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Resumo—Os problemas de agendamento constituem uma classe essencial de desafios em otimizagdo e computagdo, especialmente em
sistemas operacionais, processamento paralelo e aplicagdes em tempo real. Apesar de sua ampla utiliza¢do pratica, diversas variantes
permanecem computacionalmente intrataveis, mesmo sob fortes restricdes estruturais. Este artigo investiga a NP-completude de duas
versdes especificas do problema de escalonamento: o agendamento com tempo de execugdo unitirio e o agendamento com dois
processadores em tarefas de duraciio igual a uma ou duas unidades. A fundamentac@o tedrica baseia-se em redugdes polinomiais cldssicas,
em particular a partir do problema 3-SAT, que permite codificar atribuicdes 16gicas diretamente nas restri¢des de precedéncia e capacidade
dos processadores. Além disso, transformacdes adicionais entre versdes restritas do problema sdo utilizadas para preservar a equivaléncia
estrutural das solugdes. As contribuicdes incluem uma reconstru¢do didética das provas originais, a andlise dos mecanismos que geram
dureza computacional e uma discussio sobre as implicacdes praticas desses resultados em sistemas reais de escalonamento. Os resultados
apresentados na literatura refor¢am que mesmo cendrios aparentemente simples apresentam comportamento NP-completo.

Palavras-chave—NP-completude; Agendamento; Redugéo polinomial; 3-SAT; Complexidade computacional.

Abstract—Scheduling problems constitute a fundamental class of challenges in optimization and computing, particularly in operating
systems, parallel processing, and real-time applications. Despite their wide practical use, many variants remain computationally
intractable, even under strong structural restrictions. This article investigates the NP-completeness of two specific versions of the
scheduling problem: scheduling with unit processing time and scheduling on two processors with tasks of duration one or two time
units. The theoretical foundation relies on classical polynomial-time reductions, especially from the 3-SAT problem, which allows
logical assignments to be encoded directly into precedence constraints and processor-capacity limitations. Furthermore, additional
transformations between restricted versions of the problem are employed to preserve the structural equivalence of solutions. The
contributions include a didactic reconstruction of the original proofs, an analysis of the mechanisms that give rise to computational
hardness, and a discussion of the practical implications of these results in real scheduling systems. The results presented in the literature
reinforce that even seemingly simple scenarios exhibit NP-complete behavior.

Keywords—NP-completeness, Scheduling; Polynomial reduction; 3-SAT; Computational complexity.

ao classificar problemas quanto ao custo de suas solucdes,

destacando as classes P, AP e NP-completo. Problemas

I. INTROUDUCAO NP-completos sdo aqueles para os quais ndo se conhece

algoritmo polinomial e, a0 mesmo tempo, qualquer problema

Teoria da Computacdo estabelece os fundamentos em AP pode ser reduzido a eles em tempo polinomial.

formais para compreender os limites do que pode ser ~ Assim, demonstrar que um problema pertence a essa classe
calculado de maneira eficiente. Nesse contexto, a teoria  significa evidenciar sua provavel intratabilidade.

da complexidade computacional desempenha papel central
Nesse contexto, os problemas de agendamento (schedu-

ling problems) ocupa posi¢do de destaque. Eles modelam
Dados de contato: Neci Oneides da Silva Fialho Neta, neci.silva@uftedubr  situacdes onde tarefas devem ser distribuidas ao longo do
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tempo ou entre multiplos processadores, respeitando restri-
¢oes de precedéncia, limites de duracdo e capacidade. Tais
problemas surgem em sistemas operacionais, manufatura,
computagdo paralela, arquiteturas multinicleo e otimizacio
industrial. Entretanto, mesmo versdes altamente restritas do
escalonamento podem exibir comportamento computacional
complexo.

O presente artigo aborda duas variantes especificas:
(i) o agendamento em que todas as tarefas possuem
tempo de execucdo unitdrio e (ii) o agendamento em dois
processadores com tarefas de duracdo igual a 1 ou 2
unidades. Apesar da simplicidade aparente dessas restri¢des,
ambas as versoes sdo NP-completas.

O propésito deste trabalho é apresentar uma andlise
das provas de NP-completude desses dois problemas,
contextualizando-as dentro da Teoria da Computagdo e
explicando, passo a passo, como redugdes polinomiais, es-
pecialmente a partir do problema 3-SAT, permitem codificar
instancias légicas dentro de modelos de escalonamento.
Além disso, discute-se como restricdes de precedéncia,
janelas de execucdo e limitagdes de processadores funcionam
como dispositivos para simular atribui¢cdes booleanas.

As principais contribuicdes deste artigo sdo a recons-
trucdo didatica das demonstracdes cldssicas, tornando-as
mais acessiveis a estudantes e pesquisadores; a andlise
conceitual dos mecanismos responsaveis pela complexidade
computacional dos problemas estudados; a integracio entre
teoria e pratica, discutindo implica¢des para sistemas reais de
escalonamento e algoritmos modernos; e a organizagao clara
e sistemdtica das relacdes entre as variantes do problema,
destacando cadeias de redugdes e interdependéncias.

Com isso, o artigo busca ndo apenas demonstrar
formalmente a NP-completude das variantes analisadas, mas
também oferecer uma compreensdo mais profunda sobre
por que tais problemas permanecem intratdveis mesmo em
cendrios simples.

Para organizar a discussdo, o artigo estd estruturado da
seguinte forma: na Sec¢fo II (Preliminares), apresentam-se
0s conceitos preliminares necessarios para compreender a
complexidade dos problemas estudados, incluindo defini¢des
formais, modelos de agendamento e a cadeia de redugdes
utilizada. A Secdo III (Trabalhos Relacionados) revisa
trabalhos cldssicos e contemporineos relacionados ao tema,
situando P2 e P3 no contexto mais amplo da teoria de
escalonamento. A Se¢do IV (Descricio do Problema)
descreve formalmente as variantes analisadas e suas apli-
cagdes, ilustrando seus aspectos combinatérios. Na Secdo V
(Demonstragdo e Contribuicdes) sdo desenvolvidas as provas
de NP-completude de P2 e P3, com énfase nas reducdes
polinomiais que conectam esses problemas ao 3-SAT. A
Secdo VI (Resultados e Reflexdes) apresenta reflexdes
e interpretacdes sobre os resultados obtidos, destacando
implicacOes tedricas e pedagdgicas. Por fim, a Secdo VII
(Consideragdes Finais) retne as consideracdes finais e
aponta possiveis direcdes para investigagdes futuras.

II. PRELIMINARES

As preliminares apresentadas nesta se¢do tém o objetivo
de estabelecer todas as defini¢des, notacdes e convengdes
formais utilizadas ao longo deste trabalho. Como as de-
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TABELA 1: DESCRICAO FORMAL DO PROBLEMA 3-SAT.

3-SAT

Entrada:
conjuntiva,

Uma férmula booleana ¢ em forma normal

O=CiNCA---NC,

onde cada cldusula possui exatamente trés literais:

C,'Z(fl\/fz\/&), Eje{x,ﬁx}.

Objetivo: Decidir se existe uma atribuicio de valores
verdade as varidveis que satisfaca todas as cldusulas de ¢.
Saida: S1M, se @ é satisfativel; NAO, caso contrério.

monstracdes de NP-completude reconstruidas aqui envolvem
cadeias de reducdes, relagdes de precedéncia, funcdes de
escalonamento e estruturas ldgicas, € importante que 0s
simbolos e conceitos empregados sejam apresentados de
modo claro e unificado antes de aparecerem nas segdes
posteriores.

Para iniciar, adotamos as classes de complexidade usuais
da Teoria da Computagdo. A classe ? contém todos
os problemas de decisdo soluciondveis por algoritmos
deterministicos cujo tempo de execugdo € polinomial no
tamanho da entrada. A classe AP reine problemas
cujas solugdes podem ser verificadas em tempo polinomial
por um verificador deterministico, dado um certificado
apropriado. Um problema 7 é dito NP-completo se satisfaz
duas condi¢des: (i) T € AP; e (ii) para todo problema
7' ja conhecido por ser NP-completo, existe uma reducdo
polinomial de 7 para . Denotamos tal redugéo pela notagao:

/
T <, T,

que indica que qualquer instincia de ' pode ser transfor-
mada, em tempo polinomial, em uma instincia equivalente
de 7. Essa notagdo serd empregada repetidas vezes ao longo
deste artigo.

Como ponto de partida das redugdes, utilizamos o
problema 3-S AT, cuja importancia histdrica foi estabelecida
por Cook em 1971 [1]. Empregamos as notagdes padrio:
varidveis booleanas xy, . . . ,Xp, que sdo entidades que podem
assumir os valores verdadeiro ou falso; literais ¢ € {x;,—x;},
onde cada literal representa uma varidvel booleana ou sua
negacio; cldusulas Cj = ({1 V €,V £3), que sdo disjungdes
de exatamente trés literais; e formulas booleanas em forma
normal conjuntiva (CNF) da forma

O=CiAC A+ ACy,

que consistem em conjungdes de multiplas cldusulas. Uma
formula € satisfativel quando existe uma atribuicdo de
valores as varidveis booleanas que torna todas as cldusulas
verdadeiras. Como o problema 3-SAT € o ponto de origem
da cadeia de reducdes analisada, apresentamos a seguir sua
definicao formal apresentada na tabela 1.

Passamos agora ao modelo formal de agendamento
adotado em todas as variantes do problema. Uma instancia
¢ composta por um conjunto de tarefas S = {Ji,...,J,},
uma relagdo parcial < indicando precedéncias (por exemplo,
J < J' significa que J deve terminar antes do inicio de
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J'), uma funcdo duracio W : S — Z* que associa a cada
tarefa seu tempo de execucdo em unidades de tempo, um
nimero de processadores k, e um horizonte de tempo . Um
escalonamento € descrito por uma fungdo

f:S=1{0,1,....t—1},

que define para cada tarefa seu instante de inicio dentro
do intervalo de tempo disponivel, onde f(J) determina o
instante de inicio de J. Esse escalonamento € valido quando
satisfaz: (i) f(J)+W(J) < f(J') sempre que J < J'; (ii)
em cada unidade de tempo, no miximo k tarefas executam
simultaneamente; e (iii) todas as tarefas terminam antes do
tempo limite 7. Essa notacdo serd usada constantemente nas
defini¢Oes e nas construc¢des das redugdes.

As variantes especificas de escalonamento reconstruidas
neste trabalho s@o as mesmas introduzidas por Ullman
(1975) [2]. O problema P2 consiste em escalonar tarefas
com duracdo unitdria sobre k processadores, sob um
conjunto arbitrdrio de precedéncias. O problema P3 envolve
dois processadores e tarefas cujas duragdes pertencem ao
conjunto {1,2}. O problema P4 é semelhante a P2,
exceto pelo fato de que, em vez de um ndmero fixo
de processadores, cada unidade de tempo possui uma
capacidade prépria cg,ci,...,c;—1. J4 o problema P5
corresponde a uma versdo onde todos os processadores
devem permanecer ocupados durante toda a execugdo, isto
é, exatamente k tarefas devem estar em execucdo em cada
instante.

Como as redugdes de Ullman empregam estruturas
visuais e padrdes temporais especificos, adotamos também
notagdes auxiliares internas as construgdes. Cadeias verticais
de tarefas representam literais ou suas negacdes; barras
sobre varidveis, como X;, indicam negacdo; blocos Dj;
agrupam tarefas associadas a cldusulas ou a estruturas
auxiliares; e, na redugdo para P3, os termos banda e quebra
designam segmentos longos e curtos de execug@o no segundo
processador, respectivamente. O par de tarefas J' e J, ambas
de duracgdo 2, serd utilizado para preservar precedéncias ao
converter instancias de P5 para P3. Finalmente, o termo
certificado serd entendido sempre como um escalonamento
candidato cuja verificagdo € realizada em tempo polinomial.

Com todas essas convengdes estabelecidas, apresentamos
a cadeia de reducdes que estrutura a demonstracdo da NP-
completude dos problemas estudados:

3-SAT <, P4 <, P5 <, P2, P5 <, P3.
Cada ocorréncia do simbolo <, serd detalhada nas secOes
subsequentes, com construcdes explicitas e demonstracdes
de validade. Assim, esta secdo redne todo o aparato
matematico necessario para sustentar as provas desenvolvi-
das ao longo do artigo.

II1. TRABALHOS RELACIONADOS

Os estudos sobre a complexidade de problemas de escalo-
namento possuem uma trajetéria consolidada na literatura,
e o presente trabalho se insere nesse contexto ao analisar
variantes restritas que permanecem NP-completas. O
trabalho de referéncia fundamental é o de Ullman [2],
cujo objetivo foi demonstrar formalmente que versdes
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simplificadas do problema de scheduling continuam a exibir
dureza combinatéria. Por meio de redugdes formais iniciadas
em 3-SAT, o autor constréi progressivamente instancias dos
problemas P4, P5, P2 e P3, utilizando cadeias de tarefas,
precedéncias rigidas e janelas de execucdo que representam
diretamente a l6gica das férmulas booleanas. Seu principal
resultado € estabelecer que tanto o agendamento com tempos
unitdrios quanto o agendamento em dois processadores com
tarefas de duragdo 1 ou 2 sdo NP-completos, servindo como
base tedrica direta para as andlises reconstruidas neste artigo.

O survey classico de Graham, Lawler, Lenstra e Rinnooy
Kan [3] também estd intimamente relacionado a este
trabalho. Seu objetivo foi organizar e classificar modelos
deterministicos de escalonamento, descrevendo algoritmos,
limites de complexidade, estruturas de precedéncia e
resultados de aproximac¢do. A metodologia consiste em
sistematizar o campo usando a notacdo de trés campos
(a|Bly), além de situar diversos problemas dentro de
categorias de tratabilidade ou NP-dificuldade. O survey
demonstra que a interacdo entre precedéncias e multiplas
madquinas € uma das principais fontes de intratabilidade, o
que contextualiza de maneira abrangente os problemas P2 e
P3 analisados aqui.

Outro trabalho relevante € o de Brucker e Kravchenko [4],
cujo foco € o escalonamento em mdquinas paralelas quando
todos os tempos de processamento sdo iguais. Seu objetivo
foi investigar como a presenga de precedéncias e janelas
temporais afeta a complexidade do problema. Por meio de
redugdes polinomiais baseadas em problemas cldssicos de
particionamento, os autores demonstram que mesmo instan-
cias homogéneas tornam-se NP-dificeis quando combinadas
com dependéncias. Essa conclusdo refor¢a diretamente o
caso de P2 estudado neste artigo.

Também se destaca a obra de Pinedo [5], cujo objetivo
€ oferecer uma visdo abrangente dos modelos de escalo-
namento utilizados em sistemas industriais, computacionais
e de producdo. E uma referéncia técnica essencial
para compreender como modelos com multiplas méaquinas,
precedéncias e janelas temporais se comportam na pratica,
contextualizando os cendrios tedricos tratados neste trabalho.

Por fim, o trabalho de Baptiste, Leung e Smith
[6] aprofunda limites de complexidade em modelos de
escalonamento com restricdes de precedéncia, janelas de
disponibilidade e multiplas mdaquinas. Seu objetivo &
mapear rigorosamente a fronteira entre casos polinomiais
e NP-dificeis, empregando técnicas de constru¢do temporal
similares as utilizadas por Ullman. Seus resultados
mostram que até variantes aparentemente simples tornam-
se NP-completas quando precedéncias e tempos variados
interagem, conectando-se diretamente as reducdes que
caracterizam P3.

Coletivamente, esses estudos situam claramente P2 e P3
dentro do panorama teérico do escalonamento, reforcando
que tais variantes representam casos emblemadticos na
fronteira entre tratabilidade e intratabilidade na Teoria da
Computacao.

Em complemento a esses estudos especificos de esca-
lonamento, a monografia classica de Garey e Johnson [7]
fornece o pano de fundo tedrico geral sobre NP-completude e
técnicas de reducdo polinomial. Embora trate de uma ampla
variedade de problemas e ndo se concentre exclusivamente
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TABELA 2: DESCRICAO FORMAL DO PROBLEMA P2.
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TABELA 3: DESCRICAO FORMAL DO PROBLEMA P3.

P2 - Escalonamento com tempo de execuc¢io unitario

Entrada: Um conjunto de n tarefas, cada uma levando
exatamente 1 unidade de tempo para ser concluida. Ha
relacdes de precedéncia entre algumas tarefas, existem m
processadores idénticos disponiveis e um tempo maximo
total D para executar todas elas.

Objetivo: Decidir se existe uma forma de agendar todas
as tarefas nos m processadores de modo que todas sejam
concluidas até o tempo limite D.

Saida: SiM, se existe um escalonamento que termina todas
as tarefas dentro de D; NAO, caso contrario.

P3 — Escalonamento com tempos de execucao variados

Entrada: Um conjunto de n tarefas, cada uma com um
tempo de execucdo definido. H4 relacdes de precedéncia
entre certas tarefas. Existem m processadores idénticos
disponiveis e um tempo limite total D para concluir todas
as tarefas.

Objetivo: Determinar se existe um escalonamento valido
que aloque todas as tarefas aos m processadores de forma
a respeitar as precedéncias e terminar tudo até o tempo D.
Saida: S1M, se existe tal escalonamento dentro de D; NAO,
caso contrdrio.

em modelos de escalonamento como P2 e P3, essa obra é
uma referéncia util para o enquadramento conceitual deste
trabalho, especialmente no que diz respeito a definicdo
formal das classes P, AP e dos problemas NP-completos.
Além da literatura técnica sobre escalonamento, este
trabalho também se apoia em producgdes pedagdgicas da
area de Teoria da Computagdo. O artigo de Lassance et
al. [8] discute praticas de ensino envolvendo decidibilidade,
NP-completude e transformacdes polinomiais, oferecendo
uma base diddtica que auxiliou na organiza¢do conceitual
dos fundamentos tedricos utilizados, ainda que ndo trate
diretamente dos problemas de scheduling analisados aqui.

IV. DESCRICAO DO PROBLEMA

Os problemas de agendamento tratam da organizag¢do de
um conjunto de tarefas ao longo do tempo ou entre
multiplos recursos, respeitando restricdes estruturais como
precedéncia, duracdo e capacidade de processamento. Em
sua formulacdo cldssica, busca-se determinar em que
momento cada tarefa deve ser executada, de modo a cumprir
dependéncias e limitag¢des de recursos, garantindo que todas
sejam concluidas antes de um tempo maximo permitido. As
variantes analisadas neste trabalho — o agendamento com
tempo de execug@o unitdrio (P2) e o agendamento em dois
processadores com tarefas de duracdo igual a uma ou duas
unidades (P3) — representam versdes restritas desse modelo
geral, mas preservam a complexidade combinatdria presente
em cendrios mais amplos.

A definicdo formal do problema de escalonamento com
tempo unitario é apresentada na tabela 2.

Embora o problema P2 trate exclusivamente de tarefas
com duragdo unitdria, o que permite certas simplificagcdes
em sua andlise estrutural, muitas aplicagdes praticas exigem
considerar tarefas com tempos distintos de execucdo. Essa
generalizacdo leva naturalmente a formulacido do problema
P3, apresentada a seguir na tabela 3.

Enquanto P2 e P3 representam variantes fundamentais
do modelo de escalonamento com restri¢cdes de precedéncia
e limite global de tempo, a andlise de sua complexidade
costuma recorrer a versdes intermedidrias mais expressivas.
Entre elas destacam-se os problemas P4 e PS5, que
introduzem novos elementos — como tempos de liberacio
e prazos individuais — permitindo construir redu¢des mais
detalhadas e modularizadas ao longo da prova de NP-
completude.

54

TABELA 4: DESCRICAO FORMAL DO PROBLEMA P4.

P4 — Escalonamento com tempos de liberacao

Entrada: Um conjunto de n tarefas, cada uma com um
tempo de duragdo e um instante minimo no qual estd
autorizada a comecar; algumas tarefas devem ocorrer antes
de outras; ha m processadores idénticos disponiveis; e existe
um limite total D para finalizar todas as tarefas.

Objetivo: Determinar se hd uma forma de escalonar todas
as tarefas nos m processadores, respeitando os tempos de
liberacdo, as precedéncias e o tempo maximo permitido.
Saida: S1M, se existe um escalonamento valido dentro de D;
NAO, caso contrario.

TABELA 5: DESCRICAO FORMAL DO PROBLEMA P5.

P5 — Escalonamento com precedéncias arbitrarias

Entrada: Um conjunto de n tarefas, cada uma com
tempo de duragdo e um prazo individual; um conjunto
de dependéncias indicando quais tarefas devem anteceder
outras; e m processadores idénticos disponiveis.

Objetivo: Determinar se existe um escalonamento que
respeite tanto os prazos individuais como todas as dependén-
cias entre as tarefas.

Saida: S1M, se existe um escalonamento valido que satisfaca
todos os prazos e dependéncias; NAO, caso contrdrio.

Para estabelecer a complexidade computacional dos
problemas P2 e P3, utilizamos dois problemas intermedidrios
nas redugdes, conforme proposto por Ullman [2]: P4
(escalonamento com tempos de liberagcdo),definido formal-
mente na tabela 4, e PS5 (escalonamento com precedéncias
arbitrdrias),apresentado na tabela 5. Estes servem como
etapas intermedidrias na cadeia de redugdes que parte
do problema 3-SAT e culmina na demonstragdo de NP-
completude de P2 e P3.

Embora P4 e P5 compartilhem a estrutura bésica de
problemas de escalonamento, diferenciam-se pelas restri¢des
especificas que impdem. Enquanto P4 introduz tempos
de liberagdo como restricdes adicionais ao inicio das
tarefas, P5 generaliza as rela¢des de precedéncia e incorpora
prazos individuais para cada tarefa. Essa progressdao na
complexidade das restricdes € fundamental para a cadeia de
redugdes, permitindo que se estabeleca a NP-dificuldade de
P2 através de transformagdes sucessivas partindo do 3-SAT.

Uma forma intuitiva de visualizar esses problemas € por
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Figura 1: Linha de producéo ilustrando dependéncias, capacidade
limitada e fluxo sequencial — elementos que caracterizam os
problemas de escalonamento P2 e P3.

meio de uma linha de producdo simplificada, como ilustrado
na Figura 1. Nessa representacdo, o material bruto entra pela
esquerda e percorre trés etapas de processamento (A, B e C)
até tornar-se produto acabado. Cada estac¢do representa um
conjunto de tarefas que deve ser executado em uma ordem
especifica, pois A precisa concluir sua parte antes que B
possa comegar, ¢ 0 mesmo vale para a transicdo de B para
C. Essa metafora captura precisamente a ideia de restricdes
de precedéncia presentes nos problemas de escalonamento.
Além disso, cada operador da linha sé consegue manipular
uma peca por vez, analogamente ao limite de capacidade dos
processadores ou maquinas em um modelo computacional.
Ao observarmos a linha em funcionamento, percebemos
que, mesmo que as pecas tenham tamanhos semelhantes,
pequenas dependéncias ou variagdes de duracdo podem
provocar bloqueios, esperas desnecessdrias ou gargalos —
efeitos que modelam diretamente a complexidade de P2 e
P3.

No contexto dessa metafora, o problema P2 corresponde
a uma situacdo em que todas as tarefas duram exatamente
uma unidade de tempo. Isso seria equivalente a imaginar que
cada operador leva sempre 0 mesmo tempo para processar
qualquer peca que receba. Ainda assim, dependéncias rigidas
entre etapas podem impedir um fluxo continuo, e o desafio
consiste em verificar se existe uma forma de organizar
essas execucdes dentro de um limite global de tempo. Ja
o problema P3 se aproxima de uma linha de producio
com dois operadores trabalhando simultaneamente, mas com
tarefas que podem durar uma ou duas unidades de tempo.
Nesse cendrio, algumas pecas exigem mais trabalho em
uma etapa especifica, o que gera desequilibrios e requer um
planejamento cuidadoso para evitar que o segundo operador
fique sobrecarregado ou ocioso em momentos criticos.

Esses modelos, embora simples, surgem naturalmente
em sistemas operacionais, computacdo paralela, engenharia
industrial e processamento em tempo real. A analogia da
linha de produgdo evidencia de forma clara como neles
coexistem dois fatores cruciais: a necessidade de obedecer
a dependéncias estritas e a limitacdo de recursos. Mesmo
exemplos cotidianos, como essa sequéncia organizada de
operagdes A—B—C, sdo suficientes para ilustrar como a
ordem de execugdo e a duragdo das tarefas influenciam
diretamente a viabilidade de um cronograma. Basta imaginar
um operador ficando sem pecas para trabalhar devido ao
atraso na etapa anterior — um fendmeno equivalente a
espera imposta pela precedéncia entre tarefas — ou dois
operadores disputando o processamento simultaneo de pecas,
representando o conflito pela capacidade dos processadores.

Assim, a metafora da linha de produg¢@o ajuda a visualizar
por que os problemas P2 e P3, apesar de parecerem simples,
capturam estruturas ldégicas suficientemente ricas para
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simular decisdes combinatérias complexas. Em particular, a
interacdo entre tempos de execucdo, dependéncias e recursos
limitados cria padrdes que ndo apenas se aproximam do fluxo
real de sistemas industriais, mas também constituem o ndcleo
das dificuldades tedricas que tornam esses problemas NP-
completos.

V. DEMONSTRACAO E CONTRIBUICOES

Nesta secdo apresentamos, as provas de NP-completude das
duas variantes de escalonamento estudadas: o problema
de tempo de execugdo unitdrio (P2) e o problema de dois
processadores com tarefas de duragdo 1 ou 2 (P3). A
demonstragdo € organizada em duas etapas principais para
cada problema: (i) prova de NP-pertinéncia (isto €, mostrar
que o problema pertence 2 classe A/P) e (ii) prova de NP-
dificuldade (isto é, mostrar que o problema é ao menos
tdo dificil quanto um problema base conhecido como NP-

completo).

a. P2 ¢ NPe P3 € NP

Para demonstrar que os problemas P2 e P3 pertencem a
classe AP, utilizamos o conceito de verificador polinomial.
Em ambos os casos, o certificado natural € um possivel
escalonamento das tarefas: para cada tarefa J, o certificado
descreve o instante de inicio f(J) e, no caso de P3, também
o processador onde ela é executada.

Dado esse certificado, o verificador deve apenas conferir
se o escalonamento obedece a todas as restricdes impostas
pelo problema. O procedimento consiste em:

1. verificar se cada tarefa termina antes do limite de tempo
IS

2. verificar todas as relagdes de precedéncia, confirmando
que, para cada J < J', o término de J ocorre antes ou no
momento do inicio de J';

3. para cada unidade de tempo, contar quantas tarefas es-
tdo sendo executadas simultaneamente, garantindo que
esse valor ndo ultrapassa o nimero de processadores
disponiveis (em P3, exatamente dois).

Cada uma dessas verificacdes pode ser feita em tempo
polinomial no nimero de tarefas e no nimero de relacdes de
precedéncia. Especificamente, a valida¢do das precedéncias
requer verificar cada relacdo individualmente, com comple-
xidade O(] < [), onde | < | é o nimero de relacdes de
precedéncia. A verificacdo de sobrecarga por unidade de
tempo pode ser feita em O(n -t), mantendo-se contadores
para cada instante. N&o € necessdrio explorar todas as
possiveis execugdes, mas apenas validar a execuc@o proposta
no certificado. Portanto, existe um verificador deterministico
polinomial tanto para P2 quanto para P3, o que implica:

P2 e NP e P3 € NP.

b. P2 € NP-Dificil

A prova de NP-dificuldade de P2 segue a estratégia de
reduzir um problema cldssico NP-completo, o 3-SAT, a uma
instancia de escalonamento com tempo de execucao unitdrio.
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A ideia € construir um conjunto de tarefas, precedéncias e
limites de tempo tais que:

3-SAT é satisfativel <= P2 admite escalonamento valido.

Como abordado na Secdo IV (Descri¢dao do Problema), a
demonstragdo completa € feita em etapas, por meio de P4 e
P5.

Etapa 1: 3-SAT <, P4

Define-se inicialmente um problema intermedidrio, P4, que
¢ uma versdo do escalonamento com tempo unitdrio, mas
com nimero de processadores variando ao longo do tempo.
Em vez de um k fixo, P4 recebe uma sequéncia de
capacidades cy, c1, . ..,c—1, indicando quantas tarefas podem
ser executadas em cada unidade de tempo.

A redugio 3-SAT <, P4 constréi um conjunto de tarefas
cuja viabilidade de escalonamento reflete diretamente a
satisfatibilidade da férmula. Para cada variavel x; sdo
criadas duas cadeias disjuntas, uma associada a x; e outra
a —;, ligadas por restrigdes de precedéncia internas. A
escolha de qual cadeia iniciar primeiro, e de qual literal sera
“verdadeiro”, é forgcada por tarefas auxiliares y; € —y; que, via
precedéncias e pela ocupagdo precisa dos slots de capacidade
impostos pela sequéncia ¢;, garantem que exatamente uma
das duas cadeias progrida.

Em seguida, para cada cldusula C; com trés literais,
introduz-se um bloco de sete tarefas Dj,...,Dj7 e arestas
de precedéncia que as conectam as cadeias de varidveis.
O instante critico de execucdo dessas tarefas s6 pode ser
alcancado se pelo menos uma das cadeias correspondentes
a literais verdadeiros ja estiver sido escalonada; caso
contrdrio, a capacidade disponivel naquele momento torna-
se insuficiente e o escalonamento quebra. A sequéncia
de capacidades co,...,c;—1 € escolhida de forma a apertar
o espago de processamento: em cada unidade de tempo
o nimero de posicdes é exatamente o necessdrio para
comportar as tarefas “verdadeiras” e as auxiliares, de modo
que qualquer desvio da codificagdo correta — isto &,
qualquer tentativa de satisfazer simultaneamente x; € —x; ou
de falsificar todas as clausulas — impede a conclusido de
todas as tarefas dentro do horizonte dado.

A complexidade desta construg@o é polinomial: para uma
instancia de 3-SAT com m varidveis e n cldusulas, o nimero
total de tarefas geradas é da ordem de O(m? +n), assim como
o nimero de relacdes de precedéncia. A constru¢do pode
ser implementada por algoritmos que percorrem varidveis e
clausulas com lacos aninhados de profundidade constante,
resultando em tempo polinomial no tamanho da férmula
original.

Comentdrio: a constru¢ido faz com que “rodar” certas
tarefas em tempos especificos corresponda exatamente a
atribuir verdadeiro ou falso as varidveis. Se a férmula é
satisfativel, existe um modo de encaixar todas as tarefas
dentro do limite de tempo; se ndo é, faltard espago em algum
instante, e o escalonamento serd impossivel.

A Figura 2 ilustra a estrutura tipica utilizada na redugéo 3-
SAT — P4. Cada literal € convertido em uma cadeia vertical
de tarefas — cadeias sem barra representam literais positivos,
enquanto cadeias com barra representam negativas. Os
blocos D;; funcionam como pontos de verificagdo para cada
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Figura 2: Estrutura geral da redug@o de uma instancia de 3-SAT
para o problema P4. Figura retirada de Ullman [2].

clausula, garantindo que apenas escalonamentos compativeis
com uma atribuicdo satisfatéria permitam preencher os
instantes criticos impostos pelas capacidades temporais.
Embora vérios blocos aparecam na figura, apenas um bloco
D;; por clausula desempenha o papel de validar a clausula;
os demais sdo estruturas auxiliares introduzidas para forcar o
alinhamento temporal da construgdo.

Para tornar a construcdo mais intuitiva, a Figura 2
apresenta um exemplo concreto de como uma férmula 3-
SAT € convertida em cadeias de tarefas no problema P4. A
férmula booleana correspondente ao diagrama é:

¢ = (x1 VxV ﬁ)C3) N (x1 V —x3 \/)C4).

Nessa representagdo, cada literal aparece como uma
cadeia vertical de tarefas. Cadeias sem barra correspondem
ao literal positivo (como x14,x24,X34), €enquanto cadeias com
barra representam o literal negado (como ¥33,%32,X31). AS
relagdes de precedéncia ligam os elementos de cada cadeia,
garantindo que a posi¢do temporal em que uma tarefa pode
ser executada codifica a escolha “verdadeiro” ou “falso” para
cada varidvel.

Além das cadeias de literais, o diagrama inclui vérios
blocos D;;. Esses blocos tém fungdes distintas dentro da
redug@o. Apenas alguns deles correspondem diretamente as
clausulas da férmula; os demais fazem parte da estrutura
geral da construcdo e servem para controlar capacidade
temporal, sincronizar cadeias ou criar janelas de execucdo
obrigatérias. Assim, embora muitos blocos aparecam no
diagrama, somente dois deles representam efetivamente as
clausulas da férmula de exemplo.

Para cada cldusula C;, Ullman [2] insere exatamente um
bloco D;; que atua como ponto de verificagdo: esse bloco s6
pode ser executado caso pelo menos um dos trés literais da
cldusula tenha sido marcado como verdadeiro pela estrutura
de precedéncia construida. A indexag@o segue o padrio
usado no artigo: o indice i refere-se a varidvel principal
associada ao bloco, enquanto j indica a cldusula da qual
aquele bloco participa.

No exemplo da figura, as duas cldusulas da férmula
aparecem como: D4 (cldusula 1), D»3 (cldusula 2).

Os demais blocos, como D11,D13,...,D37, ndo represen-
tam cldusulas. Eles compdem apenas a estrutura auxiliar da
reducdo e ndo tém correspondéncia com férmulas booleanas;
funcionam como “slots de tempo” usados para forcar a
organizagdo correta das cadeias de varidveis.

Dessa forma, a Figura 2 ilustra como cada literal, cada
clausula e cada restricao temporal sdo traduzidos para tarefas
do problema P4, permitindo que a satisfatibilidade de @
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sejarefletida diretamente na existéncia de um escalonamento
viavel.

Etapa 2: P4 <, P5

O problema P5 é definido como uma versdo de P2 com
a restricdo adicional de que todos os processadores devem
estar ocupados em todas as unidades de tempo; isto é, o
nimero de tarefas é exatamente n = kt e o escalonamento
deve preencher completamente a capacidade disponivel.

Para reduzir P4 a PS5, transforma-se o cronograma de
capacidades varidveis cgp,...,c;—; em um quadro de k
processadores constantes simplesmente completando, em
cada instante i, as k — ¢; posicdes ociosas com tarefas
“de preenchimento”. Essas tarefas sdo introduzidas em
nimero exato para que, em cada unidade de tempo, o total
de tarefas ativas seja exatamente k; além disso, elas sdo
conectadas por uma Unica cadeia de precedéncias lineares
que as obriga a executar sequencialmente, impedindo que
sobreponham ou conflitem com as tarefas originais. Como
suas duracdes sdo unitdrias e suas janelas de execucdo sdao
rigidamente controladas, qualquer escalonamento valido de
P5 descarta automaticamente as tarefas de preenchimento e
recupera, nos instantes restantes, um escalonamento valido
para P4; reciprocamente, todo escalonamento de P4 pode ser
estendido a um de P5 incluindo as tarefas de preenchimento
nos slots vazios.

Esta transformacdo € polinomial: o nimero de tarefas de
preenchimento adicionadas € proporcional a diferenca entre
a capacidade mdxima e o nimero de tarefas ja previstas em
P4. Como o horizonte de tempo ¢ e as capacidades ¢; sdo
limitados por fun¢des polinomiais no tamanho da instincia
de P4, o tempo de construgdo € polinomial.

Comentdrio: essa etapa padroniza a capacidade ao longo
do tempo, transformando capacidades varidveis em um
nimero fixo de processadores que precisam estar sempre
ocupados.

Etapa 3: P5 <, P2

Por fim, observa-se que P5 é apenas um caso particular de

P2: trata-se do mesmo problema de escalonamento com

tempo de execucdo unitdrio, mas com a condi¢do adicional

de n = kt. Portanto, qualquer instancia de P5 € uma instancia

de P2 com uma restricdo extra, e a redugdo € imediata, com

complexidade linear no tamanho da instancia de P5.
Juntando as etapas, temos:

3-SAT <, P4 <, P5 <, P2,
onde cada reducdo é computavel em tempo polinomial, o que

implica que P2 é NP-dificil. Como ja foi mostrado que P2
pertence a NP, conclui-se que P2 € NP-completo.

¢c. P3 € NP-Dificil

Para demonstrar que P3 é NP-dificil, utiliza-se P5 como
problema intermedidrio. A ideia € reduzir uma instancia de
PS5 para uma instancia de P3, de forma que:

P5 € solucionavel <= P3 construida é solucionavel.
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A construgdo explora a presenca de dois processadores e
tarefas com pesos 1 ou 2 para criar um padrao de bandas e
quebras no segundo processador.

Etapa: P5 <, P3

Dada uma instincia de P5 com tempo limite #, nimero
de processadores k e conjunto de tarefas S de tamanho kz
parcialmente ordenado por <, constréi-se uma instancia de
P3 sobre dois processadores de velocidade s = 2 da seguinte
forma.

Primeiro, cria-se uma sequéncia continua de tarefas X; de
peso 1 que ocupam exclusivamente o primeiro processador
durante todo o horizonte #, impedindo qualquer outra tarefa
de executar nele. Em seguida, no segundo processador,
dispdem-se tarefas ¥;; também de peso 1 de modo a gerar um
padrdo regular de “quebras” e “bandas”: apds cada intervalo
de 2k unidades de tempo livres (banda), insere-se uma tnica
unidade de tempo ocupada (quebra), repetindo esse ciclo até
cobrir o horizonte total.

Cada tarefa original J € S ¢ substituida por um par (J',J),
ambas de peso 2. A precedéncia J’' < J garante que J s6 possa
iniciar ap6s J' terminar, e as relagdes J < K do conjunto
original tornam-se J < K’ na nova instincia, preservando
a ordem parcial. O peso 2 impede que qualquer dessas
tarefas seja executada durante uma quebra (apenas uma
unidade de tempo livre); portanto, J' e J sdo forcadas a se
alinharem inteiramente dentro de uma banda de 2k unidades
consecutivas. Como cada banda oferece exatamente 2k
unidades de capacidade e o nimero total de tarefas de peso
2 é 2kt, o preenchimento completo de todas as bandas
corresponde biunivocamente a um escalonamento valido de
P5: cada par (J',J) posicionado numa banda representa a
execucdo da tarefa original J num dos k processadores de
PS5, enquanto as quebras funcionam como divisores naturais
entre os k instantes de tempo.

Esta construcdo € polinomial: o nimero total de tarefas
em P3 ¢ limitado por uma funcdo polinomial no nimero
de tarefas e no horizonte de tempo da instancia de P5.
Especificamente, sdo criadas O(kr) tarefas, e a constru¢do
pode ser implementada por lacos que percorrem o conjunto
de tarefas originais e o intervalo de tempo sem recursido
excessiva.

O efeito desta construgdo € o seguinte: as tarefas X;
garantem que o primeiro processador esteja sempre ocupado,
enquanto as tarefas Y;; consomem parte do tempo do
segundo processador, de modo que restam segmentos de
tempo continuos (bandas) suficientemente longos apenas
para acomodar as tarefas de peso 2 (J) e pequenos espagos
(quebras) onde se encaixam as tarefas J'. Adicionalmente,
devido as dependéncias, cada tarefa J deve ser executada na
banda correspondente ao instante em que seria processada na
solugdo de P35, enquanto J' ocupa a quebra associada.

Com isso, qualquer solucdo para a instdncia de P3
construida induz um escalonamento vélido para a instancia
original de P5 (interpretando cada banda como uma unidade
de tempo de P5). Reciprocamente, qualquer solugdo de P5
pode ser “expandida” para uma solucdo de P3, alocando J’
nas quebras e J nas bandas apropriadas.

Comentdrio: as bandas funcionam como “janelas com-
pactadas” que representam cada unidade de tempo da

57



CONTRIBUICOES PEDAGOGICAS PARA O APRENDIZADO NO ESCOPO DA TEORIA DA COMPUTACAO

bond #1t-1

H bond #1

bl
%
v
=<
=

> break #I

s &

x >

\/
—
o
o

> bond #0

break #0

Figura 3: Organizacdo das tarefas na redug@o do problema P5 para
P3. Figura retirada de Ullman [2].

instancia original de P5. Preencher corretamente essas
bandas com tarefas de peso 2 equivale a decidir, para cada
unidade de tempo, quais tarefas estdo sendo executadas no
modelo com k processadores.

A Figura 3 mostra como a redugdo de P5 para P3
utiliza dois processadores para reproduzir o comportamento
temporal de uma insténcia original. O primeiro processador
permanece ocupado continuamente pelas tarefas X;, en-
quanto o segundo alterna entre segmentos curtos (quebras),
que acomodam as tarefas J', e segmentos longos (bandas),
nos quais sdo escalonadas as tarefas J de duragcdo 2. Cada
banda corresponde exatamente a uma unidade de tempo
da instancia de PS5, preservando precedéncias e garantindo
que o escalonamento resultante em P3 reflita corretamente a
execugdo original em P5.

Como P5 é NP-completo e P5 <, P3 com complexidade
polinomial, segue que P3 é NP-dificil. J4 demonstramos
anteriormente que P3 pertence a NP, portanto P3 é NP-
completo.

d. Comentdrios Finais sobre a Demonstracdo

As provas apresentadas mostram que tanto P2 quanto
P3 ndo sdo apenas variantes artificiais, mas modelos
ricos o suficiente para simular a légica de um problema
canonico como o 3-SAT. As construgdes utilizadas exploram
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intensivamente a codificacao de varidveis e atribuicdes como
escolhas de tarefas executadas em tempos especificos, o uso
de precedéncia para impor dependéncias logicas, e o controle
do nimero de processadores (ou da capacidade por unidade
de tempo) para forgar o preenchimento exato de janelas de
execucao.

Esses mecanismos fazem com que qualquer tentativa de
encontrar um algoritmo geral e eficiente para P2 ou P3
esbarre na mesma dificuldade encontrada para 3-SAT e
outros problemas NP-completos. Assim, as demonstragdes
de NP-completude justificam, do ponto de vista tedrico, o
uso de heuristicas e algoritmos aproximados em problemas
praticos de escalonamento.

VI. RESULTADOS E REFLEXOES

A andlise das variantes P2 e P3 permitiu confirmar formal-
mente sua classificacdo como problemas NP-completos, por
meio da reconstru¢do detalhada das redugdes apresentadas
por Ullman (1975). A replicacdo dessas provas evidenciou
como estruturas aparentemente simples (tarefas de duracio
unitdria, dois processadores e precedéncias bdsicas) sdo
suficientes para simular o comportamento 16gico de férmulas
booleanas.  Esse resultado reforca um dos principios
fundamentais da Teoria da Computacdo: a dificuldade com-
putacional ndo depende apenas da complexidade aparente
do modelo, mas da capacidade de representar decisdes
combinatdrias por meio das restri¢des do problema.

Do ponto de vista metodolégico, o processo revelou
desafios relevantes. A cadeia de reducdes 3-SAT — P4 —
P5 — P2 exigiu um entendimento cuidadoso das construcdes
intermedidrias, especialmente na definicdo das capacidades
varidveis de P4 e no uso das tarefas auxiliares que forcam a
codificacdo de varidveis e clausulas. J4 a reducdo PS5 — P3
mostrou-se particularmente dificil devido a alternancia entre
“bandas” e “quebras”, que exige atenc¢do a sincronizacio
temporal e a0 mapeamento entre segmentos de tempo e
precedéncias. Esses aspectos demonstram que provas de NP-
completude vao além de manipulacdes algébricas: tratam-se
de construcdes conceituais sofisticadas que demandam rigor,
visualizacdo estrutural e compreensao profunda dos modelos
envolvidos.

As contribui¢des deste trabalho situam-se tanto no campo
da compreensdo tedrica quanto no campo pedagdgico. Ao
reorganizar e explicar as redugdes de forma sistemadtica,
com figuras, comentdrios e interpretacdes intuitivas, o
estudo oferece um material mais acessivel a estudantes
e pesquisadores que desejam compreender NP-completude
aplicada a problemas de escalonamento. Além disso, ao
contextualizar os problemas P2 e P3 dentro da Teoria da
Computacdo, o trabalho evidencia como redugdes podem
servir como ferramenta para analisar casos reais de sistemas
operacionais, arquiteturas de processadores, computacio
paralela e engenharia de producio.

No ambito académico, a aplicabilidade desta investigacdo
é ampla. A reconstru¢do diddtica das provas pode
servir como apoio em disciplinas de Estruturas de Dados,
Andlise de Algoritmos, Teoria da Computacdo, Sistemas
Operacionais e Escalonamento. O estudo também pode
auxiliar estudantes na compreensao de redugdes polinomiais,
frequentemente uma das maiores dificuldades no apren-
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dizado de NP-completude, oferecendo exemplos concretos,
visuais e contextualizados. Por fim, a exposicdo das
limitagdes tedricas desses modelos reforga a importancia de
heuristicas, algoritmos aproximados e métodos experimen-
tais em cendrios reais onde soluc¢des exatas sdo invidveis.
Assim, os resultados alcangados ndo apenas reafirmam
a NP-completude das variantes analisadas, mas também
destacam o valor formativo do tema, demonstrando como
problemas cldssicos podem ser reinterpretados, visualizados
e aplicados em contextos educacionais e praticos. O trabalho,
portanto, contribui tanto para o rigor cientifico quanto para o
fortalecimento do ensino da complexidade computacional.

VII. CONSIDERACOES FINAIS

Este trabalho teve como objetivo analisar, formalizar e
demonstrar a NP-completude das variantes de escalonamento
P2 e P3, com base nas constru¢des apresentadas por Ullman
(1975). A partir da reconstrucdo detalhada das reducgdes a
partir do 3-SAT — passando pelos problemas intermedidrios
P4 e PS5, foi possivel compreender, de maneira estruturada
e visual, como modelos de escalonamento aparentemente
simples podem capturar a complexidade combinatéria de
problemas booleanos cldssicos. Em sintese, demonstrou-
se que tanto P2 quanto P3 pertencem a classe AP e sdo
NP-dificeis, concluindo-se formalmente que ambos sdo NP-
completos.

Durante o desenvolvimento da pesquisa, algumas dificul-
dades se mostraram centrais. A primeira refere-se a prépria
interpretacdo das construcdes utilizadas nas redugdes, que
exigem uma leitura atenta dos padrdes de precedéncia,
capacidade e sincroniza¢do temporal criados para simular
varidveis e cldusulas. A segunda diz respeito ao esforco
de transformar essas construgdes abstratas em explicagdes
claras, diagramas compreensiveis e justificativas coerentes,
mas essencial para consolidar o entendimento.  Além
disso, adaptar as provas originais para uma perspectiva
didética, mantendo rigor matemadtico, demandou uma revisao
cuidadosa da literatura e um tratamento sistemdtico das
etapas envolvidas.

Apesar dessas dificuldades, os resultados obtidos ampliam
a compreensdo académica sobre reducdo polinomial e sobre
o cardter intratdvel de problemas de escalonamento. A
abordagem adotada reforca o valor pedagdgico das provas
de NP-completude, especialmente quando apoiadas por es-
quemas visuais e interpretagdes intuitivas. O estudo também
evidencia que a complexidade computacional permanece
relevante ndo apenas em termos tedricos, mas também como
fundamento para decisdes praticas em sistemas operacionais,
arquiteturas de processadores e modelos de produgdo.

Como perspectivas futuras, sugere-se aprofundar a andlise
de variagdes modernas dos problemas de escalonamento,
incluindo modelos com preempgdo, janelas de tempo
flexiveis, pesos multiplos e ambientes heterogéneos. Outra
linha de investigacdo envolve a exploragdo de algoritmos
aproximados e heuristicas, fundamentais para aplicacdes
reais nas quais solugdes exatas sdo invidveis devido a NP-
completude. Por fim, estudos comparativos entre provas
classicas e abordagens contemporaneas de complexidade
podem contribuir para o ensino, permitindo compreender
como a teoria evoluiu e como esses problemas permanecem
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centrais na ciéncia da computagao.

Assim, este trabalho ndo apenas consolida formalmente
a NP-completude de P2 e P3, mas também contribui para
o fortalecimento do entendimento tedrico e pedagédgico
sobre reducdes polinomiais, oferecendo bases sélidas para
investigacdes futuras e para a aplicagdo pratica desses
conceitos em diferentes dreas da computag@o.
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