menos que
P = NP , não existem algoritmos eficientes para resolver o
Hitting Set de forma exata em todos os casos, validando a
necessidade de abordagens aproximadas.

Do ponto de vista pedagógico, o material foi aplicado
em uma turma de Teoria da Computação, envolvendo
aproximadamente 20 estudantes de graduação.1 Em uma
atividade de seminário, os alunos foram convidados a
reconstruir a redução VC ≤p HS utilizando os diagramas
apresentados e a reprodução guiada das etapas da prova,
antes do contato direto com os livros-texto formais. Nessa
dinâmica, as interações e discussões em sala facilitaram
o compartilhamento de diferentes formas de explicar a
redução, em uma linguagem mais próxima dos próprios estu-
dantes, mediadas pela equipe de pesquisadores. Observou-se
que os alunos passaram a demonstrar maior segurança para

1Relato de aplicação didática conforme descrito na seção de Resultados
e Reflexões.
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Problema Alvo:
Vertex Cover

Problema Atacado:
Hitting Set

Metodologia:
Redução Visual

Aplicações Reais:
Bioinformática

Redução ≤p

ModelaFacilita

Explica

Figura 9: Mapa síntese da abordagem: A metodologia visual
conecta o problema base ao alvo.

explicar, com suas próprias palavras, o papel do certificado
em NP e o encadeamento lógico da redução, apoiados
por estratégias visuais organizadas em slides interativos,
com tempo de exposição limitado para evitar sobrecarga
cognitiva. Ainda que esses registros não constituam
um estudo quantitativo rigoroso, eles fornecem indícios
qualitativos de que a abordagem visual e narrativa contribuiu
para reduzir a sensação de “salto conceitual” frequentemente
associada às provas de NP-completude [9, 10].

Para além da demonstração matemática, o contributo
mais expressivo deste trabalho reside na sua proposta
pedagógica. Conforme as diretrizes da disciplina, buscou-se
transpor a barreira da abstração que frequentemente dificulta
o aprendizado de Teoria da Computação. A introdução
do “Dilema dos Observadores” serviu como uma ponte
cognitiva, traduzindo a aridez da notação de conjuntos
para um problema tangível de gestão de recursos. Essa
analogia facilitou a intuição sobre a assimetria fundamental
da complexidade: a facilidade de verificar uma solução
dada (auditar uma equipe contratada) em contraste com a
dificuldade de encontrar a solução ótima (testar todas as
combinações de equipes).

Para consolidar a jornada de aprendizado proposta, a
Figura 9 apresenta um mapa conceitual que resume a
estrutura lógica desenvolvida no artigo, conectando a teoria
de base, a prova de redução e as aplicações práticas.

Embora a sistematização proposta tenha êxito em seus
objetivos didáticos, o trabalho apresenta limitações no seu
escopo, concentrando-se majoritariamente no aspecto teórico
da classificação de complexidade. Não foram exploradas,
nesta etapa, implementações computacionais de algoritmos
de aproximação como a Heurística Gulosa [7] ou algoritmos
parametrizados (FPT), que constituem a abordagem padrão
para lidar com a intratabilidade do problema em cenários
industriais reais [8, 1]. Adicionalmente, a redução
restringiu-se ao caminho clássico via Vertex Cover, sem
explorar reduções alternativas que poderiam oferecer outras
perspectivas.

Como desdobramento natural deste estudo, trabalhos
futuros podem focar na vertente experimental, implemen-
tando e comparando o desempenho de algoritmos exatos
(para instâncias pequenas) versus algoritmos aproximativos
(para instâncias grandes). Outra via promissora seria o
aprofundamento em classes especiais de instâncias, como
aquelas com restrições de cardinalidade nos subconjuntos,
investigando cenários onde o problema se torna tratável e
enriquecendo ainda mais o repertório de exemplos didáticos

disponíveis para o ensino de Computação.
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