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Resumo—Este estudo reproduz uma prova final do Teorema de Brooks, um dos resultados fundamentais para a Coloração de Grafos, visando
não apenas à consolidação do conhecimento teórico, mas também para a produção de um material didático de apoio para a comunidade
acadêmica, traduzindo a complexidade da prova por meio de exemplos ilustrativos, figuras e explicações detalhadas. O teorema estabelece
um limite superior para o número cromático χ(G) de qualquer grafo conexo com o seu grau máximo ∆(G), tal que o grafo analisado não seja
um ciclo ímpar e nem um grafo completo. A metodologia utilizada foi a prova por contradição, assumindo um contraexemplo minimal,
integrada com duas técnicas cruciais, juntamente com ilustrações para facilitar o ensino. A prova é iniciada com o Lema Estrutural de
Lovász, o qual é aplicado para resolver o caso dos grafos ∆-regulares e não completos. E também, a utilização da justificativa de Cadeias de
Kempe permite demonstrar que a falha estrutural da coloração só é possível em casos excepcionais onde o grafo é completo ou um ciclo
ímpar. O resultado é a confirmação de χ(G)≤ ∆(G) para todo grafo conexo, exceto os casos proibidos.

Palavras-chave—Teoria dos Grafos, Coloração de Grafos, Teorema de Brooks, Número Cromático

Abstract—This study reproduces a complete proof of Brooks’ Theorem, one of the fundamental results in Graph Coloring. The aim is
not only to consolidate theoretical knowledge but also to produce didactic support material for the academic community, translating the
complexity of the proof through illustrative examples, figures, and detailed explanations. The theorem establishes an upper bound for the
chromatic number χ(G) of any connected graph with its maximum degree ∆(G), such that the analyzed graph is neither an odd cycle nor a
complete graph. The methodology employed is proof by contradiction, assuming a minimal counterexample, integrated with two crucial
techniques, along with illustrations to facilitate teaching. The proof begins with Lovász’s Structural Lemma, which is applied to resolve the
case of ∆-regular and non-complete graphs. Furthermore, the use of Kempe Chains justification allows us to demonstrate that the structural
failure of the coloring is only possible in exceptional cases where the graph is complete or an odd cycle. The result is the confirmation that
χ(G)≤ ∆(G) for every connected graph, except for the forbidden cases.

Keywords—Graph Theory, Graph Coloring, Brooks’ Theorem, Chromatic Number

I. INTRODUÇÃO

A Teoria dos Grafos possui destaque e importância pela
grande variedade de problemas. O interesse principal

deste campo é resolver os problemas utilizando algoritmos
eficientes, preocupando-se com a capacidade computacional.
A busca por soluções eficientes move esta área para que

Dados de contato: Matheus Silva Pontes, matheus.pontes@uft.edu.br

ainda seja investigada através de conhecimentos teóricos
aprofundados sobre grafos [1].

A coloração de grafos se trata de um caso especial o qual
atribuímos rótulos, que são as cores. Elas estão sujeitas a
restrições e podem ser aplicadas em vértices e arestas, de
forma que os vértices e as arestas adjacentes não possuam a
mesma cor [2]. Inicialmente, esta ideia despertou no homem
o desejo de buscar novas maneiras de expressar diferentes
tipos de regiões. O registro de desenhos e escritas gráficas
com a inserção de cores nos mapas originou a cartografia [3].

Em 1852, por meio da coloração dos mapas, se deu início à
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história do problema das 4 cores. O matemático, advogado e
botânico Francis Guthrie formulou uma conjectura afirmando
que qualquer mapa pode ser colorido utilizando apenas 4
cores. Francis apresentou este problema para seu irmão
mais novo, Frederick Guthrie, que mostrou para o seu
professor De Morgan. O docente, entusiasmado, encaminhou
este problema em suas cartas, despertando o interesse
dos acadêmicos. Esta ideia propagou-se, impulsionando
discussões e novos desenvolvimentos [4]. Em 1976,
Kenneth Appel e Wolfgang Haken conseguiram apresentar
a demonstração do Teorema das 4 Cores com o auxílio de
computadores [3].

Os conceitos e problemas desenvolvidos na coloração de
grafos, como o Teorema das 4 Cores e a coloração de vértices
e arestas, foram fundamentais para a resolução de problemas
reais e de jogos. Entre as aplicações de destaque estão a
divisão de terras [3], a organização da grade de horários, a
solução de um sudoku utilizando um algoritmo guloso de
coloração de vértices e o transporte de produtos reagentes [2].

Acerca deste caso, este artigo visa reproduzir resultados
da literatura e oferecer uma contribuição pedagógica da
demonstração do Teorema de Brooks. O teorema estabelece
um limite superior do número cromático χ(G) em função
do grau máximo ∆(G) do grafo. Dessa forma, busca-
se apresentar explicações mais claras e sustentadas com
exemplos e figuras ilustrativas. Assim, este material servirá
como um conteúdo pedagógico de apoio para a comunidade
acadêmica.

Quanto à organização deste estudo, a seção II estabelece
os conceitos básicos sobre grafos e coloração, essenciais
para a compreensão do Teorema de Brooks acompanhados
de exemplos detalhados. A seção III expõe as fontes
pedagógicas e técnicas que apresentam propostas alinhadas à
deste trabalho.

Em seguida, a seção IV descreve o Teorema de Brooks
detalhadamente sobre os problemas lúdicos relacionados, suas
aplicações e complexidades. A seção V inicia a exposição
de sua prova com a apresentação de dois lemas, Lema
Estrutural de Lovász e Cadeias de Kempe. Essas técnicas
são fundamentais para o desenvolvimento do argumento.

Posteriormente, a seção VI destaca as considerações
relevantes sobre o teorema, adversidades encontradas durante
a escrita deste artigo, soluções para contornar os desafios
e destaques deste estudo para o meio acadêmico. Por fim,
a seção VII realiza uma síntese dos principais aspectos,
acompanhada de sugestões de melhorias dos resultados
obtidos, extensões de trabalhos futuros e temas relacionados
não explorados em profundidade.

É de suma importância ressaltar que os grafos utilizados
para as definições e provas neste material serão finitos e
simples. Nessa perspectiva, a seção seguinte apresenta as
noções básicas sobre grafos e coloração necessárias para a
apresentação do problema.

II. PRELIMINARES

Nesta seção, os conceitos fundamentais sobre os grafos
serão introduzidos e utilizados neste trabalho, os quais foram
utilizados como base o livro pedagógico do Jayme [1]. A
terminologia e as notações serão apresentadas posteriormente
nos problemas.
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Figura 1: Representação do grafo G1.
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Figura 2: Ilustração da vizinhança N(v1) e do grau máximo ∆(G).

Um grafo G = (V,E) consiste em um conjunto finito não
vazio de V e um conjunto E de pares ordenados distintos de
V . Os elementos de V são os vértices e os de E são as arestas
de um grafo. Cada aresta e ∈ E é denotada por um par de
vértices (v,w), onde v e w são os extremos da aresta e e são
ditas adjacentes. É dito que a aresta e é incidente aos vértices
v e w.

Um conjunto de vértices de um grafo é denotado
por V (G), e um conjunto de arestas de um grafo é
denotado por E(G). A Figura 1 ilustra um grafo G1 =
(V,E), tal que V (G1) = {v1,v2,v3,v4,v5} e E(G1) =
{(v1,v2),(v3,v4),(v4,v2),(v4,v1),(v3,v5),(v2,v3)}.

A vizinhança de um vértice v ∈ V , denotada por N(v),
é definida como o conjunto de vértices adjacentes a v. O
grau de v, representado por d(v), corresponde à cardinalidade
|N(v)|. O grau máximo de G, denotado por ∆(G), é o
maior valor de grau encontrado entre todos os vértices de V .
Esses conceitos podem ser visualizados na Figura 2. Como
exemplo, considere a análise do vértice v1. Sua vizinhança
é dada por N(v1) = {v2,v3,v4,v5}, de modo que seu grau
é d(v1) = |N(v1)| = 4. Ao observar os demais vértices do
grafo, obtemos, por exemplo, d(v2) = 2, d(v3) = 3, entre
outros. Como d(v1) = 4 é o maior grau entre todos os vértices,
concluímos que o grau máximo é ∆(G) = 4.

Dizemos que um grafo G é conexo se existir um caminho
entre quaisquer dois vértices, como exemplificado no grafo
à esquerda da Figura 3. Em contrapartida, um vértice v é
denominado vértice de corte quando a sua remoção torna G
desconexo. Este caso é ilustrado na Figura 3 onde o grafo da
direita mostra um vértice de corte v3.

Um ciclo Cn é um caminho v1, ...,vk,vk+1 tal que vk = vk+1
e k≥ 3. Em um grafo não direcionado, todo ciclo deve possuir
no mínimo 3 vértices. Se o caminho for denominado simples,
o ciclo também é simples. Um ciclo simples é um ciclo onde o
caminho inicia e termina no mesmo vértice [1]. Um ciclo par
é aquele que possui número par de vértices e arestas, enquanto
um ciclo ímpar possui número ímpar de arestas e vértices. A
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(Sua remoção desconecta

o grafo)

Figura 3: Esquerda: Exemplo de grafo conexo. Direita: O grafo G3
com vértice de corte v3.
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v2 v3

Ciclo Ímpar
(3 vértices, 3 arestas)

v1 v2

v3v4

Ciclo Par
(4 vértices, 4 arestas)

v1

v2 v3

v4

Grafo Acíclico
(Sem ciclos)

Figura 4: Exemplos de ciclos e um grafo acíclico.

Figura 4 ilustra um exemplo de ciclo par com 4 vértices e um
ciclo ímpar com 3 vértices. Um grafo que não possui ciclos
é chamado de grafo acíclico, o qual está exemplificado na
Figura 4.

Um grafo é dito completo quando cada par de vértices é
conectado por uma única aresta. É utilizada uma notação Kn
para designar um grafo completo com n vértices. A Figura
5 mostra um grafo completo K4, e cada vértice é ligado por
uma única aresta com todos os outros vértices.

Uma k-coloração (própria) de G é uma função c : V →
{1,2, . . . ,k} tal que c(u) 6= c(v) para toda aresta {u,v} ∈ E.
Observe que uma k-coloração de vértices de um grafo é a
atribuição de k cores aos seus vértices de forma que quaisquer
dois vértices adjacentes (conectados por uma aresta) recebam
cores diferentes [1], podemos observar isso na Figura 6.

O número cromático de um grafo G, denotado por χ(G), é
o menor inteiro k o qual G admite uma k-coloração [1]. Então,
o número cromático de um grafo é o menor número de cores
necessárias para colorir todos os seus vértices de forma que
nenhum par de vértices adjacentes tenham a mesma cor. Este
conceito é ilustrado na Figura 7, com um grafo que tem o
número cromático igual a 4.

v1

v2v3

v4

Grafo Completo K4
(4 vértices, 6 arestas)

Figura 5: Exemplo de um Grafo Completo K4.

v1

c(v1) = 1

v2

c(v2) = 2
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c(v3) = 3

v4

c(v4) = 2

Figura 6: Uma 3-coloração própria válida para o grafo Gcol .

v1 Cor 1
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v3

Cor 3

v4

Cor 4

Figura 7: Grafo com número cromático igual a 4.

III. TRABALHOS RELACIONADOS

Vale destacar os trabalhos relacionados com o mesmo tema
e problema deste estudo. Dentre eles, o artigo de Cranston e
Rabern [5] apresenta diferentes demonstrações do Teorema
de Brooks. O objetivo é ilustrar as técnicas principais da
coloração de grafos, como coloração gulosa, cadeia de Kempe,
lema de Kernel e hitting sets, com o intuito de torná-las
acessíveis. Para isso, os autores desejaram mostrar as suas
provas favoritas. Cada tópico das provas é apresentado em
ordem de complexidade, cada um é autocontido e pode ser
lido em qualquer ordem. Este trabalho será utilizado como
base para a demonstração do Teorema de Brooks neste estudo.

Além disso, Sajith e Saxena [6] demonstram duas provas
do Teorema de Brooks. A primeira prova é feita modificando
a prova de Melkinov e Vizing [7] e de Wilson [8] que provam
por contradição, porém é alterada para ser construtiva e
resultar em um algoritmo de tempo linear. E a segunda prova
combina com os elementos das demonstrações de Zajac [9]
e do Bondy [10, 11], garantindo uma prova mais simples e
resultando também em um algoritmo de tempo linear. Os
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autores, Sajith e Saxena, consideram essas provas mais fáceis
de serem ensinadas em aulas de Ciência da Computação.

Amiroch et al. [12] projetam um novo método para
criação de cardápios alimentícios utilizando a coloração de
vértices. Eles combinaram o algoritmo de Welsh-Powell
[13] com uma técnica de combinação matemática a qual
gera uma diversidade de cardápios que seguem diretrizes
de baixa caloria. Para comprovar a eficácia da abordagem,
simularam de forma dinâmica com a ferramenta MatLab
para criarem três cardápios distintos com necessidades
nutricionais específicas. Adicionalmente, para a organização
e diversificação de cardápios nutricionalmente balanceados,
empregam o conceito de caminhos disjuntos de grafos. Este
estudo tem destaque pela solução de lidar com problemas em
planejamento alimentar e pelo fornecimento de informações
importantes para trabalhos futuros.

F. Radmehr et al. [14] focam em utilizar uma abordagem
baseada em investigação para explorar o ensino e a
aprendizagem sobre coloração de vértices para os alunos de
graduação em matemática. Para isso, desenvolveram sete
tarefas baseadas em investigação para ensinar o tema para
os alunos e buscam descrever o engajamento deles. Como
resultado, os discentes se entretiveram bastante com as tarefas
e perceberam o quão importante essas práticas podem ser
para o desenvolvimento de conhecimentos conceituais sobre
matemática. Os autores promovem que essas tarefas sejam
empregadas em cursos de matemática discreta de graduação
para aprimorar o conhecimento matemático.

Rajagaspar e Senthil [15] buscam divulgar a ideia inicial
sobre grafos e coloração de vértices. Eles investigam como a
coloração de vértices pode ser usada para modelar problemas
práticos, como escalonamento de horários, alocação de
recursos, networking e mineração de dados.

Cabe mencionar o artigo de Yasser e Bianchini [16] como
referência para contribuição pedagógica. Este fator é essencial
para a escrita deste trabalho, dado que buscamos tornar este
material acessível para a comunidade acadêmica que deseja
entender sobre o Teorema de Brooks e se aprofundar na
coloração de grafos.

Partindo disso, segue na próxima seção o detalhamento do
problema, descrevendo o seu tipo, complexidade, problemas
lúdicos relacionados, o contexto em que se enquadra,
utilizando exemplos ilustrativos com explicações.

IV. DESCRIÇÃO DO PROBLEMA

A coloração de grafos possui uma ampla variedade de
aplicações práticas em diferentes áreas. Um exemplo clássico
é a coloração de mapas, em que regiões adjacentes devem
receber cores distintas [17]. Além desse caso bem conhecido,
problemas de coloração em vértices surgem em diversas
situações reais, como na alocação de frequências em redes
de comunicação, onde transmissores próximos não podem
operar na mesma frequência, e no escalonamento de tarefas
que não podem ocorrer simultaneamente [18]. Outro uso
importante aparece em compiladores [19], durante a etapa
de alocação de registradores, e em sistemas de horários
acadêmicos, garantindo que disciplinas que compartilham
alunos não sejam ofertadas no mesmo período [13]. Além
disso, é aplicado em problemas lúdicos como a resolução
do sudoku, que pode ser modelado como um problema de

Exceção: C5

u1

u2

u3 u4

u5

∆ = 2, χ = 3
(χ > ∆)

Teorema Válido: G

w1

w2 w3

w4 w5

∆ = 3, χ = 3
(χ≤ ∆)

Figura 8: Visualização do Teorema de Brooks: Uma exceção (ciclo
ímpar) e um caso válido.

coloração de grafos [20].
Neste estudo, trabalharemos com coloração de vértices

formulada como um problema de decisão. Em termos gerais,
quando o grafo G é completo ou ciclo ímpar satisfaz χ(G)≤
∆(G)+ 1. Porém, o Teorema de Brooks mostra que se um
grafo G não é completo e nem ciclo ímpar, então χ(G)≤∆(G)
[17]. A Figura 8 ilustra o grafo G para o qual o Teorema de
Brooks é válido para sua estrutura, diferente do grafo C5, que
é um ciclo ímpar.

O Teorema de Brooks insere-se no contexto mais amplo
de resultados que buscam relacionar propriedades estruturais
dos grafos (como conectividade, presença de ciclos, graus dos
vértices) com sua coloração. Ele fornece um critério poderoso
para limitar a complexidade cromática, com aplicações desde
problemas de escalonamento (scheduling) até alocação de
recursos e alocação de registradores.

Determinar o número cromático exato é considerado um
problema NP-completo [21]. Existem muitas técnicas de
coloração de vértices para provar o Teorema de Brooks que
podem se estender em várias direções [5]. Neste estudo,
buscamos utilizar duas técnicas para realizar a demonstração
do teorema.

Assim, embora o Teorema de Brooks forneça um limite
garantido de ∆(G) cores (exceto nos casos excepcionais), ele
não fornece necessariamente um algoritmo polinomial para
determinar se o grafo admite coloração com menos cores do
que as previstas pelo limite. Em muitos cenários, algoritmos
gulosos (greedy) podem se aproximar desse limite, mas não
há garantias de optimalidade em geral.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Antes de iniciar a prova do teorema, apresentam-se dois lemas
principais para a contextualização do problema: o Lema de
Lovász e Cadeias de Kempe.

Lema 1 (Estrutura de Lovász). Seja G um grafo 2-conexo
com δ(G) ≥ 3. Se G não for completo, então G contém um
caminho induzido de três vértices, digamos u,v,w, tal que
G\{u,w} é conexo.

Proof. Para demonstrar este lema, utilizaremos a técnica de
construção. Como G é conexo e não é completo, sabemos
que existe algum caminho induzido de três vértices [5]. Se G
for 3-conexo, a remoção de quaisquer dois vértices (u,w) não
desconecta o grafo, então qualquer caminho induzido serve.
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B1 B2
x

u w

v

Figura 9: Visualização da estrutura: Os contornos tracejados
indicam os blocos B1 e B2 que se encontram no vértice de

articulação x.

O caso crítico ocorre quando G não é 3-conexo. Neste
caso, existe um conjunto de corte de tamanho 2. Seja {v,x}
este conjunto de corte, onde v será o vértice central do nosso
caminho desejado.

Considere o grafo H = G− v. Como {v,x} é um corte
em G, então x deve ser um vértice de corte em H (ou H
é desconexo, mas como G é 2-conexo, H deve ser conexo
e x é quem articula os componentes). O grafo H pode ser
decomposto em seus blocos (subgrafos maximais 2-conexos).
A estrutura desses blocos forma uma árvore (o "grafo de
blocos"). Uma árvore com pelo menos uma aresta possui pelo
menos duas folhas (blocos finais). Sejam B1 e B2 dois blocos
finais (endblocks) de H. Pela propriedade de 2-conexidade
de G: Cada bloco final de H deve conter pelo menos um
vértice adjacente a v que não seja x. Se não houvesse tal
vizinho, a remoção apenas de x em G desconectaria aquele
bloco do resto do grafo, o que contradiz o fato de G ser 2-
conexo (que exige remoção de 2 vértices para desconectar).
Sejam u ∈V (B1) e w ∈V (B2) vizinhos de v (com u,w 6= x).
O caminho u− v−w é induzido (pois u e w estão em blocos
diferentes separados por x, logo não há aresta direta entre eles,
a menos que passem por x, mas estamos olhando vizinhança
direta) podemos ver isso na figura 9. Agora verificamos a
conectividade de G′ = G\{u,w}.

• O grafo H = G− v é conexo.

• u e w não são vértices de corte em H (pois pertencem a
blocos finais e não são a articulação x). Logo, H \{u,w}
permanece conexo.

• Ao readicionarmos v (para formar G′), precisamos
garantir que v se conecte a H \{u,w}.

• Como o grau δ(G)≥ 3, o vértice v tem grau pelo menos
3. Dois vizinhos são u e w. Logo, v tem pelo menos mais
um vizinho (podendo ser x ou outro vértice em H). Isso
garante que v não fica isolado, como visto na Figura 10.

Portanto, G\{u,w} é conexo.

O procedimento construtivo descrito na demonstração acima
é formalizado no Algoritmo [1].

Lema 2 (Corretude do Algoritmo 1). Seja G um grafo 2-
conexo, não completo, com δ(G)≥ 3. O Algoritmo 1 retorna,
em tempo finito, uma tripla de vértices (u,v,w) tal que o
caminho u− v−w é induzido e o grafo G′ = G \ {u,w} é
conexo.

x
u w

v

Figura 10: Conectividade de G′ = G\{u,w}.

Algorithm 1 Busca de Caminho Induzido com Extremidades
Removíveis(Método de Lovász)

Require: Grafo 2-conexo G com δ(G)≥ 3, não completo.
Ensure: Caminho induzido u− v−w tal que G \ {u,w} é

conexo.
. Caso base trivial

1: if G é 3-conexo then
2: Encontrar qualquer caminho induzido u− v−w.
3: return (u,v,w)
4: end if

. Passo 1: Identificar o corte e definir o centro v
5: Encontrar um par de corte {v,x} em G.

. Nota: v será o centro do nosso caminho.
. Passo 2: Decomposição em blocos

6: Construir H = G− v e obter sua árvore de blocos-corte.
7: Sejam B1 e B2 dois blocos finais de H (separados por x).

. Passo 3: Selecionar as pontas u e w
8: Escolher u ∈V (B1)\{x} tal que u seja vizinho de v.
9: Escolher w ∈V (B2)\{x} tal que w seja vizinho de v.

. Verificação Implícita: Como u,w estão em blocos
separados por x,
. não há aresta direta u−w, logo o caminho é induzido.

10: return (u,v,w)

Proof. A terminação do algoritmo é garantida, pois todas as
operações (busca de componentes, identificação de blocos e
cortes) são executadas em grafos finitos com complexidade
polinomial. Resta demonstrar a corretude da saída em dois
casos.
Caso 1: G é 3-conexo (Linhas 1-4). Pela definição de
k-conectividade, a remoção de menos de k vértices não
desconecta o grafo. Como k = 3, a remoção do conjunto
{u,w} (tamanho 2) resulta em um grafo G′ conexo. Como G
não é completo, existe pelo menos um caminho induzido de
comprimento 2. Logo, a saída é válida.
Caso 2: G não é 3-conexo (Linhas 5-13). Neste caso, o
algoritmo identifica um par de corte {v,x}. Definimos H =
G− v. Como G é 2-conexo, H é conexo e x é um vértice de
corte em H (separando os blocos finais B1 e B2).

• Existência dos vértices u e w: Pela 2-conectividade de
G, cada bloco final Bi de H deve possuir pelo menos um
vértice adjacente a v que não seja x. Caso contrário, {x}
seria um corte em G, contradizendo a hipótese inicial.
Logo, a escolha de u ∈ V (B1) \ {x} e w ∈ V (B2) \ {x}
nas linhas 9-10 é sempre possível.

• Caminho Induzido: Os vértices u e w pertencem a
blocos distintos de H, articulados apenas por x. Como
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u 6= x e w 6= x, qualquer caminho entre u e w em H deve
passar por x. Logo, não existe aresta direta (u,w) em G.
Assim, o caminho u− v−w é induzido.

• Conectividade de G′ = G \ {u,w}: A conectividade é
preservada em duas etapas:

1. Conectividade de H: Em uma decomposição em
blocos, os vértices que não são de articulação
(como u e w dentro de blocos finais) não
desconectam o grafo ao serem removidos. Portanto,
H \{u,w} permanece conexo.

2. Reconexão de v: O vértice v é readicionado
para formar G′. Como δ(G) ≥ 3, d(v) ≥ 3. O
algoritmo remove dois vizinhos (u e w). Logo,
resta pelo menos um vizinho de v em H (seja x ou
outro vértice). Isso garante que v se conecta ao
componente conexo restante H \{u,w}.

Portanto, G\{u,w} é conexo e o algoritmo está correto.

Lema 3 (Cadeia de Kempe). Em uma coloração própria de
um grafo G, uma cadeia de Kempe (i, j) é uma componente
conexa do subgrafo induzido pelos vértices coloridos com as
cores i e j [5]. Se trocarmos as cores de i e j simultaneamente
em todos os vértices dessa componente, obtemos novamente
uma coloração própria de G.

A demonstração do Teorema de Brooks segue a
abordagem de contradição assumindo um contraexemplo
minimal [5], combinada com duas técnicas fundamentais:
a Estrutura de Lovász e as Cadeias de Kempe. Ademais,
estão incluídas explicações intermediárias e observações
pedagógicas para facilitar o entendimento da estrutura lógica
da prova. Segue o teorema e a demonstração abaixo:

Teorema 1. Seja G um grafo conexo. Se G não é um ciclo
ímpar e nem um grafo completo, então χ(G)≤ ∆(G).

Proof. Suponha, por contradição, que G é um contraexemplo
minimal ao teorema, ou seja, G é um grafo conexo ∆-regular
com o menor número de vértices tal que χ(G)> ∆ e que não é
um ciclo ímpar nem um grafo completo. Como G é minimal,
todo subgrafo próprio H ⊆ G satisfaz χ(H)≤ ∆.

Escolha um vértice arbitrário v ∈V (G). Então G− v é ∆-
colorível. Pelo Lema 1, G− v possui pelo menos dois blocos
terminais. Sejam u e w vértices não-cortantes pertencentes
a blocos terminais distintos. Além disso, considerando
novamente o Lema 1 existe um caminho induzido u− v−w
tal que G−{u,w} permanece conexo. A Figura 11 ilustra a
estrutura inicial do grafo para a demonstração.

Colore u e w com a mesma cor, pois são vértices não
adjacentes, e então colorimos G−{u,w} gulosamente. A
ordem utilizada segue a Estrutura de Lovász: começamos a
coloração a partir dos blocos terminais de G− v, movendo-os
em direção ao vértice v. Dessa forma, cada vértice (exceto
v) é colorido quando todos os seus vizinhos posteriores na
ordem já foram coloridos, o que garante a coloração. A Figura
12 mostra a coloração de u e w e colorindo gulosamente.

Após a coloração de todos os vértices de G−{u,w}, se
alguma cor fica disponível para v, obtemos uma coloração
usando ∆ cores, encerrando a prova. Caso contrário, cada

v

u w

Figura 11: Estrutura inicial: vértices u e w em blocos terminais
distintos de G− v.

v

u w

Figura 12: Coloração imediata após a coloração gulosa: todos os
vértices, exceto v, já foram coloridos e u e w compartilham a mesma

cor.

uma das ∆ cores aparece em N(v). Para liberar uma cor,
empregamos cadeias de Kempe, explícito no Lema 3.

Para cada cor i ∈ {1, . . . ,∆}, considere vi o vizinho de v
usando a cor i. Por um argumento semelhante, para cada vi,
cada cor diferente de i aparece em um vizinho de vi; se não,
poderíamos recolorir vi e colorir v com i. Para cada par de
cores i e j, seja Ci, j a cadeia de Kempe (i, j) contendo vi.

A partir desta construção, formulamos as seguintes
afirmações que descrevem configurações impossíveis para
um contraexemplo minimal:

• Afirmação 1: Para qualquer par de cores i e j, a cadeia
de Kempe que começa em um vértice da cor i e a cadeia
que começa em um vértice da cor j têm que ser a mesma
componente conexa. Porque, se fossem cadeias diferentes,
poderíamos fazer uma troca na cadeia de Kempe onde
está o vértice da cor i. Esta troca inverteria as cores
nesse componente, e com isso faria a cor i desaparecer
da vizinhança de v. A Figura 13 ilustra a situação antes da
troca, com componentes de Kempe (i, j) disjuntos contendo
vi (esquerda) e v j (direita), e a Figura 14 ilustra o momento
em que troca é realizada no componente de vi. Agora, vi
e v j usam a cor j (azul), e a cor i (vermelho) está livre em
N(v). O vértice v pode ser colorido com i, contradizendo o
contraexemplo minimal.

• Afirmação 2: Qualquer cadeia de Kempe precisa ser um
caminho simples, isto é, ela não pode ter ramificações, não
pode ter vértices com grau maior que 2 dentro da cadeia. Se
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v

vi v j

Figura 13: Afirmação 1: Antes da Troca (Violação Ci, j 6=C j,i).

v

v′i v j

Figura 14: Afirmação 1: Depois da Troca.

v

vi

v j

. . .

. . .

Ci, j

u

Figura 15: Ilustração da Afirmação 2. Fonte: Adaptado de
Cranston e Rabern [5]

uma cadeia tivesse um vértice com grau 3, poderia recolorir
apenas uma parte da cadeia de modo a liberar uma cor para
um vértice vizinho de v, e de novo conseguiríamos colorir v,
destruindo o contraexemplo. A Figura 14 consiste em uma
adaptação do trabalho de Cranston e Rabern [5] e ilustra a
interpretação da afirmação em questão.

• Afirmação 3: Duas cadeias que partem do mesmo vértice
vi e usam cores diferentes só podem se encontrar no próprio
vi e em nenhum outro lugar. Se houvesse qualquer outro
vértice u que estivesse ao mesmo tempo em Ci, j e em Ci,k,
então u teria vizinhos em cores j e k dentro das cadeias,
o que novamente permitiria recolorir parte das cadeias e
liberar a cor i na vizinhança de v. Com isso, G deixaria
de ser um contraexemplo. A Figura 16 também é uma
adaptação do trabalho de Cranston e Rabern [5] e esclarece
a afirmação discutida.

• Afirmação 4: Agora juntamos todas as três propriedades
e mostramos que elas não podem valer ao mesmo tempo.
Escolhemos três vizinhos de v, chamados v1, v2 e v3, cada
um com uma cor diferente. Pela estrutura do grafo, existe
um vértice u na cadeia C1,2. E como v1 e v3 usam as cores
1 e 3, também existe uma cadeia C1,3 conectando esses dois
vértices. Realizamos uma troca de Kempe na cadeia C1,3:
os vértices de cor 1 viram 3, e os de cor 3 viram 1. Depois
da troca, o vértice u, que antes só estava na cadeia C1,2,
passa a estar ao mesmo tempo na cadeia C′1,2 e na cadeia
C′2,3. Mas isso contradiz a Afirmação 3, que dizia que esse

v

v j

vi

vk

. . .

. . .

. . .

. . .

Ci, j

Ci,k

u

Figura 16: Ilustração da Afirmação 3. Fonte: Adaptado de
Cranston e Rabern [5]

v

v1 (1) v2 (2)

v3 (3)u (2)

Figura 17: Afirmação 4: ANTES da troca em C1,3. u pertence à
cadeia C1,2 e v1 está conectado a v3 na cadeia C1,3.

v

v′1 (3) v2 (2)

v′3 (1)u (2)

Figura 18: Afirmação 4: DEPOIS da Troca em C1,3.
u ∈C′1,2∩C′2,3.

tipo de interseção só pode ocorrer no próprio v1. Como
encontramos essa interseção, as três afirmações não podem
ser todas verdade. Logo, o contraexemplo minimal não
pode ser válido e o Teorema de Brooks é válido. Observe
a Figura 17, ela mostra o momento antes da troca em C1,3,
v1,v2,v3 são vizinhos de v, u (cor 2) é um vizinho de v1 (cor
1) e faz parte da cadeia C1,2. A Figura 18 ilustra o momento
onde a troca é realizada, v′1 agora tem cor 3, u ainda tem cor
2 e v2 tem cor 2. O vértice u agora pertence a C′1,2 e C′2,3,
violando a Afirmação 3 (Ci, j ∩Ci,k = vi).

As Afirmações 1, 2 e 3 descrevem propriedades que qualquer
contraexemplo minimal precisaria ter. Mas a Afirmação
4 mostra que essas três condições juntas levam a uma
contradição depois de uma troca de Kempe.

Com isso, existe uma troca válida que libera uma cor
em N(v). Após a troca, colorimos v com a cor liberada e,
temos um grafo ∆-colorível. Isto contradiz o contraexemplo
minimal, logo, não existe um contraexemplo para este teorema
e, portanto:

χ(G)≤ ∆(G)

O contraexemplo precisa ser ∆-regular, pois a coloração
gulosa produziria uma ∆-coloração de G, contradizendo
χ(G) > ∆. As técnicas de Lovász e da cadeia de Kempe
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garantem um vértice especial que pode ser controlado no
entorno, uma vez que é possível colorir partindo de blocos
terminais, e sempre existe uma troca de cores possível para
resolver conflitos locais. Ademais, na Afirmação 4 se afirma
que tem vizinhos v1 e v2 não adjacentes, porque os vizinhos
de v não formam clique. Se fosse um clique, o grafo seria
completo, porém é uma exceção para o teorema. Logo, os
vizinhos de v não podem formar um clique.

Na seguinte seção, serão relatadas as contribuições
adicionais dos autores, dificuldades encontradas, solução
para as adversidades e como este problema possui potenciais
pedagógicos para o meio acadêmico.

VI. RESULTADOS E REFLEXÕES

O trabalho de Cranston e Rabern [5] destaca-se pela
abordagem clara e ilustrativa para apresentar o teorema. Este
foi utilizado como base para a demonstração desenvolvida
neste estudo. Os autores evidenciam as buscas de suas
provas favoritas do Teorema de Brooks, expondo as técnicas
principais da coloração de vértices usadas para auxiliar nas
demonstrações. Cabe ressaltar que possuíam o objetivo de
apresentar as provas, destacando suas vantagens e extensões
de cada uma. A organização deste trabalho permite a
leitura independente de suas seções, uma vez que cada
seção apresenta, de forma autossuficiente, as técnicas e a
demonstração. Ademais, o artigo explicita outros autores que
adotaram estratégias diferentes para as provas baseado na
demonstração apresentada em cada seção.

A ilustração dos conceitos abstratos e as pesquisas
apresentadas no trabalho de Cranston e Rabern [5] contribuem
para o meio acadêmico. Essas contribuições possibilitam
a construção de novos temas para trabalhos futuros,
aprimorando os argumentos e definindo novas abordagens.
Embora os autores não descrevam as suas adversidades
encontradas durante o processo da elaboração do artigo, eles
salientam a relevância das contribuições recebidas por meio
de comentários e sugestões de outros pesquisadores. Os
feedbacks e as avaliações foram cruciais para o refinamento
da escrita e para a atualização do problema apresentado.

As maiores dificuldades vistas na escrita deste trabalho
estiveram relacionadas à escolha dos métodos para realizar
a demonstração. Algumas abordagens requerem um
conhecimento mais apurado em Teoria dos Grafos. A intenção
é expor ao menos dois lemas de maneira coerente e didática.
Este problema expandiu-se na prova do problema e dos lemas
auxiliares, buscando ajudar no desenvolvimento da resolução
do Teorema de Brooks. Além disso, houve dificuldade
na construção de ilustrações que representassem de forma
clara cada conceito apresentado sobre grafos e das técnicas
aplicadas.

Para contornar essas adversidades, foram feitas pesquisas
aprofundadas em artigos acadêmicos que mostravam a
prova completa do Teorema de Brooks. Estes trabalhos
utilizam diferentes lemas com suas técnicas de demonstração
adequadas para uma conclusão correta. Para a elaboração das
figuras ilustrativas, demandou mais análise sobre materiais
didáticos que abordam noções básicas de grafos acompanhada
de exemplos pedagógicos e explicativos. A partir disso, foram
selecionados os lemas adequados para este trabalho. Dessa
maneira, este material busca servir como um suporte didático

para os acadêmicos que desejam se aprofundar no assunto de
coloração dos grafos.

A coloração de grafos tem grande potencial para aplicações
pedagógicas e acadêmica. Essa área é utilizada para
modelagem de problemas reais, construção de ferramentas
computacionais e desenvolvimento de algoritmos de colora-
ção [22]. Ademais, a demonstração apresentada pode servir
como base para a construção de teses e dissertações que
explorem classificações de grafos e diferentes técnicas de
coloração.

VII. CONSIDERAÇÕES FINAIS

Portanto, este estudo contextualiza o cenário sobre coloração
de grafos, destaca os conceitos fundamentais e básicos sobre
grafos para esclarecer o problema e a demonstração do
Teorema de Brooks. O teorema estabelece que, se um grafo
G tal que G não seja completo nem ciclo ímpar, então satisfaz
χ(G) ≤ ∆(G). Para demonstrar o problema, foi utilizada a
prova por contradição assumindo um contraexemplo minimal.
A abordagem foi apoiada por duas técnicas essenciais: o
Lema Estrutural de Lovász e cadeia de Kempe.

Adicionalmente, foram destacados outros trabalhos
relacionados ao tema, os quais mostram diferentes formas
de demonstração e técnicas elaboradas ou modificadas pelos
autores. As contribuições evidenciam que o estudo de
coloração de vértices permanece relevante para a resolução
de problemas reais. Para a construção deste trabalho, uma
pesquisa aprofundada de artigos, que exploram o mesmo
problema, foi necessária com o intuito de reproduzir os
resultados da literatura, buscando tornar o ensino mais
acessível e descomplicado.

A construção da demonstração, a síntese das técnicas e a
elaboração das ilustrações foram os desafios encontrados ao
longo deste estudo. Isso se deve ao fato de que se priorizou a
apresentação de uma explicação compreensível e coesa para
a comunidade acadêmica.

A coloração de grafos apresenta potencial para o
desenvolvimento de trabalhos futuros, principalmente no que
se refere à aplicação em problemas reais e à estruturação de
algoritmos. Como perspectiva de melhoria dos resultados
apresentados, destaca-se a possível inclusão da prova baseada
em Coloração de Listas (List Coloring) ou do lema de Kernel
[5], que são técnicas mais modernas da literatura. No entanto,
essas abordagens não foram implementadas no presente artigo
devido à sua maior complexidade conceitual. Sua inclusão
exigiria um detalhamento adicional de preliminares e poderia
comprometer a acessibilidade do material para o escopo desta
disciplina.
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