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Resumo—A teoria dos grafos, impulsionada historicamente pela conjectura de Francis Guthrie em 1852 e pela subsequente prova do
Teorema das Quatro Cores, evoluiu de curiosidades topológicas para ferramentas essenciais de modelagem. Este trabalho foca especificamente
no Problema de Coloração de Arestas, abordando-o sob uma perspectiva histórica e rigorosamente formal. Inicialmente, o texto contextualiza
a transição dos problemas de coloração de mapas para a coloração de arestas, destacando sua relevância prática em otimização de redes e
agendamento. O núcleo da discussão aprofunda-se na análise do Teorema de Vizing, que estabelece limites precisos para o índice cromático
de grafos simples, situando-o entre o grau máximo e o grau máximo acrescido de uma unidade. Serão dissecados os principais lemas e as
condições estruturais que determinam se um grafo pertence à Classe 1 ou Classe 2. Ao explorar a complexidade inerente a essa classificação,
o artigo serve como uma referência pedagógica, elucidando como restrições locais de adjacência ditam o comportamento global em sistemas
complexos.

Palavras-chave—Coloração de Grafos, Problema das Quatro Cores, Teorema de Vizing, Otimização Combinatória, Modelagem.

Abstract—Graph theory, historically propelled by Francis Guthrie’s 1852 conjecture and the eventual proof of the Four Color Theorem, has
evolved from a collection of topological curiosities into a set of essential modeling tools. This work specifically targets the Edge Coloring
Problem, addressing it through a lens that is both historical and rigorously formal. Initially, the text contextualizes the conceptual shift from
map coloring to edge coloring, emphasizing its practical applicability in critical areas such as network optimization and scheduling. The
core discussion deepens into an analysis of Vizing’s Theorem, which establishes precise boundaries for the chromatic index of simple graphs,
positioning it strictly between the maximum degree and the maximum degree plus one. Key lemmas and structural conditions determining
whether a graph falls into Class 1 or Class 2 are dissected. By exploring the inherent complexity of this classification, this article serves as a
pedagogical reference, clarifying how local adjacency constraints dictate global behavior in complex systems.

Keywords—Graph Coloring, Four Color Problem, Vizing’s Theorem, Combinatorial Optimization, Modeling.

I. INTRODUÇÃO

A Teoria dos Grafos é uma ferramenta de modelagem
versátil, oriunda da matemática, mas de escopo

fundamental para a ciência da computação. Sua capacidade
de representar e modelar relações complexas em sistemas
diversos – desde redes neurais e clusters de computadores até
a otimização logística de trabalhadores e rotas aéreas – a torna
fascinante e diretamente aplicável a problemas cotidianos.
Ao traduzir situações reais para uma linguagem matemática
precisa, os grafos permitem abstrair a complexidade do
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mundo físico, revelando a estrutura lógica subjacente aos
problemas de conexão e conflito.

Nesse contexto, o estudo de coloração em grafos remonta
ao século XIX, originado pelo que pode ser visto como o
problema gerador da área: o famoso “Problema das Quatro
Cores”. A história inicia-se em 1852 com o matemático e
botânico sul-africano Francis Guthrie. Ao tentar colorir mapas
de condados da Inglaterra, Guthrie observou que talvez fosse
possível colorir qualquer mapa plano utilizando apenas quatro
cores, de modo que regiões vizinhas não compartilhassem a
mesma cor. Embora a conjectura tenha sido formulada em
correspondências privadas naquela época, ela foi formalmente
apresentada à comunidade científica por Cayley em 1879 [1]
e discutida pelo próprio Guthrie em nota posterior [2]. A
curiosidade inicial deflagrou uma das mais longas e produtivas
buscas por uma prova matemática.
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A primeira prova da conjectura surgiu apenas em 1879,
apresentada pelo matemático inglês Alfred Kempe [3]. Aceita
por uma década, a demonstração foi refutada em 1890, quando
erros estruturais foram encontrados. Diversas soluções foram
propostas subsequentemente, mas a confirmação definitiva
da conjectura ocorreu somente em 1976, pelos matemáticos
Kenneth Appel e Wolfgang Haken, da Universidade de
Illinois [4, 5]. Contudo, parte dessa prova utilizava
computadores para verificar milhares de casos, fato que gerou
resistência na comunidade matemática da época, que ansiava
por uma demonstração puramente analítica.

Embora o "Problema das Quatro Cores" trate essencial-
mente da coloração de vértices (ou faces), ele pavimentou
o caminho para variantes igualmente profundas, como o
Problema de Coloração de Arestas, foco central deste trabalho.
Diferente de colorir regiões, colorir arestas busca atribuir
rótulos às conexões de um grafo de tal forma que arestas
incidentes a um mesmo vértice não compartilhem a mesma
cor. Esse tipo de modelagem é vital para cenários onde o
conflito não está nos objetos (vértices), mas na utilização
simultânea de canais de comunicação ou horários, sendo o
índice cromático o parâmetro que define a eficiência máxima
dessa alocação.

Para além do panorama histórico internacional, aparece
com prestígio também a contribuição brasileira no desenvolvi-
mento da Teoria dos Grafos. O Brasil consolidou-se como
um pólo de excelência mundial nesta área, impulsionado
por pesquisadores cujos trabalhos são referência na literatura
contemporânea. Dentre eles, destacam-se as contribuições de
Jayme Luiz Szwarcfiter [6], fundamental na estruturação da
pesquisa em algoritmos e grafos no país; Cláudio L. Lucchesi
[7], renomado por seus trabalhos seminais, incluindo o célebre
Teorema de Lucchesi-Younger em grafos direcionados; e
Nelson Maculan [8], uma referência global em otimização
combinatória. Contextualizar o problema de coloração de
arestas envolve, portanto, reconhecer essa robusta tradição
acadêmica nacional que alia rigor teórico a aplicações
computacionais de ponta.

Neste artigo queremos portanto demonstrar de forma
pedagógica o problema de coloração de arestas, assegurando
ao leitor compreender a evolução desses conceitos, culmi-
nando na análise de dois pilares teóricos fundamentais, o
Teorema de Kőnig [9], que soluciona o problema para grafos
bipartidos relacionando-o ao grau máximo, e o Teorema de
Vizing [10], que estabelece os limites estritos para grafos
simples. Ao detalhar essas condições, busca-se absorver a
robustez matemática que sustenta a classificação dos grafos e
suas aplicações contemporâneas.

A seguir abordaremos o tópico por entre quatro seções
subsequentes. A Seção II estabelece as definições
preliminares e a notação fundamental, introduzindo conceitos
estruturais como grau máximo e emparelhamento. Na
Seção III, exploramos a natureza do problema, discutindo
intuitivamente os limites cromáticos e apresentando os lemas
auxiliares de Bondy e Murty que fundamentam a otimização
de cores. A Seção IV é dedicada à demonstração formal
dos dois pilares da teoria: o Teorema de Kőnig para grafos
bipartidos e o Teorema de Vizing para grafos simples. Por
fim, a Seção V apresenta as conclusões e uma síntese dos
resultados obtidos.
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Figura 1: Representação Gráfica do Grafo G1.

II. PRELIMINARES

Para compreender a profundidade do Problema de Coloração
de Arestas, é necessário primeiro estabelecer a linguagem
comum da Teoria dos Grafos. Nesta seção, definimos as
estruturas fundamentais, as propriedades de conectividade e
os parâmetros que governam a complexidade desses sistemas.
As definições foram extraídas de [6, 11].

Formalmente, um grafo G = (V,E) é uma estrutura
matemática composta por dois conjuntos fundamentais: um
conjunto não vazio V de vértices e um conjunto E de pares
não-ordenados de vértices, denominados arestas. Denotamos
uma aresta qualquer e, como e= (a,b), onde a e b são vértices
do grafo e dizemos que a e b são extremos(ou extremidades)
da aresta e. Ainda, a aresta e é dita incidente aos vértices a e
b [6].

Neste contexto, os vértices (V ) representam os objetos
ou entidades do sistema, como computadores, pessoas ou
interseções, enquanto as arestas (E) representam as conexões
ou relações diretas entre esses objetos.

Um grafo qualquer, digamos G1, pode ser representado de
várias maneiras, por exemplo, de forma geométrica como
pode ser visto na Figura 1. Cada vértice é simbolizado
com um círculo, e os segmentos de retas que os conectam
são as arestas do grafo. Denotamos como V (G) e E(G) o
conjunto de vértices e arestas do grafo G, respectivamente.
Por exemplo, para o grafo G1, denotamos sua estrutura como:

V (G1) = {v1,v2,v3,v4,v5,v6,v7}
E(G1) = {(v1,v2),(v2,v3),(v3,v4),(v4,v5),(v6,v1),

(v2,v7),(v3,v7),(v5,v7),(v6,v7)}

Dois vértices são adjacentes (ou vizinhos) se existe uma
aresta que incide em ambos os vértices. Analogamente,
duas arestas são adjacentes se possuem uma extremidade
em comum [6].

Por exemplo, em G1, v1 e v2 são vértices adjacentes, pois
existe uma aresta que incide (conecta) ambos os vértices:
e1 = (v1,v2). Por outro lado, os vértices v1 e v5 não são
adjacentes, uma vez que não existe aresta que os conectam.
Similarmente, considerando a aresta e2, temos que e1 e e2 são
adjacentes, pois possuem uma extremidade em comum (v2).
No entanto, as arestas e1 e e4 não são adjacentes.

Seguindo as definições clássicas de Bondy e Murty [11],
estabelecemos duas propriedades essenciais para o escopo
deste trabalho. Primeiramente, um grafo G é dito finito se o
seu conjunto de vértices e arestas é finito. Em segundo lugar,
um grafo é classificado como simples se ele não possui laços
(uma aresta com início e fim no mesmo vértice) e não possui
duas ou mais arestas que incidem no mesmo par de vértices
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Figura 2: Grafo G2 (exemplo de grafo não simples).

X

u1

u2

u3

Y

v1

v2

Figura 3: Grafo bipartido K3,2 ilustrando a partição de vértices em
X e Y .

(arestas múltiplas). Por exemplo, o grafo G2 (Figura 2) não é
simples, pois possui três arestas que conectam v4 e v5 e ainda
possui um laço, representado pela aresta e1. Por outro lado, o
grafo G1 é simples.

Um grafo G = (V,E) é dito bipartido se o seu conjunto
de vértices V pode ser particionado em dois subconjuntos
disjuntos, digamos X e Y , de tal forma que toda aresta
de G conecta um vértice de X a um vértice de Y .
Consequentemente, não existem arestas com ambas as
extremidades no mesmo subconjunto. A Figura 3 exemplifica
esta propriedade através do grafo completo K3,2.

Um dos conceitos mais críticos para problemas de
coloração é o grau de um vértice. O grau de um vértice
v, denotado por d(v), é definido como o número de arestas
incidentes a ele. Na Figura 4, destacamos dois exemplos
importantes: o vértice v1 possui apenas duas arestas incidentes
(destacadas em azul), logo d(v1) = 2; já o vértice v7 comporta-
se como o elemento de maior conectividade (destacadas
em vermelho). A partir dessa definição local, derivamos
o parâmetro global mais importante para este trabalho: o
Grau Máximo (∆(G)). Ele representa o maior valor de grau
encontrado entre todos os vértices. No nosso exemplo, como
nenhum vértice supera v7, temos que ∆(G1) = 4.

Em um grafo definimos Caminho (Pn) como sendo uma
sequência de vértices adjacentes sem repetição. Na Figura
5, a sequência v1v6v7v5 (destacada em azul) constitui um
caminho válido (P4), conectando o vértice v1 ao v5 através
do interior do grafo. Em contrapartida, a sequência v1v2v1v6
não forma um caminho, pois o vértice v1 se repete. Um
Ciclo (Cn) consiste em um caminho cujo vértice de início é
igual ao vértice de fim, fechando um circuito. O destaque
em vermelho exemplifica um ciclo C3, de tamanho 3 (um
triângulo): v2v3v7v2. [6]

v1 v2 v3 v4

v5v6 v7

d(v1) = 2

∆(G) = 4

Figura 4: Visualização dos graus do grafo G1.

v1 v2 v3 v4

v5v6 v7

Figura 5: Exemplos de subestruturas em G1: um Caminho aberto
(azul) e um Ciclo fechado (vermelho).

v1 v2 v3 v4

v5v6 v7

Figura 6: Um emparelhamento no grafo G1 (em azul).

Um grafo G é denominado conexo quando existe caminho
para cada par de vértices; do contrário, o grafo é dito ser
desconexo [6]. Por exemplo, o grafo G1 é conexo uma vez que
para cada dois vértices quaisquer sempre existe um caminho
que os conecta. Em contrapartida, considere que as arestas
verdes da figura 6 juntamente com os seus vértices formem
um grafo. Este, seria desconexo já que, por exemplo, não
existe um caminho que conecta os vértices v1 e v7.

Finalmente, chegamos ao conceito de emparelhamento
(matching). Um emparelhamento em um grafo G é um
conjunto de arestas M ⊆ E tal que nenhuma aresta de M
é adjacente a outra; em outras palavras, nenhum vértice do
grafo incide em mais de uma aresta de M [11].

Na Figura 6, destacamos em azul um emparelhamento
formado pelas arestas {(v1,v2),(v3,v4),(v5,v7)}. Note a
característica visual mais importante: essas três arestas são
totalmente independentes e não compartilham nenhum vértice
comum (elas "não se tocam"). Esse conceito é a base
estrutural da coloração de arestas, pois em uma coloração
válida, todas as arestas pintadas com uma mesma cor formam,
obrigatoriamente, um emparelhamento.

III. TRABALHOS RELACIONADOS

A Teoria dos Grafos constitui uma importante área tanto no
âmbito teórico e prático. No campo teórico sua importância
é um reflexo da existência de muitos problemas ainda
em estudo ou mesmo sem solução, o que incentiva a
escrita de trabalhos acadêmicos na área e formação de
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grupos de pesquisas na universidade [6]. Por outro lado,
o tema é também extremamente relevante do ponto de vista
prático com aplicações que surgem nas mais diversas áreas
como na química (modelagem de estrutura de moléculas);
no planejamento de rotas de tráfego aéreo com menor
distância; na engenharia e obviamente na computação [12].
Portanto, são muitos os trabalhos que buscam contribuir
pedagogicamente no ensino Teoria dos Grafos de formas mais
acessível, haja vista sua importância prática e teórica.

Silva [12], em sua dissertação, tem como proposta de
trabalho introduzir a Teoria dos Grafos no ensino fundamental.
Para isso ele propõe uma abordagem evidentemente mais
lúdica para assim motivar os alunos ao aprendizado, e escolhe
problemas que sejam mais próximos ao codiano dos alunos
como o problema de caminhos. Segundo o autor, o trabalho
não só contribui para professores que desejam lecionar o
conteúdo, mas também para qualquer pessoa que tem interesse
no assunto.

Csóka, Lippner e Pikhurko [?], em seu estudo investigaram
o problema de coloração de arestas em Graphings, segundo
os autores: "Um graphing é uma generalização analítica de
um grafo de grau limitado que aparece em várias áreas, como
limites de grafos esparsos e teoria de equivalência de órbitas."
Eles mostraram tanto o Teorema de König e o Teorema de
Vizing poderiam ser generalizados para essa classe de grafos.

Em seu artigo Müller e Bayer [13] apresentam um
possibilidade pedagógica para a abordagem de Teoria dos
Grafos nos anos finais do ensino fundamental, através de um
desafio lúdico adaptado por eles. Tal atividade além de divertir
os alunos faz uma exposição branda sobre a estrutura de um
grafo (vértices, arestas, grau) e conceitos relacionados como
conexidade e planaridade.

Soares [14] em seu trabalho, apresenta três teoremas em
Teoria dos Grafos e suas respectivas provas em detalhes
e estruturadamente, com o intuito de encorajar a inclusão
de Tópicos de Grafos no Ensino Médio. Os teoremas
apresentados: Teorema das Cinco Cores, Teorema da Galeria
de Arte, e Teorema da Amizade foram escolhidos ainda por
possuírem um certo apelo estético a auxiliar na conclusão do
objetivo de seu estudo.

Finalmente, um trabalho feito por Yasser e Bianchii [15]
que, apesar de ser da área de Teoria da Computação, se propõe
a fazer uma reflexão e discutir sobre Práticas Pedagógicas no
escopo da disciplina de Teoria da Computação. Conforme os
autores, o uso de abordagens alternativas como seminários,
auxiliou na compreensão dos conceitos que são expostos
tradicionalmente de maneira mais abstrata e gerou um maior
índice de satisfação na disciplina.

Na próxima seção introduziremos definições e conceitos
que serão utilizadas nesta pesquisa para abordar o Problema
de Coloração de Arestas.

IV. COLORAÇÃO DE ARESTAS

Intuitivamente, como o próprio nome sugere, uma coloração
de arestas consiste em atribuir k rótulos às arestas de um grafo
qualquer onde cada rótulo pode ser interpretada como uma
cor.

Formalmente, uma k-coloração de arestas de um grafo
G sem laços, pode ser descrita não apenas como uma
atribuição de rótulos, mas estruturalmente como uma partição

v5

d

c

a
e

f

b
g

Figura 7: Grafo G2 Fonte: Bondy e Murty(1976

do conjunto de arestas E em k subconjuntos (E1,E2, . . . ,Ek).
Desta forma, cada subconjunto Ei representa as arestas de uma
mesma cor. Se as arestas de cada subconjunto Ei forem não
adjacentes, dizemos que a coloração é própria [11]. Se um
grafo G admite uma coloração própria com k cores, dizemos
que G é k-colorível.

Sob a ótica da Teoria dos Grafos, nota-se que esse
conjunto de arestas independentes corresponde exatamente
à definição de emparelhamento (matching) vista na seção
anterior. Portanto, colorir as arestas de um grafo G equivale a
particionar sua estrutura em uma coleção de emparelhamentos
distintos (M1,M2, . . . ,Mk).

Por exemplo, considere o grafo G2( Figura 7). Podemos
definir uma coloração C = ({a,b,c,d},{e, f},{g}). Pode-
mos interpretar essa partição da seguinte forma: as arestas
a, b, c e d colorimos com uma cor qualquer, digamos c1;
as arestas e e f recebem a cor c2 e a aresta g recebe a cor
c3. Obviamente essa coloração não é própria uma vez que
existem arestas adjacentes que receberam a mesma cor(por
exemplo, as arestas a, b, c, d).

Por outro lado, considere a coloração C ′ =
({a,g},{b,e},{c, f},{d}). Novamente, isso pode ser
interpretado como uma atribuição de cores da seguinte forma:
a arestas a e g recebem a cor c′1; as arestas b e e recebem a
cor c′2; as arestas c e f recebem a cor c′3 e a aresta d recebe
a cor c′4. Dessa vez, note que não existe arestas adjacentes
com uma mesma cor. Portanto, C ′ é uma coloração própria e
perceba que cada conjunto de arestas dessa partição forma
um emparelhamento.

Dizemos ainda que uma determinada cor c é representada
em um vértice v, se existe alguma aresta incidente a v que
possua a cor c. Por exemplo, para o grafo G1 e considerando
a coloração C ′ as cores c1, c2, c3 são representadas no vértice
v5, uma vez que, as arestas e, f e g, incidem em v5 e possuem
as cores c1, c2, c3.

Dessa perspectiva, surge um questionamento natural: “Qual
a menor quantidade de cores necessária para pintar as arestas
deste grafo sem gerar conflitos de incidência?”. A resposta
define um dos parâmetros fundamentais da área: o índice
cromático, denotado por χ′(G). Este parâmetro representa
o número mínimo de emparelhamentos distintos necessários
para cobrir todas as arestas de um grafo de forma válida.
No exemplo do grafo G2, o leitor pode conferir que 4 é o
menor números de cores possível para realizar uma coloração
própria em G2. Portanto χ′(G2) = 4.

Ao buscarmos o índice cromático, deparamo-nos imediata-
mente com uma restrição física imposta pela própria estrutura
do grafo. Considere o vértice mais “congestionado” do
sistema, isto é, aquele que possui o maior número de conexões
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v1 v2 v3 v4Verm. Azul ?

(a) Caminho termina em v3 (Grau ≥ 2).

v1 v2 v3 v4

Verm. Azul Verm.

(b) Extensão: v3 agora tem as duas cores.

Figura 8: Ilustração esquemática da propriedade de extensibilidade.

(o grau máximo, denotado por ∆(G)).
A lógica é trivial: se olharmos novamente para o vértice v7

da Figura 1 (Seção 2), vemos que ele possui 4 conexões. É
fisicamente impossível colorir essas 4 arestas incidentes com
apenas 3 cores sem que duas delas compartilhem a mesma cor
e causem um conflito. Esse “gargalo” local impõe, portanto,
um limite inferior global para todo o sistema:

χ
′(G)≥ ∆(G) (1)

Essa desigualdade estabelece que são necessárias, pelo
menos, tantas cores quanto o grau máximo. A questão central
que a teoria busca responder é: será que esse mínimo é
suficiente? Para alguns para alguns tipos de grafos, como
os grafos bipartidos, a resposta é afirmativa, como veremos a
seguir.

Para avançarmos da intuição para a prova formal de que
grafos bipartidos atingem o limite inferior ∆(G), necessitamos
de uma ferramenta auxiliar que garanta a distribuição
equilibrada de cores. Bondy e Murty apresentam um resultado
técnico fundamental, conhecido no livro como Lema 6.1.1
[11]. Para fins didáticos, chamaremos este resultado de Lema
das Duas Cores.

A intuição por trás deste lema é uma questão de paridade.
Sabemos que ciclos ímpares são as únicas estruturas que
impedem uma 2-coloração perfeita (onde arestas alternam
cores). Se removermos essa restrição, ganhamos controle
sobre a incidência de cores nos vértices.

“Lema das Duas Cores: Seja G um grafo conexo
que não é um ciclo ímpar. Então, G possui uma
2-coloração de arestas na qual ambas as cores estão
representadas em cada vértice de grau pelo menos
dois.”

Para visualizar a ideia construtiva deste lema, imagine que
nosso objetivo é traçar um caminho pelo grafo, pintando
as arestas alternadamente em Vermelho e Azul, conforme
ilustrado esquematicamente na Figura 8.

Ao passarmos por um vértice intermediário (como o vértice
v2 na Figura 8-a), necessariamente entramos por uma cor e
saímos pela outra. Isso garante que v2 possui ambas as cores
representadas. O problema surge apenas nos vértices que
habitam a extremidade do caminho (como o vértice v3), pois
eles estariam em contato com apenas uma aresta colorida
neste trajeto.

A genialidade do lema reside na extensibilidade, demons-
trada na parte (b) da Figura 8. Se o caminho termina em um

vértice que ainda tem outras arestas não coloridas (ou seja,
grau ≥ 2), podemos simplesmente expandir o caminho por
essa nova aresta usando a cor alternada.

Podemos repetir esse processo até que o caminho termine
em um vértice sem saída ou feche um ciclo. O lema
garante que, exceto no caso específico do ciclo ímpar (onde
a alternância de cores trava ao fechar o ciclo), sempre
conseguimos ajustar caminhos para que nenhum vértice de
grau igual ou maior que dois fique com uma cor só.

Além da existência de colorações, é importante definir uma
forma para compará-las. Dada uma k-coloração C de G,
denotamos por c(v) o número de cores distintas representadas
no vértice v.

Intuitivamente, um vértice não pode “ver” mais cores do
que o número de arestas que chegam a ele. Portanto, temos a
desigualdade trivial:

c(v)≤ d(v) (2)

A igualdade c(v) = d(v) ocorre se, e somente se, a
coloração é própria em torno de v (ou seja, todas as arestas
incidentes têm cores diferentes). Com base nisso, definimos
o conceito de melhoria (improvement). Dizemos que uma
coloração C ′ é uma melhoria sobre C se a soma global de
cores distintas observadas pelos vértices aumenta:

∑
v∈V

c′(v)> ∑
v∈V

c(v) (3)

Uma k-coloração é dita ótima se ela não pode ser melhorada.
Esse conceito de “otimalidade” é a chave para as provas
construtivas que virão a seguir: a ideia é começar com uma
coloração qualquer e “melhorá-la” iterativamente até atingir
uma coloração onde a regra de adjacência seja satisfeita para
o maior número possível de vértices.

Com o conceito de otimização já estabelecido, podemos
finalmente analisar quais os fatores que impedem uma
coloração de ser perfeita.

Suponha que atingimos uma k-coloração ótima C . Agora,
imagine que essa coloração ainda não é a “ideal” em um
vértice u: a cor i está faltando em u, mas a cor j aparece
repetida. Isso indica um desequilíbrio local.

Intuitivamente, gostaríamos de trocar algumas arestas da
cor j por i para equilibrar a distribuição. O Lema 6.1.2
de Bondy e Murty, aqui chamado de Lema do Obstáculo
em Ciclos Ímpares, nos diz exatamente quando isso não é
possível.

“Lema do Obstáculo em Ciclos Ímpares: Seja C
uma k-coloração ótima de G. Se existe um vértice
u onde a cor i não aparece, mas a cor j aparece
pelo menos duas vezes, então a componente conexa
formada apenas pelas arestas dessas duas cores (i
e j) que contém u é, necessariamente, um ciclo
ímpar.”

A prova dessa afirmação conecta-se diretamente ao Lema
das Duas Cores e pode ser visualizada na Figura 9.

Perceba que No vértice u, temos duas arestas azuis ( j) e
nenhuma vermelha (i), tentar consertar isso alterando as cores
ao longo do ciclo apenas deslocaria o problema para v1 ou
v2, sem resolver o conflito globalmente. Se a componente
contendo u não fosse um ciclo ímpar, poderíamos aplicar a
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u

v1 v2

Azul ( j)

Verm. (i)

Azul ( j)

Falta Vermelho (i)

Figura 9: O obstáculo do ciclo ímpar.

lógica da extensibilidade vista anteriormente para re-colorir
essa componente de modo que u passasse a ter ambas as cores
(i e j). Isso faria com que o número de cores distintas em
u aumentasse (c(u) subiria em 1), sem prejudicar os outros
vértices, criando uma coloração “melhor”.

Como partimos da premissa de que a coloração original
já era ótima (impossível de melhorar), essa re-coloração
é impossível. Logo, a única explicação geométrica que
trava essa melhoria é que estamos presos na estrutura rígida
mostrada na Figura 9: um ciclo ímpar.

V. O TEOREMA DE KŐNIG

Com base na fundamentação estabelecida, alcançamos o
ponto de convergência desta primeira parte. Os lemas
anteriores construíram uma narrativa clara: a otimização de
uma coloração só é bloqueada estruturalmente pela presença
de ciclos ímpares.

Para contextualizar a importância do que vem a seguir, vale
ressaltar que, quando o matemático húngaro Dénes Kőnig
publicou este resultado em 1916 [9], a Teoria dos Grafos
ainda nem existia como disciplina autônoma. Kőnig, que
mais tarde escreveria o primeiro livro-texto da área, chegou
a este teorema estudando a decomposição de matrizes e
determinantes. Ele percebeu que certas estruturas algébricas
poderiam ser traduzidas geometricamente para o que hoje
chamamos de grafos bipartidos, provando que, nessas
estruturas “bem-comportadas”, a complexidade do problema
desaparece.

A elegância da sua conexão reside no fato de que, por
definição, a propriedade fundamental de um grafo bipartido
é a ausência completa de ciclos de comprimento ímpar. Se a
única barreira topológica para a otimização perfeita é o ciclo
ímpar, e os grafos bipartidos são desprovidos dessa estrutura,
a conclusão lógica é inevitável.

“Teorema de Kőnig (1916): Se G é um grafo
bipartido, então seu índice cromático é exatamente
igual ao seu grau máximo, ou seja, χ′(G) = ∆(G).”

Para visualizar o porquê deste teorema funcionar, imagine
que os vértices do grafo estão divididos em dois times rivais,
Time A e Time B, e as arestas representam partidas entre eles.
Em um grafo bipartido, um time nunca joga contra si mesmo;
as arestas sempre ligam A a B.

Se tentarmos colorir as arestas (agendar os jogos) e
encontrarmos um conflito que exige uma troca de cores em
cadeia, essa cadeia de trocas funcionaria como um movimento
de “ping-pong”, ilustrado na Figura 10.

Para que um conflito seja insolúvel (como vimos no Lema
anterior), essa cadeia precisaria fechar um ciclo ímpar mas

a1 b1

a2 b2

(Ímpar)

(Par)

(Ímpar)

Figura 10: Qualquer caminho de comprimento ímpar termina
necessariamente no time oposto.

se observarmos o movimento na figura veremos que Passo
1 (Ímpar): Sai de A → Chega em B, Passo 2 (Par): Sai
de B → Volta para A, Passo 3 (Ímpar): Sai de A →
Chega em B. Isso mostra que se nosso intuito for fechar
um ciclo e voltar ao vértice de origem (que está em A), é
necessário, obrigatoriamente, um número par de passos pois
é impossível sair de A e voltar para A com um número ímpar
de movimentos, pois estaríamos fisicamente no lado do Time
B.

Podemos concluir portanto que o “curto-circuito”
cromático do ciclo ímpar nunca acontece, sempre
conseguimos resolver os conflitos locais e organizar
as arestas em exatamente ∆ rodadas (cores) perfeitas.

O Teorema de Kőnig representa, como vimos, o cenário
ideal na coloração de arestas: uma classe de grafos onde a
topologia colabora perfeitamente com a alocação de recursos,
garantindo que o limite inferior natural (∆) seja sempre
suficiente. Nesses casos, não há desperdício e a estrutura
bipartida assegura a inexistência dos conflitos cíclicos que
impediriam a otimização.

Contudo, a modelagem de sistemas complexos frequente-
mente nos confronta com grafos que não possuem essa
propriedade. O que acontece quando a restrição é levantada
e os ciclos ímpares, como um simples triângulo, são
reintroduzidos na estrutura? A intuição poderia sugerir que,
sem a garantia de Kőnig, o número de cores necessárias
poderia crescer descontroladamente acima do grau máximo.

A resposta para o caso geral foi descoberta quase cinquenta
anos depois e revela um resultado surpreendente: mesmo na
presença de ciclos ímpares e estruturas complexas, o “caos”
cromático é extremamente limitado. O índice cromático
nunca se afasta muito do ideal estabelecido por Kőnig,
oscilando em um intervalo restrito de apenas dois valores
possíveis.

VI. O TEOREMA DE VIZING

O Teorema de Vizing [10] constitui um outro resultado
clássico no problema de coloração de arestas. Em seu trabalho,
ele mostrou que existia um limite superior para o índice
cromático de um multigrafo. Um multigrafo é um grafo
que possui mais de uma aresta que conecta um mesmo par de
vértices (veja a figura 2). Contudo, o presente trabalho trata
de grafos simples, então para cada par de vértices há somente
uma aresta que os conecta. Sob essas hipóteses, o Teorema
de Vizing possui o seguinte enunciado:

“Seja G um grafo simples. Então vale a
desigualdade: ∆(G)≤ χ′(G)≤ ∆(G)+1”
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Uma vez que o índice cromático de um grafo é um número
inteiro, o teorema diz que para qualquer grafo G simples,
o seu índice cromático ou é igual ao grau máximo de G
ou então é maior por uma unidade apenas. Esse é um
resultado extremamente útil na construção de algoritmos para
coloração própria e mínima, pois implica que precisamos
apenas examinar dois conjuntos de colorações, o que reduz
bastante o espaço de busca [16]. A primeira desigualdade
é trivial e pode ser vista na seção IV em (1). A dificuldade
reside na segunda desigualdade.

Na literatura existem vários tipos de provas da segunda
parte: por indução e construção por exemplo. Neste texto
usaremos o tipo de demonstração por contradição.

No enunciado do teorema temos duas proposições: p =
"G é um grafo simples" e q = "∆(G) ≤ χ′(G) ≤ ∆(G)+ 1".
Queremos mostrar que a ocorrência de p implica q. A
estrutura da prova é a seguinte: assumimos que p ocorre mas
negamos a proposição q, ou seja, assumimos o contrário
daquilo que queremos provar, e assim teremos uma nova
proposição diferente:

"Seja G um grafo simples. Então χ′(G)> ∆(G)+1"

Com base nessa proposição, nós faremos uma série de
deduções lógicas válidas, e eventualmente chegaremos à
conclusão de ser falso um fato já provado ser verdade. Mas
isso é uma contradição, então a única explicação para essa
incoerência lógica é ter suposto inicialmente que χ′(G) >
∆(G)+ 1. Então se essa proposição é falsa, sua negação é
verdadeira e portanto: χ′(G)≤ ∆(G)+1. [17]

O teorema de Vizing divide os grafos que satisfazem as
hipóteses do teorema em duas classes, de acordo com seu
índice cromático; se um grafo G satisfaz χ′(G) = ∆(G) ele
é dito ser de classe 1, se χ′(G) = ∆(G)+1 ele é de classe 2
[18].

Para compreender melhor essa classificação, é útil
visualizar como a topologia do grafo impõe restrições locais.
A distinção fundamental reside na capacidade da estrutura em
acomodar emparelhamentos sem gerar conflitos insolúveis.
Conforme ilustrado na Figura 11, um ciclo par (C4), por
ser um grafo bipartido, permite uma alternância perfeita de
índices (representados pelos números 1 e 2), satisfazendo
χ′(G) = ∆(G) = 2 e classificando-se como Classe 1. Em
contrapartida, um ciclo ímpar (C5) apresenta um impasse
estrutural: ao tentar alternar os índices 1 e 2, a última
aresta conecta vértices que já possuem incidências de ambos,
obrigando o uso de um terceiro índice (número 3). Isso resulta
em χ′(G)= 3=∆(G)+1, caracterizando o grafo como Classe
2.

Uma curiosidade interessante é que Holyer [19] mostrou
que, dado um grafo G, decidir se ele é de Classe 1 ou de
Classe 2 é um problema NP-completo. De forma simplificada,
problemas NP-completos são problemas de decisão cuja
solução, uma vez proposta, pode ser verificada de forma fácil,
porém encontrar sua solução é difícil [6]. Por exemplo, dada
uma coloração de arestas C qualquer sobre um grafo G, é
fácil verificar se essa coloração é de Classe 1: basta checar se
a coloração é própria e se utiliza exatamente ∆(G) cores. No
entanto, decidir se existe tal coloração entre o enorme número
de possibilidades é um problema computacionalmente difícil.

Na seção a seguir, veremos as demonstrações dos dois

1

1

22

Classe 1 (χ′ = 2)

1

2

1

2

3

Classe 2 (χ′ = 3)

Figura 11: Comparação visual utilizando numeração nas arestas: O
ciclo par (C4) usa apenas rótulos 1 e 2, enquanto o ciclo ímpar (C5)

necessita do rótulo 3.

teoremas propostos.

VII. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Estabelecidas as condições estruturais e os lemas auxiliares
sobre a distribuição de cores, o texto avança para a
formalização dos dois pilares centrais da coloração de arestas.

Demonstra-se inicialmente o Teorema de Kőnig, provando
que a ausência de ciclos ímpares em grafos bipartidos garante
que o índice cromático atinja seu limite inferior natural (∆).
Subsequentemente, a análise expande-se para a classe dos
grafos simples gerais. Mediante o método de redução ao
absurdo e argumentos de recoloração, demonstra-se o célebre
Teorema de Vizing. Este estabelece que, mesmo na presença
de estruturas cíclicas ímpares, o índice cromático excede o
grau máximo em no máximo uma unidade.

Ambas as demonstrações fundamentam-se na estrutura
lógica apresentada por Bondy e Murty [11], utilizando
os conceitos de otimização cromática e emparelhamentos
definidos preliminarmente.

O Teorema de Kőnig enuncia-se da seguinte maneira.

Teorema de König VII.1. Seja G um grafo bipartido. Então
a igualdade abaixo se verifica

χ
′(G) = ∆(G). (4)

Proof. A demonstração da igualdade utiliza o método de
redução ao absurdo. Assume-se a falsidade da tese para obter
uma contradição estrutural.

Seja G um grafo bipartido e suponha-se, por contradição,
que χ′(G) > ∆(G). Considere C = (E1,E2, . . . ,E∆) uma ∆-
coloração ótima das arestas de G. Como o grafo não é ∆-
colorível propriamente, existe necessariamente um vértice u
onde o número de cores presentes é inferior ao grau do vértice,
satisfazendo a condição

c(u)< d(u) (5)

Essa desigualdade implica uma falha na distribuição das
cores em u. Especificamente, existem cores i e j tais que a cor
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u

Partição A Partição B

j

j

Falta cor i

Figura 12: Defeito cromático em u: repetição da cor j (azul) e
ausência da cor i (vermelha).

i não está representada em u (falta), enquanto a cor j aparece
pelo menos duas vezes (repetição). A Figura 12 ilustra essa
configuração local, onde o vértice u possui duas arestas azuis
( j) e nenhuma aresta vermelha (i).

Aplica-se neste ponto o Lema das duas cores (Lema 6.1.2
de Bondy & Murty). Segundo este resultado, se tal falha
ocorre em uma coloração ótima, a componente conexa do
subgrafo induzido apenas pelas cores i e j que contém u deve
ser, obrigatoriamente, um ciclo ímpar.

Entretanto, tal conclusão gera uma contradição topológica
imediata com a natureza do grafo G. A definição de grafo
bipartido exige que o conjunto de vértices possa ser dividido
em dois subconjuntos disjuntos, A e B, onde toda aresta
conecta um vértice de A a um de B.

Para que um ciclo exista, é necessário sair de uma
partição e retornar a ela. Como cada passo na trilha
alterna de partição (A → B → A → . . . ), retornar ao
vértice de origem exige necessariamente um número par de
passos. Consequentemente, é impossível existir um ciclo de
comprimento ímpar em um grafo bipartido.

Visto que a existência do ciclo ímpar exigido pelo lema é
impossível, a suposição inicial de que χ′(G)> ∆(G) revela-se
falsa. Portanto, conclui-se que χ′(G) = ∆(G).

.
Vejamos a seguir a demonstração de um outro importante

teorema relacionado ao Problema de Coloração de Arestas
em Grafos.

Teorema de Vizing VII.2. Seja G um grafo simples. Então:

∆(G)≤ χ
′(G)≤ ∆(G)+1. (6)

Proof. Seja G um grafo simples. Suponha por absurdo que
χ′(G) > ∆(G) + 1. Seja C = (E1,E2, ...,E∆(G)+1) uma
(∆+1)-coloração das arestas de G e seja u um vértice tal
que:

c(u)< d(u) (7)

Note que o vértice u existe, pois assumimos(por
contradição) que o grafo G não é (∆+1)-colorível. Assim
deve existir pelo menos um vértice tal que uma mesma
cor esteja representada nele, exatamente o que o item (7)
exprime(Lembre que c(v) denota o número de cores distintas
representadas em um dado vértice v). Então, existem certas
cores i0 e i1 tais que: i0 não está representado em u, e i1 está
representado pelo menos duas vezes em u. Esse fato ocorre
porque, para todo vértice de G, em particular para u, segue
que d(u)<∆(G)+1 e a coloração que estamos usando possui
∆(G)+ 1 cores, logo pelo menos uma cor não é usada em
u, o que justifica a existência de i0. A existência da cor i1 é

c(u)=2
u

v2
c(v2)=1

v1
c(v1)=3

v3
c(v3)=3

c(v4)=1
v4

v5
c(v5)=1

c(v6)=1
v6

v7
c(v7)=1

i0

i1 i1

i2
i3

i0
i2

Figura 13: Grafo G com coloração c0

c(u)=3
u

v2
c(v2)=1

v1
c(v1)=3

v3
c(v3)=3

c(v4)=1
v4

v5
c(v5)=1

c(v6)=1
v6

v7
c(v7)=1

i0

i1 i3

i2
i3

i0
i2

Figura 14: Grafo G com coloração c′0

consequência de (5). Seja uv1 uma aresta que possua a cor i1.
Agora considere a seguinte asserção:

(i): “Uma vez que d(v1) < ∆(G)+ 1 existe uma
cor i2 que não é representada em v1. Note que
i2 necessariamente deve estar representada em u.
Do contrário, poderíamos recolorir a aresta uv1
com a cor i2 e assim obter uma melhoria na nossa
coloração, o que contradiz a hipótese dela ser
ótima.”

Vejamos um exemplo para compreender melhor o item (i).
Considere o grafo G(figura 13), cujo grau máximo de vale
3(Naturalmente, o argumento também é válido se G fosse um
grafo maior, o que importa é olhar localmente para o vértice
u que sabemos que existe). Assim, a coloração denotada por
c0 é composta por 4 cores, denotadas por i, onde:

c0 = {i0, i1, i2, i3}
Note que, o somatório do número de cores distintas que

são representadas em cada vértice é 13, isto é, ∑c(v) = 13.
A cor preta não é representada no vértice em u e nem em v1.
Crie uma nova coloração c′0 onde aresta uv1 se torna da cor
preta e o restante das arestas permanecem inalteradas. Para
essa nova coloração, o somatório do número de cores distintas
representadas em cada vértice é 14: ∑c′(v) = 14 (Figura 14).
Ou seja, conseguimos melhorar a nossa coloração c0, o que
é uma contradição pois supomos que tal coloração era ótima.
Portanto o item (i) é de fato verdadeiro.

Então sabemos que existe alguma aresta diferente de uv1
que possui a cor i2, chamemos ela de uv2. Novamente, temos
que d(v1) < ∆(G) + 1, logo existe uma cor i3 que não é
representada em v2. Por um raciocínio totalmente análogo ao
feito em (i), a cor i3 deve necessariamente estar representada
em u, do contrário, seria possível fazer uma melhoria na
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u

vv1

v2

vk−1 vk

vl

i1i1
i2

ik−1 ik

il

Figura 15: Estrutura gerada em u. Fonte: Bondy e Murty(1976)

coloração ϕ atribuindo a cor i2 à aresta uv1 e a cor i3 à aresta
uv2. Assim deve existir um aresta uv3 com a cor i3.

Continuando com esse procedimento, construiremos uma
sequência de vértices v1,v2, ... e uma sequência de cores
i1, i2, ... que possui as seguintes propriedades:

(a) A aresta uv j possui a cor i j.

(b) A cor i j+1 não aparece na aresta uv j.

(c) Como estamos considerando um grafo simples finito,
u possui grau finito, e em algum momento as cores
começarão a se repetir nas arestas de u.

Graficamente, podemos ver a estrutura construída(Figura
15). Nela podemos ver todas as arestas adjacentes a u, sendo
que a cor i1 é representada duas vezes e a cor i0 não é
representada nenhuma vez. A cor i2 não é representada em
v1 mas é representada em v1, a cor i3 não é representada
em v2 porém é representada em i3 do contrário, como já
discutimos, seria possível reatribuir cores às arestas do grafo
de modo a obter uma melhoria para a ∆(G)+1-coloração, o
que geraria um contradição pois supomos que tal coloração é
máxima(e assim por diante para as demais cores). Agora
faremos recolorações no grafo G de forma a manter sua
otimalidade.

A primeira coloração se dará da seguinte forma: a aresta
uv j receberá a cor da aresta uv j+1 com 1≤ j≤ k−1. Aqui, as
cores das arestas de uv1 até uvk são todas distintas, e depois da
aresta vk as cores começam a se repetir seguindo a propriedade
(c) dessa estrutura construída. Na prática estamos apenas
deslocando as cores uma unidade no sentido anti-horário: a
aresta uvk−1 receber a cor ik, a aresta uvk−2 recebe a cor ik−1
..., a aresta uv2 recebe a cor i3, a aresta uv1 recebe a cor i2
(Figura 16).

Note que a nova coloração C ′ = (E ′1,E
′
2, ...,E

′
∆(G)+1)

também é uma ∆(G)+1-coloração ótima, pois na estrutura
que construímos, a cor i j+1 não aparece na aresta
u j(propriedade (b)). Ou seja a quantidade de cores distintas
representadas em cada vértice permanece inalterada. Por
exemplo, observe a aresta uv1. Antes a cor i2 não era
representada nela(do contrario teríamos uma contradição),
isto é, nenhuma outra arestas diferente uv1 possuia a cor
i2 em v1. Agora surge a questão: e se v1 tiver uma aresta
wv1 com a cor i1? Se isso ocorresse, ao colorir uv1 com i2
haveria uma melhoria na coloração(uma contradição). Logo
estamos trocando uma cor(i1) que só aparece uma vez em
v1 por outra(i2) que irá aparecer apenas uma vez em v1. O

u

vv1

v2

vk−1 vk

vl

i1i2
i3

ik ik

il

Figura 16: 1º recoloração. Fonte: Bondy e Murty(1976)

u

vv1

v2

vk−1 vk

vl

w w′

i1i2
i3

ik ik

il

i0 i0

H ′

Figura 17: Ciclo ímpar formado pela componente H ′. Fonte:
Adaptado Bondy e Murty(1976).

u

vv1

v2

vk−1 vk

vl

i1i2
i3

ik ik+1

ik

Figura 18: 2º recoloração. Fonte: Bondy e Murty(1976)

mesmo vale para os demais vértices. Veja que a coloração só
altera essa região especifica, o restante do grafo permanece
da mesma forma.

Então estamos diante de uma ∆(G)+ 1-coloração ótima,
onde o vértice u possui uma cor que não é representada nele(i0
por hipótese) e um outra cor que é representada pelo menos 2
vezes(ik). Assim pelo Lema do Obstáculo em Ciclos Ímpares
visto na sessão IV, a componente conexa H ′ formada pelas
arestas das cores i0 e ik, isto é, H ′ = G[E ′i0 ∪E ′ik ] é um ciclo
ímpar e contém o vértice u(Figura 17).

Agora faremos uma segunda recoloração. Cada aresta
uv j receberá a cor i j+1 com k ≤ j ≤ l − 1, e para aresta
uvl atribuímos a cor ik(Figura 18). A lógica aqui é
muito semelhante à primeira parte, só que agora estamos
considerando as arestas que não foram coloridas na primeira
fase. Assim a aresta uvk receberá a cor ik+1, a aresta uvk+1
receberá a cor ik+2..., a aresta uvl−1 receberá a cor il . O
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vk−1 vk
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i1i2
i3

ik ik+1

ik

i0

H ′′

i0

Figura 19: Ciclo ímpar formado pela componente H ′′. Fonte:
Bondy e Murty(1976)

único ponto a se atentar é que diferença é cor ik à aresta uvl ,
isso ocorreu porque uma vez que o grau de u é finito, haverá
uma repetição de cor, isto é, haverá um l tal que il+1 = ik,
onde ik é justamente uma cor que já ocorreu em algum
vértice anterior. Perceba que essa segunda coloração C ′′ =
(E ′′1 ,E

′′
2 , ...,E

′′
∆(G)+1) também é uma (∆(G) + 1)-coloração

ótima por um argumento análogo ao aquele usado na primeira
coloração. Novamente, pelo Lema do Obstáculo em Ciclo
Ímpares, a componente: H ′′ = G[E ′′i0 ∪E ′′ik ] é um ciclo ímpar
e contém u(Figura 19).

Note que como a componente H ′ é conexa, então sempre
existirá um caminho de u até vk−1 e de vk−1 até vk. No
nosso exemplo esse caminho é: uvk−1ww′vk. Esse caminho
continuará existindo na segunda coloração, pois nela nós
consideramos apenas as arestas com as cores de k até l−1,
e o caminho citado surge nas arestas de cores 1 até k−1. É
importante notar que a cada recoloração, nós modificamos
apenas partes localizadas do grafo, o restante se mantém
inalterado. Desse modo, a componente H ′′ contém o vértice
vk e seu grau é um. Temos portanto uma contradição, pois
H ′′ é um ciclo ímpar e não pode ter vértices com grau um.
Essa falha lógica surgiu porque supomos inicialmente que
χ′(G) > ∆(G)+ 1. Então segue que: χ′(G) ≤ ∆(G)+ 1, o
que encerra a demonstração.

Como foi dito na seção VI, o Teorema possui uma grande
importância para algoritmos de coloração de arestas. Apesar
desse tópico principal deste trabalho, será interessante tecer
alguns comentários.

A estrutura que construímos na demonstração(15), onde
temos um vértice central(u) e demais outros vértices adja-
centes que seguem algumas propriedades(VII) é conhecida
na literatura como Fan ou Vizing’s Fan(Fan de Vizing) [20].
Alguns autores definem essa estrutura explícitamente e outros
não(como no caso do Bondy e Murty). Contudo, a vantagem
de definir essa estrutura e juntamente realizar a demonstração
por construção do Teorema de Vizing é que obtemos um
algoritmo para coloração própria de arestas que utiliza no
máximo ∆(G)+1 cores.

O algoritmo de coloração de arestas baseado na prova
construtiva do Teorema de Vizing é conhecido como
Algoritmo de Coloração de Arestas de Mista Gries, e leva
o nome dos autores que propuseram a rotina [21]. Uma

i0 i1 i2

i0i1 i2 i3

i1i0

Figura 20: Grafo G1.

implementação do algoritmo na linguagem de programação
Python pode ser vista em [22].

Exemplo:
Vamos utilizar um exemplo para melhor visualizar a

aplicação prática do Teorema de Vizing. Suponha que
desejamos colorir propriamente o grafo G1 da seção I(figura
20)

Perceba que nesse grafo, ∆(G1) = 4. Portanto, pelo
Teorema de Vizing, o número de cores necessárias para colorir
o grafo propriamente não será maior que ∆(G1)+1 = 4+1 =
5. De fato, o leitor poderá verificar que não é possível colorir
esse grafo com menos de 5 cores. Definamos a coloração
c0 = {i0, i1, i2, i3}, onde cada i j(0 ≤ j ≤ 3) representa uma
cor distinta. A coloração pode ser vista na figura:

Uma observação importante é que poderíamos ter um grafo
G cujo índice cromático fosse menor que ∆(G) + 1(seção
VIII). Contudo isso não invalida o teorema pois o valor ∆(G)+
1 é um limite superior, ou seja, a garantia é que não será
preciso mais que ∆(G) + 1 cores para colorir um grafo G
simples e finito qualquer.

VIII. APLICAÇÕES

A Coloração de Arestas de Grafos possui uma série de
aplicações práticas, tais como planejamento de rotas, tráfego
em redes e muitas outras [23]. Nesta seção trataremos de um
problema bastante interessante: O Problema de Programação
de Tabelas Esportivas. Utilizaremos como referência o
trabalho de Januário (2015) [24].

Um torneio do tipo round a robin(todos contra todos), é
um competição que envolve t times diferentes que disputam
entre si uma quantidade j de jogos. Por exemplo, para
t = 4 e j = 1 teremos um torneio em que, cada time
disputa contra os demais 3 uma vez. Nesse cenário 2
questionamentos poderiam surgir: como elaborar uma agenda
de jogos de modo que, os times não disputem não mais que
uma partida em uma mesma rodada e quantas rodadas seriam
necessárias? Podemos responder essas pergunta utilizando os
conhecimentos aprendidos até aqui sobre grafos.

Em primeiro lugar, note que podemos facilmente modelar
a estrutura do torneio da seguinte forma: defina um grafo
G = (V,E), onde os vértices representam os times do torneio
e as a arestas representam a as partidas que devem ocorrer
entre eles. Consideremos t = 4 e j = 1, ou seja, 4 times t1,
t2, t3 e t4 que disputam uma partida entre si. O grafo que
representa a estrutura desse torneio pode ser vista na figura
21.

Agora devemos encontrar uma forma de garantir que nas
rodadas que se seguirão cada time jogue apenas uma partida.
Isso pode ser feito utilizando as técnicas de Coloração de
Arestas. Definimos então uma coloração C em que cada cor
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t1 t2

t3 t4

Figura 21: Grafo que representa o torneio

t1 t2

t3 t4

Figura 22: Grafo que representa o torneio, colorido

representa uma rodada do torneio. Observe que buscamos
uma coloração do grafo G que seja própria. A coloração sendo
própria, garantimos que nenhuma aresta adjacente a qualquer
um dos vértices tenha a mesma cor, ou seja, cada partida
ocorrerá em uma rodada diferente, e não haverão conflitos.

Sendo assim, estamos aptos a resolver a questão acerca
do número de rodadas necessárias para realizar esse torneio.
Responder isso é equivalente a reponder: quantas cores são
necessárias para obter uma coloração própria de G? Pelo
teorema de Vizing, sabemos que o melhor valor e que funciona
para todos os casos é ∆(G)+1= 3+1= 4 cores. Obviamente,
para valores maiores também é possível obter uma coloração
própria, mas é de interesse usar a menor número de cores,
pois implica que teremos um menor número de rodadas. Note
também que o grafo do torneio usado como exemplo pode
ser colorido propriamente com 3 cores, pois como ele é
bipartido, pelo Teorema de Kőnig, χ′(G) = ∆(G). Porém
o limite superior fornecido pelo Teorema de Vizing é melhor
no sentido de que, funciona para todos os casos possíveis,
mesmo se o grafo do torneio não for bipartido.

O segundo passo seria então aplicar algum algoritmo
de coloração própria de arestas no grafo G(sabendo que
será preciso não mais que 4 cores) obtendo portanto, o
agendamento das partidas. Uma solução pode ser vista na
figura 22. Note que, a coloração resolve o problema pois,
nunhum vértice(time) possui mais de uma aresta(partida) cuja
cor(horário) é o mesmo.

IX. RESULTADOS E REFLEXÕES

A base teórica da coloração de arestas encontra-se bem
consolidada na literatura, todavia a complexidade dos
argumentos construtivos e das técnicas de recoloração
iterativa impõe frequentemente barreiras ao aprendizado em
nível de graduação.

O mérito central deste trabalho reside não apenas
na demonstração formal, mas na sistematização visual
desses raciocínios. Ao decompor as restrições estruturais
e os impeditivos topológicos em diagramas sequenciais,
evidenciou-se a natureza local do problema. A análise
permitiu demonstrar que, enquanto certas classes de grafos

com propriedades específicas permitem uma alocação ótima
de recursos garantindo que o índice cromático iguale o
grau máximo (χ′ = ∆), a generalização para estruturas mais
complexas acarreta, no pior caso, o incremento de apenas uma
cor adicional (χ′ ≤ ∆+1).

A expectativa é que este material atue como um instrumento
pedagógico facilitador, permitindo que estudantes das áreas de
Computação e Matemática transitem da intuição geométrica
para o rigor analítico das provas formais com maior fluidez e
compreensão.

X. CONSIDERAÇÕES FINAIS

Este estudo revisitou o Problema de Coloração de Arestas,
partindo de suas raízes históricas no Problema das Quatro
Cores até a formalização contemporânea. A análise
comparativa entre a estrutura rígida dos grafos bipartidos
e a flexibilidade dos grafos simples permitiu compreender
como propriedades topológicas (como a paridade de ciclos)
ditam os limites de alocação de recursos.

Conclui-se que a abordagem geométrica e iterativa é
essencial para a compreensão profunda do Índice Cromático.
A dificuldade inerente em conciliar o rigor matemático
com a clareza didática foi mitigada pelo uso extensivo de
representações visuais, que serviram como âncoras cognitivas
para as abstrações lógicas.

Como trabalhos futuros, sugere-se a expansão desta análise
para o Teorema de Vizing generalizado para multigrafos,
onde a multiplicidade das arestas introduz novas variáveis
à desigualdade cromática. Espera-se que este material
sirva como referência pedagógica, facilitando o ensino de
Otimização Combinatória e Teoria dos Grafos em cursos de
Computação e Matemática.
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