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Resumo—A teoria dos grafos, impulsionada historicamente pela conjectura de Francis Guthrie em 1852 e pela subsequente prova do
Teorema das Quatro Cores, evoluiu de curiosidades topoldgicas para ferramentas essenciais de modelagem. Este trabalho foca especificamente
no Problema de Coloragdo de Arestas, abordando-o sob uma perspectiva histdrica e rigorosamente formal. Inicialmente, o texto contextualiza
a transi¢@o dos problemas de coloracido de mapas para a coloragdo de arestas, destacando sua relevancia pratica em otimizacdo de redes e
agendamento. O nicleo da discussdo aprofunda-se na andlise do Teorema de Vizing, que estabelece limites precisos para o indice cromdtico
de grafos simples, situando-o entre o grau maximo e o grau maximo acrescido de uma unidade. Serdo dissecados os principais lemas e as
condicdes estruturais que determinam se um grafo pertence a Classe 1 ou Classe 2. Ao explorar a complexidade inerente a essa classificag@o,
o0 artigo serve como uma referéncia pedagégica, elucidando como restrigdes locais de adjacéncia ditam o comportamento global em sistemas
complexos.
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Abstract—Graph theory, historically propelled by Francis Guthrie’s 1852 conjecture and the eventual proof of the Four Color Theorem, has
evolved from a collection of topological curiosities into a set of essential modeling tools. This work specifically targets the Edge Coloring
Problem, addressing it through a lens that is both historical and rigorously formal. Initially, the text contextualizes the conceptual shift from
map coloring to edge coloring, emphasizing its practical applicability in critical areas such as network optimization and scheduling. The
core discussion deepens into an analysis of Vizing’s Theorem, which establishes precise boundaries for the chromatic index of simple graphs,
positioning it strictly between the maximum degree and the maximum degree plus one. Key lemmas and structural conditions determining
whether a graph falls into Class 1 or Class 2 are dissected. By exploring the inherent complexity of this classification, this article serves as a
pedagogical reference, clarifying how local adjacency constraints dictate global behavior in complex systems.

Keywords—Graph Coloring, Four Color Problem, Vizing’s Theorem, Combinatorial Optimization, Modeling.

mundo fisico, revelando a estrutura légica subjacente aos
problemas de conexdo e conflito.

I. INTRODUCAO

Teoria dos Grafos é uma ferramenta de modelagem
versdtil, oriunda da matematica, mas de escopo
fundamental para a ciéncia da computagdo. Sua capacidade
de representar e modelar relacdes complexas em sistemas
diversos — desde redes neurais e clusters de computadores até
a otimizacdo logistica de trabalhadores e rotas aéreas — a torna

fascinante e diretamente aplicdvel a problemas cotidianos.

Ao traduzir situagcdes reais para uma linguagem matemaética
precisa, os grafos permitem abstrair a complexidade do
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Nesse contexto, o estudo de coloracdio em grafos remonta
ao século XIX, originado pelo que pode ser visto como o
problema gerador da 4rea: o famoso “Problema das Quatro
Cores”. A histdria inicia-se em 1852 com o matemético e
botanico sul-africano Francis Guthrie. Ao tentar colorir mapas
de condados da Inglaterra, Guthrie observou que talvez fosse
possivel colorir qualquer mapa plano utilizando apenas quatro
cores, de modo que regides vizinhas ndo compartilhassem a
mesma cor. Embora a conjectura tenha sido formulada em
correspondéncias privadas naquela época, ela foi formalmente
apresentada a comunidade cientifica por Cayley em 1879 [1]
e discutida pelo préprio Guthrie em nota posterior [2]. A
curiosidade inicial deflagrou uma das mais longas e produtivas
buscas por uma prova matemdtica.
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A primeira prova da conjectura surgiu apenas em 1879,
apresentada pelo matemadtico inglés Alfred Kempe [3]. Aceita
por uma década, a demonstragdo foi refutada em 1890, quando
erros estruturais foram encontrados. Diversas solu¢des foram
propostas subsequentemente, mas a confirmacgdo definitiva
da conjectura ocorreu somente em 1976, pelos matematicos
Kenneth Appel e Wolfgang Haken, da Universidade de
Illinois [4, 5]. Contudo, parte dessa prova utilizava
computadores para verificar milhares de casos, fato que gerou
resisténcia na comunidade matematica da época, que ansiava
por uma demonstracio puramente analitica.

Embora o "Problema das Quatro Cores" trate essencial-
mente da colorag@o de vértices (ou faces), ele pavimentou
o caminho para variantes igualmente profundas, como o
Problema de Coloragdo de Arestas, foco central deste trabalho.
Diferente de colorir regides, colorir arestas busca atribuir
rétulos as conexdes de um grafo de tal forma que arestas
incidentes a um mesmo vértice ndo compartilhem a mesma
cor. Esse tipo de modelagem ¢ vital para cendrios onde o
conflito ndo estd nos objetos (vértices), mas na utilizacao
simultinea de canais de comunica¢do ou horérios, sendo o
indice cromdtico o parametro que define a eficiéncia mdxima
dessa alocagao.

Para além do panorama histdrico internacional, aparece
com prestigio também a contribuicio brasileira no desenvolvi-
mento da Teoria dos Grafos. O Brasil consolidou-se como
um polo de exceléncia mundial nesta drea, impulsionado
por pesquisadores cujos trabalhos sao referéncia na literatura
contemporanea. Dentre eles, destacam-se as contribui¢des de
Jayme Luiz Szwarcfiter [6], fundamental na estruturagdo da
pesquisa em algoritmos e grafos no pais; Cldudio L. Lucchesi
[7], renomado por seus trabalhos seminais, incluindo o célebre
Teorema de Lucchesi-Younger em grafos direcionados; e
Nelson Maculan [8], uma referéncia global em otimizacdo
combinatdria. Contextualizar o problema de coloracio de
arestas envolve, portanto, reconhecer essa robusta tradicao
académica nacional que alia rigor tedrico a aplicagcdes
computacionais de ponta.

Neste artigo queremos portanto demonstrar de forma
pedagdgica o problema de coloracdo de arestas, assegurando
ao leitor compreender a evolugdo desses conceitos, culmi-
nando na andlise de dois pilares teéricos fundamentais, o
Teorema de Kénig [9], que soluciona o problema para grafos
bipartidos relacionando-o ao grau maximo, e o Teorema de
Vizing [10], que estabelece os limites estritos para grafos
simples. Ao detalhar essas condicdes, busca-se absorver a
robustez matematica que sustenta a classificagdo dos grafos e
suas aplicagdes contemporaneas.

A seguir abordaremos o tépico por entre quatro secdes
subsequentes. A Secdo II estabelece as definigdes
preliminares e a notagdo fundamental, introduzindo conceitos
estruturais como grau maximo e emparelhamento. Na
Secdo III, exploramos a natureza do problema, discutindo
intuitivamente os limites crométicos e apresentando os lemas
auxiliares de Bondy e Murty que fundamentam a otimizagao
de cores. A Segdo IV é dedicada a demonstracdo formal
dos dois pilares da teoria: o Teorema de Kdnig para grafos
bipartidos e o Teorema de Vizing para grafos simples. Por
fim, a Secdo V apresenta as conclusdes e uma sintese dos
resultados obtidos.
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Figura 1: Representacio Gréfica do Grafo Gj.

II. PRELIMINARES

Para compreender a profundidade do Problema de Coloracao
de Arestas, € necessario primeiro estabelecer a linguagem
comum da Teoria dos Grafos. Nesta se¢do, definimos as
estruturas fundamentais, as propriedades de conectividade e
os parametros que governam a complexidade desses sistemas.
As defini¢des foram extraidas de [6, 11].

Formalmente, um grafo G = (V,E) é uma estrutura
matemadtica composta por dois conjuntos fundamentais: um
conjunto ndo vazio V de vértices e um conjunto E de pares
nao-ordenados de vértices, denominados arestas. Denotamos
uma aresta qualquer e, como e = (a,b), onde a e b sdo vértices
do grafo e dizemos que a e b sdo extremos(ou extremidades)
da aresta e. Ainda, a aresta e € dita incidente aos vértices a e
b [6].

Neste contexto, os vértices (V) representam os objetos
ou entidades do sistema, como computadores, pessoas ou
intersecdes, enquanto as arestas (E) representam as conexoes
ou relagdes diretas entre esses objetos.

Um grafo qualquer, digamos G, pode ser representado de
varias maneiras, por exemplo, de forma geométrica como
pode ser visto na Figura I. Cada vértice é simbolizado
com um circulo, e os segmentos de retas que os conectam
sdo as arestas do grafo. Denotamos como V(G) e E(G) o
conjunto de vértices e arestas do grafo G, respectivamente.
Por exemplo, para o grafo G, denotamos sua estrutura como:

V(G1) = {v1,v2,v3,v4,V5,V6,v7}
E(G1> = {(V],Vz),(V2,V3),(V3,V4)7(V47V5),<V6,V1),
(VZ,V7),(V3,V7),(V5,V7),(V67V7)}

Dois vértices sao adjacentes (ou vizinhos) se existe uma
aresta que incide em ambos os vértices. Analogamente,
duas arestas sdo adjacentes se possuem uma extremidade
em comum [6].

Por exemplo, em Gy, v e v, sdo vértices adjacentes, pois
existe uma aresta que incide (conecta) ambos os vértices:
e; = (v1,v2). Por outro lado, os vértices v; e vs ndo sdo
adjacentes, uma vez que nao existe aresta que os conectam.
Similarmente, considerando a aresta e, temos que e; € e sdo
adjacentes, pois possuem uma extremidade em comum (v7).
No entanto, as arestas e; € e4 ndo sdo adjacentes.

Seguindo as definicdes classicas de Bondy e Murty [11],
estabelecemos duas propriedades essenciais para o escopo
deste trabalho. Primeiramente, um grafo G é dito finito se o
seu conjunto de vértices e arestas ¢ finito. Em segundo lugar,
um grafo € classificado como simples se ele ndo possui lagcos
(uma aresta com inicio e fim no mesmo vértice) e nao possui
duas ou mais arestas que incidem no mesmo par de vértices

ISSN: 2675-3588



\

el

Vi

<

V6 V7 Vs

Figura 2: Grafo G, (exemplo de grafo nio simples).
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Figura 3: Grafo bipartido K3 > ilustrando a parti¢do de vértices em
XeY.

(arestas multiplas). Por exemplo, o grafo G, (Figura 2) ndo é
simples, pois possui tr€s arestas que conectam v4 € vs e ainda
possui um lago, representado pela aresta e;. Por outro lado, o
grafo G; € simples.

Um grafo G = (V,E) é dito bipartido se o seu conjunto
de vértices V pode ser particionado em dois subconjuntos
disjuntos, digamos X e Y, de tal forma que toda aresta
de G conecta um vértice de X a um vértice de Y.
Consequentemente, nio existem arestas com ambas as
extremidades no mesmo subconjunto. A Figura 3 exemplifica
esta propriedade através do grafo completo K3 .

Um dos conceitos mais criticos para problemas de
coloracdo é o grau de um vértice. O grau de um vértice
v, denotado por d(v), é definido como o niimero de arestas
incidentes a ele. Na Figura 4, destacamos dois exemplos
importantes: o vértice v; possui apenas duas arestas incidentes
(destacadas em azul), logo d(v;) = 2; jd o vértice v; comporta-
se como o elemento de maior conectividade (destacadas
em vermelho). A partir dessa defini¢do local, derivamos
o parametro global mais importante para este trabalho: o
Grau Mdximo (A(G)). Ele representa o maior valor de grau
encontrado entre todos os vértices. No nosso exemplo, como
nenhum vértice supera v7, temos que A(G;) = 4.

Em um grafo definimos Caminho (P,) como sendo uma
sequéncia de vértices adjacentes sem repeti¢do. Na Figura
5, a sequéncia vivgv7vs (destacada em azul) constitui um
caminho valido (Py), conectando o vértice v; ao vs através
do interior do grafo. Em contrapartida, a sequéncia vivyv;vg
nio forma um caminho, pois o vértice v; se repete. Um
Ciclo (C,) consiste em um caminho cujo vértice de inicio é
igual ao vértice de fim, fechando um circuito. O destaque
em vermelho exemplifica um ciclo C3, de tamanho 3 (um
tridngulo): vov3v7v;. [6]
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Figura 4: Visualizacdo dos graus do grafo G.
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Figura 5: Exemplos de subestruturas em G1: um Caminho aberto
(azul) e um Ciclo fechado (vermelho).
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Figura 6: Um emparelhamento no grafo G| (em azul).

Um grafo G é denominado conexo quando existe caminho
para cada par de vértices; do contrario, o grafo € dito ser
desconexo [6]. Por exemplo, o grafo G| é conexo uma vez que
para cada dois vértices quaisquer sempre existe um caminho
que os conecta. Em contrapartida, considere que as arestas
verdes da figura 6 juntamente com os seus vértices formem
um grafo. Este, seria desconexo ja que, por exemplo, ndo
existe um caminho que conecta os vértices vy e v7.

Finalmente, chegamos ao conceito de emparelhamento
(matching). Um emparelhamento em um grafo G é um
conjunto de arestas M C E tal que nenhuma aresta de M
¢é adjacente a outra; em outras palavras, nenhum vértice do
grafo incide em mais de uma aresta de M [11].

Na Figura 6, destacamos em azul um emparelhamento
formado pelas arestas {(vi,v2),(v3,v4),(vs,v7)}. Note a
caracteristica visual mais importante: essas trés arestas sao
totalmente independentes e ndo compartilham nenhum vértice
comum (elas "ndo se tocam"). Esse conceito é a base
estrutural da coloragdo de arestas, pois em uma coloragdo
vélida, todas as arestas pintadas com uma mesma cor formam,
obrigatoriamente, um emparelhamento.

ITI. TRABALHOS RELACIONADOS

A Teoria dos Grafos constitui uma importante area tanto no
ambito tedrico e pratico. No campo tedrico sua importancia
¢ um reflexo da existéncia de muitos problemas ainda
em estudo ou mesmo sem solucdo, o que incentiva a
escrita de trabalhos académicos na drea e formacdo de
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grupos de pesquisas na universidade [6]. Por outro lado,
o tema € também extremamente relevante do ponto de vista
pratico com aplicagdes que surgem nas mais diversas areas
como na quimica (modelagem de estrutura de moléculas);
no planejamento de rotas de trifego aéreo com menor
distancia; na engenharia e obviamente na computacdo [12].
Portanto, sdo muitos os trabalhos que buscam contribuir
pedagogicamente no ensino Teoria dos Grafos de formas mais
acessivel, haja vista sua importancia pratica e tedrica.

Silva [12], em sua dissertacdo, tem como proposta de

trabalho introduzir a Teoria dos Grafos no ensino fundamental.

Para isso ele propde uma abordagem evidentemente mais
lddica para assim motivar os alunos ao aprendizado, e escolhe
problemas que sejam mais proximos ao codiano dos alunos
como o problema de caminhos. Segundo o autor, o trabalho
ndo s6 contribui para professores que desejam lecionar o
conteudo, mas também para qualquer pessoa que tem interesse
no assunto.

Csoka, Lippner e Pikhurko [?], em seu estudo investigaram
o problema de coloragdo de arestas em Graphings, segundo
os autores: "Um graphing é uma generalizacdo analitica de
um grafo de grau limitado que aparece em vdrias dreas, como
limites de grafos esparsos e teoria de equivaléncia de 6rbitas."
Eles mostraram tanto o Teorema de Konig e o Teorema de
Vizing poderiam ser generalizados para essa classe de grafos.

Em seu artigo Miiller e Bayer [13] apresentam um
possibilidade pedagdgica para a abordagem de Teoria dos
Grafos nos anos finais do ensino fundamental, através de um
desafio ludico adaptado por eles. Tal atividade além de divertir
os alunos faz uma exposi¢ao branda sobre a estrutura de um
grafo (vértices, arestas, grau) e conceitos relacionados como
conexidade e planaridade.

Soares [14] em seu trabalho, apresenta trés teoremas em
Teoria dos Grafos e suas respectivas provas em detalhes
e estruturadamente, com o intuito de encorajar a inclusdo
de Toépicos de Grafos no Ensino Médio. Os teoremas
apresentados: Teorema das Cinco Cores, Teorema da Galeria
de Arte, e Teorema da Amizade foram escolhidos ainda por
possuirem um certo apelo estético a auxiliar na conclusdo do
objetivo de seu estudo.

Finalmente, um trabalho feito por Yasser e Bianchii [15]
que, apesar de ser da drea de Teoria da Computag@o, se propde
a fazer uma reflexdo e discutir sobre Préticas Pedagégicas no
escopo da disciplina de Teoria da Computagdo. Conforme os
autores, o uso de abordagens alternativas como semindrios,
auxiliou na compreensdo dos conceitos que sdo expostos
tradicionalmente de maneira mais abstrata e gerou um maior
indice de satisfacdo na disciplina.

Na préxima se¢do introduziremos defini¢des e conceitos
que serdo utilizadas nesta pesquisa para abordar o Problema
de Coloragdo de Arestas.

IV. COLORACAO DE ARESTAS

Intuitivamente, como o préprio nome sugere, uma coloragcdo
de arestas consiste em atribuir k rétulos as arestas de um grafo
qualquer onde cada rétulo pode ser interpretada como uma
cor.

Formalmente, uma k-coloragdo de arestas de um grafo
G sem lagos, pode ser descrita ndo apenas como uma
atribuicdo de rétulos, mas estruturalmente como uma parti¢cao
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Figura 7: Grafo G, Fonte: Bondy e Murty(1976

do conjunto de arestas E em k subconjuntos (E;,Ey, ..., Ey).
Desta forma, cada subconjunto E; representa as arestas de uma
mesma cor. Se as arestas de cada subconjunto E; forem nao
adjacentes, dizemos que a coloracdo é prépria [11]. Se um
grafo G admite uma colorag@o prépria com k cores, dizemos
que G € k-colorivel.

Sob a o6tica da Teoria dos Grafos, nota-se que esse
conjunto de arestas independentes corresponde exatamente
a definicdo de emparelhamento (matching) vista na secao
anterior. Portanto, colorir as arestas de um grafo G equivale a
particionar sua estrutura em uma colec¢do de emparelhamentos
distintos (M[,MQ, oo ,Mk).

Por exemplo, considere o grafo G,( Figura 7). Podemos
definir uma coloragdo ¢ = ({a,b,c,d},{e, f},{g}). Pode-
mos interpretar essa particdo da seguinte forma: as arestas
a, b, ¢ e d colorimos com uma cor qualquer, digamos cy;
as arestas e e f recebem a cor ¢, e a aresta g recebe a cor
c3. Obviamente essa coloracao ndo € propria uma vez que
existem arestas adjacentes que receberam a mesma cor(por
exemplo, as arestas a, b, ¢, d).

Por outro lado, considere a coloragio ¥’ =
({a,g},{b,e},{c,f},{d}). Novamente, isso pode ser
interpretado como uma atribuicao de cores da seguinte forma:
a arestas a e g recebem a cor c|; as arestas b e e recebem a
cor c’z; as arestas ¢ e f recebem a cor c’3 e a aresta d recebe
a cor ¢j. Dessa vez, note que ndo existe arestas adjacentes
com uma mesma cor. Portanto, 4’ é uma coloragio prépria e
perceba que cada conjunto de arestas dessa particdo forma
um emparelhamento.

Dizemos ainda que uma determinada cor c € representada
em um vértice v, se existe alguma aresta incidente a v que
possua a cor c. Por exemplo, para o grafo G| e considerando
a coloragiio €” as cores ¢y, ¢z, c3 sdo representadas no vértice
Vs, Uma vez que, as arestas e, f e g, incidem em vs e possuem
as cores c1, 2, C3.

Dessa perspectiva, surge um questionamento natural: “Qual
a menor quantidade de cores necessdria para pintar as arestas
deste grafo sem gerar conflitos de incidéncia?”. A resposta
define um dos parimetros fundamentais da drea: o indice
cromdtico, denotado por '(G). Este parAmetro representa
o nimero minimo de emparelhamentos distintos necessarios
para cobrir todas as arestas de um grafo de forma valida.
No exemplo do grafo G», o leitor pode conferir que 4 € o
menor niimeros de cores possivel para realizar uma coloragdo
propria em G,. Portanto /' (G2) = 4.

Ao buscarmos o indice cromadtico, deparamo-nos imediata-
mente com uma restri¢do fisica imposta pela prépria estrutura
do grafo. Considere o vértice mais “congestionado” do
sistema, isto €, aquele que possui 0 maior nimero de conexdes
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(a) Caminho termina em v3 (Grau > 2).
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(b) Extensdo: v3 agora tem as duas cores.
Figura 8: Ilustracdo esquemadtica da propriedade de extensibilidade.

(o grau mdximo, denotado por A(G)).

A 16gica é trivial: se olharmos novamente para o vértice v7
da Figura 1 (Secdo 2), vemos que ele possui 4 conexdes. E
fisicamente impossivel colorir essas 4 arestas incidentes com
apenas 3 cores sem que duas delas compartilhem a mesma cor
e causem um conflito. Esse “gargalo” local impd&e, portanto,

um limite inferior global para todo o sistema:

x(G) = A(G) (1)

Essa desigualdade estabelece que sdo necessdrias, pelo
menos, tantas cores quanto o grau maximo. A questdo central
que a teoria busca responder é: serd que esse minimo &
suficiente? Para alguns para alguns tipos de grafos, como
os grafos bipartidos, a resposta € afirmativa, como veremos a
seguir.

Para avangarmos da intui¢ao para a prova formal de que
grafos bipartidos atingem o limite inferior A(G), necessitamos
de uma ferramenta auxiliar que garanta a distribui¢do
equilibrada de cores. Bondy e Murty apresentam um resultado
técnico fundamental, conhecido no livro como Lema 6.1.1
[11]. Para fins didaticos, chamaremos este resultado de Lema
das Duas Cores.

A intuicdo por trds deste lema € uma questao de paridade.
Sabemos que ciclos impares sdo as Unicas estruturas que
impedem uma 2-coloragdo perfeita (onde arestas alternam
cores). Se removermos essa restricdo, ganhamos controle
sobre a incidéncia de cores nos vértices.

“Lema das Duas Cores: Seja G um grafo conexo
que ndo € um ciclo impar. Entdo, G possui uma
2-coloragdo de arestas na qual ambas as cores estdo
representadas em cada vértice de grau pelo menos
dois.”

Para visualizar a ideia construtiva deste lema, imagine que
nosso objetivo € tracar um caminho pelo grafo, pintando
as arestas alternadamente em Vermelho e Azul, conforme
ilustrado esquematicamente na Figura 8.

Ao passarmos por um vértice intermedidrio (como o vértice
v, na Figura 8-a), necessariamente entramos por uma cor e
saimos pela outra. Isso garante que v, possui ambas as cores
representadas. O problema surge apenas nos vértices que
habitam a extremidade do caminho (como o vértice v3), pois
eles estariam em contato com apenas uma aresta colorida
neste trajeto.

A genialidade do lema reside na extensibilidade, demons-
trada na parte (b) da Figura 8. Se o caminho termina em um
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vértice que ainda tem outras arestas ndo coloridas (ou seja,
grau > 2), podemos simplesmente expandir o caminho por
essa nova aresta usando a cor alternada.

Podemos repetir esse processo até que o caminho termine
em um vértice sem saida ou feche um ciclo. O lema
garante que, exceto no caso especifico do ciclo impar (onde
a alternincia de cores trava ao fechar o ciclo), sempre
conseguimos ajustar caminhos para que nenhum vértice de
grau igual ou maior que dois fique com uma cor s6.

Além da existéncia de coloragdes, ¢ importante definir uma
forma para compara-las. Dada uma k-coloragdo % de G,
denotamos por ¢(v) o nimero de cores distintas representadas
no vértice v.

Intuitivamente, um vértice ndo pode “ver” mais cores do
que o nimero de arestas que chegam a ele. Portanto, temos a
desigualdade trivial:

c(v) <d(v) 2

A igualdade c(v) = d(v) ocorre se, e somente se, a
coloragédo € propria em torno de v (ou seja, todas as arestas
incidentes tém cores diferentes). Com base nisso, definimos
o conceito de melhoria (improvement). Dizemos que uma
coloragio 4" é uma melhoria sobre % se a soma global de
cores distintas observadas pelos vértices aumenta:

Z dv) > Z c(v) 3)

veV veV

Uma k-coloragdo é dita dtima se elando pode ser melhorada.
Esse conceito de “otimalidade” € a chave para as provas
construtivas que virdo a seguir: a ideia é comecar com uma
coloragdo qualquer e “melhora-la” iterativamente até atingir
uma coloragdo onde a regra de adjacéncia seja satisfeita para
0 maior nimero possivel de vértices.

Com o conceito de otimizacao ja estabelecido, podemos
finalmente analisar quais os fatores que impedem uma
coloracdo de ser perfeita.

Suponha que atingimos uma k-coloragio 6tima ¢. Agora,
imagine que essa coloracdo ainda nio é a “ideal” em um
vértice u: a cor i estd faltando em u, mas a cor j aparece
repetida. Isso indica um desequilibrio local.

Intuitivamente, gostariamos de trocar algumas arestas da
cor j por i para equilibrar a distribuicio. O Lema 6.1.2
de Bondy e Murty, aqui chamado de Lema do Obstdculo
em Ciclos fmpares, nos diz exatamente quando isso ndo é
possivel.

“Lema do Obstdculo em Ciclos Impares: Seja €
uma k-coloracdo 6tima de G. Se existe um vértice
u onde a cor i ndo aparece, mas a cor j aparece
pelo menos duas vezes, entdo a componente conexa
formada apenas pelas arestas dessas duas cores (i
e j) que contém u €, necessariamente, um ciclo
impar.’

A prova dessa afirmacdo conecta-se diretamente ao Lema
das Duas Cores e pode ser visualizada na Figura 9.

Perceba que No vértice u, temos duas arestas azuis (j) e
nenhuma vermelha (i), tentar consertar isso alterando as cores
ao longo do ciclo apenas deslocaria o problema para v; ou
vy, sem resolver o conflito globalmente. Se a componente
contendo u ndo fosse um ciclo impar, poderiamos aplicar a
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Falta Vermelho (i)

U Verm. (i) Vo
Figura 9: O obstéculo do ciclo impar.

16gica da extensibilidade vista anteriormente para re-colorir
essa componente de modo que u passasse a ter ambas as cores
(i e j). Isso faria com que o nimero de cores distintas em
u aumentasse (c(u) subiria em 1), sem prejudicar os outros
vértices, criando uma coloragdo “melhor”.

Como partimos da premissa de que a coloragdo original
ja era dJtima (impossivel de melhorar), essa re-coloragdo
é impossivel. Logo, a dnica explicacdo geométrica que
trava essa melhoria é que estamos presos na estrutura rigida
mostrada na Figura 9: um ciclo impar.

V. O TEOREMA DE KONIG

Com base na fundamentacdo estabelecida, alcancamos o
ponto de convergéncia desta primeira parte. Os lemas
anteriores construiram uma narrativa clara: a otimizagéo de
uma coloragdo sé é bloqueada estruturalmente pela presenga
de ciclos impares.

Para contextualizar a importincia do que vem a seguir, vale
ressaltar que, quando o matematico hiingaro Dénes Kénig
publicou este resultado em 1916 [9], a Teoria dos Grafos
ainda nem existia como disciplina autdbnoma. Kénig, que
mais tarde escreveria o primeiro livro-texto da area, chegou
a este teorema estudando a decomposi¢do de matrizes e
determinantes. Ele percebeu que certas estruturas algébricas
poderiam ser traduzidas geometricamente para o que hoje
chamamos de grafos bipartidos, provando que, nessas
estruturas “bem-comportadas”, a complexidade do problema
desaparece.

A elegincia da sua conexdo reside no fato de que, por
definicdo, a propriedade fundamental de um grafo bipartido
¢é a auséncia completa de ciclos de comprimento impar. Se a
Unica barreira topoldgica para a otimizacao perfeita € o ciclo
impar, e os grafos bipartidos sdo desprovidos dessa estrutura,
a conclusdo légica € inevitdvel.

“Teorema de Konig (1916): Se G é um grafo
bipartido, entdo seu indice cromadtico é exatamente
igual ao seu grau maximo, ou seja, x'(G) = A(G)”

Para visualizar o porqué deste teorema funcionar, imagine
que os vértices do grafo estdo divididos em dois times rivais,

Time A e Time B, e as arestas representam partidas entre eles.

Em um grafo bipartido, um time nunca joga contra si mesmo;
as arestas sempre ligam A a B.

Se tentarmos colorir as arestas (agendar os jogos) e
encontrarmos um conflito que exige uma troca de cores em
cadeia, essa cadeia de trocas funcionaria como um movimento
de “ping-pong”, ilustrado na Figura 10.

Para que um conflito seja insoldvel (como vimos no Lema
anterior), essa cadeia precisaria fechar um ciclo impar mas
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Figura 10: Qualquer caminho de comprimento {mpar termina
necessariamente no time oposto.

se observarmos o movimento na figura veremos que Passo
1 (Impar): Sai de A — Chega em B, Passo 2 (Par): Sai
de B — Volta para A, Passo 3 (Impar): Sai de A —
Chega em B. Isso mostra que se nosso intuito for fechar
um ciclo e voltar ao vértice de origem (que estd em A), é
necessdrio, obrigatoriamente, um niimero par de passos pois
¢ impossivel sair de A e voltar para A com um nimero impar
de movimentos, pois estarfamos fisicamente no lado do Time
B.

Podemos concluir portanto que o ‘“curto-circuito
cromdtico do ciclo fmpar nunca acontece, sempre
conseguimos resolver os conflitos locais e organizar
as arestas em exatamente A rodadas (cores) perfeitas.

O Teorema de K&nig representa, como vimos, o cenario
ideal na coloragdo de arestas: uma classe de grafos onde a
topologia colabora perfeitamente com a alocagdo de recursos,
garantindo que o limite inferior natural (A) seja sempre
suficiente. Nesses casos, ndo ha desperdicio e a estrutura
bipartida assegura a inexisténcia dos conflitos ciclicos que
impediriam a otimizacao.

Contudo, a modelagem de sistemas complexos frequente-
mente nos confronta com grafos que ndo possuem essa
propriedade. O que acontece quando a restri¢do € levantada
e os ciclos impares, como um simples tridngulo, sdo
reintroduzidos na estrutura? A intui¢éio poderia sugerir que,
sem a garantia de K&nig, o nimero de cores necessdrias
poderia crescer descontroladamente acima do grau méximo.

A resposta para o caso geral foi descoberta quase cinquenta
anos depois e revela um resultado surpreendente: mesmo na
presenca de ciclos impares e estruturas complexas, o “caos”
cromdtico é extremamente limitado. O indice cromdtico
nunca se afasta muito do ideal estabelecido por Kénig,
oscilando em um intervalo restrito de apenas dois valores
possiveis.

L)

VI. O TEOREMA DE VIZING

O Teorema de Vizing [10] constitui um outro resultado
clssico no problema de coloragdo de arestas. Em seu trabalho,
ele mostrou que existia um limite superior para o indice
cromdtico de um multigrafo. Um multigrafo € um grafo
que possui mais de uma aresta que conecta um mesmo par de
vértices (veja a figura 2). Contudo, o presente trabalho trata
de grafos simples, entdo para cada par de vértices hd somente
uma aresta que os conecta. Sob essas hipdteses, o Teorema
de Vizing possui o seguinte enunciado:

“Seja G um grafo simples. Entdo vale a
desigualdade: A(G) <¥'(G) <A(G)+1”
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Uma vez que o indice cromdtico de um grafo € um ntiimero
inteiro, o teorema diz que para qualquer grafo G simples,
o seu indice cromdtico ou € igual ao grau maximo de G
ou entdo é maior por uma unidade apenas. Esse ¢ um
resultado extremamente 1til na construg@o de algoritmos para
coloragdo prépria e minima, pois implica que precisamos
apenas examinar dois conjuntos de coloracdes, o que reduz
bastante o espaco de busca [16]. A primeira desigualdade
é trivial e pode ser vista na se¢do /V em (1). A dificuldade
reside na segunda desigualdade.

Na literatura existem vdérios tipos de provas da segunda
parte: por indugdo e construgdo por exemplo. Neste texto
usaremos o tipo de demonstrag@o por contradigdo.

No enunciado do teorema temos duas proposi¢des: p =
"G é um grafo simples" e ¢ = "A(G) < %/(G) < A(G) +1".
Queremos mostrar que a ocorréncia de p implica q. A
estrutura da prova € a seguinte: assumimos que p ocorre mas
negamos a proposicdo g, ou seja, assumimos O contrario
daquilo que queremos provar, € assim teremos uma nova
proposi¢do diferente:

"Seja G um grafo simples. Entdo ¥'(G) > A(G) + 1"

Com base nessa proposicdo, nds faremos uma série de
dedugdes logicas validas, e eventualmente chegaremos a
conclusdo de ser falso um fato ja provado ser verdade. Mas
isso é uma contradi¢do, entdo a Unica explicacdo para essa
incoeréncia 16gica € ter suposto inicialmente que %'(G) >
A(G) + 1. Entio se essa proposi¢do ¢é falsa, sua negagéo é
verdadeira e portanto: ¥'(G) < A(G) +1. [17]

O teorema de Vizing divide os grafos que satisfazem as
hipéteses do teorema em duas classes, de acordo com seu
indice cromdtico; se um grafo G satisfaz ' (G) = A(G) ele
¢ dito ser de classe 1, se X' (G) = A(G) + 1 ele é de classe 2
[18].

Para compreender melhor essa classificagdo, ¢ nitil
visualizar como a topologia do grafo impde restricdes locais.
A distin¢do fundamental reside na capacidade da estrutura em
acomodar emparelhamentos sem gerar conflitos insoldveis.
Conforme ilustrado na Figura 11, um ciclo par (Cy4), por
ser um grafo bipartido, permite uma alternancia perfeita de
indices (representados pelos nimeros 1 e 2), satisfazendo
%' (G) = A(G) = 2 e classificando-se como Classe 1. Em
contrapartida, um ciclo impar (Cs) apresenta um impasse
estrutural: ao tentar alternar os indices 1 e 2, a dltima
aresta conecta vértices que ja possuem incidéncias de ambos,
obrigando o uso de um terceiro indice (nimero 3). Isso resulta
emy’(G) =3 =A(G)+ 1, caracterizando o grafo como Classe
2.

Uma curiosidade interessante ¢ que Holyer [19] mostrou
que, dado um grafo G, decidir se ele € de Classe 1 ou de
Classe 2 € um problema NP-completo. De forma simplificada,
problemas NP-completos sdo problemas de decisdo cuja
solucdo, uma vez proposta, pode ser verificada de forma facil,
porém encontrar sua solugdo € dificil [6]. Por exemplo, dada
uma coloracdo de arestas 4 qualquer sobre um grafo G, é
facil verificar se essa coloragdo € de Classe 1: basta checar se
a coloragdo é prépria e se utiliza exatamente A(G) cores. No
entanto, decidir se existe tal colorago entre o enorme nimero
de possibilidades é um problema computacionalmente dificil.

Na se¢@o a seguir, veremos as demonstracdes dos dois
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1

Classe 1 (' =2)

Classe 2 (x' =3)

Figura 11: Comparacdo visual utilizando numeracéo nas arestas: O
ciclo par (C4) usa apenas rétulos 1 e 2, enquanto o ciclo impar (Cs)
necessita do rétulo 3.

teoremas propostos.

VII. DEMONSTRACAO E CONTRIBUICOES

Estabelecidas as condi¢des estruturais e os lemas auxiliares
sobre a distribuicdo de cores, o texto avanga para a
formalizacdo dos dois pilares centrais da coloracdo de arestas.

Demonstra-se inicialmente o Teorema de Kénig, provando
que a auséncia de ciclos impares em grafos bipartidos garante
que o indice cromatico atinja seu limite inferior natural (A).
Subsequentemente, a andlise expande-se para a classe dos
grafos simples gerais. Mediante o método de redugdo ao
absurdo e argumentos de recolora¢do, demonstra-se o célebre
Teorema de Vizing. Este estabelece que, mesmo na presencga
de estruturas ciclicas impares, o indice cromatico excede o
grau maximo em no maximo uma unidade.

Ambas as demonstracdes fundamentam-se na estrutura
l6gica apresentada por Bondy e Murty [11], utilizando
os conceitos de otimizacdo cromdtica e emparelhamentos
definidos preliminarmente.

O Teorema de Konig enuncia-se da seguinte maneira.

Teorema de Konig VIL.1. Seja G um grafo bipartido. Entdo
a igualdade abaixo se verifica

X' (G) = A(G). @)

Proof. A demonstracdo da igualdade utiliza o método de
reducdo ao absurdo. Assume-se a falsidade da tese para obter
uma contradi¢do estrutural.

Seja G um grafo bipartido e suponha-se, por contradi¢do,
que ¥'(G) > A(G). Considere € = (E,Ez,...,Er) uma A-
coloragdo 6tima das arestas de G. Como o grafo ndo é A-
colorivel propriamente, existe necessariamente um vértice u
onde o nimero de cores presentes € inferior ao grau do vértice,
satisfazendo a condi¢do

c(u) < d(u) Q)

Essa desigualdade implica uma falha na distribuic@o das
cores em u. Especificamente, existem cores i € j tais que a cor
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Figura 12: Defeito cromdtico em u: repeticdo da cor j (azul) e
auséncia da cor i (vermelha).

i ndo esta representada em u (falta), enquanto a cor j aparece
pelo menos duas vezes (repeti¢do). A Figura 12 ilustra essa
configuracdo local, onde o vértice u possui duas arestas azuis
(j) e nenhuma aresta vermelha (7).

Aplica-se neste ponto o Lema das duas cores (Lema 6.1.2
de Bondy & Murty). Segundo este resultado, se tal falha
ocorre em uma coloragdo 6tima, a componente conexa do
subgrafo induzido apenas pelas cores i e j que contém u deve
ser, obrigatoriamente, um ciclo impar.

Entretanto, tal conclusdo gera uma contradi¢@o topoldgica
imediata com a natureza do grafo G. A defini¢do de grafo
bipartido exige que o conjunto de vértices possa ser dividido
em dois subconjuntos disjuntos, A e B, onde toda aresta
conecta um vértice de A a um de B.

Para que um ciclo exista, € necessdrio sair de uma
particdo e retornar a ela. Como cada passo na trilha
alterna de particio (A - B —- A — ...), retornar ao
vértice de origem exige necessariamente um nimero par de
passos. Consequentemente, é impossivel existir um ciclo de
comprimento impar em um grafo bipartido.

Visto que a existéncia do ciclo impar exigido pelo lema é
impossivel, a suposicdo inicial de que X' (G) > A(G) revela-se
falsa. Portanto, conclui-se que ¥'(G) = A(G). O

Vejamos a seguir a demonstra¢do de um outro importante
teorema relacionado ao Problema de Colorag@o de Arestas
em Grafos.

Teorema de Vizing VIL.2. Seja G um grafo simples. Entdo:
AG) < 7/(G) < A(G) +1. ®)

Proof. Seja G um grafo simples. Suponha por absurdo que
X/(G) > A(G) + 1. Seja ¥ = (EI;E27~--7EA(G)+1) uma
(A4 1)-coloragdo das arestas de G e seja u um vértice tal
que:

c(u) < d(u) (7

Note que o vértice u existe, pois assumimos(por
contradi¢do) que o grafo G nao é (A4 1)-colorivel. Assim
deve existir pelo menos um vértice tal que uma mesma
cor esteja representada nele, exatamente o que o item (7)
exprime(Lembre que ¢(v) denota o nimero de cores distintas
representadas em um dado vértice v). Entdo, existem certas
cores ip e i tais que: ip ndo estd representado em u, e ij estd
representado pelo menos duas vezes em u. Esse fato ocorre
porque, para todo vértice de G, em particular para u, segue
que d(u) < A(G)+ 1 e a coloragéo que estamos usando possui
A(G) + 1 cores, logo pelo menos uma cor ndo é usada em
u, o que justifica a existéncia de iy. A existéncia da cor i; €
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Figura 14: Grafo G com coloragio c|,

consequéncia de (5). Seja uv| uma aresta que possua a cor ij.
Agora considere a seguinte assercio:

(i): “Uma vez que d(v;) < A(G) + 1 existe uma
cor ip que ndo é representada em v;. Note que
ip necessariamente deve estar representada em u.
Do contrario, poderiamos recolorir a aresta uv|
com a cor ip € assim obter uma melhoria na nossa
coloragdo, o que contradiz a hipétese dela ser
Otima.”

Vejamos um exemplo para compreender melhor o item (i).
Considere o grafo G(figura 13), cujo grau maximo de vale
3(Naturalmente, o argumento também ¢é vélido se G fosse um
grafo maior, o que importa é olhar localmente para o vértice
u que sabemos que existe). Assim, a coloragcdo denotada por
co € composta por 4 cores, denotadas por i, onde:

co = {i05i17i27i3}

Note que, o somatério do nimero de cores distintas que
sdo representadas em cada vértice é 13, isto é, Y c(v) = 13.
A cor preta ndo € representada no vértice em u € nem em vy.
Crie uma nova coloragéo c{, onde aresta uv; se torna da cor
preta e o restante das arestas permanecem inalteradas. Para
essa nova coloracio, o somatério do nimero de cores distintas
representadas em cada vértice € 14: Y. c/(v) = 14 (Figura 14).
Ou seja, conseguimos melhorar a nossa coloracdo cg, o que
€ uma contradi¢ao pois supomos que tal coloragio era Stima.
Portanto o item (i) é de fato verdadeiro.

Entdo sabemos que existe alguma aresta diferente de uv,
que possui a cor iy, chamemos ela de uv,. Novamente, temos
que d(vi) < A(G) + 1, logo existe uma cor i3 que nio é
representada em v,. Por um raciocinio totalmente andlogo ao
feito em (i), a cor i3 deve necessariamente estar representada
em u, do contrdrio, seria possivel fazer uma melhoria na
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Vi—1 Vi

Vi—1 Vi

Figura 15: Estrutura gerada em u. Fonte: Bondy e Murty(1976)

coloragdo @ atribuindo a cor i, a aresta uv; e a cor i3 a aresta
uvy. Assim deve existir um aresta uv3 com a cor is.

Continuando com esse procedimento, construiremos uma
sequéncia de vértices vi,v;,... € uma sequéncia de cores
i1,i2,... que possui as seguintes propriedades:

(a) A aresta uv; possui a cor i;.
(b) A corijy ndo aparece na aresta uv;.

(c) Como estamos considerando um grafo simples finito,
u possui grau finito, e em algum momento as cores
comegardo a se repetir nas arestas de u.

Graficamente, podemos ver a estrutura construida(Figura
15). Nela podemos ver todas as arestas adjacentes a u, sendo
que a cor i; ¢ representada duas vezes e a cor ip ndo &
representada nenhuma vez. A cor i; ndo é representada em
vi mas € representada em vy, a cor i3 ndo é representada
em v, porém ¢é representada em i3 do contrdrio, como ja
discutimos, seria possivel reatribuir cores as arestas do grafo
de modo a obter uma melhoria para a A(G) 4 1-coloragio, o
que geraria um contradi¢do pois supomos que tal coloragdo é
méaxima(e assim por diante para as demais cores). Agora
faremos recoloragdes no grafo G de forma a manter sua
otimalidade.

A primeira coloracdo se dard da seguinte forma: a aresta
uv; receberd a cor da arestauv; com 1 < j <k—1. Aqui, as
cores das arestas de uv; até uvy sio todas distintas, e depois da
aresta vy as cores comegam a se repetir seguindo a propriedade
(c) dessa estrutura construida. Na pratica estamos apenas
deslocando as cores uma unidade no sentido anti-hordrio: a
aresta uvy_ receber a cor iy, a aresta uvx_, recebe a cor i;_
..., a aresta uv, recebe a cor i3, a aresta uv; recebe a cor i
(Figura 16).

Note que a nova coloragdo ¢’ = (Ei,E}, "'7E£(G)+1)
também é uma A(G) + 1-coloragéo 6tima, pois na estrutura
que construimos, a cor i;;; ndo aparece nha aresta
uj(propriedade (b)). Ou seja a quantidade de cores distintas
representadas em cada vértice permanece inalterada. Por
exemplo, observe a aresta uv;. Antes a cor ip ndo era
representada nela(do contrario teriamos uma contradi¢do),
isto é, nenhuma outra arestas diferente uv; possuia a cor
ip em vy. Agora surge a questdo: e se vj tiver uma aresta
wyi com a cor i1? Se isso ocorresse, ao colorir uv; com i
haveria uma melhoria na coloracdo(uma contradi¢io). Logo
estamos trocando uma cor(iy) que s6 aparece uma vez em
v1 por outra(iy) que ird aparecer apenas uma vez em vy. O

ISSN: 2675-3588

Figura 16: 1° recoloragdo. Fonte: Bondy e Murty(1976)

Figura 17: Ciclo fmpar formado pela componente H’. Fonte:
Adaptado Bondy e Murty(1976).

Vi—1 Vi

Figura 18: 2° recoloragao. Fonte: Bondy e Murty(1976)

mesmo vale para os demais vértices. Veja que a coloracéo sé
altera essa regido especifica, o restante do grafo permanece
da mesma forma.

Entdo estamos diante de uma A(G) + 1-colorag@o Gtima,
onde o vértice u possui uma cor que ndo é representada nele(iy
por hipdtese) e um outra cor que € representada pelo menos 2
vezes(ix). Assim pelo Lema do Obstdculo em Ciclos Impares
visto na sessdo IV, a componente conexa H' formada pelas
arestas das cores ig € iy, isto é, H' = G[El-’0 UE[k} é um ciclo
impar e contém o vértice u(Figura 17).

Agora faremos uma segunda recoloracdo. Cada aresta
uv; receberd a cor ij; 1 com k < j <1 —1, e para aresta
uv; atribuimos a cor ix(Figura 18). A légica aqui é
muito semelhante a primeira parte, s6 que agora estamos
considerando as arestas que ndo foram coloridas na primeira
fase. Assim a aresta uv; receberd a cor i1, a aresta uvyy |
receberd a cor iryj..., a aresta uv;_; receberd a cor i;. O
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Figura 19: Ciclo fmpar formado pela componente H” . Fonte:
Bondy e Murty(1976)

Unico ponto a se atentar € que diferenca € cor iy a aresta uv;,
isso ocorreu porque uma vez que o grau de u € finito, haverd
uma repeticdo de cor, isto é, haverd um / tal que i;1| = i,
onde i; € justamente uma cor que jid ocorreu em algum
vértice anterior. Perceba que essa segunda coloragio 4" =
(E{’,Eé’,...,E&G)H) também € uma (A(G) + 1)-coloragédo
6tima por um argumento analogo ao aquele usado na primeira
coloracdo. Novamente, pelo Lema do Obstdculo em Ciclo
Impares, a componente: H” = G[E}, UE]']  um ciclo fmpar
e contém u(Figura 19).

Note que como a componente H' é conexa, entdo sempre
existira um caminho de u até vy_; e de vy_; até vy. No
nosso exemplo esse caminho é: uv;_1ww'v;. Esse caminho
continuard existindo na segunda coloracdo, pois nela nds
consideramos apenas as arestas com as cores de k até [ — 1,
e o caminho citado surge nas arestas de cores 1 até k— 1. E
importante notar que a cada recolora¢do, nés modificamos
apenas partes localizadas do grafo, o restante se mantém
inalterado. Desse modo, a componente H” contém o vértice
Vi € seu grau € um. Temos portanto uma contradi¢do, pois
H" é um ciclo impar e ndo pode ter vértices com grau um.
Essa falha 16gica surgiu porque supomos inicialmente que
%' (G) > A(G) + 1. Entéo segue que: ¥'(G) <A(G)+1, o
que encerra a demonstragao.

O

Como foi dito na secdo VI, o Teorema possui uma grande
importancia para algoritmos de coloragdo de arestas. Apesar
desse topico principal deste trabalho, serd interessante tecer
alguns comentérios.

A estrutura que construimos na demonstracao(15), onde
temos um vértice central(x) e demais outros vértices adja-
centes que seguem algumas propriedades(VII) € conhecida
na literatura como Fan ou Vizing’s Fan(Fan de Vizing) [20].
Alguns autores definem essa estrutura explicitamente e outros
nao(como no caso do Bondy e Murty). Contudo, a vantagem
de definir essa estrutura e juntamente realizar a demonstragao
por construcdo do Teorema de Vizing é que obtemos um
algoritmo para coloragdo propria de arestas que utiliza no
maximo A(G) + 1 cores.

O algoritmo de coloragdo de arestas baseado na prova
construtiva do Teorema de Vizing é conhecido como
Algoritmo de Coloracdo de Arestas de Mista Gries, e leva
o nome dos autores que propuseram a rotina [21]. Uma
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implementagdo do algoritmo na linguagem de programacgao
Python pode ser vista em [22].

Exemplo:

Vamos utilizar um exemplo para melhor visualizar a
aplicagdo pritica do Teorema de Vizing. Suponha que
desejamos colorir propriamente o grafo G da se¢do I(figura
20)

Perceba que nesse grafo, A(G;) = 4. Portanto, pelo
Teorema de Vizing, o nlimero de cores necessdrias para colorir
o grafo propriamente nio serd maior que A(G))+1=4+1=
5. De fato, o leitor podera verificar que ndo € possivel colorir
esse grafo com menos de 5 cores. Definamos a coloragao
co = {io,i1,i2,i3}, onde cada i;(0 < j < 3) representa uma
cor distinta. A colorag¢do pode ser vista na figura:

Uma observagdo importante é que poderiamos ter um grafo
G cujo indice cromdtico fosse menor que A(G) + 1(se¢do
VIII). Contudo isso ndo invalida o teorema pois o valor A(G) +
1 é um limite superior, ou seja, a garantia € que nao sera
preciso mais que A(G) + 1 cores para colorir um grafo G
simples e finito qualquer.

VIII. APLICACOES

A Coloragdo de Arestas de Grafos possui uma série de
aplicacdes praticas, tais como planejamento de rotas, traifego
em redes e muitas outras [23]. Nesta sec¢do trataremos de um
problema bastante interessante: O Problema de Programacao
de Tabelas Esportivas. Utilizaremos como referéncia o
trabalho de Januario (2015) [24].

Um torneio do tipo round a robin(todos contra todos), é
um competi¢do que envolve ¢ times diferentes que disputam
entre si uma quantidade j de jogos. Por exemplo, para
t =4 e j=1 teremos um torneio em que, cada time
disputa contra os demais 3 uma vez. Nesse cendrio 2
questionamentos poderiam surgir: como elaborar uma agenda
de jogos de modo que, os times nao disputem ndo mais que
uma partida em uma mesma rodada e quantas rodadas seriam
necessdrias? Podemos responder essas pergunta utilizando os
conhecimentos aprendidos até aqui sobre grafos.

Em primeiro lugar, note que podemos facilmente modelar
a estrutura do torneio da seguinte forma: defina um grafo
G = (V,E), onde os vértices representam os times do torneio
e as a arestas representam a as partidas que devem ocorrer
entre eles. Consideremos t =4 e j = 1, ou seja, 4 times ¢,
t, 13 e t4 que disputam uma partida entre si. O grafo que
representa a estrutura desse torneio pode ser vista na figura
21.

Agora devemos encontrar uma forma de garantir que nas
rodadas que se seguirdo cada time jogue apenas uma partida.
Isso pode ser feito utilizando as técnicas de Coloragdo de
Arestas. Definimos entdo uma coloracéo 4 em que cada cor
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Figura 22: Grafo que representa o torneio, colorido

representa uma rodada do torneio. Observe que buscamos
uma coloracdo do grafo G que seja prépria. A coloragdo sendo
propria, garantimos que nenhuma aresta adjacente a qualquer
um dos vértices tenha a mesma cor, ou seja, cada partida
ocorrera em uma rodada diferente, e ndo haverdo conflitos.
Sendo assim, estamos aptos a resolver a questdo acerca

do niimero de rodadas necessdrias para realizar esse torneio.

Responder isso € equivalente a reponder: quantas cores sdo
necessdrias para obter uma coloracdo propria de G? Pelo
teorema de Vizing, sabemos que o melhor valor e que funciona
para todos os casos € A(G) +1 =3+ 1 =4 cores. Obviamente,
para valores maiores também € possivel obter uma coloracio
prépria, mas € de interesse usar a menor niimero de cores,
pois implica que teremos um menor nimero de rodadas. Note
também que o grafo do torneio usado como exemplo pode
ser colorido propriamente com 3 cores, pois como ele é
bipartido, pelo Teorema de Kénig, ¥'(G) = A(G). Porém
o limite superior fornecido pelo Teorema de Vizing é melhor
no sentido de que, funciona para todos os casos possiveis,
mesmo se o grafo do torneio nio for bipartido.

O segundo passo seria entdo aplicar algum algoritmo
de colorag@o propria de arestas no grafo G(sabendo que
serd preciso ndo mais que 4 cores) obtendo portanto, o
agendamento das partidas. Uma solucdo pode ser vista na
figura 22. Note que, a coloragdo resolve o problema pois,
nunhum vértice(time) possui mais de uma aresta(partida) cuja
cor(horario) € o mesmo.

IX. RESULTADOS E REFLEXOES

A base tedrica da coloracdo de arestas encontra-se bem
consolidada na literatura, todavia a complexidade dos
argumentos construtivos e das técnicas de recoloracdo
iterativa impoe frequentemente barreiras ao aprendizado em
nivel de graduacio.

O mérito central deste trabalho reside ndo apenas
na demonstracio formal, mas na sistematizacdo visual
desses raciocinios. Ao decompor as restri¢des estruturais
e os impeditivos topoldgicos em diagramas sequenciais,
evidenciou-se a natureza local do problema. A andlise
permitiu demonstrar que, enquanto certas classes de grafos
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com propriedades especificas permitem uma alocag¢do 6tima
de recursos garantindo que o indice cromdtico iguale o
grau maximo (' = A), a generalizagdo para estruturas mais
complexas acarreta, no pior caso, o incremento de apenas uma
cor adicional (' < A+1).

A expectativa é que este material atue como um instrumento
pedagdgico facilitador, permitindo que estudantes das dreas de
Computacdo e Matemadtica transitem da intuicdo geométrica
para o rigor analitico das provas formais com maior fluidez e
compreensao.

X. CONSIDERACOES FINAIS

Este estudo revisitou o Problema de Colorag¢do de Arestas,
partindo de suas raizes histéricas no Problema das Quatro
Cores até a formalizagdo contemporanea. A andlise
comparativa entre a estrutura rigida dos grafos bipartidos
e a flexibilidade dos grafos simples permitiu compreender
como propriedades topolédgicas (como a paridade de ciclos)
ditam os limites de alocacdo de recursos.

Conclui-se que a abordagem geométrica e iterativa ¢
essencial para a compreensdo profunda do Indice Cromatico.
A dificuldade inerente em conciliar o rigor matematico
com a clareza didatica foi mitigada pelo uso extensivo de
representacdes visuais, que serviram como ancoras cognitivas
para as abstragdes logicas.

Como trabalhos futuros, sugere-se a expansio desta andlise
para o Teorema de Vizing generalizado para multigrafos,
onde a multiplicidade das arestas introduz novas varidveis
a desigualdade cromadtica. Espera-se que este material
sirva como referéncia pedagdgica, facilitando o ensino de
Otimizagao Combinatdria e Teoria dos Grafos em cursos de
Computacio e Matematica.
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