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Resumo—Este artigo representa o relato de uma experiência pedagógica desenvolvido na disciplina de Teoria dos Grafos no curso de
Ciência da Computação, ofertada no semestre 2025/2 na Universidade Federal do Tocantins. A aplicação prática dos conceitos de grafos
aprendidos na disciplina partirá de uma reprodução da demonstração dos Teoremas de Tutte-Berge e de Tutte, os quais representaram
grandes avanços na pesquisa de emparelhamentos em grafos. Mais especificamente, o estudo da condição de existência de emparelhamento
máximo e perfeito em um grafo qualquer. Estes estudos, por sua vez, abriram as portas para a resolução de problemas cada vez mais
complexos, e a versatilidade de seus usos pode ser interpretada como complemento das conquistas trazidas pelo Teorema de Hall. A
explicação de tais conceitos será feita com base nas principais dificuldades encontradas pelo corpo estudantil, demonstrando de forma
didática e ilustrativa, por meio de imagens, a fim de reduzir a abstração inerente ao tema.

Palavras-chave—Teoria dos grafos, Teorema de Tutte-Berge, Teorema de Tutte, grafos máximos, barreiras, Seminários Acadêmicos,
Experiência Pedagógica.

Abstract—This paper reports on a pedagogical experience developed during the Graph Theory course within the Computer Science
program, offered in the second semester of 2025 at the Federal University of Tocantins. The practical application of the graph concepts
learned in the course involves reproducing the proofs of the Tutte-Berge and Tutte theorems, which represented major advancements in
graph matching research. More specifically, it focuses on the study of the existence conditions for maximum and perfect matchings in
arbitrary graphs. These studies, in turn, paved the way for solving increasingly complex problems, and the versatility of their applications
can be interpreted as a complement to the achievements brought by Hall’s Theorem. The explanation of these concepts is based on
the primary difficulties encountered by the student body, employing a didactic approach illustrated with images to reduce the inherent
abstraction of the subject matter.

Keywords—Graph Theory, Tutte-Berge Theorem, Tutte’s Theorem, Maximum Matchings, Barriers, Academic Seminars, Pedagogical
Experience.

I. INTRODUÇÃO

A teoria dos Grafos é uma das grandes protagonistas que
permeiam o mundo da computação, oferecendo uma

linguagem universal para a modelagem de relacionamentos
e estruturas complexas. O estudo de grafos não se
limita apenas à abstração matemática; ele permeia soluções
para problemas reais e contemporâneos, variando desde a
otimização de rotas em sistemas de logística e o design
de circuitos eletrônicos até a análise de redes sociais e a

Dados de contato: Artur Anderson Alves Corrêa, alves.artur@uft.edu.br

bioinformática. A capacidade de abstrair problemas do
mundo real em vértices e arestas, aplicando sobre eles
algoritmos eficientes de busca, fluxo e conexidade, é uma
habilidade indispensável para o cientista da computação
moderno.

Partindo deste contexto, o estudo dos emparelhamentos
nos grafos remonta a dezenas de anos repletas de contri-
buições. Redes sociais, problemas de atribuições de postos
de trabalho, alocações de recursos ,entre outros, são os
problemas que os emparelhamentos enfrentaram, contudo, o
foco deste artigo está no emparelhamento máximo, ou seja,
o emparelhamento de maior cardinalidade possível em um
grafo G. Como um dos maiores representantes do estudo do
emparelhamento máximo, em 1935, Philip Hall apresenta o
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teorema de Hall, popularmente conhecido como o “Teorema
do casamento”. Esse nome popular adveio da natureza do
problema que partia da seguinte metáfora: se todo grupo de
meninas em uma vila gostar coletivamente de pelo menos
tantos meninos quanto há meninas no grupo, então cada
menina pode se casar com um menino de quem ela gosta.

Mais formalmente, temos que o teorema de Hall
apresentou as ferramentas necessárias para as descobertas de
emparelhamentos máximos em grafos bipartidos.O Teorema
de Hall tem se mostrado uma ferramenta valiosa tanto na
teoria dos grafos quanto em outras áreas da matemática.
Ademais, em 1957 Claude Berge avançou o estudo do prob-
lema do emparelhamento máximo confirmando a relação
crucial entre caminhos M-aumentantes e emparelhamentos
máximos. Relação esta, já previamente apontada (mas não
provada), por Konig em 1931 e Pettersen em 1891. Herdando
estas contribuições, William Thomas Tutte avança com o
teorema de Tutte-Berge e o teorema de Tutte, descobrindo
uma fórmula do tamanho de um emparelhamento máximo
em um grafo qualquer e também uma condição de existência
para um emparelhamento perfeito.

Embora o Teorema de Hall tenha estabelecido um marco
fundamental, sua aplicabilidade direta restringe-se aos grafos
bipartidos, deixando uma lacuna significativa para estruturas
mais complexas onde a bipartição não é garantida. É nesse
cenário que a generalização proposta por Tutte se torna
revolucionária. Ao introduzir o conceito de componentes
ímpares resultantes da remoção de vértices, o Teorema de
Tutte (1947) fornece uma condição necessária e suficiente
para a existência de um emparelhamento perfeito em um
grafo qualquer, superando as limitações impostas pela
necessidade de bipartição. A fórmula de Tutte-Berge,
consolidada posteriormente em 1958, expande essa visão ao
quantificar a deficiência de um grafo, ou seja, determinar
o tamanho exato do emparelhamento máximo baseando-
se na estrutura topológica do grafo e na análise de seus
subconjuntos críticos, conhecidos como barreiras.

Assim, partindo do reconhecimento da importância desses
teoremas, o artigo se propõe à reprodução de resultados
já adquiridos através de uma perspectiva pedagógica e a
disseminação desse conhecimento aos alunos em escala
pessoal. Além disso, promove-se a introdução de todos
os conceitos necessários para o entendimento dos teoremas,
facilitando o acesso às nomenclaturas utilizadas no artigo.

Partindo para a estrutura, o artigo está organizado
da seguinte maneira: na Seção 2 (Preliminares), são
definidos os conceitos básicos, como grafo, conexidade,
componentes e emparelhamento, estabelecendo a notação e
o vocabulário necessários. Em seguida, a Seção 3 (Trabalhos
Relacionados) apresenta uma revisão bibliográfica, situando
este trabalho em relação a outras abordagens pedagógicas e
técnicas existentes na literatura. Avançando para a definição
do escopo, a Seção 4 (Descrição do Problema) detalha os
teoremas de Tutte-Berge e Tutte, bem como sua importância
histórica. Já na Seção 5 (Demonstração e Contribuições),
encontra-se o núcleo do trabalho, contendo as demonstrações
passo a passo dos teoremas escolhidos. Posteriormente,
a Seção 6 (Resultados e Reflexões) discute as dificuldades
encontradas durante o estudo, as estratégias de superação e
realiza discussões quanto aos resultados, e, por fim, a Seção
7 (Considerações Finais) sintetiza os aprendizados e conclui
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Figura 1: Grafo G ilustrando vértices (vi), arestas (ei), ciclos e
conectividade.

v1

Figura 2: Representação de um grafo trivial, composto por um
único vértice isolado.

(a) G1 (azul) (b) G2 (vermelho) (c) G1∆G2

Figura 3: Ilustração da diferença simétrica.

a temática.

II. PRELIMINARES

Um grafo G(V,E) é uma estrutura de dados formada por
dois conjuntos: um conjunto V chamado de vértices e um
conjunto E de elementos chamados de arestas; cada aresta
está associada a dois vértices: o primeiro é a ponta inicial
da aresta e o segundo é a ponta final. Pode-se imaginar que
um grafo é um mapa rodoviário idealizado: os vértices são
cidades A e B e as arestas são estradas. Considere o grafo 1:

Chamamos de subgrafo um grafo formado por um
conjunto de vértices e arestas do grafo original. Assim,
considere um subgrafo H com os conjuntos de vértices V =
{v1,v2,v3} e arestas E = {e3,e2,e1}. A partir do subgrafo
H(V,E), podemos definir o conceito de caminho: um
caminho em grafos é uma sequência de vértices interligados
por arestas, onde o vértice final de uma aresta é o vértice
inicial da próxima.

Ou seja, o conjunto V = {v1,v2} é um caminho conectado
pela aresta e1. Como extensão dessa ideia, temos o conceito
de ciclo: um ciclo em grafos é um caminho que começa
e termina no mesmo vértice, sem repetir outros vértices no
percurso. Ou seja, um exemplo de ciclo é V = {v1,v2,v3};
partindo de v1 pela aresta e3, partindo de v3 pela aresta e2 e
partindo de v2 pela aresta e1, temos um ciclo.

Continuamente, um grafo trivial é definido como um grafo
que possui exatamente um vértice e nenhuma aresta.

Matematicamente, se G= (V,E), então G é trivial se |V |=
1 e E = /0.Também, outro conceito que deve ser explicado
é a diferença simétrica. A diferença simétrica de dois
grafos(denotado por G1∆G2) é uma operação que resulta em
um novo grafo contendo apenas as arestas que são exclusivas
de cada um dos grafos originais.

O grafo resultante da figura 3 (c) contém apenas as arestas
exclusivas de G1 (topo) e exclusivas de G2 (fundo). A aresta
diagonal, presente em ambos, é removida.Além disso, um
grafo é conexo se existir um caminho entre qualquer par de
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v1 v2
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v5
X

Figura 4: Exemplo de grafo desconexo. O componente H à
esquerda é conexo internamente, mas o vértice v5 está isolado.

Figura 5: Exemplos de emparelhamento em um mesmo grafo G:
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(a) Emparelhamento não máximo (tamanho 2). Vértices v3 e v6 não foram
emparelhados.

v1

v2

v3

v4

v5

v6

(b) Emparelhamento máximo (tamanho 3). Neste caso, é um
emparelhamento perfeito.

vértices. Em outras palavras, é possível ir de qualquer vértice
para qualquer outro vértice usando apenas as arestas do
grafo. Se não for possível, o grafo é considerado desconexo.

Levando em conta o subgrafo H (a parte esquerda da
figura), é possível ir de qualquer vértice a outro através de
suas arestas; isso significa que o subgrafo H é conexo.

Porém, considerando a Figura 4, é impossível que v3
alcance v5. De fato, é impossível que qualquer vértice do
componente H chegue até v5, pois não há qualquer aresta
que ligue o vértice v5 aos outros vértices. Portanto, a figura
representa um grafo desconexo.

Seguindo adiante, iremos para o conceito de emparel-
hamento. Um emparelhamento é um conjunto de arestas
onde nenhuma delas compartilha o mesmo vértice. Em
termos simples, é uma seleção de conexões onde cada vértice
do grafo está ligado a, no máximo, um outro vértice.Isso
pode ser entendido como a formação de pares exclusivos
dentro de um grupo. Os vértices "selecionados", isto é,
incidentes a uma aresta emparelhada são chamados de M-
saturados. Caso não sejam, são chamados de M-insaturados.
A partir deste princípio, podemos definir emparelhamento
máximo que é a cardinalidade do maior emparelhamento
possível no grafo.

As arestas em vermelho e tracejadas indicam os pares

Figura 6: Emparelhamento máximo (e perfeito). As arestas em
vermelho e tracejadas indicam os pares exclusivos formados.

v1 v2 v3

v4

v5

b1 b2

(a) Grafo G com B = {b1,b2} destacado

v1 v2 v3

3 vértices (ímpar)

v4

1 vértice

v5

1 vértice

(b) G−B: três componentes ímpares

Figura 7: Representação de uma barreira. A remoção de B produz
mais componentes ímpares do que |B|.

v1 v2 v3 v4 v5 v6
M-Saturado M-Saturado

Caminho M-alternante (e M-aumentante)

exclusivos formados. Em 5(a) temos um conjunto válido,
mas que poderia ser maior. Em 5(b) temos o maior conjunto
possível para este grafo.Além disso, temos o conceito de
emparelhamento perfeito. Diz-se que um emparelhamento
M é perfeito se todo vértice do grafo estiver saturado por
M. Naturalmente, todo emparelhamento perfeito é máximo,
e todo emparelhamento máximo é maximal (isto é, não pode
ser estendido adicionando-se arestas).

Avançando, um vértice essencial é aquele que todo empar-
elhamento máximo o cobre. Com a ideia de emparelhamento
determinada, podemos partir para o conceito de barreira:
Formalmente, dado um grafo G, um subconjunto de vértices
B é chamado de barreira se a remoção de B divide o grafo
em um número de componentes ímpares (componentes de
um grafo com uma quantidade ímpar de vértices) maior que
o tamanho do próprio conjunto B.

Ademais, deve-se introduzir conceito de caminho M-
alternante e caminho M-aumentante. Seja G um grafo geral,
E o conjunto de arestas de G e M um emparelhamento de G.
Um caminho M-alternante em G é um caminho cujas arestas
pertencem alternadamente a E \M e a M. Um caminho M-
alternante cujos vértices extremos são ambos M-Saturados é
chamado caminho M-aumentante. Observe que um caminho
M-aumentante possui uma quantidade par de vértices.

Para a melhor compreensão das fórmulas apresentadas
a seguir no artigo, partimos das seguintes denominações:
A quantidade de arestas em um emparelhamento máximo
será denotada por α′(G). Além disso, denotaremos por
o(G) como o número de componentes ímpares do grafo.
Também, chamaremos de grafos hipoemparelháveis grafos
que não possuem emparelhamentos perfeitos, contudo,
qualquer subgrafo com qualquer vértice retirado possui
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(a) Grafo Hipoemparelhável G

Possui 5 vértices (ímpar).
Impossível ter emparelhamento perfeito.

v1

v2

v3 v4

v5 Remover v1

(b) Subgrafo G−{v1}

Restam 4 vértices (par).
Emparelhamento perfeito

v1

v2

v3 v4

v5

Figura 8: Ilustração de um grafo hipoemparelhável.

de f (G) = (o(G−S)−|S|)

Figura 9: Representação matemática da deficiência

emparelhamento perfeito.
Em (a), o grafo original C5 não tem emparelhamento

perfeito devido à paridade. Em (b), após a remoção do
vértice v1, o subgrafo restante admite um emparelhamento
perfeito (arestas vermelhas tracejadas).

O comportamento demonstrado se repete não importa qual
vértice seja retirado. Ademais, devemos definir a ideia
de deficiência. A deficiência mede quantos vértices não
podem ser pareados, no pior caso, se tentarmos formar
um emparelhamento. Note que o(G-S) é o número de
componentes ímpares após a remoção de S. Sabemos
que cada componente ímpar garante que pelo menos 1
vértice ficará sem par. Ou seja, a deficiência representa
quantos vértices ficam inevitavelmente "solitários" depois
que removemos S.

Com toda a introdução teórica feita, partiremos para
uma pequena revisão de literatura quanto aos problemas do
emparelhamento máximo e a evolução pedagógica do ensino
dos grafos.

III. TRABALHOS RELACIONADOS

A literatura voltada ao ensino de Ciência da Computação
e, especificamente, de Teoria dos Grafos, destaca que
a complexidade e o nível de abstração dos conceitos
exigem estratégias pedagógicas diversificadas. A pesquisa
bibliográfica realizada para este artigo identificou duas
frentes principais de trabalhos relacionados: (i) experiências
didáticas e ferramentas de apoio ao ensino de grafos e
computação teórica; e (ii) fundamentações teóricas modernas
sobre emparelhamento e os teoremas de Tutte.

No contexto de metodologias ativas, Lassance [1] relata
uma experiência similar à vivenciada na elaboração deste
artigo, aplicada à disciplina de Teoria da Computação. Os
autores destacam que a implementação de um Ciclo de
Seminários, focando em tópicos de alta complexidade como
NP-Completude, resultou na maximização da compreensão
dos estudantes e no desenvolvimento da autonomia inves-
tigativa. Este artigo dá continuidade a essa visão, utilizando
a metodologia de seminário para aprofundar o estudo de
emparelhamentos.

Para mitigar as dificuldades de abstração, diversas
abordagens visuais têm sido propostas. Santos et al.
[2] discutem a validação do sistema GraphViewer, uma
ferramenta de visualização de algoritmos focada no ensino
de provas por indução em Teoria dos Grafos. Os autores
evidenciam que a visualização passo a passo auxilia na
compreensão de demonstrações matemáticas rigorosas. A
ferramenta preenche uma lacuna específica ao focar em
"demonstrações por indução", uma área onde os alunos
historicamente têm grande dificuldade de visualização.

O estudo aplicou métricas rigorosas de Ganho de
Aprendizagem Absoluto (GAA) e Normalizado (GAN) para
medir a eficácia da ferramenta. Em realção ao aumento do
desempenho, no primeiro experimento realizado, o grupo
que utilizou o GraphViewer (grupo de teste) obteve um
Ganho de Aprendizagem Normalizado (GAN) de 25,11%
,quase o dobro do ganho obtido pelo grupo de controle,
e 13,92% que não usou a ferramenta. Na mesma linha,
em um trabalho anterior, Santos et al. [3] apresentaram
o ambiente TBC-GRAFOS, demonstrando que o uso de
softwares gráficos reduz índices de reprovação e agiliza a
compreensão de algoritmos clássicos, como os de busca e
caminho mínimo.

Além de softwares, abordagens lúdicas também se
mostram eficazes. Correa et al. [4] desenvolveram o jogo
de tabuleiro "Formígrafo", que utiliza a temática de um
formigueiro para motivar o aprendizado do Problema do
Caminho Mínimo. O trabalho reforça que a contextualização
lúdica facilita a introdução de conceitos abstratos de grafos
ponderados.

No que tange à fundamentação teórica específica deste
trabalho, a literatura apresenta evoluções nas demonstrações
clássicas de emparelhamento. Qu e West [5] publicaram
recentemente uma nova prova para a Fórmula Generalizada
de Tutte-Berge aplicada a subgrafos f -limitados. O trabalho
utiliza o Teorema do f -Fator de Tutte para estabelecer uma
relação min-max, simplificando a compreensão da fórmula
clássica quando f (v) = 1. Isso é, cada vértice pode estar
conectado a, no máximo, uma aresta dentro desse subgrafo.

Complementarmente, o livro do Douglas B. West[6] parte
de uma perspectiva mais tradicional através das técnicas de
provas matemáticas puras. Contudo, encara os problemas
de diversos ângulos, iniciando pelo mais tradicional, sendo
ele o método da indução de vértices provando a suficiência
do teorema de Tutte. Após isso, tomando uma via mais
original a resolução do teorema, provando-o pelo Teorema de
Hall. Aprofundando-se , a ideia geral é transformar o grafo
original em um grafo bipartido adequado e então aplicar Hall.

Tais contribuições denotam a importância de encarar a
teoria dos grafos com uma visão didática, a fim de facilitar
a compreensão de temas abstratos. Não só isso, mas a
exploração de novas maneiras de provar os teoremas mostra
que o problema do emparelhamento máximo é relevante até
hoje e a sua discussão e compreensão é necessária. Com isso
em mente, a seguir mudaremos o enfoque para o problema
em si, aprofundado nos teoremas de Tutte-Berge e Tutte.

IV. DESCRIÇÃO DO PROBLEMA

Começando com o primeiro dos teoremas escolhidos,
considerando um grafo G(S,E), sendo S o conjunto de
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α
′(G) =

1
2

min{v(G)− (o(G−S)−|S|)} tal que S⊂V

Figura 10: Fórmula de Tutte-Berge para emparelhamento
máximo.

Grupo Azul
(3 Amigos)

Grupo Laranja
(3 Amigos)

A1

A2

A3

P B1

B2

B3
Mediador (P)

Sem conexão direta

Figura 11: O Problema do Buddy System. A remoção de P cria
dois componentes ímpares isolados.

vértices de G e |S| a cardinalidade do conjunto, a fórmula
do teorema de Tutte-Berge é dada por:

A intuição por trás da Fórmula de Tutte-Berge baseia-se na
barreira estrutural causada pela paridade dos componentes.
Considere a remoção de um conjunto de vértices U ⊆ V . O
grafo resultante G−U se fragmenta em vários componentes
conexos.

Com relação à natureza do problema, ele é classificado
como um problema de otimização, pois determina o valor
máximo de α′(G). O objetivo é encontrar o conjunto U que
maximiza a deficiência para provar que o emparelhamento
não pode ser maior.

Diferente de muitos problemas em grafos gerais (como
Coloração ou Caminho Hamiltoniano) que são NP-Difíceis,
o problema do Emparelhamento Máximo pertence à classe
P (Tempo Polinomial). Um dos algoritmos mais eficientes
conhecidos para emparelhamento máximo em grafos gerais
é o algoritmo de Micali-Vazirani, cuja complexidade é
O(E
√

V ). Também, É possível resolver diversos problemas
com o teorema de Tutte-Berge. Um exemplo clássico é o
Problema da Formação de Equipes (Buddy System).

O problema consiste em formar o número máximo
possível de duplas (emparelhamento máximo) em um grupo
de pessoas, respeitando uma regra de compatibilidade:
uma dupla só pode ser formada se houver uma aresta de
"amizade" entre as duas pessoas.

A Figura 11 ilustra um cenário onde um emparelhamento
perfeito é impossível devido à estrutura social do grupo.
Temos 7 pessoas divididas em: O Grupo Azul é composto
por 3 pessoas (A1, A2 e A3), todas amigas entre si. O
Grupo Laranja também possui 3 pessoas (B1, B2 e B3), que
igualmente são amigas entre si. Por fim, há o Mediador P,
uma pessoa central que possui uma relação de amizade com
integrantes de ambos os grupos.

Há uma incompatibilidade total entre os grupos: ninguém
do Azul é amigo de alguém do Laranja.

Análise via Tutte-Berge: Se removermos o conjunto U =
{P}, o grafo se quebra em dois componentes conexos (os
dois grupos), ambos com um número ímpar de vértices. O

o(G−S)≤ |S|, ∀S⊆V

Figura 12: A condição do Teorema de Tutte.

u ← S

v1 v2 v3

o(G−S) = 3 > |S|= 1
Sem Emparelhamento Perfeito

Figura 13: Grafo K1,3 violando a condição de Tutte.

X

X
Dominó

Contagem Final:
Brancas: 8 Pretas: 6

Impossível cobrir!

Figura 14: O Tabuleiro Mutilado. A remoção de dois cantos da
mesma cor quebra a paridade necessária.

mediador único não é suficiente para cobrir a demanda desses
componentes.

Agora, analisando o Teorema de Tutte, ele responde se
o grafo possui um emparelhamento perfeito. A condição é
apresentada na Figura 12:

Assim, um grafo possui um emparelhamento perfeito se
e somente se a condição acima for cumprida para todo
subconjunto S. A Figura 13 mostra uma violação simples.

Seguindo, o problema de encontrar um emparelhamento
perfeito pertence à classe P. Um dos algoritmos fundamentais
é o Algoritmo de Blossom (Edmonds, 1965), que lida com
"ciclos ímpares" contraindo-os em super-vértices.

Para entender a importância da paridade, analisamos
o problema do tabuleiro de xadrez 4 × 4 "mutilado".
Removemos duas casas de cantos opostos (digamos, duas
pretas). Restam 14 casas: 8 brancas e 6 pretas (Figura 14).

Para que um emparelhamento perfeito existisse (cobertura
por dominós), precisaríamos de um número igual de casas
brancas e pretas, pois cada dominó consome um par de cores
diferentes. Como restaram 8 casas brancas e apenas 6 pretas,
é impossível cobrir o tabuleiro. Com toda a formulação
teórica dos teoremas explicada, podemos resumir e comparar
ambos através das seguintes tabelas:

Concluindo, o teorema de Tutte e Tutte-Berge possuem
diversos paralelos téoricos que serão a seguir, aprofundados
e demonstrados.
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TABELA 1: RESUMO ESTRUTURAL: TEOREMAS DE TUTTE E

TUTTE–BERGE

Problema Caracterização de Emparelhamentos
Perfeitos (Tutte) e de Emparelhamentos
Máximos (Tutte–Berge).

Input Estrutura do grafo G: componentes
ímpares após remoção de subconjuntos
S⊆V (G); método estrutural baseado em
princípios Min–Max.

Output Tutte: G possui emparelhamento per-
feito se o(G− S) ≤ |S| para todo S ⊆
V (G).
Tutte–Berge: o tamanho máximo do
emparelhamento é 1

2

(
|V (G)|−def(G)

)
.

Resumo Caracterização Min–Max: relaciona
componentes ímpares, barreiras e defi-
ciência à estrutura de emparelhamentos;
fornece condição necessária e suficiente
para emparelhamentos perfeitos e fór-
mula exata para emparelhamentos máxi-
mos.

TABELA 2: COMPARATIVO ENTRE OS TEOREMAS DE TUTTE E

TUTTE–BERGE

Aspecto Tutte Tutte–Berge
Objetivo principal Determinar a existência

de um emparelhamento
perfeito.

Determinar o tamanho
máximo de um empar-
elhamento em qualquer
grafo.

Caracterização Existencial: condições
para a existência de em-
parelhamento perfeito.

Quantitativa: fornece a
cardinalidade de um em-
parelhamento máximo.

Conceitos
estruturais

Componentes ímpares
e emparelhamentos
perfeitos.

Componentes ímpares,
emparelhamentos
máximos e barreiras.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

As demonstrações que serão apresentadas são aquelas
descritas no livro Graduate Texts in Mathematics, conforme
citam Bondy e Murty [7] a respeito do Teorema de Tutte-
Berge e do Teorema de Tutte. Os teoremas em questão
são a estrutura base para caracterizar emparelhamentos
máximos e perfeitos apresentando condições necessárias e
suficientes. Além disso, as demonstrações a seguir seguem
um tratamento bem próximo do exposto por Bondy e Murty,
mas apresentando-os de maneira mais clara.

O TEOREMA DE TUTTE-BERGE

Teorema V.1 (Bondy–Murty [7]). O TEOREMA DE
TUTTE-BERGE
Todo grafo tem uma barreira.

Em um grafo bipartido, uma cobertura mínima constitui
uma barreira do grafo. Porém, geralmente todo grafo tem
uma barreira. Este fato é conhecido como o Teorema de
Tutte-Berge. Entretanto, lembre-se de que um vértice v de um
grafo G é essencial se todo emparelhamento máximo cobre
v, e não essencial caso contrário. Assim, v é essencial se
α′(G−v) = α′(G)−1 e não essencial se α′(G−v) = α′(G).
Dessa maneira, temos os seguintes lemas auxiliares para o
teorema:

x
v

y
xPv vPy

M
/∈M /∈M

M′ M′
/∈M′

M

M′

Figura 15: Ilustração da indução com o emparelhamento M′

cobrindo tanto x quanto y

x z
Q

y v

Legenda: M

M′

Figura 16: Ilustração dos componentes de G[M∆M′].

Lema 1 (16.8, Bondy–Murty [7]). O conjunto vazio é uma
barreira de todo grafo hipoemparelhável.

Lema 2 (16.9, Bondy–Murty [7]). Seja v um vértice
essencial de um grafo G e seja B uma barreira de G−v. Então
B∪{v} é uma barreira de G.

Lema 3 (16.10, Bondy–Murty [7]). Seja G um grafo
conexo no qual nenhum vértice é essencial. Então G é
hipoemparelhável.

Prova Como nenhum vértice de G é essencial, G não
tem um emparelhamento perfeito. Resta mostrar que todo
subgrafo com um vértice removido tem um emparelhamento
perfeito. Caso isso não ocorra, então cada emparelhamento
máximo deixa pelo menos dois vértices descobertos. Assim,
basta mostrar que para qualquer emparelhamento máximo e
quaisquer dois vértices em Go emparelhamento cobre pelo
menos um destes vértices. Estabelecemos isto por indução
na distância entre estes dois vértices.

Considere um emparelhamento máximo M e dois vértices
x e y em G. Seja xPy um caminho xy-mais curto em G.
Suponha que nem x nem y são cobertos por M. Como M
é máximo, P tem comprimento de pelo menos dois. Seja v
um vértice interno de P. Como xPv é mais curto que P, o
vértice v é coberto por M, por indução. Por outro lado, como
v é não essencial, G tem um emparelhamento máximo M′ que
não cobre v. Além disso, como xPv e vPy são ambos mais
curtos que P, o emparelhamento M′ cobre tanto x quanto y,
novamente por indução.

�
O vértice interno v é coberto por M (pois xPv <

P), mas descoberto por M′ (pois v não é essencial).
Consequentemente, M′ cobre x e y.Os componentes de
G[M∆M′] são caminhos e ciclos pares cujas arestas
pertencem alternadamente a M e M′ .
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Cada um dos vértices x,v,y é coberto por exatamente um
dos dois emparelhamentos e, portanto, é uma extremidade de
um dos caminhos. Como os caminhos são pares, x e y não são
extremidades do mesmo caminho. Além disso, os caminhos
que começam em x e y não podem ambos terminar em v.

Podemos, portanto, supor que o caminho Q que começa
em x não termina nem em v nem em y. Mas então o
emparelhamento M′∆E(Q) é um emparelhamento máximo
que não cobre nem x nem v, contradizendo a hipótese de
indução e estabelecendo o lema.Também, deste teorema
podemos deduzir um dos mais importantes Corolários dos
teoremas de Tutte e Berge. Sendo ela, a formula de Tutte-
Berge.

Antes de entrar em cálculos, serão retomadas as definições
já dadas anteriormente e também, considere que o número
total de vértices de um grafo G, denotado por |V (G)|, pode
ser particionado em dois conjuntos: os vértices que são
cobertos por um emparelhamento máximo M e os vértices
que permanecem descobertos.

Seja α′(G) = |M| o tamanho do emparelhamento máximo.
O número de vértices cobertos é, portanto, 2α′(G). O
número de vértices não cobertos é definido como a
deficiência do grafo, denotada por def(G). Assim, temos a
identidade fundamental:

|V (G)|= 2α
′(G)+def(G) (1)

Como já dito anteriormente, O Teorema de Tutte-Berge
estabelece que a barreira para um emparelhamento perfeito
reside na existência de um subconjunto S ⊆ V (G) cuja
remoção cria mais componentes ímpares do que o próprio
|S| consegue cobrir. Cada componente ímpar em G−S deve,
necessariamente, ter pelo menos um vértice não emparelhado
internamente ou conectado a um vértice de S.

No pior caso (o que maximiza os vértices descobertos), a
deficiência é dada por:

def(G) = max
S⊆V (G)

{o(G−S)−|S|} (2)

Substituindo a equação (2) em (1), obtemos:

|V (G)|= 2α
′(G)+ max

S⊆V (G)
{o(G−S)−|S|}

Para isolar α′(G), reorganizamos a equação. Note que
subtrair o valor máximo de um conjunto é equivalente a
somar o valor mínimo do termo negativo:

2α
′(G) = |V (G)|− max

S⊆V (G)
{o(G−S)−|S|}

2α
′(G) = min

S⊆V (G)
{|V (G)|− (o(G−S)−|S|)}

Finalmente, dividindo por 2, chegamos à fórmula do
Corolário:

α
′(G) =

1
2

min
S⊆V (G)

{|V (G)|− (o(G−S)−|S|)} (3)

Esta formulação confirma que o tamanho do em-
parelhamento máximo é determinado pela "barreira" S
que minimiza a perda de vértices que não podem ser
emparelhados devido à estrutura topológica do grafo.

Isso nos leva ao seguinte colário:

Corolário 1 (Bondy–Murty [7]). Para qualquer grafo G,

α
′(G) =

1
2

min
S⊆V (G)

{|V (G)|− (o(G−S)−|S|)} .

O resultado em questão fornece a fórmula de Tutte-Berge
que caracteriza o tamanho de qualquer emparelhamento
máximo em relação as barreiras correspondentes que
sintetiza o Teorema de Tutte-Berge.

TEOREMA DE TUTTE

Teorema V.2 (Bondy–Murty [7]). Um grafo G tem um
emparelhamento perfeito se, e somente se,

o(G−S)≤ |S| para todo S⊆V (G). (4)

Prova Demonstraremos ambas as direções da equivalência.

Necessidade (⇒):
Suponha que G possui um emparelhamento perfeito M.

Devemos mostrar que o(G−S)≤ |S| para todo S⊆V (G).
Seja S ⊆ V (G) um subconjunto arbitrário de vértices.

Considere o grafo G− S obtido após a remoção de todos os
vértices de S e suas arestas incidentes. Seja C1,C2, . . . ,Ck o
conjunto de componentes ímpares de G−S.

Para cada componente ímpar Ci, o número de vértices
|V (Ci)| é ímpar. Como M é um emparelhamento perfeito em
G, todos os vértices devem estar cobertos por M. Portanto,
cada componente ímpar Ci deve ter pelo menos uma aresta de
M conectando um vértice interno de Ci a um vértice em S (já
que um número ímpar de vértices não pode ser perfeitamente
emparelhado internamente).

Formalmente: como |V (Ci)| é ímpar e M é perfeito em
G, existe pelo menos um vértice vi ∈ V (Ci) tal que vi está
emparelhado com algum vértice si ∈ S.

Como as arestas de M são disjuntas nos vértices (cada
vértice aparece em no máximo uma aresta), os vértices
s1,s2, . . . ,sk ∈ S que estão emparelhados com vértices
das componentes ímpares devem ser distintos. Portanto,
precisamos de pelo menos k vértices em S para cobrir todas
as componentes ímpares.

Logo, k = o(G−S)≤ |S|, como queríamos demonstrar.

Suficiência (⇐):
Suponha, por contradição, que o(G− S) ≤ |S| para todo

S⊆V (G), mas G não possui emparelhamento perfeito.
Como G não possui emparelhamento perfeito, seja M∗ um

emparelhamento máximo de G. Seja U ⊆ V (G) o conjunto
de vértices não cobertos por M∗. Por hipótese, |U | ≥ 1 (se
|U |= 0, então M∗ seria perfeito, contradição).

Pelo Teorema de Tutte-Berge (Corolário 1), existe uma
barreira B⊆V (G) tal que

def(G) = o(G−B)−|B|= |U |. (5)

Como |U | ≥ 1, temos:

o(G−B)−|B| ≥ 1 ⇒ o(G−B)≥ |B|+1 > |B|.

Tomando S = B, obtemos que o(G − S) > |S|, o que
contradiz diretamente a hipótese de que o(G−S)≤ |S| para
todo S⊆V (G).

Portanto, nossa suposição inicial estava errada, e G deve
possuir um emparelhamento perfeito. �
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S (Barreira)

|S|= 2

s1

s2

C1 (3 vértices)

C2 (1 vértice) C3 (3 vértices)

Violação da condição de Tutte:
• Temos o(G−S) = 3 componentes ímpares: C1,C2,C3
• Temos |S|= 2 vértices disponíveis
• Como o(G−S) = 3 > 2 = |S|, a condição (4) é violada
Portanto, G não possui emparelhamento perfeito

Figura 17: Ilustração da violação da condição de Tutte.

A condição de Tutte (4) é uma caracterização necessária e
suficiente para a existência de emparelhamentos perfeitos em
grafos gerais, generalizando o Teorema de Hall para grafos
não-bipartidos. A desigualdade o(G− S) ≤ |S| captura uma
restrição estrutural fundamental: cada componente ímpar
resultante da remoção de S necessita de pelo menos um
vértice de S para completar o emparelhamento, e não pode
haver mais componentes ímpares do que vértices disponíveis
em S.

A Figura 17 ilustra um caso concreto onde a condição
de Tutte falha. Os componentes C1,C2,C3 são componentes
ímpares de G− S, cada um contendo respectivamente 3, 1 e
3 vértices.

Para que exista um emparelhamento perfeito em G, cada
componente ímpar precisaria estar conectada a pelo menos
um vértice distinto em S (pois um conjunto com número
ímpar de vértices não pode ser perfeitamente emparelhado
internamente). Entretanto, como temos 3 componentes ím-
pares mas apenas |S| = 2 vértices em S, é matematicamente
impossível satisfazer todos os emparelhamentos necessários.

Este exemplo demonstra que a desigualdade o(G −
S) > |S| constitui uma obstrução estrutural à existência
de emparelhamentos perfeitos. Finalmente, é provada o
teorema de Tutte-Berge e o teorema de Tutte, que terão
seus resultados novamente avaliados e pensados na próxima
sessão.

VI. RESULTADOS E REFLEXÕES

O trabalho realizado nesse artigo considerou grafos com
ênfase na análise de suas propriedades de emparelhamento.
Nos casos apresentados, foram mostrados cenários que não
admitem emparelhamento perfeito, de tal forma descobrindo
as condições que impedem sua ocorrência. Nesse tema,
conceitos como componentes ímpares, barreiras e remoção
de vértices constituíram elementos fundamentais para a
formulação dos critérios analisados. De maneira específica,
observou-se de que forma a remoção de um subconjunto S⊆
V (G) influencia o número de componentes ímpares de G−
S, fornecendo elementos fundamentais para a compreensão
estrutural do grafo.

O principal resultado identificado corresponde à car-

acterização dos grafos que permitem a existência de
um emparelhamento perfeito, conforme estabelecido pelo
Teorema de Tutte. Esse teorema determina que um grafo G
possui emparelhamento perfeito se, e somente se, para todo
subconjunto S ⊆ V (G), o número de componentes ímpares
de G−S satisfaz a relação:

o(G−S)≤ |S|

O estudo comprova que a condição de Tutte possui
natureza necessária e suficiente, servindo como uma conexão
entre características globais (como a presença de um
emparelhamento máximo) e as propriedades locais que
resultam da partição do grafo em seus componentes ímpares.

Adicionalmente, o Teorema de Tutte–Berge permitiu
quantificar o tamanho de um emparelhamento máximo
mesmo em situações nas quais o grafo não admite
emparelhamento perfeito. Essa quantidade é dada por:

α
′(G) =

1
2

min
S⊆V (G)

{|V (G)|− (o(G−S)−|S|)} .

e a deficiência do grafo é definida por:

def(G) = max
S⊆V (G)

(o(G−S)−|S|)

Esse resultado complementa o Teorema de Tutte ao oferecer
uma medida precisa do grau de impossibilidade estrutural
que impede o grafo de possuir um emparelhamento perfeito.
A análise desses teoremas também permitiu identificar
aspectos adicionais cruciais para a compreensão da teoria de
emparelhamentos. Notou-se que as barreiras desempenham
um papel essencial na caracterização dos grafos hipoem-
parelháveis, contribuindo para a análise de estruturas que
impossibilitam a construção de emparelhamentos perfeitos.

Partindo para a perspectiva pedagógica, o caráter alta-
mente figurativo das explicações do teorema e os exemplos
como o Buddy System,tabuleiro multilado foram propostos
como um material pedagógico para facilitar a compreensão
dos alunos. Estes exemplos são feitos trazendo objetos
e situações cotidianas como metáforas para a lógica dos
teoremas, retirando do aluno a carga teórica que os livros
didáticos possuem.

No caso do buddy system, o problema poderia ser
demonstrado de forma prática dividindo a sala de aula
entre times azul e laranja, também escolhendo um aluno
como mediador. Dessa forma, o problema engajaria os
alunos a aprofundarem seus pensamentos com a camada da
experiência, escapando dos limite da teoria. Assim, o mesmo
tipo de atividade pode ser feita com o tabuleiro multilado,
dividindo a sala em grupos e distribuindo tabuleiros, o que
motiva o aluno a ver como os grafos estão presentes no
dia a dia. Isso não significa porém, o completo abandono
da teoria, pois ferramentas como o GraphViewer[2] já
citada anteriormente, permite a visualização da prova dos
algoritmos o que aumenta a capacidade de aprendizado dos
alunos, como demonstrado no próprio estudo.

Com tudo isso posto , a seção de considerações finais
apresentará o resumo dos resultados, cumprimento dos
objetivos, contribuições do estudo, limitações da pesquisa e
sugestões futuras para pesquisas.
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VII. CONCLUSÕES FINAIS

Os resultados obtidos permitiram caracterizar de maneira
precisa as condições estruturais que determinam a existência
ou inexistência de emparelhamentos perfeitos em grafos. O
Teorema de Tutte mostrou-se fundamental nesse processo,
uma vez que estabelece a relação entre o número de
componentes ímpares e o tamanho dos subconjuntos de
vértices removidos.

Constatou-se, além disso, que o Teorema de Tutte–Berge
complementa essa análise ao quantificar o tamanho de um
emparelhamento máximo mesmo quando o grafo não admite
emparelhamento perfeito. Assim, verificou-se que ambos os
teoremas fornecem uma descrição abrangente e operacional
da estrutura dos emparelhamentos em grafos gerais.

Todos os objetivos traçados no início do estudo foram
alcançados. O objetivo geral, que consistia em entender as
condições que asseguram a existência de emparelhamentos
perfeitos, foi cumprido por meio do exame detalhado das
demonstrações e implicações dos Teoremas de Tutte e
Tutte–Berge.

Os objetivos específicos também foram atendidos: o
papel dos componentes ímpares foi elucidado, a noção de
deficiência foi analisada como medida estrutural relevante,
o conceito de barreira foi discutido no contexto de grafos
hipoemparelháveis e a relação entre esses elementos e a
formação de emparelhamentos máximos foi cuidadosamente
explorada. Esses resultados demonstram que a investigação
se desenvolveu de acordo com o que havia sido proposto.

O estudo apresenta contribuições teóricas ao sistematizar
dois resultados centrais da teoria de emparelhamentos, desta-
cando as relações entre componentes ímpares, barreiras e
deficiência.A discussão reforça a relevância das formulações
de Tutte para a compreensão estrutural dos grafos e evidencia
a profundidade de suas implicações matemáticas.

Sob uma perspectiva prática, os resultados discutidos
fornecem ferramentas analíticas importantes para problemas
de alocação, otimização, modelagem combinatória e desenho
de redes. A aplicabilidade dos teoremas de Tutte em
diferentes áreas, como ciência da computação e pesquisa op-
eracional, demonstra a utilidade das formulações estudadas.

Este estudo apresenta como principal limitação seu
foco estritamente teórico, não abordando algoritmos com-
putacionais para o cálculo de emparelhamentos máximos
nem implementações práticas relacionadas. Além disso,
não foram consideradas generalizações contemporâneas dos
resultados de Tutte, como fatores k-regulares ou formulações
baseadas em programação linear. Tais escolhas restringiram
deliberadamente o escopo do trabalho, mantendo-o alinhado
aos objetivos propostos, embora reduzam sua abrangência
aplicada.

Com base nas limitações observadas, temos algumas
possíveis pesquisas futuras. Uma possibilidade é explorar
algoritmos eficientes para encontrar emparelhamentos má-
ximos e perfeitos, analisando seu desempenho em grafos
grandes ou específicos. Outra vertente, envolve estudar a
aplicação dos teoremas em classes particulares de grafos,
como bipartidos por exemplo.

Além disso, futuras pesquisas podem aprofundar as
generalizações dos resultados apresentados, investigando
fatores k-regulares, decomposições estruturais e conexões

com métodos algébricos e combinatórios modernos. Esses
caminhos podem ampliar tanto o alcance teórico quanto a
aplicabilidade prática dos conceitos discutidos.
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