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Resumo—Os problemas de agendamento constituem uma classe essencial de desafios em otimização e computação, especialmente em
sistemas operacionais, processamento paralelo e aplicações em tempo real. Apesar de sua ampla utilização prática, diversas variantes
permanecem computacionalmente intratáveis, mesmo sob fortes restrições estruturais. Este artigo investiga a NP-completude de duas
versões específicas do problema de escalonamento: o agendamento com tempo de execução unitário e o agendamento com dois
processadores em tarefas de duração igual a uma ou duas unidades. A fundamentação teórica baseia-se em reduções polinomiais clássicas,
em particular a partir do problema 3-SAT, que permite codificar atribuições lógicas diretamente nas restrições de precedência e capacidade
dos processadores. Além disso, transformações adicionais entre versões restritas do problema são utilizadas para preservar a equivalência
estrutural das soluções. As contribuições incluem uma reconstrução didática das provas originais, a análise dos mecanismos que geram
dureza computacional e uma discussão sobre as implicações práticas desses resultados em sistemas reais de escalonamento. Os resultados
apresentados na literatura reforçam que mesmo cenários aparentemente simples apresentam comportamento NP-completo.

Palavras-chave—NP-completude; Agendamento; Redução polinomial; 3-SAT; Complexidade computacional.

Abstract—Scheduling problems constitute a fundamental class of challenges in optimization and computing, particularly in operating
systems, parallel processing, and real-time applications. Despite their wide practical use, many variants remain computationally
intractable, even under strong structural restrictions. This article investigates the NP-completeness of two specific versions of the
scheduling problem: scheduling with unit processing time and scheduling on two processors with tasks of duration one or two time
units. The theoretical foundation relies on classical polynomial-time reductions, especially from the 3-SAT problem, which allows
logical assignments to be encoded directly into precedence constraints and processor-capacity limitations. Furthermore, additional
transformations between restricted versions of the problem are employed to preserve the structural equivalence of solutions. The
contributions include a didactic reconstruction of the original proofs, an analysis of the mechanisms that give rise to computational
hardness, and a discussion of the practical implications of these results in real scheduling systems. The results presented in the literature
reinforce that even seemingly simple scenarios exhibit NP-complete behavior.

Keywords—NP-completeness; Scheduling; Polynomial reduction; 3-SAT; Computational complexity.

I. INTROUDUÇÃO

A Teoria da Computação estabelece os fundamentos
formais para compreender os limites do que pode ser

calculado de maneira eficiente. Nesse contexto, a teoria
da complexidade computacional desempenha papel central

Dados de contato: Neci Oneides da Silva Fialho Neta, neci.silva@uft.edu.br

ao classificar problemas quanto ao custo de suas soluções,
destacando as classes P , N P e NP-completo. Problemas
NP-completos são aqueles para os quais não se conhece
algoritmo polinomial e, ao mesmo tempo, qualquer problema
em N P pode ser reduzido a eles em tempo polinomial.
Assim, demonstrar que um problema pertence a essa classe
significa evidenciar sua provável intratabilidade.

Nesse contexto, os problemas de agendamento (schedu-
ling problems) ocupa posição de destaque. Eles modelam
situações onde tarefas devem ser distribuídas ao longo do
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tempo ou entre múltiplos processadores, respeitando restri-
ções de precedência, limites de duração e capacidade. Tais
problemas surgem em sistemas operacionais, manufatura,
computação paralela, arquiteturas multinúcleo e otimização
industrial. Entretanto, mesmo versões altamente restritas do
escalonamento podem exibir comportamento computacional
complexo.

O presente artigo aborda duas variantes específicas:
(i) o agendamento em que todas as tarefas possuem
tempo de execução unitário e (ii) o agendamento em dois
processadores com tarefas de duração igual a 1 ou 2
unidades. Apesar da simplicidade aparente dessas restrições,
ambas as versões são NP-completas.

O propósito deste trabalho é apresentar uma análise
das provas de NP-completude desses dois problemas,
contextualizando-as dentro da Teoria da Computação e
explicando, passo a passo, como reduções polinomiais, es-
pecialmente a partir do problema 3-SAT, permitem codificar
instâncias lógicas dentro de modelos de escalonamento.
Além disso, discute-se como restrições de precedência,
janelas de execução e limitações de processadores funcionam
como dispositivos para simular atribuições booleanas.

As principais contribuições deste artigo são a recons-
trução didática das demonstrações clássicas, tornando-as
mais acessíveis a estudantes e pesquisadores; a análise
conceitual dos mecanismos responsáveis pela complexidade
computacional dos problemas estudados; a integração entre
teoria e prática, discutindo implicações para sistemas reais de
escalonamento e algoritmos modernos; e a organização clara
e sistemática das relações entre as variantes do problema,
destacando cadeias de reduções e interdependências.

Com isso, o artigo busca não apenas demonstrar
formalmente a NP-completude das variantes analisadas, mas
também oferecer uma compreensão mais profunda sobre
por que tais problemas permanecem intratáveis mesmo em
cenários simples.

Para organizar a discussão, o artigo está estruturado da
seguinte forma: na Seção II (Preliminares), apresentam-se
os conceitos preliminares necessários para compreender a
complexidade dos problemas estudados, incluindo definições
formais, modelos de agendamento e a cadeia de reduções
utilizada. A Seção III (Trabalhos Relacionados) revisa
trabalhos clássicos e contemporâneos relacionados ao tema,
situando P2 e P3 no contexto mais amplo da teoria de
escalonamento. A Seção IV (Descrição do Problema)
descreve formalmente as variantes analisadas e suas apli-
cações, ilustrando seus aspectos combinatórios. Na Seção V
(Demonstração e Contribuições) são desenvolvidas as provas
de NP-completude de P2 e P3, com ênfase nas reduções
polinomiais que conectam esses problemas ao 3-SAT. A
Seção VI (Resultados e Reflexões) apresenta reflexões
e interpretações sobre os resultados obtidos, destacando
implicações teóricas e pedagógicas. Por fim, a Seção VII
(Considerações Finais) reúne as considerações finais e
aponta possíveis direções para investigações futuras.

II. PRELIMINARES

As preliminares apresentadas nesta seção têm o objetivo
de estabelecer todas as definições, notações e convenções
formais utilizadas ao longo deste trabalho. Como as de-

TABELA 1: DESCRIÇÃO FORMAL DO PROBLEMA 3-SAT.

3-SAT

Entrada: Uma fórmula booleana ϕ em forma normal
conjuntiva,

ϕ =C1∧C2∧·· ·∧Ck,

onde cada cláusula possui exatamente três literais:

Ci = (`1∨ `2∨ `3), ` j ∈ {x,¬x}.

Objetivo: Decidir se existe uma atribuição de valores
verdade às variáveis que satisfaça todas as cláusulas de ϕ.
Saída: SIM, se ϕ é satisfatível; NÃO, caso contrário.

monstrações de NP-completude reconstruídas aqui envolvem
cadeias de reduções, relações de precedência, funções de
escalonamento e estruturas lógicas, é importante que os
símbolos e conceitos empregados sejam apresentados de
modo claro e unificado antes de aparecerem nas seções
posteriores.

Para iniciar, adotamos as classes de complexidade usuais
da Teoria da Computação. A classe P contém todos
os problemas de decisão solucionáveis por algoritmos
determinísticos cujo tempo de execução é polinomial no
tamanho da entrada. A classe N P reúne problemas
cujas soluções podem ser verificadas em tempo polinomial
por um verificador determinístico, dado um certificado
apropriado. Um problema π é dito NP-completo se satisfaz
duas condições: (i) π ∈ N P ; e (ii) para todo problema
π′ já conhecido por ser NP-completo, existe uma redução
polinomial de π′ para π. Denotamos tal redução pela notação:

π
′ ≤p π,

que indica que qualquer instância de π′ pode ser transfor-
mada, em tempo polinomial, em uma instância equivalente
de π. Essa notação será empregada repetidas vezes ao longo
deste artigo.

Como ponto de partida das reduções, utilizamos o
problema 3-SAT, cuja importância histórica foi estabelecida
por Cook em 1971 [1]. Empregamos as notações padrão:
variáveis booleanas x1, . . . ,xm, que são entidades que podem
assumir os valores verdadeiro ou falso; literais ` ∈ {xi,¬xi},
onde cada literal representa uma variável booleana ou sua
negação; cláusulas C j = (`1 ∨ `2 ∨ `3), que são disjunções
de exatamente três literais; e fórmulas booleanas em forma
normal conjuntiva (CNF) da forma

ϕ =C1∧C2∧·· ·∧Cn,

que consistem em conjunções de múltiplas cláusulas. Uma
fórmula é satisfatível quando existe uma atribuição de
valores às variáveis booleanas que torna todas as cláusulas
verdadeiras. Como o problema 3-SAT é o ponto de origem
da cadeia de reduções analisada, apresentamos a seguir sua
definição formal apresentada na tabela 1.

Passamos agora ao modelo formal de agendamento
adotado em todas as variantes do problema. Uma instância
é composta por um conjunto de tarefas S = {J1, . . . ,Jn},
uma relação parcial < indicando precedências (por exemplo,
J < J′ significa que J deve terminar antes do início de
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J′), uma função duração W : S → Z+ que associa a cada
tarefa seu tempo de execução em unidades de tempo, um
número de processadores k, e um horizonte de tempo t. Um
escalonamento é descrito por uma função

f : S→{0,1, . . . , t−1},

que define para cada tarefa seu instante de início dentro
do intervalo de tempo disponível, onde f (J) determina o
instante de início de J. Esse escalonamento é válido quando
satisfaz: (i) f (J) +W (J) ≤ f (J′) sempre que J < J′; (ii)
em cada unidade de tempo, no máximo k tarefas executam
simultaneamente; e (iii) todas as tarefas terminam antes do
tempo limite t. Essa notação será usada constantemente nas
definições e nas construções das reduções.

As variantes específicas de escalonamento reconstruídas
neste trabalho são as mesmas introduzidas por Ullman
(1975) [2]. O problema P2 consiste em escalonar tarefas
com duração unitária sobre k processadores, sob um
conjunto arbitrário de precedências. O problema P3 envolve
dois processadores e tarefas cujas durações pertencem ao
conjunto {1,2}. O problema P4 é semelhante a P2,
exceto pelo fato de que, em vez de um número fixo
de processadores, cada unidade de tempo possui uma
capacidade própria c0,c1, . . . ,ct−1. Já o problema P5
corresponde a uma versão onde todos os processadores
devem permanecer ocupados durante toda a execução, isto
é, exatamente k tarefas devem estar em execução em cada
instante.

Como as reduções de Ullman empregam estruturas
visuais e padrões temporais específicos, adotamos também
notações auxiliares internas às construções. Cadeias verticais
de tarefas representam literais ou suas negações; barras
sobre variáveis, como x̄i, indicam negação; blocos Di j
agrupam tarefas associadas a cláusulas ou a estruturas
auxiliares; e, na redução para P3, os termos banda e quebra
designam segmentos longos e curtos de execução no segundo
processador, respectivamente. O par de tarefas J′ e J, ambas
de duração 2, será utilizado para preservar precedências ao
converter instâncias de P5 para P3. Finalmente, o termo
certificado será entendido sempre como um escalonamento
candidato cuja verificação é realizada em tempo polinomial.

Com todas essas convenções estabelecidas, apresentamos
a cadeia de reduções que estrutura a demonstração da NP-
completude dos problemas estudados:

3-SAT≤p P4≤p P5≤p P2, P5≤p P3.

Cada ocorrência do símbolo ≤p será detalhada nas seções
subsequentes, com construções explícitas e demonstrações
de validade. Assim, esta seção reúne todo o aparato
matemático necessário para sustentar as provas desenvolvi-
das ao longo do artigo.

III. TRABALHOS RELACIONADOS

Os estudos sobre a complexidade de problemas de escalo-
namento possuem uma trajetória consolidada na literatura,
e o presente trabalho se insere nesse contexto ao analisar
variantes restritas que permanecem NP-completas. O
trabalho de referência fundamental é o de Ullman [2],
cujo objetivo foi demonstrar formalmente que versões

simplificadas do problema de scheduling continuam a exibir
dureza combinatória. Por meio de reduções formais iniciadas
em 3-SAT, o autor constrói progressivamente instâncias dos
problemas P4, P5, P2 e P3, utilizando cadeias de tarefas,
precedências rígidas e janelas de execução que representam
diretamente a lógica das fórmulas booleanas. Seu principal
resultado é estabelecer que tanto o agendamento com tempos
unitários quanto o agendamento em dois processadores com
tarefas de duração 1 ou 2 são NP-completos, servindo como
base teórica direta para as análises reconstruídas neste artigo.

O survey clássico de Graham, Lawler, Lenstra e Rinnooy
Kan [3] também está intimamente relacionado a este
trabalho. Seu objetivo foi organizar e classificar modelos
determinísticos de escalonamento, descrevendo algoritmos,
limites de complexidade, estruturas de precedência e
resultados de aproximação. A metodologia consiste em
sistematizar o campo usando a notação de três campos
(α|β|γ), além de situar diversos problemas dentro de
categorias de tratabilidade ou NP-dificuldade. O survey
demonstra que a interação entre precedências e múltiplas
máquinas é uma das principais fontes de intratabilidade, o
que contextualiza de maneira abrangente os problemas P2 e
P3 analisados aqui.

Outro trabalho relevante é o de Brucker e Kravchenko [4],
cujo foco é o escalonamento em máquinas paralelas quando
todos os tempos de processamento são iguais. Seu objetivo
foi investigar como a presença de precedências e janelas
temporais afeta a complexidade do problema. Por meio de
reduções polinomiais baseadas em problemas clássicos de
particionamento, os autores demonstram que mesmo instân-
cias homogêneas tornam-se NP-difíceis quando combinadas
com dependências. Essa conclusão reforça diretamente o
caso de P2 estudado neste artigo.

Também se destaca a obra de Pinedo [5], cujo objetivo
é oferecer uma visão abrangente dos modelos de escalo-
namento utilizados em sistemas industriais, computacionais
e de produção. É uma referência técnica essencial
para compreender como modelos com múltiplas máquinas,
precedências e janelas temporais se comportam na prática,
contextualizando os cenários teóricos tratados neste trabalho.

Por fim, o trabalho de Baptiste, Leung e Smith
[6] aprofunda limites de complexidade em modelos de
escalonamento com restrições de precedência, janelas de
disponibilidade e múltiplas máquinas. Seu objetivo é
mapear rigorosamente a fronteira entre casos polinomiais
e NP-difíceis, empregando técnicas de construção temporal
similares às utilizadas por Ullman. Seus resultados
mostram que até variantes aparentemente simples tornam-
se NP-completas quando precedências e tempos variados
interagem, conectando-se diretamente às reduções que
caracterizam P3.

Coletivamente, esses estudos situam claramente P2 e P3
dentro do panorama teórico do escalonamento, reforçando
que tais variantes representam casos emblemáticos na
fronteira entre tratabilidade e intratabilidade na Teoria da
Computação.

Em complemento a esses estudos específicos de esca-
lonamento, a monografia clássica de Garey e Johnson [7]
fornece o pano de fundo teórico geral sobre NP-completude e
técnicas de redução polinomial. Embora trate de uma ampla
variedade de problemas e não se concentre exclusivamente
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TABELA 2: DESCRIÇÃO FORMAL DO PROBLEMA P2.

P2 – Escalonamento com tempo de execução unitário

Entrada: Um conjunto de n tarefas, cada uma levando
exatamente 1 unidade de tempo para ser concluída. Há
relações de precedência entre algumas tarefas, existem m
processadores idênticos disponíveis e um tempo máximo
total D para executar todas elas.
Objetivo: Decidir se existe uma forma de agendar todas
as tarefas nos m processadores de modo que todas sejam
concluídas até o tempo limite D.
Saída: SIM, se existe um escalonamento que termina todas
as tarefas dentro de D; NÃO, caso contrário.

em modelos de escalonamento como P2 e P3, essa obra é
uma referência útil para o enquadramento conceitual deste
trabalho, especialmente no que diz respeito à definição
formal das classes P , N P e dos problemas NP-completos.

Além da literatura técnica sobre escalonamento, este
trabalho também se apoia em produções pedagógicas da
área de Teoria da Computação. O artigo de Lassance et
al. [8] discute práticas de ensino envolvendo decidibilidade,
NP-completude e transformações polinomiais, oferecendo
uma base didática que auxiliou na organização conceitual
dos fundamentos teóricos utilizados, ainda que não trate
diretamente dos problemas de scheduling analisados aqui.

IV. DESCRIÇÃO DO PROBLEMA

Os problemas de agendamento tratam da organização de
um conjunto de tarefas ao longo do tempo ou entre
múltiplos recursos, respeitando restrições estruturais como
precedência, duração e capacidade de processamento. Em
sua formulação clássica, busca-se determinar em que
momento cada tarefa deve ser executada, de modo a cumprir
dependências e limitações de recursos, garantindo que todas
sejam concluídas antes de um tempo máximo permitido. As
variantes analisadas neste trabalho — o agendamento com
tempo de execução unitário (P2) e o agendamento em dois
processadores com tarefas de duração igual a uma ou duas
unidades (P3) — representam versões restritas desse modelo
geral, mas preservam a complexidade combinatória presente
em cenários mais amplos.

A definição formal do problema de escalonamento com
tempo unitário é apresentada na tabela 2.

Embora o problema P2 trate exclusivamente de tarefas
com duração unitária, o que permite certas simplificações
em sua análise estrutural, muitas aplicações práticas exigem
considerar tarefas com tempos distintos de execução. Essa
generalização leva naturalmente à formulação do problema
P3, apresentada a seguir na tabela 3.

Enquanto P2 e P3 representam variantes fundamentais
do modelo de escalonamento com restrições de precedência
e limite global de tempo, a análise de sua complexidade
costuma recorrer a versões intermediárias mais expressivas.
Entre elas destacam-se os problemas P4 e P5, que
introduzem novos elementos — como tempos de liberação
e prazos individuais — permitindo construir reduções mais
detalhadas e modularizadas ao longo da prova de NP-
completude.

TABELA 3: DESCRIÇÃO FORMAL DO PROBLEMA P3.

P3 – Escalonamento com tempos de execução variados

Entrada: Um conjunto de n tarefas, cada uma com um
tempo de execução definido. Há relações de precedência
entre certas tarefas. Existem m processadores idênticos
disponíveis e um tempo limite total D para concluir todas
as tarefas.
Objetivo: Determinar se existe um escalonamento válido
que aloque todas as tarefas aos m processadores de forma
a respeitar as precedências e terminar tudo até o tempo D.
Saída: SIM, se existe tal escalonamento dentro de D; NÃO,
caso contrário.

TABELA 4: DESCRIÇÃO FORMAL DO PROBLEMA P4.

P4 – Escalonamento com tempos de liberação

Entrada: Um conjunto de n tarefas, cada uma com um
tempo de duração e um instante mínimo no qual está
autorizada a começar; algumas tarefas devem ocorrer antes
de outras; há m processadores idênticos disponíveis; e existe
um limite total D para finalizar todas as tarefas.
Objetivo: Determinar se há uma forma de escalonar todas
as tarefas nos m processadores, respeitando os tempos de
liberação, as precedências e o tempo máximo permitido.
Saída: SIM, se existe um escalonamento válido dentro de D;
NÃO, caso contrário.

TABELA 5: DESCRIÇÃO FORMAL DO PROBLEMA P5.

P5 – Escalonamento com precedências arbitrárias

Entrada: Um conjunto de n tarefas, cada uma com
tempo de duração e um prazo individual; um conjunto
de dependências indicando quais tarefas devem anteceder
outras; e m processadores idênticos disponíveis.
Objetivo: Determinar se existe um escalonamento que
respeite tanto os prazos individuais como todas as dependên-
cias entre as tarefas.
Saída: SIM, se existe um escalonamento válido que satisfaça
todos os prazos e dependências; NÃO, caso contrário.

Para estabelecer a complexidade computacional dos
problemas P2 e P3, utilizamos dois problemas intermediários
nas reduções, conforme proposto por Ullman [2]: P4
(escalonamento com tempos de liberação),definido formal-
mente na tabela 4, e P5 (escalonamento com precedências
arbitrárias),apresentado na tabela 5. Estes servem como
etapas intermediárias na cadeia de reduções que parte
do problema 3-SAT e culmina na demonstração de NP-
completude de P2 e P3.

Embora P4 e P5 compartilhem a estrutura básica de
problemas de escalonamento, diferenciam-se pelas restrições
específicas que impõem. Enquanto P4 introduz tempos
de liberação como restrições adicionais ao início das
tarefas, P5 generaliza as relações de precedência e incorpora
prazos individuais para cada tarefa. Essa progressão na
complexidade das restrições é fundamental para a cadeia de
reduções, permitindo que se estabeleça a NP-dificuldade de
P2 através de transformações sucessivas partindo do 3-SAT.

Uma forma intuitiva de visualizar esses problemas é por
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Figura 1: Linha de produção ilustrando dependências, capacidade
limitada e fluxo sequencial — elementos que caracterizam os

problemas de escalonamento P2 e P3.

meio de uma linha de produção simplificada, como ilustrado
na Figura 1. Nessa representação, o material bruto entra pela
esquerda e percorre três etapas de processamento (A, B e C)
até tornar-se produto acabado. Cada estação representa um
conjunto de tarefas que deve ser executado em uma ordem
específica, pois A precisa concluir sua parte antes que B
possa começar, e o mesmo vale para a transição de B para
C. Essa metáfora captura precisamente a ideia de restrições
de precedência presentes nos problemas de escalonamento.
Além disso, cada operador da linha só consegue manipular
uma peça por vez, analogamente ao limite de capacidade dos
processadores ou máquinas em um modelo computacional.
Ao observarmos a linha em funcionamento, percebemos
que, mesmo que as peças tenham tamanhos semelhantes,
pequenas dependências ou variações de duração podem
provocar bloqueios, esperas desnecessárias ou gargalos —
efeitos que modelam diretamente a complexidade de P2 e
P3.

No contexto dessa metáfora, o problema P2 corresponde
a uma situação em que todas as tarefas duram exatamente
uma unidade de tempo. Isso seria equivalente a imaginar que
cada operador leva sempre o mesmo tempo para processar
qualquer peça que receba. Ainda assim, dependências rígidas
entre etapas podem impedir um fluxo contínuo, e o desafio
consiste em verificar se existe uma forma de organizar
essas execuções dentro de um limite global de tempo. Já
o problema P3 se aproxima de uma linha de produção
com dois operadores trabalhando simultaneamente, mas com
tarefas que podem durar uma ou duas unidades de tempo.
Nesse cenário, algumas peças exigem mais trabalho em
uma etapa específica, o que gera desequilíbrios e requer um
planejamento cuidadoso para evitar que o segundo operador
fique sobrecarregado ou ocioso em momentos críticos.

Esses modelos, embora simples, surgem naturalmente
em sistemas operacionais, computação paralela, engenharia
industrial e processamento em tempo real. A analogia da
linha de produção evidencia de forma clara como neles
coexistem dois fatores cruciais: a necessidade de obedecer
a dependências estritas e a limitação de recursos. Mesmo
exemplos cotidianos, como essa sequência organizada de
operações A→B→C, são suficientes para ilustrar como a
ordem de execução e a duração das tarefas influenciam
diretamente a viabilidade de um cronograma. Basta imaginar
um operador ficando sem peças para trabalhar devido ao
atraso na etapa anterior — um fenômeno equivalente à
espera imposta pela precedência entre tarefas — ou dois
operadores disputando o processamento simultâneo de peças,
representando o conflito pela capacidade dos processadores.

Assim, a metáfora da linha de produção ajuda a visualizar
por que os problemas P2 e P3, apesar de parecerem simples,
capturam estruturas lógicas suficientemente ricas para

simular decisões combinatórias complexas. Em particular, a
interação entre tempos de execução, dependências e recursos
limitados cria padrões que não apenas se aproximam do fluxo
real de sistemas industriais, mas também constituem o núcleo
das dificuldades teóricas que tornam esses problemas NP-
completos.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Nesta seção apresentamos, as provas de NP-completude das
duas variantes de escalonamento estudadas: o problema
de tempo de execução unitário (P2) e o problema de dois
processadores com tarefas de duração 1 ou 2 (P3). A
demonstração é organizada em duas etapas principais para
cada problema: (i) prova de NP-pertinência (isto é, mostrar
que o problema pertence à classe N P ) e (ii) prova de NP-
dificuldade (isto é, mostrar que o problema é ao menos
tão difícil quanto um problema base conhecido como NP-
completo).

a. P2 ∈ NP e P3 ∈ NP

Para demonstrar que os problemas P2 e P3 pertencem à
classe N P , utilizamos o conceito de verificador polinomial.
Em ambos os casos, o certificado natural é um possível
escalonamento das tarefas: para cada tarefa J, o certificado
descreve o instante de início f (J) e, no caso de P3, também
o processador onde ela é executada.

Dado esse certificado, o verificador deve apenas conferir
se o escalonamento obedece a todas as restrições impostas
pelo problema. O procedimento consiste em:

1. verificar se cada tarefa termina antes do limite de tempo
t;

2. verificar todas as relações de precedência, confirmando
que, para cada J < J′, o término de J ocorre antes ou no
momento do início de J′;

3. para cada unidade de tempo, contar quantas tarefas es-
tão sendo executadas simultaneamente, garantindo que
esse valor não ultrapassa o número de processadores
disponíveis (em P3, exatamente dois).

Cada uma dessas verificações pode ser feita em tempo
polinomial no número de tarefas e no número de relações de
precedência. Especificamente, a validação das precedências
requer verificar cada relação individualmente, com comple-
xidade O(| < |), onde | < | é o número de relações de
precedência. A verificação de sobrecarga por unidade de
tempo pode ser feita em O(n · t), mantendo-se contadores
para cada instante. Não é necessário explorar todas as
possíveis execuções, mas apenas validar a execução proposta
no certificado. Portanto, existe um verificador determinístico
polinomial tanto para P2 quanto para P3, o que implica:

P2 ∈ NP e P3 ∈ NP.

b. P2 ∈ NP-Difícil

A prova de NP-dificuldade de P2 segue a estratégia de
reduzir um problema clássico NP-completo, o 3-SAT, a uma
instância de escalonamento com tempo de execução unitário.
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A ideia é construir um conjunto de tarefas, precedências e
limites de tempo tais que:

3-SAT é satisfatível ⇐⇒ P2 admite escalonamento válido.

Como abordado na Seção IV (Descrição do Problema), a
demonstração completa é feita em etapas, por meio de P4 e
P5.

Etapa 1: 3-SAT ≤p P4

Define-se inicialmente um problema intermediário, P4, que
é uma versão do escalonamento com tempo unitário, mas
com número de processadores variando ao longo do tempo.
Em vez de um k fixo, P4 recebe uma sequência de
capacidades c0,c1, . . . ,ct−1, indicando quantas tarefas podem
ser executadas em cada unidade de tempo.

A redução 3-SAT ≤p P4 constrói um conjunto de tarefas
cuja viabilidade de escalonamento reflete diretamente a
satisfatibilidade da fórmula. Para cada variável xi são
criadas duas cadeias disjuntas, uma associada a xi e outra
a ¬xi, ligadas por restrições de precedência internas. A
escolha de qual cadeia iniciar primeiro, e de qual literal será
“verdadeiro”, é forçada por tarefas auxiliares yi e ¬yi que, via
precedências e pela ocupação precisa dos slots de capacidade
impostos pela sequência ct , garantem que exatamente uma
das duas cadeias progrida.

Em seguida, para cada cláusula C j com três literais,
introduz-se um bloco de sete tarefas D j1, . . . ,D j7 e arestas
de precedência que as conectam às cadeias de variáveis.
O instante crítico de execução dessas tarefas só pode ser
alcançado se pelo menos uma das cadeias correspondentes
a literais verdadeiros já estiver sido escalonada; caso
contrário, a capacidade disponível naquele momento torna-
se insuficiente e o escalonamento quebra. A sequência
de capacidades c0, . . . ,ct−1 é escolhida de forma a apertar
o espaço de processamento: em cada unidade de tempo
o número de posições é exatamente o necessário para
comportar as tarefas “verdadeiras” e as auxiliares, de modo
que qualquer desvio da codificação correta — isto é,
qualquer tentativa de satisfazer simultaneamente xi e ¬xi ou
de falsificar todas as cláusulas — impede a conclusão de
todas as tarefas dentro do horizonte dado.

A complexidade desta construção é polinomial: para uma
instância de 3-SAT com m variáveis e n cláusulas, o número
total de tarefas geradas é da ordem de O(m2+n), assim como
o número de relações de precedência. A construção pode
ser implementada por algoritmos que percorrem variáveis e
cláusulas com laços aninhados de profundidade constante,
resultando em tempo polinomial no tamanho da fórmula
original.

Comentário: a construção faz com que “rodar” certas
tarefas em tempos específicos corresponda exatamente a
atribuir verdadeiro ou falso às variáveis. Se a fórmula é
satisfatível, existe um modo de encaixar todas as tarefas
dentro do limite de tempo; se não é, faltará espaço em algum
instante, e o escalonamento será impossível.

A Figura 2 ilustra a estrutura típica utilizada na redução 3-
SAT → P4. Cada literal é convertido em uma cadeia vertical
de tarefas — cadeias sem barra representam literais positivos,
enquanto cadeias com barra representam negativas. Os
blocos Di j funcionam como pontos de verificação para cada

Figura 2: Estrutura geral da redução de uma instância de 3-SAT
para o problema P4. Figura retirada de Ullman [2].

cláusula, garantindo que apenas escalonamentos compatíveis
com uma atribuição satisfatória permitam preencher os
instantes críticos impostos pelas capacidades temporais.
Embora vários blocos apareçam na figura, apenas um bloco
Di j por cláusula desempenha o papel de validar a cláusula;
os demais são estruturas auxiliares introduzidas para forçar o
alinhamento temporal da construção.

Para tornar a construção mais intuitiva, a Figura 2
apresenta um exemplo concreto de como uma fórmula 3-
SAT é convertida em cadeias de tarefas no problema P4. A
fórmula booleana correspondente ao diagrama é:

ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x3 ∨ x4).

Nessa representação, cada literal aparece como uma
cadeia vertical de tarefas. Cadeias sem barra correspondem
ao literal positivo (como x14,x24,x34), enquanto cadeias com
barra representam o literal negado (como x̄33, x̄32, x̄31). As
relações de precedência ligam os elementos de cada cadeia,
garantindo que a posição temporal em que uma tarefa pode
ser executada codifica a escolha “verdadeiro” ou “falso” para
cada variável.

Além das cadeias de literais, o diagrama inclui vários
blocos Di j. Esses blocos têm funções distintas dentro da
redução. Apenas alguns deles correspondem diretamente às
cláusulas da fórmula; os demais fazem parte da estrutura
geral da construção e servem para controlar capacidade
temporal, sincronizar cadeias ou criar janelas de execução
obrigatórias. Assim, embora muitos blocos apareçam no
diagrama, somente dois deles representam efetivamente as
cláusulas da fórmula de exemplo.

Para cada cláusula C j, Ullman [2] insere exatamente um
bloco Di j que atua como ponto de verificação: esse bloco só
pode ser executado caso pelo menos um dos três literais da
cláusula tenha sido marcado como verdadeiro pela estrutura
de precedência construída. A indexação segue o padrão
usado no artigo: o índice i refere-se à variável principal
associada ao bloco, enquanto j indica a cláusula da qual
aquele bloco participa.

No exemplo da figura, as duas cláusulas da fórmula
aparecem como: D14 (cláusula 1), D23 (cláusula 2).

Os demais blocos, como D11,D12, . . . ,D27, não represen-
tam cláusulas. Eles compõem apenas a estrutura auxiliar da
redução e não têm correspondência com fórmulas booleanas;
funcionam como “slots de tempo” usados para forçar a
organização correta das cadeias de variáveis.

Dessa forma, a Figura 2 ilustra como cada literal, cada
cláusula e cada restrição temporal são traduzidos para tarefas
do problema P4, permitindo que a satisfatibilidade de ϕ
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seja refletida diretamente na existência de um escalonamento
viável.

Etapa 2: P4 ≤p P5

O problema P5 é definido como uma versão de P2 com
a restrição adicional de que todos os processadores devem
estar ocupados em todas as unidades de tempo; isto é, o
número de tarefas é exatamente n = kt e o escalonamento
deve preencher completamente a capacidade disponível.

Para reduzir P4 a P5, transforma-se o cronograma de
capacidades variáveis c0, . . . ,ct−1 em um quadro de k
processadores constantes simplesmente completando, em
cada instante i, as k − ci posições ociosas com tarefas
“de preenchimento”. Essas tarefas são introduzidas em
número exato para que, em cada unidade de tempo, o total
de tarefas ativas seja exatamente k; além disso, elas são
conectadas por uma única cadeia de precedências lineares
que as obriga a executar sequencialmente, impedindo que
sobreponham ou conflitem com as tarefas originais. Como
suas durações são unitárias e suas janelas de execução são
rigidamente controladas, qualquer escalonamento válido de
P5 descarta automaticamente as tarefas de preenchimento e
recupera, nos instantes restantes, um escalonamento válido
para P4; reciprocamente, todo escalonamento de P4 pode ser
estendido a um de P5 incluindo as tarefas de preenchimento
nos slots vazios.

Esta transformação é polinomial: o número de tarefas de
preenchimento adicionadas é proporcional à diferença entre
a capacidade máxima e o número de tarefas já previstas em
P4. Como o horizonte de tempo t e as capacidades ci são
limitados por funções polinomiais no tamanho da instância
de P4, o tempo de construção é polinomial.

Comentário: essa etapa padroniza a capacidade ao longo
do tempo, transformando capacidades variáveis em um
número fixo de processadores que precisam estar sempre
ocupados.

Etapa 3: P5 ≤p P2

Por fim, observa-se que P5 é apenas um caso particular de
P2: trata-se do mesmo problema de escalonamento com
tempo de execução unitário, mas com a condição adicional
de n = kt. Portanto, qualquer instância de P5 é uma instância
de P2 com uma restrição extra, e a redução é imediata, com
complexidade linear no tamanho da instância de P5.

Juntando as etapas, temos:

3-SAT≤p P4≤p P5≤p P2,

onde cada redução é computável em tempo polinomial, o que
implica que P2 é NP-difícil. Como já foi mostrado que P2
pertence a NP, conclui-se que P2 é NP-completo.

c. P3 ∈ NP-Difícil

Para demonstrar que P3 é NP-difícil, utiliza-se P5 como
problema intermediário. A ideia é reduzir uma instância de
P5 para uma instância de P3, de forma que:

P5 é solucionável ⇐⇒ P3 construída é solucionável.

A construção explora a presença de dois processadores e
tarefas com pesos 1 ou 2 para criar um padrão de bandas e
quebras no segundo processador.

Etapa: P5 ≤p P3

Dada uma instância de P5 com tempo limite t, número
de processadores k e conjunto de tarefas S de tamanho kt
parcialmente ordenado por <, constrói-se uma instância de
P3 sobre dois processadores de velocidade s = 2 da seguinte
forma.

Primeiro, cria-se uma sequência contínua de tarefas Xi de
peso 1 que ocupam exclusivamente o primeiro processador
durante todo o horizonte t, impedindo qualquer outra tarefa
de executar nele. Em seguida, no segundo processador,
dispõem-se tarefas Yi j também de peso 1 de modo a gerar um
padrão regular de “quebras” e “bandas”: após cada intervalo
de 2k unidades de tempo livres (banda), insere-se uma única
unidade de tempo ocupada (quebra), repetindo esse ciclo até
cobrir o horizonte total.

Cada tarefa original J ∈ S é substituída por um par (J′,J),
ambas de peso 2. A precedência J′≺ J garante que J só possa
iniciar após J′ terminar, e as relações J ≺ K do conjunto
original tornam-se J ≺ K′ na nova instância, preservando
a ordem parcial. O peso 2 impede que qualquer dessas
tarefas seja executada durante uma quebra (apenas uma
unidade de tempo livre); portanto, J′ e J são forçadas a se
alinharem inteiramente dentro de uma banda de 2k unidades
consecutivas. Como cada banda oferece exatamente 2k
unidades de capacidade e o número total de tarefas de peso
2 é 2kt, o preenchimento completo de todas as bandas
corresponde biunivocamente a um escalonamento válido de
P5: cada par (J′,J) posicionado numa banda representa a
execução da tarefa original J num dos k processadores de
P5, enquanto as quebras funcionam como divisores naturais
entre os k instantes de tempo.

Esta construção é polinomial: o número total de tarefas
em P3 é limitado por uma função polinomial no número
de tarefas e no horizonte de tempo da instância de P5.
Especificamente, são criadas O(kt) tarefas, e a construção
pode ser implementada por laços que percorrem o conjunto
de tarefas originais e o intervalo de tempo sem recursão
excessiva.

O efeito desta construção é o seguinte: as tarefas Xi
garantem que o primeiro processador esteja sempre ocupado,
enquanto as tarefas Yi j consomem parte do tempo do
segundo processador, de modo que restam segmentos de
tempo contínuos (bandas) suficientemente longos apenas
para acomodar as tarefas de peso 2 (J) e pequenos espaços
(quebras) onde se encaixam as tarefas J′. Adicionalmente,
devido às dependências, cada tarefa J deve ser executada na
banda correspondente ao instante em que seria processada na
solução de P5, enquanto J′ ocupa a quebra associada.

Com isso, qualquer solução para a instância de P3
construída induz um escalonamento válido para a instância
original de P5 (interpretando cada banda como uma unidade
de tempo de P5). Reciprocamente, qualquer solução de P5
pode ser “expandida” para uma solução de P3, alocando J′

nas quebras e J nas bandas apropriadas.
Comentário: as bandas funcionam como “janelas com-

pactadas” que representam cada unidade de tempo da
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Figura 3: Organização das tarefas na redução do problema P5 para
P3. Figura retirada de Ullman [2].

instância original de P5. Preencher corretamente essas
bandas com tarefas de peso 2 equivale a decidir, para cada
unidade de tempo, quais tarefas estão sendo executadas no
modelo com k processadores.

A Figura 3 mostra como a redução de P5 para P3
utiliza dois processadores para reproduzir o comportamento
temporal de uma instância original. O primeiro processador
permanece ocupado continuamente pelas tarefas Xi, en-
quanto o segundo alterna entre segmentos curtos (quebras),
que acomodam as tarefas J′, e segmentos longos (bandas),
nos quais são escalonadas as tarefas J de duração 2. Cada
banda corresponde exatamente a uma unidade de tempo
da instância de P5, preservando precedências e garantindo
que o escalonamento resultante em P3 reflita corretamente a
execução original em P5.

Como P5 é NP-completo e P5 ≤p P3 com complexidade
polinomial, segue que P3 é NP-difícil. Já demonstramos
anteriormente que P3 pertence a NP, portanto P3 é NP-
completo.

d. Comentários Finais sobre a Demonstração

As provas apresentadas mostram que tanto P2 quanto
P3 não são apenas variantes artificiais, mas modelos
ricos o suficiente para simular a lógica de um problema
canônico como o 3-SAT. As construções utilizadas exploram

intensivamente a codificação de variáveis e atribuições como
escolhas de tarefas executadas em tempos específicos, o uso
de precedência para impor dependências lógicas, e o controle
do número de processadores (ou da capacidade por unidade
de tempo) para forçar o preenchimento exato de janelas de
execução.

Esses mecanismos fazem com que qualquer tentativa de
encontrar um algoritmo geral e eficiente para P2 ou P3
esbarre na mesma dificuldade encontrada para 3-SAT e
outros problemas NP-completos. Assim, as demonstrações
de NP-completude justificam, do ponto de vista teórico, o
uso de heurísticas e algoritmos aproximados em problemas
práticos de escalonamento.

VI. RESULTADOS E REFLEXÕES

A análise das variantes P2 e P3 permitiu confirmar formal-
mente sua classificação como problemas NP-completos, por
meio da reconstrução detalhada das reduções apresentadas
por Ullman (1975). A replicação dessas provas evidenciou
como estruturas aparentemente simples (tarefas de duração
unitária, dois processadores e precedências básicas) são
suficientes para simular o comportamento lógico de fórmulas
booleanas. Esse resultado reforça um dos princípios
fundamentais da Teoria da Computação: a dificuldade com-
putacional não depende apenas da complexidade aparente
do modelo, mas da capacidade de representar decisões
combinatórias por meio das restrições do problema.

Do ponto de vista metodológico, o processo revelou
desafios relevantes. A cadeia de reduções 3-SAT → P4 →
P5 → P2 exigiu um entendimento cuidadoso das construções
intermediárias, especialmente na definição das capacidades
variáveis de P4 e no uso das tarefas auxiliares que forçam a
codificação de variáveis e cláusulas. Já a redução P5 → P3
mostrou-se particularmente difícil devido à alternância entre
“bandas” e “quebras”, que exige atenção à sincronização
temporal e ao mapeamento entre segmentos de tempo e
precedências. Esses aspectos demonstram que provas de NP-
completude vão além de manipulações algébricas: tratam-se
de construções conceituais sofisticadas que demandam rigor,
visualização estrutural e compreensão profunda dos modelos
envolvidos.

As contribuições deste trabalho situam-se tanto no campo
da compreensão teórica quanto no campo pedagógico. Ao
reorganizar e explicar as reduções de forma sistemática,
com figuras, comentários e interpretações intuitivas, o
estudo oferece um material mais acessível a estudantes
e pesquisadores que desejam compreender NP-completude
aplicada a problemas de escalonamento. Além disso, ao
contextualizar os problemas P2 e P3 dentro da Teoria da
Computação, o trabalho evidencia como reduções podem
servir como ferramenta para analisar casos reais de sistemas
operacionais, arquiteturas de processadores, computação
paralela e engenharia de produção.

No âmbito acadêmico, a aplicabilidade desta investigação
é ampla. A reconstrução didática das provas pode
servir como apoio em disciplinas de Estruturas de Dados,
Análise de Algoritmos, Teoria da Computação, Sistemas
Operacionais e Escalonamento. O estudo também pode
auxiliar estudantes na compreensão de reduções polinomiais,
frequentemente uma das maiores dificuldades no apren-
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dizado de NP-completude, oferecendo exemplos concretos,
visuais e contextualizados. Por fim, a exposição das
limitações teóricas desses modelos reforça a importância de
heurísticas, algoritmos aproximados e métodos experimen-
tais em cenários reais onde soluções exatas são inviáveis.

Assim, os resultados alcançados não apenas reafirmam
a NP-completude das variantes analisadas, mas também
destacam o valor formativo do tema, demonstrando como
problemas clássicos podem ser reinterpretados, visualizados
e aplicados em contextos educacionais e práticos. O trabalho,
portanto, contribui tanto para o rigor científico quanto para o
fortalecimento do ensino da complexidade computacional.

VII. CONSIDERAÇÕES FINAIS

Este trabalho teve como objetivo analisar, formalizar e
demonstrar a NP-completude das variantes de escalonamento
P2 e P3, com base nas construções apresentadas por Ullman
(1975). A partir da reconstrução detalhada das reduções a
partir do 3-SAT — passando pelos problemas intermediários
P4 e P5, foi possível compreender, de maneira estruturada
e visual, como modelos de escalonamento aparentemente
simples podem capturar a complexidade combinatória de
problemas booleanos clássicos. Em síntese, demonstrou-
se que tanto P2 quanto P3 pertencem à classe N P e são
NP-difíceis, concluindo-se formalmente que ambos são NP-
completos.

Durante o desenvolvimento da pesquisa, algumas dificul-
dades se mostraram centrais. A primeira refere-se à própria
interpretação das construções utilizadas nas reduções, que
exigem uma leitura atenta dos padrões de precedência,
capacidade e sincronização temporal criados para simular
variáveis e cláusulas. A segunda diz respeito ao esforço
de transformar essas construções abstratas em explicações
claras, diagramas compreensíveis e justificativas coerentes,
mas essencial para consolidar o entendimento. Além
disso, adaptar as provas originais para uma perspectiva
didática, mantendo rigor matemático, demandou uma revisão
cuidadosa da literatura e um tratamento sistemático das
etapas envolvidas.

Apesar dessas dificuldades, os resultados obtidos ampliam
a compreensão acadêmica sobre redução polinomial e sobre
o caráter intratável de problemas de escalonamento. A
abordagem adotada reforça o valor pedagógico das provas
de NP-completude, especialmente quando apoiadas por es-
quemas visuais e interpretações intuitivas. O estudo também
evidencia que a complexidade computacional permanece
relevante não apenas em termos teóricos, mas também como
fundamento para decisões práticas em sistemas operacionais,
arquiteturas de processadores e modelos de produção.

Como perspectivas futuras, sugere-se aprofundar a análise
de variações modernas dos problemas de escalonamento,
incluindo modelos com preempção, janelas de tempo
flexíveis, pesos múltiplos e ambientes heterogêneos. Outra
linha de investigação envolve a exploração de algoritmos
aproximados e heurísticas, fundamentais para aplicações
reais nas quais soluções exatas são inviáveis devido à NP-
completude. Por fim, estudos comparativos entre provas
clássicas e abordagens contemporâneas de complexidade
podem contribuir para o ensino, permitindo compreender
como a teoria evoluiu e como esses problemas permanecem

centrais na ciência da computação.
Assim, este trabalho não apenas consolida formalmente

a NP-completude de P2 e P3, mas também contribui para
o fortalecimento do entendimento teórico e pedagógico
sobre reduções polinomiais, oferecendo bases sólidas para
investigações futuras e para a aplicação prática desses
conceitos em diferentes áreas da computação.
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