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Resumo—Este estudo reproduz uma prova final do Teorema de Brooks, um dos resultados fundamentais para a Coloragao de Grafos, visando
ndo apenas a consolida¢do do conhecimento tedrico, mas também para a produgdo de um material didatico de apoio para a comunidade
académica, traduzindo a complexidade da prova por meio de exemplos ilustrativos, figuras e explica¢des detalhadas. O teorema estabelece
um limite superior para o nimero cromético % (G) de qualquer grafo conexo com o seu grau méximo A(G), tal que o grafo analisado ndo seja
um ciclo impar e nem um grafo completo. A metodologia utilizada foi a prova por contradi¢do, assumindo um contraexemplo minimal,
integrada com duas técnicas cruciais, juntamente com ilustracdes para facilitar o ensino. A prova € iniciada com o Lema Estrutural de
Lovisz, o qual € aplicado para resolver o caso dos grafos A-regulares e ndo completos. E também, a utiliza¢do da justificativa de Cadeias de
Kempe permite demonstrar que a falha estrutural da coloracgdo s6 € possivel em casos excepcionais onde o grafo é completo ou um ciclo
fmpar. O resultado € a confirmagio de % (G) < A(G) para todo grafo conexo, exceto os casos proibidos.

Palavras-chave—Teoria dos Grafos, Coloragdo de Grafos, Teorema de Brooks, Nimero Cromatico

Abstract—This study reproduces a complete proof of Brooks’ Theorem, one of the fundamental results in Graph Coloring. The aim is
not only to consolidate theoretical knowledge but also to produce didactic support material for the academic community, translating the
complexity of the proof through illustrative examples, figures, and detailed explanations. The theorem establishes an upper bound for the
chromatic number Y(G) of any connected graph with its maximum degree A(G), such that the analyzed graph is neither an odd cycle nor a
complete graph. The methodology employed is proof by contradiction, assuming a minimal counterexample, integrated with two crucial
techniques, along with illustrations to facilitate teaching. The proof begins with Lovdsz’s Structural Lemma, which is applied to resolve the
case of A-regular and non-complete graphs. Furthermore, the use of Kempe Chains justification allows us to demonstrate that the structural
failure of the coloring is only possible in exceptional cases where the graph is complete or an odd cycle. The result is the confirmation that
%(G) < A(G) for every connected graph, except for the forbidden cases.

Keywords—Graph Theory, Graph Coloring, Brooks’ Theorem, Chromatic Number

ainda seja investigada através de conhecimentos teéricos
aprofundados sobre grafos [1].

I. INTRODUCAO A coloragdo de grafos se trata de um caso especial o qual
atribuimos rétulos, que sdo as cores. Elas estdo sujeitas a
restricdes e podem ser aplicadas em vértices e arestas, de
forma que os vértices e as arestas adjacentes ndo possuam a
mesma cor [2]. Inicialmente, esta ideia despertou no homem
o desejo de buscar novas maneiras de expressar diferentes
tipos de regides. O registro de desenhos e escritas graficas
com a insercdo de cores nos mapas originou a cartografia [3].

Teoria dos Grafos possui destaque e importancia pela
grande variedade de problemas. O interesse principal
deste campo € resolver os problemas utilizando algoritmos
eficientes, preocupando-se com a capacidade computacional.
A busca por solugdes eficientes move esta drea para que

Dados de contato: Matheus Silva Pontes, matheus.pontes @uft.edu.br Em 1852, por meio da coloragdo dos mapas, se deu inicio a
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histéria do problema das 4 cores. O matemdtico, advogado e
botanico Francis Guthrie formulou uma conjectura afirmando
que qualquer mapa pode ser colorido utilizando apenas 4
cores. Francis apresentou este problema para seu irmao
mais novo, Frederick Guthrie, que mostrou para o seu
professor De Morgan. O docente, entusiasmado, encaminhou
este problema em suas cartas, despertando o interesse
dos académicos. Esta ideia propagou-se, impulsionando
discussdes e novos desenvolvimentos [4]. Em 1976,
Kenneth Appel e Wolfgang Haken conseguiram apresentar
a demonstracdo do Teorema das 4 Cores com o auxilio de
computadores [3].

Os conceitos e problemas desenvolvidos na coloracdo de
grafos, como o Teorema das 4 Cores e a coloraciio de vértices
e arestas, foram fundamentais para a resolucdo de problemas
reais e de jogos. Entre as aplicagdes de destaque estdo a
divisdo de terras [3], a organizacdo da grade de hordrios, a
solu¢do de um sudoku utilizando um algoritmo guloso de
coloracdo de vértices e o transporte de produtos reagentes [2].

Acerca deste caso, este artigo visa reproduzir resultados
da literatura e oferecer uma contribuicdo pedagdgica da
demonstracdo do Teorema de Brooks. O teorema estabelece
um limite superior do ndmero cromatico ¥(G) em fungéo
do grau méaximo A(G) do grafo. Dessa forma, busca-
se apresentar explicacdes mais claras e sustentadas com
exemplos e figuras ilustrativas. Assim, este material servird
como um contetddo pedagdgico de apoio para a comunidade
académica.

Quanto & organizacgdo deste estudo, a secdo II estabelece
0s conceitos basicos sobre grafos e coloragdo, essenciais
para a compreensdo do Teorema de Brooks acompanhados
de exemplos detalhados. A secdo III expde as fontes
pedagdgicas e técnicas que apresentam propostas alinhadas a
deste trabalho.

Em seguida, a se¢do IV descreve o Teorema de Brooks
detalhadamente sobre os problemas lidicos relacionados, suas
aplicagdes e complexidades. A secdo V inicia a exposi¢do
de sua prova com a apresentacdo de dois lemas, Lema
Estrutural de Lovész e Cadeias de Kempe. Essas técnicas
sdo fundamentais para o desenvolvimento do argumento.

Posteriormente, a secdo VI destaca as consideracdes
relevantes sobre o teorema, adversidades encontradas durante
a escrita deste artigo, solugdes para contornar os desafios
e destaques deste estudo para o meio académico. Por fim,
a secdo VII realiza uma sintese dos principais aspectos,
acompanhada de sugestdes de melhorias dos resultados
obtidos, extensodes de trabalhos futuros e temas relacionados
nao explorados em profundidade.

E de suma importancia ressaltar que os grafos utilizados
para as defini¢des e provas neste material serdo finitos e
simples. Nessa perspectiva, a secdo seguinte apresenta as
noc¢des bésicas sobre grafos e coloracdo necessdrias para a
apresentacao do problema.

I1. PRELIMINARES

Nesta secdo, os conceitos fundamentais sobre os grafos
serdo introduzidos e utilizados neste trabalho, os quais foram
utilizados como base o livro pedagégico do Jayme [1]. A
terminologia e as notacdes serdo apresentadas posteriormente
nos problemas.
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Figura 1: Representagio do grafo Gj.
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Figura 2: Ilustracdo da vizinhanca N(v;) e do grau maximo A(G).

Um grafo G = (V,E) consiste em um conjunto finito néo
vazio de V e um conjunto E de pares ordenados distintos de
V. Os elementos de V sdo os vértices e os de E sdo as arestas
de um grafo. Cada aresta e € E € denotada por um par de
vértices (v,w), onde v e w séo os extremos da aresta e e sdo
ditas adjacentes. E dito que a aresta e ¢ incidente aos vértices
vew.

Um conjunto de vértices de um grafo é denotado
por V(G), e um conjunto de arestas de um grafo é
denotado por E(G). A Figura 1 ilustra um grafo G| =
(V,E), tal que V(Gl) = {V17V27V37V4,V5} € E(Gl) =
{(v1,v2), (v3,v4), (va,v2), (va,v1), (v3,v5), (v2,v3) }

A vizinhanga de um vértice v € V, denotada por N(v),
¢é definida como o conjunto de vértices adjacentes a v. O
grau de v, representado por d(v), corresponde a cardinalidade
IN(v)|. O grau mdximo de G, denotado por A(G), é o
maior valor de grau encontrado entre todos os vértices de V.
Esses conceitos podem ser visualizados na Figura 2. Como
exemplo, considere a andlise do vértice v;. Sua vizinhanga
¢ dada por N(v;) = {v2,v3,v4,vs}, de modo que seu grau
é d(vi) =|N(v1)| =4. Ao observar os demais vértices do
grafo, obtemos, por exemplo, d(v2) = 2, d(v3) = 3, entre
outros. Como d(vy) =4 é o maior grau entre todos os vértices,
concluimos que o grau maximo é A(G) = 4.

Dizemos que um grafo G € conexo se existir um caminho
entre quaisquer dois vértices, como exemplificado no grafo
a esquerda da Figura 3. Em contrapartida, um vértice v é
denominado vértice de corte quando a sua remocdo torna G
desconexo. Este caso € ilustrado na Figura 3 onde o grafo da
direita mostra um vértice de corte vs3.

Um ciclo C,, € um caminho vy, ..., Vg, Vi1 tal que vy = vigq
e k > 3. Em um grafo ndo direcionado, todo ciclo deve possuir
no minimo 3 vértices. Se o caminho for denominado simples,
o ciclo também € simples. Um ciclo simples € um ciclo onde o
caminho inicia e termina no mesmo vértice [1]. Um ciclo par
€ aquele que possui ndimero par de vértices e arestas, enquanto
um ciclo {mpar possui nimero {mpar de arestas e vértices. A
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Figura 3: Esquerda: Exemplo de grafo conexo. Direita: O grafo G3
com vértice de corte v3.
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V4 V3

Ciclo Par
(4 vértices, 4 arestas)

Ciclo fmpar
(3 vértices, 3 arestas)

Vi

V4

Grafo Aciclico
(Sem ciclos)

Figura 4: Exemplos de ciclos e um grafo aciclico.

Figura 4 ilustra um exemplo de ciclo par com 4 vértices e um
ciclo impar com 3 vértices. Um grafo que ndo possui ciclos
é chamado de grafo aciclico, o qual esta exemplificado na
Figura 4.

Um grafo € dito completo quando cada par de vértices é
conectado por uma tnica aresta. E utilizada uma notagio K,
para designar um grafo completo com n vértices. A Figura
5 mostra um grafo completo K4, e cada vértice € ligado por
uma Unica aresta com todos os outros vértices.

Uma k-colorag¢do (propria) de G € uma funcido c¢: V —

{1,2,...,k} tal que c(u) # c(v) para toda aresta {u,v} € E.

Observe que uma k-coloragdo de vértices de um grafo € a
atribuicdo de k cores aos seus vértices de forma que quaisquer
dois vértices adjacentes (conectados por uma aresta) recebam
cores diferentes [1], podemos observar isso na Figura 6.

O miimero cromdtico de um grafo G, denotado por % (G), é
o menor inteiro k o qual G admite uma k-coloracdo [1]. Entio,
o niimero cromatico de um grafo ¢ o menor nimero de cores
necessdrias para colorir todos os seus vértices de forma que
nenhum par de vértices adjacentes tenham a mesma cor. Este
conceito € ilustrado na Figura 7, com um grafo que tem o
nimero cromético igual a 4.
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V3 V2
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Grafo Completo Ky
(4 vértices, 6 arestas)

Figura 5: Exemplo de um Grafo Completo Kj.

c(vi) =1

vi

V2 V3
c(v)=2 c(v3)=3

Figura 6: Uma 3-coloragdo prépria vélida para o grafo G.,;.

V1 ) Corl

Cor 4

V2 V3
Cor 2 Cor 3

Figura 7: Grafo com nimero cromatico igual a 4.

ITI. TRABALHOS RELACIONADOS

Vale destacar os trabalhos relacionados com o mesmo tema
e problema deste estudo. Dentre eles, o artigo de Cranston e
Rabern [5] apresenta diferentes demonstragoes do Teorema
de Brooks. O objetivo € ilustrar as técnicas principais da
coloracdo de grafos, como colorag@o gulosa, cadeia de Kempe,
lema de Kernel e hitting sets, com o intuito de torné-las
acessiveis. Para isso, os autores desejaram mostrar as suas
provas favoritas. Cada tépico das provas € apresentado em
ordem de complexidade, cada um ¢é autocontido e pode ser
lido em qualquer ordem. Este trabalho sera utilizado como
base para a demonstracio do Teorema de Brooks neste estudo.

Além disso, Sajith e Saxena [6] demonstram duas provas
do Teorema de Brooks. A primeira prova € feita modificando
a prova de Melkinov e Vizing [7] e de Wilson [8] que provam
por contradi¢do, porém € alterada para ser construtiva e
resultar em um algoritmo de tempo linear. E a segunda prova
combina com os elementos das demonstragdes de Zajac [9]
e do Bondy [10, 11], garantindo uma prova mais simples e
resultando também em um algoritmo de tempo linear. Os
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autores, Sajith e Saxena, consideram essas provas mais faceis
de serem ensinadas em aulas de Ciéncia da Computacio.

Amiroch et al. [12] projetam um novo método para
criacdo de carddpios alimenticios utilizando a coloragéo de
vértices. Eles combinaram o algoritmo de Welsh-Powell
[13] com uma técnica de combina¢do matemdtica a qual
gera uma diversidade de carddpios que seguem diretrizes
de baixa caloria. Para comprovar a eficdcia da abordagem,
simularam de forma dinidmica com a ferramenta MatLab
para criarem trés carddpios distintos com necessidades
nutricionais especificas. Adicionalmente, para a organizacdo
e diversificagdo de carddpios nutricionalmente balanceados,
empregam o conceito de caminhos disjuntos de grafos. Este
estudo tem destaque pela solucdo de lidar com problemas em
planejamento alimentar e pelo fornecimento de informacdes
importantes para trabalhos futuros.

F. Radmehr et al. [14] focam em utilizar uma abordagem
baseada em investigacdo para explorar o ensino e a
aprendizagem sobre coloracdo de vértices para os alunos de
graduacdo em matemadtica. Para isso, desenvolveram sete
tarefas baseadas em investigac@o para ensinar o tema para
os alunos e buscam descrever o engajamento deles. Como
resultado, os discentes se entretiveram bastante com as tarefas
e perceberam o quao importante essas praticas podem ser
para o desenvolvimento de conhecimentos conceituais sobre
matemdtica. Os autores promovem que essas tarefas sejam
empregadas em cursos de matemadtica discreta de graduacio
para aprimorar o conhecimento matematico.

Rajagaspar e Senthil [15] buscam divulgar a ideia inicial
sobre grafos e coloracdo de vértices. Eles investigam como a
coloracdo de vértices pode ser usada para modelar problemas
praticos, como escalonamento de horarios, alocacdo de
recursos, networking e mineracdo de dados.

Cabe mencionar o artigo de Yasser e Bianchini [16] como
referéncia para contribui¢do pedagdgica. Este fator € essencial
para a escrita deste trabalho, dado que buscamos tornar este
material acessivel para a comunidade académica que deseja
entender sobre o Teorema de Brooks e se aprofundar na
coloragdo de grafos.

Partindo disso, segue na proxima sec¢do o detalhamento do
problema, descrevendo o seu tipo, complexidade, problemas
lddicos relacionados, o contexto em que se enquadra,
utilizando exemplos ilustrativos com explicacdes.

IV. DESCRICAO DO PROBLEMA

A coloragdo de grafos possui uma ampla variedade de
aplicagdes praticas em diferentes dreas. Um exemplo cldssico
¢é a coloragdao de mapas, em que regides adjacentes devem
receber cores distintas [17]. Além desse caso bem conhecido,
problemas de coloracdo em vértices surgem em diversas
situacdes reais, como na alocagdo de frequéncias em redes
de comunicac¢do, onde transmissores préximos ndo podem
operar na mesma frequéncia, e no escalonamento de tarefas
que ndo podem ocorrer simultaneamente [18]. Outro uso
importante aparece em compiladores [19], durante a etapa
de alocacdo de registradores, e em sistemas de horarios
académicos, garantindo que disciplinas que compartilham
alunos ndo sejam ofertadas no mesmo periodo [13]. Além
disso, é aplicado em problemas lidicos como a resolugao
do sudoku, que pode ser modelado como um problema de

64

PONTES et al.

Teorema Valido: G Excecao: Cs
wi
uy
w2 W3 up us
u3 Uy
W4 ws
A=3,x=3 A=2,x=3
X <A X >4

Figura 8: Visualizacdo do Teorema de Brooks: Uma excegdo (ciclo
fmpar) e um caso valido.

coloracao de grafos [20].

Neste estudo, trabalharemos com coloracdo de vértices
formulada como um problema de decisdo. Em termos gerais,
quando o grafo G é completo ou ciclo impar satisfaz ¥ (G) <
A(G) + 1. Porém, o Teorema de Brooks mostra que se um
grafo G nédo é completo e nem ciclo fmpar, entdo ¥ (G) < A(G)
[17]. A Figura 8 ilustra o grafo G para o qual o Teorema de
Brooks é valido para sua estrutura, diferente do grafo Cs, que
€ um ciclo impar.

O Teorema de Brooks insere-se no contexto mais amplo
de resultados que buscam relacionar propriedades estruturais
dos grafos (como conectividade, presenca de ciclos, graus dos
vértices) com sua coloracdo. Ele fornece um critério poderoso
para limitar a complexidade cromadtica, com aplicacdes desde
problemas de escalonamento (scheduling) até alocacio de
recursos e alocacdo de registradores.

Determinar o nimero cromdtico exato é considerado um
problema NP-completo [21]. Existem muitas técnicas de
coloragdo de vértices para provar o Teorema de Brooks que
podem se estender em varias direcdes [5]. Neste estudo,
buscamos utilizar duas técnicas para realizar a demonstragdo
do teorema.

Assim, embora o Teorema de Brooks forneca um limite
garantido de A(G) cores (exceto nos casos excepcionais), ele
nao fornece necessariamente um algoritmo polinomial para
determinar se o grafo admite colora¢cdo com menos cores do
que as previstas pelo limite. Em muitos cendrios, algoritmos
gulosos (greedy) podem se aproximar desse limite, mas nio
h4 garantias de optimalidade em geral.

V. DEMONSTRACAO E CONTRIBUICOES

Antes de iniciar a prova do teorema, apresentam-se dois lemas
principais para a contextualizacdo do problema: o Lema de
Lovasz e Cadeias de Kempe.

Lema 1 (Estrutura de Lovasz). Seja G um grafo 2-conexo
com 8(G) > 3. Se G ndo for completo, entdo G contém um
caminho induzido de trés vértices, digamos u,v,w, tal que
G\ {u,w} é conexo.

Proof. Para demonstrar este lema, utilizaremos a técnica de
constru¢do. Como G é conexo e ndo é completo, sabemos
que existe algum caminho induzido de trés vértices [5]. Se G
for 3-conexo, a remog¢ao de quaisquer dois vértices (u, w) nao
desconecta o grafo, entdo qualquer caminho induzido serve.
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Figura 9: Visualizagdo da estrutura: Os contornos tracejados
indicam os blocos B; e By que se encontram no vértice de
articulacdo x.

O caso critico ocorre quando G ndo é 3-conexo. Neste
caso, existe um conjunto de corte de tamanho 2. Seja {v,x}
este conjunto de corte, onde v serd o vértice central do nosso
caminho desejado.

Considere o grafo H = G —v. Como {v,x} é um corte
em G, entdo x deve ser um vértice de corte em H (ou H
é desconexo, mas como G é 2-conexo, H deve ser conexo
e x € quem articula os componentes). O grafo H pode ser
decomposto em seus blocos (subgrafos maximais 2-conexos).
A estrutura desses blocos forma uma &4rvore (o "grafo de
blocos"). Uma drvore com pelo menos uma aresta possui pelo
menos duas folhas (blocos finais). Sejam By e B, dois blocos
finais (endblocks) de H. Pela propriedade de 2-conexidade
de G: Cada bloco final de H deve conter pelo menos um
vértice adjacente a v que ndo seja x. Se ndo houvesse tal
vizinho, a remoc¢do apenas de x em G desconectaria aquele
bloco do resto do grafo, o que contradiz o fato de G ser 2-
conexo (que exige remogdo de 2 vértices para desconectar).
Sejam u € V(B;) e w € V(B,) vizinhos de v (com u,w # x).
O caminho u —v —w € induzido (pois u e w estdo em blocos
diferentes separados por x, logo ndo hd aresta direta entre eles,
a menos que passem por x, mas estamos olhando vizinhanca
direta) podemos ver isso na figura 9. Agora verificamos a
conectividade de G' = G\ {u,w}.

* O grafo H = G —v é conexo.

* 1 e w ndo sdo vértices de corte em H (pois pertencem a
blocos finais e ndo sio a articulagio x). Logo, H \ {u,w}
permanece conexo.

e Ao readicionarmos v (para formar G’), precisamos
garantir que v se conecte a H \ {u, w}.

» Como o grau 8(G) > 3, o vértice v tem grau pelo menos
3. Dois vizinhos sdo u e w. Logo, v tem pelo menos mais
um vizinho (podendo ser x ou outro vértice em H). Isso
garante que v ndo fica isolado, como visto na Figura 10.

Portanto, G\ {u,w} é conexo. O

O procedimento construtivo descrito na demonstragdo acima
€ formalizado no Algoritmo [1].

Lema 2 (Corretude do Algoritmo 1). Seja G um grafo 2-
conexo, ndo completo, com 8(G) > 3. O Algoritmo 1 retorna,
em tempo finito, uma tripla de vértices (u,v,w) tal que o
caminho u—v —w é induzido e o grafo G' = G\ {u,w} é
conexo.
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Figura 10: Conectividade de G’ = G\ {u,w}.

Algorithm 1 Busca de Caminho Induzido com Extremidades
Removiveis(Método de Lovasz)

Require: Grafo 2-conexo G com 8(G) > 3, ndo completo.
Ensure: Caminho induzido u —v —w tal que G\ {u,w} é
conexo.
> Caso base trivial

if G é 3-conexo then

Encontrar qualquer caminho induzido u — v — w.

return (u,v,w)
end if

E A

> Passo 1: Identificar o corte e definir o centro v
5: Encontrar um par de corte {v,x} em G.
> Nota: v serd o centro do nosso caminho.
> Passo 2: Decomposicdo em blocos
6: Construir H = G —v e obter sua arvore de blocos-corte.
7: Sejam Bj e B; dois blocos finais de H (separados por x).
> Passo 3: Selecionar as pontas u e w
8: Escolher u € V(B) \ {x} tal que u seja vizinho de v.
9: Escolher w € V(B3) \ {x} tal que w seja vizinho de v.
> Verificacdo Implicita: Como u,w estdo em blocos
separados por X,
> ndo hd aresta direta u — w, logo o caminho ¢ induzido.
10: return (u,v,w)

Proof. A terminagdo do algoritmo € garantida, pois todas as
operagdes (busca de componentes, identificagdo de blocos e
cortes) sdo executadas em grafos finitos com complexidade
polinomial. Resta demonstrar a corretude da saida em dois
casos.

Caso 1: G é 3-conexo (Linhas 1-4). Pela defini¢dao de
k-conectividade, a remoc¢ao de menos de k vértices nao
desconecta o grafo. Como k = 3, a remog¢do do conjunto
{u,w} (tamanho 2) resulta em um grafo G’ conexo. Como G
nao é completo, existe pelo menos um caminho induzido de
comprimento 2. Logo, a saida € valida.

Caso 2: G nio é 3-conexo (Linhas 5-13). Neste caso, o
algoritmo identifica um par de corte {v,x}. Definimos H =
G —v. Como G € 2-conexo, H € conexo e x € um vértice de
corte em H (separando os blocos finais B e B»).

« Existéncia dos vértices u e w: Pela 2-conectividade de
G, cada bloco final B; de H deve possuir pelo menos um
vértice adjacente a v que ndo seja x. Caso contrério, {x}
seria um corte em G, contradizendo a hipétese inicial.
Logo, a escolhade u € V(B;) \ {x} e w € V(B2) \ {x}
nas linhas 9-10 é sempre possivel.

e Caminho Induzido: Os vértices u e w pertencem a
blocos distintos de H, articulados apenas por x. Como
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u # x e w # x, qualquer caminho entre u e w em H deve
passar por x. Logo, ndo existe aresta direta (u,w) em G.
Assim, o caminho u — v — w € induzido.

¢ Conectividade de G’ = G\ {u,w}: A conectividade é
preservada em duas etapas:

1. Conectividade de H: Em uma decomposi¢do em
blocos, os vértices que nao sdo de articulagdo
(como u e w dentro de blocos finais) nio
desconectam o grafo ao serem removidos. Portanto,
H\ {u,w} permanece conexo.

2. Reconexdo de v: O vértice v € readicionado
para formar G'. Como §(G) >3, d(v) >3. O
algoritmo remove dois vizinhos (u# e w). Logo,
resta pelo menos um vizinho de v em H (seja x ou
outro vértice). Isso garante que v se conecta ao
componente conexo restante H \ {u, w}.

Portanto, G\ {u,w} é conexo e o algoritmo estd correto. [J

Lema 3 (Cadeia de Kempe). Em uma coloragdo propria de
um grafo G, uma cadeia de Kempe (i, j) é uma componente
conexa do subgrafo induzido pelos vértices coloridos com as
coresie j[5] Setrocarmos as cores deie j simultaneamente
em todos os vértices dessa componente, obtemos novamente
uma coloragdo propria de G.

A demonstracdo do Teorema de Brooks segue a
abordagem de contradi¢do assumindo um contraexemplo
minimal [5], combinada com duas técnicas fundamentais:
a Estrutura de Lovasz e as Cadeias de Kempe. Ademais,
estdo incluidas explicagdes intermedidrias e observacdes
pedagdgicas para facilitar o entendimento da estrutura légica
da prova. Segue o teorema e a demonstragdo abaixo:

Teorema 1. Seja G um grafo conexo. Se G ndo é um ciclo
impar e nem um grafo completo, entdo ¥(G) < A(G).

Proof. Suponha, por contradicio, que G € um contraexemplo
minimal ao teorema, ou seja, G € um grafo conexo A-regular
com o menor nimero de vértices tal que x(G) > A e que ndo é
um ciclo impar nem um grafo completo. Como G é minimal,
todo subgrafo préprio H C G satisfaz x(H) < A.

Escolha um vértice arbitrario v € V(G). Entdo G —v é A-
colorivel. Pelo Lema 1, G — v possui pelo menos dois blocos
terminais. Sejam u e w vértices ndo-cortantes pertencentes
a blocos terminais distintos. Além disso, considerando
novamente o Lema 1 existe um caminho induzido u —v —w
tal que G — {u,w} permanece conexo. A Figura 11 ilustra a
estrutura inicial do grafo para a demonstracao.

Colore u e w com a mesma cor, pois sdo vértices nao
adjacentes, e entdo colorimos G — {u,w} gulosamente. A
ordem utilizada segue a Estrutura de Lovdsz: comeg¢amos a
coloracdo a partir dos blocos terminais de G — v, movendo-os
em direcdo ao vértice v. Dessa forma, cada vértice (exceto
v) € colorido quando todos os seus vizinhos posteriores na
ordem ja foram coloridos, o que garante a coloracdo. A Figura
12 mostra a coloracdo de u e w e colorindo gulosamente.

Ap6s a coloragdo de todos os vértices de G — {u,w}, se
alguma cor fica disponivel para v, obtemos uma coloracdo
usando A cores, encerrando a prova. Caso contrério, cada
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Figura 11: Estrutura inicial: vértices u e w em blocos terminais
distintos de G —v.

Figura 12: Coloragdo imediata apds a colorac@o gulosa: todos os
vértices, exceto v, ja foram coloridos e u € w compartilham a mesma
cor.

uma das A cores aparece em N(v). Para liberar uma cor,
empregamos cadeias de Kempe, explicito no Lema 3.

Para cada cor i € {1,...,A}, considere v; o vizinho de v
usando a cor i. Por um argumento semelhante, para cada v;,
cada cor diferente de i aparece em um vizinho de v;; se nao,
poderiamos recolorir v; e colorir v com i. Para cada par de
cores i e j, seja C; ; a cadeia de Kempe (i, j) contendo v;.

A partir desta constru¢do, formulamos as seguintes
afirmagdes que descrevem configura¢des impossiveis para
um contraexemplo minimal:

* Afirmacao 1: Para qualquer par de cores i e j, a cadeia
de Kempe que comega em um vértice da cor i e a cadeia
que comec¢a em um vértice da cor j t€m que ser a mesma
componente conexa. Porque, se fossem cadeias diferentes,
poderiamos fazer uma troca na cadeia de Kempe onde
estd o vértice da cor i. Esta troca inverteria as cores
nesse componente, € com isso faria a cor i desaparecer
da vizinhanga de v. A Figura 13 ilustra a situagdo antes da
troca, com componentes de Kempe (i, j) disjuntos contendo
v; (esquerda) e v; (direita), e a Figura 14 ilustra 0 momento
em que troca é realizada no componente de v;. Agora, v;
e vj usam a cor j (azul), e a cor i (vermelho) estd livre em
N(v). O vértice v pode ser colorido com i, contradizendo o
contraexemplo minimal.

* Afirmacao 2: Qualquer cadeia de Kempe precisa ser um
caminho simples, isto €, ela ndo pode ter ramifica¢des, nao
pode ter vértices com grau maior que 2 dentro da cadeia. Se
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o---0----0 0----0----0
Figura 13: Afirmagdo 1: Antes da Troca (Violagdo C; j # C; ;).
Vv
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o---0----0 0----0---0

Figura 14: Afirmacéo 1: Depois da Troca.

Figura 15: Ilustracdo da Afirmacdo 2. Fonte: Adaptado de
Cranston e Rabern [5]

uma cadeia tivesse um vértice com grau 3, poderia recolorir
apenas uma parte da cadeia de modo a liberar uma cor para
um vértice vizinho de v, e de novo conseguiriamos colorir v,
destruindo o contraexemplo. A Figura 14 consiste em uma
adaptacao do trabalho de Cranston e Rabern [5] e ilustra a
interpretacdo da afirmagdo em questio.

» Afirmacao 3: Duas cadeias que partem do mesmo vértice
v; e usam cores diferentes sé podem se encontrar no proprio
v; € em nenhum outro lugar. Se houvesse qualquer outro
vértice u que estivesse ao mesmo tempo em C; j € em Cj g,
entdo u teria vizinhos em cores j e k dentro das cadeias,
0 que novamente permitiria recolorir parte das cadeias e
liberar a cor i na vizinhanga de v. Com isso, G deixaria
de ser um contraexemplo. A Figura 16 também € uma
adaptacdo do trabalho de Cranston e Rabern [5] e esclarece
a afirmacdo discutida.

» Afirmacao 4: Agora juntamos todas as trés propriedades
e mostramos que elas ndo podem valer ao mesmo tempo.
Escolhemos trés vizinhos de v, chamados vy, v € v3, cada
um com uma cor diferente. Pela estrutura do grafo, existe
um vértice u na cadeia C 7. E como v; e v3 usam as cores
1 e 3, também existe uma cadeia Ci 3 conectando esses dois
vértices. Realizamos uma troca de Kempe na cadeia Cj 3:
os vértices de cor 1 viram 3, e os de cor 3 viram 1. Depois
da troca, o vértice u, que antes s6 estava na cadeia Cj >,
passa a estar a0 mesmo tempo na cadeia C| , e na cadeia
C} 5. Mas isso contradiz a Afirmago 3, que dizia que esse
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Figura 16: Ilustracdo da Afirmacdo 3. Fonte: Adaptado de
Cranston e Rabern [5]

v2 (2)

u(2) v3 (3)

Figura 17: Afirmacdo 4: ANTES da troca em C 3. u pertence a
cadeia Cj 5 e vy estd conectado a v3 na cadeia Cj 3.

v2(2)

u(2) v (1)
Figura 18: Afirmacéo 4: DEPOIS da Troca em Cj 3.
u€Ci,NCys.

tipo de intersecdo sé pode ocorrer no préprio vi. Como

encontramos essa interse¢do, as trés afirmacgdes ndo podem

ser todas verdade. Logo, o contraexemplo minimal ndo
pode ser valido e o Teorema de Brooks € vdlido. Observe

a Figura 17, ela mostra o momento antes da troca em Cj 3,

V1, V2, V3 s@o vizinhos de v, u (cor 2) € um vizinho de v; (cor

1) e faz parte da cadeia C ». A Figura 18 ilustra 0 momento

onde a troca é realizada, v’l agora tem cor 3, u ainda tem cor

2 e vy tem cor 2. O vértice u agora pertence a C ; e C; 3,

violando a Afirmacdo 3 (C; ;N Cjx = v)). '
As Afirmagdes 1, 2 e 3 descrevem propriedades que qualquer
contraexemplo minimal precisaria ter. Mas a Afirmagdo
4 mostra que essas trés condi¢des juntas levam a uma
contradi¢do depois de uma troca de Kempe.

Com isso, existe uma troca vélida que libera uma cor
em N(v). Ap6s a troca, colorimos v com a cor liberada e,
temos um grafo A-colorivel. Isto contradiz o contraexemplo
minimal, logo, ndo existe um contraexemplo para este teorema
e, portanto:

x(G) <A(G)
O
O contraexemplo precisa ser A-regular, pois a coloracio

gulosa produziria uma A-coloragdo de G, contradizendo
%(G) > A. As técnicas de Lovész e da cadeia de Kempe
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garantem um vértice especial que pode ser controlado no
entorno, uma vez que € possivel colorir partindo de blocos
terminais, e sempre existe uma troca de cores possivel para
resolver conflitos locais. Ademais, na Afirmacéo 4 se afirma
que tem vizinhos v; € v, ndo adjacentes, porque 0s vizinhos
de v ndo formam clique. Se fosse um clique, o grafo seria
completo, porém é uma excecdo para o teorema. Logo, os
vizinhos de v ndo podem formar um clique.

Na seguinte secao, serdo relatadas as contribuicdes
adicionais dos autores, dificuldades encontradas, solucdo
para as adversidades e como este problema possui potenciais
pedagégicos para o meio académico.

VI. RESULTADOS E REFLEXOES

O trabalho de Cranston e Rabern [5] destaca-se pela
abordagem clara e ilustrativa para apresentar o teorema. Este
foi utilizado como base para a demonstracdo desenvolvida
neste estudo. Os autores evidenciam as buscas de suas
provas favoritas do Teorema de Brooks, expondo as técnicas
principais da coloracdo de vértices usadas para auxiliar nas
demonstragdes. Cabe ressaltar que possuiam o objetivo de
apresentar as provas, destacando suas vantagens e extensdes
de cada uma. A organizacdo deste trabalho permite a
leitura independente de suas se¢des, uma vez que cada
secdo apresenta, de forma autossuficiente, as técnicas e a
demonstra¢do. Ademais, o artigo explicita outros autores que
adotaram estratégias diferentes para as provas baseado na
demonstragdo apresentada em cada se¢@o.

A ilustragdo dos conceitos abstratos e as pesquisas
apresentadas no trabalho de Cranston e Rabern [5] contribuem
para o meio académico. Essas contribui¢cdes possibilitam
a constru¢do de novos temas para trabalhos futuros,
aprimorando os argumentos e definindo novas abordagens.
Embora os autores ndo descrevam as suas adversidades
encontradas durante o processo da elaborag@o do artigo, eles
salientam a relevancia das contribuicdes recebidas por meio
de comentdrios e sugestdes de outros pesquisadores. Os
feedbacks e as avaliacdes foram cruciais para o refinamento
da escrita e para a atualizacdo do problema apresentado.

As maiores dificuldades vistas na escrita deste trabalho
estiveram relacionadas a escolha dos métodos para realizar
a demonstracdo.  Algumas abordagens requerem um
conhecimento mais apurado em Teoria dos Grafos. A intengdo

€ expor ao menos dois lemas de maneira coerente e didatica.

Este problema expandiu-se na prova do problema e dos lemas
auxiliares, buscando ajudar no desenvolvimento da resolu¢ao
do Teorema de Brooks. Além disso, houve dificuldade
na construcdo de ilustragdes que representassem de forma
clara cada conceito apresentado sobre grafos e das técnicas
aplicadas.

Para contornar essas adversidades, foram feitas pesquisas
aprofundadas em artigos académicos que mostravam a
prova completa do Teorema de Brooks. Estes trabalhos
utilizam diferentes lemas com suas técnicas de demonstracio
adequadas para uma conclusdo correta. Para a elaboracgdo das
figuras ilustrativas, demandou mais andlise sobre materiais
didéticos que abordam nog¢des basicas de grafos acompanhada
de exemplos pedagdgicos e explicativos. A partir disso, foram
selecionados os lemas adequados para este trabalho. Dessa
maneira, este material busca servir como um suporte didatico
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para os académicos que desejam se aprofundar no assunto de
coloracao dos grafos.

A coloracdo de grafos tem grande potencial para aplicacdes
pedagdgicas e académica. Essa drea é utilizada para
modelagem de problemas reais, constru¢io de ferramentas
computacionais e desenvolvimento de algoritmos de colora-
¢d0 [22]. Ademais, a demonstracdo apresentada pode servir
como base para a constru¢do de teses e dissertagdes que
explorem classificagdes de grafos e diferentes técnicas de
colorag@o.

VII. CONSIDERACOES FINAIS

Portanto, este estudo contextualiza o cendrio sobre coloracio
de grafos, destaca os conceitos fundamentais e basicos sobre
grafos para esclarecer o problema e a demonstragdo do
Teorema de Brooks. O teorema estabelece que, se um grafo
G tal que G ndo seja completo nem ciclo impar, entdo satisfaz
%(G) < A(G). Para demonstrar o problema, foi utilizada a
prova por contradi¢do assumindo um contraexemplo minimal.
A abordagem foi apoiada por duas técnicas essenciais: o
Lema Estrutural de Lovéasz e cadeia de Kempe.

Adicionalmente, foram destacados outros trabalhos
relacionados ao tema, os quais mostram diferentes formas
de demonstragdo e técnicas elaboradas ou modificadas pelos
autores. As contribui¢des evidenciam que o estudo de
coloragdo de vértices permanece relevante para a resolugao
de problemas reais. Para a construg¢do deste trabalho, uma
pesquisa aprofundada de artigos, que exploram o mesmo
problema, foi necessdria com o intuito de reproduzir os
resultados da literatura, buscando tornar o ensino mais
acessivel e descomplicado.

A construcdo da demonstracdo, a sintese das técnicas e a
elaboragdo das ilustracdes foram os desafios encontrados ao
longo deste estudo. Isso se deve ao fato de que se priorizou a
apresentagdo de uma explicagdo compreensivel e coesa para
a comunidade académica.

A coloragdo de grafos apresenta potencial para o
desenvolvimento de trabalhos futuros, principalmente no que
se refere a aplicacdo em problemas reais e a estruturacdo de
algoritmos. Como perspectiva de melhoria dos resultados
apresentados, destaca-se a possivel inclusdo da prova baseada
em Coloracdo de Listas (List Coloring) ou do lema de Kernel
[51, que sdo técnicas mais modernas da literatura. No entanto,
essas abordagens ndo foram implementadas no presente artigo
devido a sua maior complexidade conceitual. Sua inclusio
exigiria um detalhamento adicional de preliminares e poderia
comprometer a acessibilidade do material para o escopo desta
disciplina.
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