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Resumo—Este artigo representa o relato de uma experiéncia pedagdgica desenvolvido na disciplina de Teoria dos Grafos no curso de
Ciéncia da Computacdo, ofertada no semestre 2025/2 na Universidade Federal do Tocantins. A aplicacéo pratica dos conceitos de grafos
aprendidos na disciplina partird de uma reproduciio da demonstracdo dos Teoremas de Tutte-Berge e de Tutte, os quais representaram
grandes avangos na pesquisa de emparelhamentos em grafos. Mais especificamente, o estudo da condicdo de existéncia de emparelhamento
maximo e perfeito em um grafo qualquer. Estes estudos, por sua vez, abriram as portas para a resolu¢do de problemas cada vez mais
complexos, e a versatilidade de seus usos pode ser interpretada como complemento das conquistas trazidas pelo Teorema de Hall. A
explicacdo de tais conceitos serd feita com base nas principais dificuldades encontradas pelo corpo estudantil, demonstrando de forma
didatica e ilustrativa, por meio de imagens, a fim de reduzir a abstragdo inerente ao tema.

Palavras-chave—Teoria dos grafos, Teorema de Tutte-Berge, Teorema de Tutte, grafos maximos, barreiras, Semindrios Académicos,
Experiéncia Pedagégica.

Abstract—This paper reports on a pedagogical experience developed during the Graph Theory course within the Computer Science
program, offered in the second semester of 2025 at the Federal University of Tocantins. The practical application of the graph concepts
learned in the course involves reproducing the proofs of the Tutte-Berge and Tutte theorems, which represented major advancements in
graph matching research. More specifically, it focuses on the study of the existence conditions for maximum and perfect matchings in
arbitrary graphs. These studies, in turn, paved the way for solving increasingly complex problems, and the versatility of their applications
can be interpreted as a complement to the achievements brought by Hall’s Theorem. The explanation of these concepts is based on
the primary difficulties encountered by the student body, employing a didactic approach illustrated with images to reduce the inherent
abstraction of the subject matter.

Keywords—Graph Theory, Tutte-Berge Theorem, Tutte’s Theorem, Maximum Matchings, Barriers, Academic Seminars, Pedagogical
Experience.

bioinformatica. A capacidade de abstrair problemas do
mundo real em vértices e arestas, aplicando sobre eles
I. INTRODUCAO algoritmos eficientes de busca, fluxo e conexidade, é uma

habilidade indispensdvel para o cientista da computacdo
&‘ teoria dos Grafos é uma das grandes protagonistas que  moderno.

permeiam o mundo da computagdo, oferecendo uma Partindo deste contexto, o estudo dos emparelhamentos
linguagem universal para a modelagem de relacionamentos g grafos remonta a dezenas de anos repletas de contri-
e estruturas complexas. O estudo de grafos ndo se bui¢cdes. Redes sociais, problemas de atribui¢des de postos
limita apenas a abstra¢do matemdtica; ele permeia solu¢des  de trabalho, alocagdes de recursos ,entre outros, sio oS
para problemas reais e contemporaneos, variando desde a problemas que os emparelhamentos enfrentaram, contudo, o
otimizagdo de rotas em sistemas de logistica e o design  foco deste artigo estd no emparelhamento méximo, ou seja,
de circuitos eletronicos até a andlise de redes sociais € a emparelhamento de maior cardinalidade possivel em um
grafo G. Como um dos maiores representantes do estudo do

Dados de contato: Artur Anderson Alves Corréa, alves.artur@uft.edu.br emparelhamento maximo, em 1935, Philip Hall apresenta o
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teorema de Hall, popularmente conhecido como o “Teorema
do casamento”. Esse nome popular adveio da natureza do
problema que partia da seguinte metafora: se todo grupo de
meninas em uma vila gostar coletivamente de pelo menos
tantos meninos quanto hd meninas no grupo, entdo cada
menina pode se casar com um menino de quem ela gosta.

Mais formalmente, temos que o teorema de Hall
apresentou as ferramentas necessdrias para as descobertas de
emparelhamentos maximos em grafos bipartidos.O Teorema
de Hall tem se mostrado uma ferramenta valiosa tanto na
teoria dos grafos quanto em outras dreas da matematica.
Ademais, em 1957 Claude Berge avancou o estudo do prob-
lema do emparelhamento médximo confirmando a relacdo
crucial entre caminhos M-aumentantes e emparelhamentos
maximos. Relagdo esta, ja previamente apontada (mas nio
provada), por Konig em 1931 e Pettersen em 1891. Herdando
estas contribui¢des, William Thomas Tutte avanca com o
teorema de Tutte-Berge e o teorema de Tutte, descobrindo
uma férmula do tamanho de um emparelhamento maximo
em um grafo qualquer e também uma condicao de existéncia
para um emparelhamento perfeito.

Embora o Teorema de Hall tenha estabelecido um marco
fundamental, sua aplicabilidade direta restringe-se aos grafos
bipartidos, deixando uma lacuna significativa para estruturas
mais complexas onde a biparticdo ndo é garantida. E nesse
cendrio que a generalizacdo proposta por Tutte se torna
revoluciondria. Ao introduzir o conceito de componentes
impares resultantes da remocédo de vértices, o Teorema de
Tutte (1947) fornece uma condicio necessdria e suficiente
para a existéncia de um emparelhamento perfeito em um
grafo qualquer, superando as limitacdes impostas pela
necessidade de biparticdio. A férmula de Tutte-Berge,
consolidada posteriormente em 1958, expande essa visdo ao
quantificar a deficiéncia de um grafo, ou seja, determinar
o tamanho exato do emparelhamento maximo baseando-
se na estrutura topoldgica do grafo e na andlise de seus
subconjuntos criticos, conhecidos como barreiras.

Assim, partindo do reconhecimento da importancia desses
teoremas, o artigo se propde a reproducdo de resultados
ja adquiridos através de uma perspectiva pedagdgica e a
disseminac¢do desse conhecimento aos alunos em escala
pessoal. Além disso, promove-se a introduc¢do de todos
0s conceitos necessdrios para o entendimento dos teoremas,
facilitando o acesso as nomenclaturas utilizadas no artigo.

Partindo para a estrutura, o artigo estd organizado
da seguinte maneira: na Secdo 2 (Preliminares), sio
definidos os conceitos bdsicos, como grafo, conexidade,
componentes e emparelhamento, estabelecendo a notacdo e
o vocabuldrio necessdrios. Em seguida, a Secdo 3 (Trabalhos
Relacionados) apresenta uma revisdo bibliogréfica, situando
este trabalho em relacdo a outras abordagens pedagdgicas e
técnicas existentes na literatura. Avangando para a definicdo
do escopo, a Secdo 4 (Descrigdo do Problema) detalha os
teoremas de Tutte-Berge e Tutte, bem como sua importancia
histérica. Ja na Secdo 5 (Demonstracdo e Contribuicdes),
encontra-se o nicleo do trabalho, contendo as demonstragdes
passo a passo dos teoremas escolhidos. Posteriormente,
a Secdo 6 (Resultados e Reflexoes) discute as dificuldades
encontradas durante o estudo, as estratégias de superacdo e
realiza discussdes quanto aos resultados, e, por fim, a Secdo
7 (Consideragoes Finais) sintetiza os aprendizados e conclui
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Figura 1: Grafo G ilustrando vértices (v;), arestas (¢;), ciclos e
conectividade.

V1
[ ]

Figura 2: Representag@o de um grafo trivial, composto por um
unico vértice isolado.
°

°
(a) Gy (azul) (b) G, (vermelho) (c) G1AG,
Figura 3: Ilustragdo da diferenca simétrica.

a tematica.

II. PRELIMINARES

Um grafo G(V.E) é uma estrutura de dados formada por
dois conjuntos: um conjunto V chamado de vértices e um
conjunto E de elementos chamados de arestas; cada aresta
estd associada a dois vértices: o primeiro € a ponta inicial
da aresta e o segundo € a ponta final. Pode-se imaginar que
um grafo € um mapa rodovidrio idealizado: os vértices sido
cidades A e B e as arestas sdo estradas. Considere o grafo 1:

Chamamos de subgrafo um grafo formado por um
conjunto de vértices e arestas do grafo original. Assim,
considere um subgrafo H com os conjuntos de vértices V =
{vi,v2,v3} e arestas E = {e3,ep,e1}. A partir do subgrafo
H(V,E), podemos definir o conceito de caminho: um
caminho em grafos é uma sequéncia de vértices interligados
por arestas, onde o vértice final de uma aresta é o vértice
inicial da préxima.

Ou seja, o conjunto V = {vy,v,} é um caminho conectado
pela aresta e;. Como extensdo dessa ideia, temos o conceito
de ciclo: um ciclo em grafos é um caminho que comega
e termina no mesmo vértice, sem repetir outros vértices no
percurso. Ou seja, um exemplo de ciclo é V = {vi,v2,v3};
partindo de v; pela aresta e3, partindo de v3 pela aresta e e
partindo de v, pela aresta e, temos um ciclo.

Continuamente, um grafo trivial € definido como um grafo
que possui exatamente um vértice e nenhuma aresta.

Matematicamente, se G = (V,E), entdo G é trivial se |V | =
1 e E = 0. Também, outro conceito que deve ser explicado
é a diferenca simétrica. A diferenca simétrica de dois
grafos(denotado por G1AG») é uma operacgdo que resulta em
um novo grafo contendo apenas as arestas que sio exclusivas
de cada um dos grafos originais.

O grafo resultante da figura 3 (c) contém apenas as arestas
exclusivas de G (topo) e exclusivas de G, (fundo). A aresta
diagonal, presente em ambos, é removida.Além disso, um
grafo € conexo se existir um caminho entre qualquer par de
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Componente H (Conexo)

Figura 4: Exemplo de grafo desconexo. O componente H a

esquerda € conexo internamente, mas o vértice vs estd isolado.
Figura S: Exemplos de emparelhamento em um mesmo grafo G:

(a) Emparelhamento ndo maximo (tamanho 2). Vértices v3 e v ndo foram
emparelhados.

(b) Emparelhamento maximo (tamanho 3). Neste caso, ¢ um
emparelhamento perfeito.

vértices. Em outras palavras, € possivel ir de qualquer vértice
para qualquer outro vértice usando apenas as arestas do
grafo. Se ndo for possivel, o grafo é considerado desconexo.

Levando em conta o subgrafo H (a parte esquerda da
figura), é possivel ir de qualquer vértice a outro através de
suas arestas; isso significa que o subgrafo H € conexo.

Porém, considerando a Figura 4, € impossivel que v3
alcance vs. De fato, é impossivel que qualquer vértice do
componente H chegue até vs, pois ndo hd qualquer aresta
que ligue o vértice vs aos outros vértices. Portanto, a figura
representa um grafo desconexo.

Seguindo adiante, iremos para o conceito de emparel-
hamento. Um emparelhamento é um conjunto de arestas
onde nenhuma delas compartilha o mesmo vértice. Em
termos simples, € uma sele¢do de conexdes onde cada vértice
do grafo estd ligado a, no mdximo, um outro vértice.Isso
pode ser entendido como a formagdo de pares exclusivos
dentro de um grupo. Os vértices "selecionados”, isto &,
incidentes a uma aresta emparelhada sdo chamados de M-
saturados. Caso nio sejam, sdo chamados de M-insaturados.
A partir deste principio, podemos definir emparelhamento
mdximo que é a cardinalidade do maior emparelhamento
possivel no grafo.

As arestas em vermelho e tracejadas indicam os pares
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Figura 6: Emparelhamento maximo (e perfeito). As arestas em
vermelho e tracejadas indicam os pares exclusivos formados.

(a) Grafo G com B = {b;,b,} destacado

1 vértice

O,

1 vértice

3 vértices (impar)

(b) G — B: trés componentes impares
Figura 7: Representagdo de uma barreira. A remogdo de B produz
mais componentes impares do que |B|.

Caminho M-alternante (e M-aumentante)

O O OSSO DS O

M-Saturado

exclusivos formados. Em 5(a) temos um conjunto vélido,
mas que poderia ser maior. Em 5(b) temos o maior conjunto
possivel para este grafo.Além disso, temos o conceito de
emparelhamento perfeito. Diz-se que um emparelhamento
M € perfeito se todo vértice do grafo estiver saturado por
M. Naturalmente, todo emparelhamento perfeito é mdximo,
e todo emparelhamento maximo é maximal (isto é, ndo pode
ser estendido adicionando-se arestas).

Avancgando, um vértice essencial é aquele que todo empar-
elhamento maximo o cobre. Com a ideia de emparelhamento
determinada, podemos partir para o conceito de barreira:
Formalmente, dado um grafo G, um subconjunto de vértices
B € chamado de barreira se a remocdo de B divide o grafo
em um ndmero de componentes impares (componentes de
um grafo com uma quantidade {impar de vértices) maior que
o tamanho do préprio conjunto B.

Ademais, deve-se introduzir conceito de caminho M-
alternante e caminho M-aumentante. Seja G um grafo geral,
E o conjunto de arestas de G e M um emparelhamento de G.
Um caminho M-alternante em G é um caminho cujas arestas
pertencem alternadamente a £\ M e a M. Um caminho M-
alternante cujos vértices extremos sdo ambos M-Saturados é
chamado caminho M-aumentante. Observe que um caminho
M-aumentante possui uma quantidade par de vértices.

Para a melhor compreensdo das férmulas apresentadas
a seguir no artigo, partimos das seguintes denominacdes:
A quantidade de arestas em um emparelhamento méiximo
serd denotada por o (G). Além disso, denotaremos por
0o(G) como o nimero de componentes impares do grafo.
Também, chamaremos de grafos hipoemparelhdveis grafos
que nao possuem emparelhamentos perfeitos, contudo,
qualquer subgrafo com qualquer vértice retirado possui
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(a) Grafo Hipoemparelhavel G

(b) Subgrafo G — {v;}

Remover v; @ @

N

\\ /
®

Restam 4 vértices (par).
Emparelhamento perfeito

Possui 5 vértices (impar).
Impossivel ter emparelhamento perfeito.

Figura 8: Ilustragdo de um grafo hipoemparelhavel.

def(G) = (o(G—S5)—15])

Figura 9: Representa¢do matemadtica da deficiéncia

emparelhamento perfeito.

Em (a), o grafo original C5 ndo tem emparelhamento
perfeito devido a paridade. Em (b), apds a remog¢dao do
vértice v, o subgrafo restante admite um emparelhamento
perfeito (arestas vermelhas tracejadas).

O comportamento demonstrado se repete ndo importa qual
vértice seja retirado. Ademais, devemos definir a ideia
de deficiéncia. A deficiéncia mede quantos vértices nio
podem ser pareados, no pior caso, se tentarmos formar
um emparelhamento. Note que o(G-S) é o nimero de
componentes impares apdés a remocdo de S. Sabemos
que cada componente impar garante que pelo menos 1
vértice ficard sem par. Ou seja, a deficiéncia representa
quantos vértices ficam inevitavelmente "solitdrios" depois
que removemos S.

Com toda a introdugdo tedrica feita, partiremos para
uma pequena revisdo de literatura quanto aos problemas do
emparelhamento maximo e a evolugdo pedagégica do ensino
dos grafos.

II1. TRABALHOS RELACIONADOS

A literatura voltada ao ensino de Ciéncia da Computacio
e, especificamente, de Teoria dos Grafos, destaca que
a complexidade e o nivel de abstracdo dos conceitos
exigem estratégias pedagdgicas diversificadas. A pesquisa
bibliografica realizada para este artigo identificou duas
frentes principais de trabalhos relacionados: (i) experiéncias
didaticas e ferramentas de apoio ao ensino de grafos e
computagdo tedrica; e (ii) fundamentagdes tedricas modernas
sobre emparelhamento e os teoremas de Tutte.

No contexto de metodologias ativas, Lassance [1] relata
uma experiéncia similar a vivenciada na elaboracdo deste
artigo, aplicada a disciplina de Teoria da Computagdo. Os
autores destacam que a implementacdo de um Ciclo de
Semindrios, focando em tépicos de alta complexidade como
NP-Completude, resultou na maximizagdo da compreensio
dos estudantes e no desenvolvimento da autonomia inves-
tigativa. Este artigo d4 continuidade a essa visdo, utilizando
a metodologia de semindrio para aprofundar o estudo de
emparelhamentos.
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Para mitigar as dificuldades de abstracdo, diversas
abordagens visuais tém sido propostas.  Santos et al.
[2] discutem a validagdo do sistema GraphViewer, uma
ferramenta de visualizag¢@o de algoritmos focada no ensino
de provas por indu¢do em Teoria dos Grafos. Os autores
evidenciam que a visualizacdo passo a passo auxilia na
compreensdo de demonstragdes matemdticas rigorosas. A
ferramenta preenche uma lacuna especifica ao focar em
"demonstragdes por inducdo”, uma 4drea onde os alunos
historicamente tém grande dificuldade de visualizacao.

O estudo aplicou métricas rigorosas de Ganho de
Aprendizagem Absoluto (GAA) e Normalizado (GAN) para
medir a eficicia da ferramenta. Em real¢do ao aumento do
desempenho, no primeiro experimento realizado, o grupo
que utilizou o GraphViewer (grupo de teste) obteve um
Ganho de Aprendizagem Normalizado (GAN) de 25,11%
,quase o dobro do ganho obtido pelo grupo de controle,
e 13,92% que ndo usou a ferramenta. Na mesma linha,
em um trabalho anterior, Santos et al. [3] apresentaram
o ambiente TBC-GRAFOS, demonstrando que o uso de
softwares graficos reduz indices de reprovacdo e agiliza a
compreensdo de algoritmos cldssicos, como os de busca e
caminho minimo.

Além de softwares, abordagens lddicas também se
mostram eficazes. Correa et al. [4] desenvolveram o jogo
de tabuleiro "Formigrafo", que utiliza a tematica de um
formigueiro para motivar o aprendizado do Problema do
Caminho Minimo. O trabalho refor¢a que a contextualizacdo
lddica facilita a introdug@o de conceitos abstratos de grafos
ponderados.

No que tange a fundamentac@o tedrica especifica deste
trabalho, a literatura apresenta evolugdes nas demonstragdes
classicas de emparelhamento. Qu e West [5] publicaram
recentemente uma nova prova para a Férmula Generalizada
de Tutte-Berge aplicada a subgrafos f-limitados. O trabalho
utiliza o Teorema do f-Fator de Tutte para estabelecer uma
relagdo min-max, simplificando a compreensdo da férmula
classica quando f(v) = 1. Isso é, cada vértice pode estar
conectado a, no maximo, uma aresta dentro desse subgrafo.

Complementarmente, o livro do Douglas B. West[6] parte
de uma perspectiva mais tradicional através das técnicas de
provas matemdticas puras. Contudo, encara os problemas
de diversos angulos, iniciando pelo mais tradicional, sendo
ele o método da inducdo de vértices provando a suficiéncia
do teorema de Tutte. Apés isso, tomando uma via mais
original a resolu¢do do teorema, provando-o pelo Teorema de
Hall. Aprofundando-se , a ideia geral € transformar o grafo
original em um grafo bipartido adequado e entdo aplicar Hall.

Tais contribuicdes denotam a importancia de encarar a
teoria dos grafos com uma visdo didatica, a fim de facilitar
a compreensdo de temas abstratos. Nao sé isso, mas a
exploracdo de novas maneiras de provar os teoremas mostra
que o problema do emparelhamento maximo € relevante até
hoje e a sua discussdo e compreensdo € necessaria. Com isso
em mente, a seguir mudaremos o enfoque para o problema
em si, aprofundado nos teoremas de Tutte-Berge e Tutte.

IV. DESCRICAO DO PROBLEMA

Comecando com o primeiro dos teoremas escolhidos,
considerando um grafo G(S,E), sendo S o conjunto de
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o (G) = %min{v(G) —(o(G—S)—|S|)} ral que SV

Figura 10: Férmula de Tutte-Berge para emparelhamento

maximo.

Sem conex&o direta

AN
N

Grupo Laranja
(3 Amigos)

Grupo Azul
(3 Amigos)

Mediador (P)

Figura 11: O Problema do Buddy System. A remogao de P cria
dois componentes {mpares isolados.

vértices de G e ISI| a cardinalidade do conjunto, a férmula
do teorema de Tutte-Berge é dada por:

A intuicdo por trds da Férmula de Tutte-Berge baseia-se na
barreira estrutural causada pela paridade dos componentes.
Considere a remog¢ao de um conjunto de vértices U C V. O
grafo resultante G — U se fragmenta em varios componentes
conexos.

Com rela¢do a natureza do problema, ele € classificado
como um problema de otimizacdo, pois determina o valor
madximo de o/ (G). O objetivo € encontrar o conjunto U que
maximiza a deficiéncia para provar que o emparelhamento
ndo pode ser maior.

Diferente de muitos problemas em grafos gerais (como
Coloracdo ou Caminho Hamiltoniano) que sdo NP-Dificeis,
o problema do Emparelhamento Maximo pertence a classe
P (Tempo Polinomial). Um dos algoritmos mais eficientes
conhecidos para emparelhamento maximo em grafos gerais
€ o algoritmo de Micali-Vazirani, cuja complexidade ¢é
O(E+/V). Também, E possivel resolver diversos problemas
com o teorema de Tutte-Berge. Um exemplo cldssico é o
Problema da Formagdo de Equipes (Buddy System).

O problema consiste em formar o nimero maximo
possivel de duplas (emparelhamento mdximo) em um grupo
de pessoas, respeitando uma regra de compatibilidade:
uma dupla s6 pode ser formada se houver uma aresta de
"amizade" entre as duas pessoas.

A Figura 11 ilustra um cendrio onde um emparelhamento
perfeito € impossivel devido a estrutura social do grupo.
Temos 7 pessoas divididas em: O Grupo Azul é composto
por 3 pessoas (Al, A2 e A3), todas amigas entre si. O
Grupo Laranja também possui 3 pessoas (B1, B2 e B3), que
igualmente s@o amigas entre si. Por fim, hd o Mediador P,
uma pessoa central que possui uma relacdo de amizade com
integrantes de ambos 0s grupos.

H4 uma incompatibilidade total entre os grupos: ninguém
do Azul é amigo de alguém do Laranja.

Andlise via Tutte-Berge: Se removermos o conjunto U =
{P}, o grafo se quebra em dois componentes conexos (0s
dois grupos), ambos com um nimero impar de vértices. O
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o(G=S5)<IS|, vScV

Figura 12: A condi¢@o do Teorema de Tutte.

O

o(G-8)=3>|5|=1
Sem Emparelhamento Perfeito

Figura 13: Grafo K 3 violando a condigdo de Tutte.
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T 07|

r777777777)

Contagem Final:
Brancas: 8§ Pretas: 6
Impossivel cobrir!

Figura 14: O Tabuleiro Mutilado. A remogdo de dois cantos da
mesma cor quebra a paridade necessdria.

mediador unico ndo € suficiente para cobrir a demanda desses
componentes.

Agora, analisando o Teorema de Tutte, ele responde se
o grafo possui um emparelhamento perfeito. A condigdo é
apresentada na Figura 12:

Assim, um grafo possui um emparelhamento perfeito se
e somente se a condicdo acima for cumprida para todo
subconjunto S. A Figura 13 mostra uma violagao simples.

Seguindo, o problema de encontrar um emparelhamento
perfeito pertence a classe P. Um dos algoritmos fundamentais
é o Algoritmo de Blossom (Edmonds, 1965), que lida com
"ciclos impares" contraindo-os em super-vértices.

Para entender a importancia da paridade, analisamos
o problema do tabuleiro de xadrez 4 x 4 "mutilado".
Removemos duas casas de cantos opostos (digamos, duas
pretas). Restam 14 casas: 8 brancas e 6 pretas (Figura 14).

Para que um emparelhamento perfeito existisse (cobertura
por dominds), precisariamos de um ntimero igual de casas
brancas e pretas, pois cada dominé consome um par de cores
diferentes. Como restaram 8 casas brancas e apenas 6 pretas,
¢ impossivel cobrir o tabuleiro. Com toda a formulacio
tedrica dos teoremas explicada, podemos resumir e comparar
ambos através das seguintes tabelas:

Concluindo, o teorema de Tutte e Tutte-Berge possuem
diversos paralelos téoricos que serdo a seguir, aprofundados
e demonstrados.
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TABELA 1: RESUMO ESTRUTURAL: TEOREMAS DE TUTTE E
TUTTE-BERGE

Problema | Caracterizacdio de Emparelhamentos
Perfeitos (Tutte) e de Emparelhamentos

Miximos (Tutte—Berge).

Input Estrutura do grafo G: componentes
impares apds remog¢do de subconjuntos
S C V(G); método estrutural baseado em

principios Min—-Max.

Tutte: G possui emparelhamento per-
feito se o(G —§) < |S| para todo S C
V(G).

Tutte-Berge: o tamanho maximo do
emparelhamento é  (|V(G)| — def(G)).

Caracterizagdo Min—Max:  relaciona
componentes impares, barreiras e defi-
ciéncia a estrutura de emparelhamentos;
fornece condicdo necessdria e suficiente
para emparelhamentos perfeitos e for-
mula exata para emparelhamentos maxi-
mos.

Output

Resumo

TABELA 2: COMPARATIVO ENTRE OS TEOREMAS DE TUTTE E
TUTTE-BERGE

Aspecto

Tutte

Tutte-Berge

Objetivo principal

Determinar a existéncia
de um emparelhamento
perfeito.

Determinar o tamanho
mdximo de um empar-
elhamento em qualquer
grafo.

Caracterizacao

Existencial:  condi¢des
para a existéncia de em-
parelhamento perfeito.

Quantitativa: fornece a
cardinalidade de um em-
parelhamento maximo.

Conceitos
estruturais

Componentes  impares
e emparelhamentos
perfeitos.

Componentes  impares,
emparelhamentos
méximos e barreiras.

V. DEMONSTRACAO E CONTRIBUICOES

As demonstragdes que serdo apresentadas sdo aquelas
descritas no livro Graduate Texts in Mathematics, conforme
citam Bondy e Murty [7] a respeito do Teorema de Tutte-
Berge e do Teorema de Tutte. Os teoremas em questdo
sd0 a estrutura base para caracterizar emparelhamentos
mdaximos e perfeitos apresentando condicdes necessdrias e
suficientes. Além disso, as demonstracdes a seguir seguem
um tratamento bem préximo do exposto por Bondy e Murty,
mas apresentando-os de maneira mais clara.

O TEOREMA DE TUTTE-BERGE

Teorema V.1 (Bondy-Murty [7]). O TEOREMA DE
TUTTE-BERGE

Todo grafo tem uma barreira.

Em um grafo bipartido, uma cobertura minima constitui
uma barreira do grafo. Porém, geralmente todo grafo tem
uma barreira. Este fato € conhecido como o Teorema de
Tutte-Berge. Entretanto, lembre-se de que um vértice v de um
grafo G € essencial se todo emparelhamento méaximo cobre
v, € ndo essencial caso contrario. Assim, v é essencial se
o/(G—v) =d'(G) — 1 e ndo essencial se &' (G —v) = o' (G).
Dessa maneira, temos os seguintes lemas auxiliares para o
teorema:
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Figura 15: Tlustragio da indugfio com o emparelhamento M’
cobrindo tanto x quanto y

Legenda:

—_—M

—_——-

Figura 16: Tlustragdo dos componentes de GIMAM'].

Lema 1 (16.8, Bondy—Murty [7]). O conjunto vazio é uma
barreira de todo grafo hipoemparelhdvel.

Lema 2 (16.9, Bondy—Murty [7]). Seja v um vértice
essencial de um grafo G e seja B uma barreira de G —v. Entdo
BU{v} é uma barreira de G.

Lema 3 (16.10, Bondy-Murty [7]). Seja G um grafo
conexo no qual nenhum vértice é essencial. Entdo G é
hipoemparelhavel.

Prova Como nenhum vértice de G é essencial, G ndo
tem um emparelhamento perfeito. Resta mostrar que todo
subgrafo com um vértice removido tem um emparelhamento
perfeito. Caso isso ndo ocorra, entdo cada emparelhamento
maximo deixa pelo menos dois vértices descobertos. Assim,
basta mostrar que para qualquer emparelhamento méximo e
quaisquer dois vértices em Go emparelhamento cobre pelo
menos um destes vértices. Estabelecemos isto por inducdo
na distancia entre estes dois vértices.
Considere um emparelhamento maximo M e dois vértices
x e yem G. Seja xPy um caminho xy-mais curto em G.
Suponha que nem x nem y sdo cobertos por M. Como M
¢ maximo, P tem comprimento de pelo menos dois. Seja v
um vértice interno de P. Como xPv € mais curto que P, o
vértice v é coberto por M, por inducdo. Por outro lado, como
v é ndo essencial, G tem um emparelhamento méximo M’ que
nao cobre v. Além disso, como xPv e vPy sdo ambos mais
curtos que P, o emparelhamento M’ cobre tanto x quanto y,
novamente por indugdo.
O
O vértice interno v € coberto por M (pois xPv <
P), mas descoberto por M’ (pois v ndo é essencial).
Consequentemente, M’ cobre x e y.Os componentes de
G[MAM’] sdo caminhos e ciclos pares cujas arestas
pertencem alternadamente a M e M’ .
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Cada um dos vértices x, v,y € coberto por exatamente um
dos dois emparelhamentos e, portanto, € uma extremidade de
um dos caminhos. Como os caminhos sio pares, x € y ndo sao
extremidades do mesmo caminho. Além disso, os caminhos
que comecam em x € y ndo podem ambos terminar em v.

Podemos, portanto, supor que o caminho Q que comeca
em x ndo termina nem em v nem em y. Mas entdo o
emparelhamento M’AE(Q) é um emparelhamento maximo
que ndo cobre nem x nem v, contradizendo a hipétese de
inducdo e estabelecendo o lema.Também, deste teorema
podemos deduzir um dos mais importantes Coroldrios dos
teoremas de Tutte e Berge. Sendo ela, a formula de Tutte-
Berge.

Antes de entrar em célculos, serdo retomadas as defini¢des
ja dadas anteriormente e também, considere que o nimero
total de vértices de um grafo G, denotado por |V (G)|, pode
ser particionado em dois conjuntos: os vértices que sao
cobertos por um emparelhamento mdximo M e os vértices
que permanecem descobertos.

Seja o (G) = |M| o tamanho do emparelhamento maximo.
O ndmero de vértices cobertos €, portanto, 2a/(G). O
nimero de vértices ndo cobertos € definido como a
deficiéncia do grafo, denotada por def(G). Assim, temos a
identidade fundamental:

[V(G)| =20/ (G) + def(G) (1)
Como ja dito anteriormente, O Teorema de Tutte-Berge
estabelece que a barreira para um emparelhamento perfeito
reside na existéncia de um subconjunto S C V(G) cuja
remocdo cria mais componentes impares do que o préprio
|S| consegue cobrir. Cada componente impar em G — S deve,
necessariamente, ter pelo menos um vértice nao emparelhado
internamente ou conectado a um vértice de S.
No pior caso (0 que maximiza os vértices descobertos), a
deficiéncia é dada por:

def(G) = G-S5)—|S 2
ef(G) = max {o(G—$) - s @
Substituindo a equagdo (2) em (1), obtemos:

V(G)| =20/(G G-S5)—|S
V(6)| =20/(G) + max {o(G$) - S}

Para isolar o (G), reorganizamos a equagdo. Note que
subtrair o valor maximo de um conjunto é equivalente a
somar o valor minimo do termo negativo:

20/(G) = V(G)| ~ max {o(G—$) s}

20/(G) = min {|V(G)|—(o(G—S)—|S
(6) = min_{IV(G)|~(0(G—$) ~IsI)}

Finalmente, dividindo por 2, chegamos a férmula do
Coroldrio:

/ 1 .
o (G) = 2Sglvl(r};){lV(G)l ((G=8)-1s)} 3
Esta formulagdo confirma que o tamanho do em-
parelhamento maximo ¢é determinado pela "barreira" S
que minimiza a perda de vértices que ndo podem ser
emparelhados devido a estrutura topoldgica do grafo.
Isso nos leva ao seguinte coldrio:
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Corolario 1 (Bondy—Murty [7]). Para qualquer grafo G,

1
o/(G) == min {|V(G)|—(o(G—-S)—|S])}.
(6)= 3 min_{IV(G)| - (o(G~$)~s))}

O resultado em questdo fornece a férmula de Tutte-Berge
que caracteriza o tamanho de qualquer emparelhamento
maximo em relacdo as barreiras correspondentes que
sintetiza o Teorema de Tutte-Berge.

TEOREMA DE TUTTE

Teorema V.2 (Bondy-Murty [7]). Um grafo G tem um
emparelhamento perfeito se, e somente se,

o(G—S8) <|S| paratodoSCV(G). 4)

Prova Demonstraremos ambas as dire¢des da equivaléncia.

Necessidade (=):

Suponha que G possui um emparelhamento perfeito M.
Devemos mostrar que o(G — S) < |S| para todo S C V(G).

Seja S C V(G) um subconjunto arbitrdrio de vértices.
Considere o grafo G — S obtido apds a remog¢do de todos os
vértices de S e suas arestas incidentes. Seja C1,Cs,...,C 0
conjunto de componentes impares de G — §.

Para cada componente impar C;, o nimero de vértices
|V (C;)| é impar. Como M é um emparelhamento perfeito em
G, todos os vértices devem estar cobertos por M. Portanto,
cada componente impar C; deve ter pelo menos uma aresta de
M conectando um vértice interno de C; a um vértice em S (ja
que um nimero impar de vértices ndo pode ser perfeitamente
emparelhado internamente).

Formalmente: como |V (C;)| é impar e M é perfeito em
G, existe pelo menos um vértice v; € V(C;) tal que v; estd
emparelhado com algum vértice s; € S.

Como as arestas de M sdo disjuntas nos vértices (cada
vértice aparece em no maximo uma aresta), os vértices
51,82,...,5t € § que estdo emparelhados com vértices
das componentes impares devem ser distintos. Portanto,
precisamos de pelo menos k vértices em S para cobrir todas
as componentes impares.

Logo, k = 0o(G — S) < |S|, como querfamos demonstrar.

Suficiéncia (<):

Suponha, por contradi¢io, que o(G — S) < |S| para todo
S C V(G), mas G ndo possui emparelhamento perfeito.

Como G nio possui emparelhamento perfeito, seja M* um
emparelhamento médximo de G. Seja U C V(G) o conjunto
de vértices ndo cobertos por M*. Por hipétese, |[U| > 1 (se
|U| =0, entdo M* seria perfeito, contradi¢io).

Pelo Teorema de Tutte-Berge (Corolério 1), existe uma
barreira B C V(G) tal que

def(G) = o(G—B) — |B| =|U|. 5)
Como |U| > 1, temos:

o(G-B)—|B|>1 = o(G—B)>|B|+1>|B|.

Tomando S = B, obtemos que o(G —S) > |S|, o que
contradiz diretamente a hipétese de que o(G — S) < |S| para
todo S C V(G).

Portanto, nossa suposicdo inicial estava errada, e G deve
possuir um emparelhamento perfeito. U
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C (3 vértices)

C, (1 vértice) 0

Violacdo da condiciio de Tutte:

e Temos o(G —S) = 3 componentes impares: Ci,C2,C3
o Temos |S| = 2 vértices disponiveis

e Como o(G—S)=3>2=|§|, a condi¢io (4) é violada
Portanto, G nao possui emparelhamento perfeito

Figura 17: Ilustracdo da violagdo da condicdo de Tutte.

A condig¢ao de Tutte (4) € uma caracterizacio necessdria e
suficiente para a existéncia de emparelhamentos perfeitos em
grafos gerais, generalizando o Teorema de Hall para grafos
ndo-bipartidos. A desigualdade o(G —S) < |S| captura uma
restri¢do estrutural fundamental: cada componente impar
resultante da remocdo de S necessita de pelo menos um
vértice de S para completar o emparelhamento, e ndo pode
haver mais componentes impares do que vértices disponiveis
em S.

A Figura 17 ilustra um caso concreto onde a condigd@o
de Tutte falha. Os componentes C;,C>,C3 sdo componentes
impares de G — S, cada um contendo respectivamente 3, 1 e
3 vértices.

Para que exista um emparelhamento perfeito em G, cada
componente impar precisaria estar conectada a pelo menos
um vértice distinto em S (pois um conjunto com nimero
impar de vértices ndo pode ser perfeitamente emparelhado
internamente). Entretanto, como temos 3 componentes im-
pares mas apenas S| = 2 vértices em S, é matematicamente
impossivel satisfazer todos os emparelhamentos necessarios.

Este exemplo demonstra que a desigualdade o(G —
S) > |S| constitui uma obstrugdo estrutural a existéncia
de emparelhamentos perfeitos. Finalmente, é provada o
teorema de Tutte-Berge e o teorema de Tutte, que terdo
seus resultados novamente avaliados e pensados na préxima
sessdo.

VI. RESULTADOS E REFLEXOES

O trabalho realizado nesse artigo considerou grafos com
énfase na andlise de suas propriedades de emparelhamento.
Nos casos apresentados, foram mostrados cendrios que nio
admitem emparelhamento perfeito, de tal forma descobrindo
as condicdes que impedem sua ocorréncia. Nesse tema,
conceitos como componentes impares, barreiras e remogao
de vértices constituiram elementos fundamentais para a
formulag@o dos critérios analisados. De maneira especifica,
observou-se de que forma a remocao de um subconjunto S C
V(G) influencia o nimero de componentes impares de G —
S, fornecendo elementos fundamentais para a compreensio
estrutural do grafo.

O principal resultado identificado corresponde a car-
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acterizacdo dos grafos que permitem a existéncia de
um emparelhamento perfeito, conforme estabelecido pelo
Teorema de Tutte. Esse teorema determina que um grafo G
possui emparelhamento perfeito se, e somente se, para todo
subconjunto S C V(G), o ndmero de componentes impares
de G — S satisfaz a relagdo:

o(G-5)<|S|

O estudo comprova que a condicio de Tutte possui
natureza necessaria e suficiente, servindo como uma conexao
entre caracteristicas globais (como a presenca de um
emparelhamento médximo) e as propriedades locais que
resultam da particdo do grafo em seus componentes impares.
Adicionalmente, o Teorema de Tutte—Berge permitiu
quantificar o tamanho de um emparelhamento mdaximo
mesmo em situacdes nas quais o grafo ndo admite
emparelhamento perfeito. Essa quantidade é dada por:

o' (G) = %Sénvi(nG){lV(G)\ —(o(G=8) =S}

e a deficiéncia do grafo é definida por:

def(G) = shax (o(G—5)—18])

Esse resultado complementa o Teorema de Tutte ao oferecer
uma medida precisa do grau de impossibilidade estrutural
que impede o grafo de possuir um emparelhamento perfeito.
A andlise desses teoremas também permitiu identificar
aspectos adicionais cruciais para a compreensao da teoria de
emparelhamentos. Notou-se que as barreiras desempenham
um papel essencial na caracterizacdo dos grafos hipoem-
parelhdveis, contribuindo para a andlise de estruturas que
impossibilitam a constru¢cdo de emparelhamentos perfeitos.

Partindo para a perspectiva pedagdgica, o cardter alta-
mente figurativo das explicacdes do teorema e os exemplos
como o Buddy System,tabuleiro multilado foram propostos
como um material pedagégico para facilitar a compreensao
dos alunos. Estes exemplos sdo feitos trazendo objetos
e situagdes cotidianas como metdforas para a légica dos
teoremas, retirando do aluno a carga tedérica que os livros
didéticos possuem.

No caso do buddy system, o problema poderia ser
demonstrado de forma pratica dividindo a sala de aula
entre times azul e laranja, também escolhendo um aluno
como mediador. Dessa forma, o problema engajaria os
alunos a aprofundarem seus pensamentos com a camada da
experiéncia, escapando dos limite da teoria. Assim, 0 mesmo
tipo de atividade pode ser feita com o tabuleiro multilado,
dividindo a sala em grupos e distribuindo tabuleiros, o que
motiva o aluno a ver como os grafos estdo presentes no
dia a dia. Isso ndo significa porém, o completo abandono
da teoria, pois ferramentas como o GraphViewer[2] ja
citada anteriormente, permite a visualizacdo da prova dos
algoritmos o que aumenta a capacidade de aprendizado dos
alunos, como demonstrado no préprio estudo.

Com tudo isso posto , a secdo de consideragdes finais
apresentard o resumo dos resultados, cumprimento dos
objetivos, contribui¢des do estudo, limitacdes da pesquisa e
sugestdes futuras para pesquisas.
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VII. CONCLUSOES FINAIS

Os resultados obtidos permitiram caracterizar de maneira
precisa as condicdes estruturais que determinam a existéncia
ou inexisténcia de emparelhamentos perfeitos em grafos. O
Teorema de Tutte mostrou-se fundamental nesse processo,
uma vez que estabelece a relacdo entre o nuimero de
componentes impares e o tamanho dos subconjuntos de
vértices removidos.

Constatou-se, além disso, que o Teorema de Tutte—Berge
complementa essa andlise ao quantificar o tamanho de um
emparelhamento mdximo mesmo quando o grafo ndo admite
emparelhamento perfeito. Assim, verificou-se que ambos os
teoremas fornecem uma descri¢do abrangente e operacional
da estrutura dos emparelhamentos em grafos gerais.

Todos os objetivos tragados no inicio do estudo foram
alcangados. O objetivo geral, que consistia em entender as
condigdes que asseguram a existéncia de emparelhamentos
perfeitos, foi cumprido por meio do exame detalhado das
demonstragdes e implicacdes dos Teoremas de Tutte e
Tutte—Berge.

Os objetivos especificos também foram atendidos: o
papel dos componentes impares foi elucidado, a nogdo de
deficiéncia foi analisada como medida estrutural relevante,
o conceito de barreira foi discutido no contexto de grafos
hipoemparelhdveis e a relagdo entre esses elementos e a
formacdo de emparelhamentos maximos foi cuidadosamente
explorada. Esses resultados demonstram que a investigacio
se desenvolveu de acordo com o que havia sido proposto.

O estudo apresenta contribui¢des tedricas ao sistematizar
dois resultados centrais da teoria de emparelhamentos, desta-
cando as relacdes entre componentes impares, barreiras e
deficiéncia.A discussdo reforca a relevancia das formulagdes
de Tutte para a compreensdo estrutural dos grafos e evidencia
a profundidade de suas implica¢des matematicas.

Sob uma perspectiva pratica, os resultados discutidos
fornecem ferramentas analiticas importantes para problemas
de alocag@o, otimizacao, modelagem combinatdria e desenho
de redes. A aplicabilidade dos teoremas de Tutte em
diferentes dreas, como ciéncia da computacao e pesquisa op-
eracional, demonstra a utilidade das formulag¢des estudadas.

Este estudo apresenta como principal limitacdo seu
foco estritamente teérico, ndo abordando algoritmos com-
putacionais para o cdlculo de emparelhamentos maximos
nem implementagdes praticas relacionadas. Além disso,
nao foram consideradas generaliza¢des contemporaneas dos
resultados de Tutte, como fatores k-regulares ou formulagdes
baseadas em programacdo linear. Tais escolhas restringiram
deliberadamente o escopo do trabalho, mantendo-o alinhado
aos objetivos propostos, embora reduzam sua abrangéncia
aplicada.

Com base nas limitagdes observadas, temos algumas
possiveis pesquisas futuras. Uma possibilidade € explorar
algoritmos eficientes para encontrar emparelhamentos mé-
ximos e perfeitos, analisando seu desempenho em grafos
grandes ou especificos. Outra vertente, envolve estudar a
aplicacdo dos teoremas em classes particulares de grafos,
como bipartidos por exemplo.

Além disso, futuras pesquisas podem aprofundar as
generalizacdes dos resultados apresentados, investigando
fatores k-regulares, decomposi¢cdes estruturais e conexdes
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com métodos algébricos e combinatérios modernos. Esses
caminhos podem ampliar tanto o alcance tedrico quanto a
aplicabilidade prética dos conceitos discutidos.
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