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Resumo—Este artigo apresenta um estudo didático sobre o problema do Casamento Máximo em grafos, com ênfase na estrutura de grafos
bipartidos e suas generalizações. O objetivo é reproduzir resultados fundamentais que fogem da abordagem clássica de König e Hall.
Para isso, exploramos o Teorema de Tutte, que condiciona o emparelhamento perfeito à análise de componentes ímpares, e o Teorema
de Dilworth, que estabelece uma dualidade com conjuntos parcialmente ordenados (posets). A metodologia emprega a análise de provas,
utilizando técnicas de redução e decomposição, acompanhada de exemplos lúdicos e visualizações estratégicas. Como resultados centrais,
demonstramos que a condição de Tutte é o obstáculo estrutural universal para o emparelhamento perfeito, e que a equivalência de Dilworth
é a base para a eficiência algorítmica, como exemplificado pelos trabalhos de Kameda e Munro. Em conclusão, este estudo preenche
lacunas conceituais e oferece uma contribuição pedagógica significativa, tornando o rigor da Teoria dos Grafos mais acessível a estudantes
de graduação e promovendo uma visão unificada sobre a existência de emparelhamentos e coberturas de cadeias.

Palavras-chave—Casamento Máximo, Teorema de Tutte, Teorema de Dilworth, Kameda-Munro, Didática em Grafos.

Abstract—This paper presents a didactic study on the Maximum Matching problem in graphs, with an emphasis on bipartite graph
structures and their generalizations. The objective is to reproduce fundamental results that move beyond the classical approach of König
and Hall. To this end, we explore Tutte’s Theorem, which conditions perfect matching on the analysis of odd components, and Dilworth’s
Theorem, which establishes a duality with partially ordered sets (posets). The methodology employs the analysis of proofs, utilizing
techniques of reduction and decomposition, accompanied by illustrative examples and strategic visualizations. As central results, we
demonstrate that Tutte’s condition is the universal structural obstacle to perfect matching, and that Dilworth’s equivalence establishes a
rigorous reduction between poset decomposition and bipartite matching, enabling efficient polynomial-time solutions as exemplified by the
works of Kameda and Munro. In conclusion, this study fills conceptual gaps and offers a significant pedagogical contribution, making the
rigor of Graph Theory more accessible to undergraduate students and promoting a unified view on the existence of matchings and chain
covers.

Keywords—Maximum Matching, Tutte’s Theorem, Dilworth’s Theorem, Kameda-Munro, Graph Theory Education.

I. INTRODUÇÃO

A Teoria dos Grafos atua como a linguagem universal
da Ciência da Computação, oferecendo a estrutura

necessária para modelar desde redes sociais complexas até
a arquitetura microscópica de circuitos integrados [2] . No
centro dessa teoria, o Problema do Casamento Máximo
(Maximum Matching) ocupa uma posição de destaque. Em

Dados de contato: Vitória M. Soares, vitoria.milhomem@mail.uft.edu.br

termos simples, este problema busca encontrar a maior
quantidade possível de pares dentro de um grupo, sem que
ninguém "sobre" ou participe de mais de um par. Embora a
definição pareça simples, sua resolução possui implicações
profundas e diretas em cenários reais como: a alocação
eficiente de tarefas em processadores, a distribuição de
médicos em plantões hospitalares e a otimização de sistemas
de recomendação.

Tradicionalmente, o ensino introdutório de emparelha-
mentos em grafos concentra-se quase exclusivamente em
grafos bipartidos — cenários onde os vértices podem
ser divididos em dois grupos distintos (como tarefas e
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trabalhadores). Nesses casos, os clássicos teoremas de
Hall [5] e König [9] oferecem soluções fundamentais e
bem conhecidas. No entanto, o mundo real nem sempre
é bipartido. Quando as restrições de conexão são mais
complexas e formam grafos gerais, as ferramentas básicas
deixam de funcionar. É neste ponto que este artigo se
insere: propomos uma abordagem pedagógica para transpor
a barreira dos grafos bipartidos, explorando o Teorema de
Tutte [14], que generaliza a existência de emparelhamentos
através de uma análise de paridade topológica (componentes
ímpares).

Além de tratar de grafos gerais, buscamos conectar a
teoria dos grafos à teoria da ordem. Para isso, revisitamos
o Teorema de Dilworth [3] , que estabelece uma dualidade
surpreendente entre o tamanho de emparelhamentos e a
estrutura de conjuntos parcialmente ordenados (posets). Para
amarrar a teoria à prática computacional, discutimos como
essas propriedades estruturais fundamentam algoritmos
eficientes, como os estudados por Kameda e Munro [8] ,
que utilizam tais decomposições para resolver o problema
em tempo polinomial.

Portanto, o objetivo deste trabalho é duplo e focado na
didática. Buscamos fornecer demonstrações passo a passo
e rigorosas destes teoremas avançados, bem como oferecer
contribuições pedagógicas concretas. A intenção é utilizar
exemplos lúdicos e visualizações estratégicas para facilitar a
intuição do estudante, revelando conceitos abstratos como a
barreira de componentes ímpares ou a cobertura de cadeias,
transformando a demonstração matemática em uma narrativa
lógica e compreensível.

As seções subsequentes guiarão o leitor por essa jornada,
começando pelas Preliminares (Seção II), seguidas pelos
Trabalhos Relacionados (Seção III) e a Descrição do
Problema (Seção IV), avançando para as Demonstrações
passo a passo (Seção V), a análise de Resultados e Reflexões
(Seção VI), culminando nas Considerações Finais (Seção
VII). No entanto, para que o rigor e a didática pretendidos
sejam plenamente alcançados, é imperativo que o leitor
domine o vocabulário e as estruturas básicas que sustentam
toda esta competência.

Desta forma, para que a complexidade dos teoremas
principais possa ser abordada, dedicamos a próxima seção,
Preliminares, a estabelecer o vocabulário formal e a intuição
essencial sobre emparelhamentos e as estruturas de paridade
que serão cruciais nas demonstrações subsequentes.

II. PRELIMINARES

Um grafo G = (V,E) é uma estrutura composta por um
conjunto de vértices V (pontos) e um conjunto de arestas E
(linhas que conectam esses pontos) [2]. Um grafo é dito
bipartido quando o seu conjunto de vértices V pode ser
particionado em dois grupos disjuntos, A e B, de tal forma
que todas as arestas conectam um vértice de A a um vértice
de B. Não existem arestas conectando dois vértices dentro do
mesmo grupo (ex: não há arestas de A para A).

Nota Didática: Para compreender intuitivamente a
distinção estrutural de um grafo bipartido, imagine que
o conjunto de vértices do grafo é particionado em dois
subconjuntos disjuntos e independentes, que rotulamos como
A e B. A Figura 1 ilustra visualmente essa partição. Podemos

v1

v3

Conjunto A

v2

v4

Conjunto B

Figura 1: Exemplo visual de Grafo Bipartido G = (A∪B,E).
Note a ausência de arestas "verticais" dentro de cada conjunto.

v1 v2 v3 v4

v5 v6

Figura 2: A linha pontilhada em azul é um exemplo de um
Caminho Simples, onde nenhum vértice é repetido.

v1 v2 v3 v4

v5 v6

Figura 3: Exemplo de um Caminho não Simples, com início em
v1 e término em v4. O caminho repete os vértices v2 e v3 ao passar

pelo ciclo v2− v3− v6− v5− v2.

descrever esses subconjuntos através de um exemplo lúdico:
considere os vértices do subconjunto A como “Tarefas” e
os vértices do subconjunto B como “Trabalhadores”. A
regra fundamental de um grafo bipartido é a sua restrição de
conectividade: as interações (representadas pelas arestas) só
podem ocorrer entre um vértice pertencente ao subconjunto
A e um vértice pertencente ao subconjunto B. É crucial
notar que não existe conectividade interna; ou seja, não
há arestas entre dois vértices que pertençam ao mesmo
subconjunto (A ou B). Essa restrição impõe uma estrutura
menos densa e mais restrita, facilitando a análise e a busca
por emparelhamentos. Em contraste, um grafo geral permite
interações irrestritas, o que pode levar à formação de ciclos
ímpares (como triângulos), que são a principal fonte de
complicação e o foco do Teorema de Tutte [14].

O grau de um vértice em um grafo é o número de arestas
que estão conectadas a ele. A vizinhança de um vértice
v em um grafo G é o conjunto composto por todos os
vértices adjacentes a v, onde ,vértices adjacentes, são aqueles
conectados por uma aresta a v.

Um caminho em um grafo é uma sequência de vértices
interligados por arestas, onde o último vértice de uma aresta
é o primeiro da próxima. Um caminho simples é aquele
que não repete vértices. O comprimento de um caminho é a
quantidade de arestas que o compõem [2]. A Figura 2 ilustra
um exemplo claro de um caminho simples, em contraste com
o caminho não simples, onde a repetição de vértices ocorre,
conforme detalhado na Figura 3.

Um subgrafo de um grafo G, essencialmente, é um
grafo cujo conjunto de vértices e conjunto de arestas são
subconjuntos de G. Uma componente conexa em um grafo
é um subgrafo onde todos os vértices estão conectados entre
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v1 v2 v3 v4

v5

Figura 4: Comparação entre o Caminho Máximo (azul tracejado)
e um Caminho Maximal que não é máximo (vermelho)

si por caminhos, formando um “pedaço” isolado do grafo
original [2].

A análise dessas subestruturas nos leva à necessidade de
distinguir entre o maior elemento local e o maior elemento
global, conceitos fundamentais na otimização: um elemento
M ∈ S é classificado como máximo se for maior ou igual a
todos os outros elementos em S. Esta é uma propriedade
de natureza global. Se um elemento máximo existe, ele é
intrinsecamente único dentro do conjunto. Por outro lado,
um elemento m ∈ S é classificado como maximal se não
houver nenhum outro elemento em S que seja estritamente
maior do que m na relação de ordem definida. Esta é
uma propriedade de natureza local, o que implica que um
conjunto pode conter múltiplos elementos maximais que não
são comparáveis entre si.

A distinção reside na comparabilidade: um elemento
máximo domina todos os outros, enquanto um elemento
maximal apenas garante não ser dominado por nenhum
outro. Consequentemente, todo elemento máximo é, por
definição, maximal; contudo, a recíproca não é verdadeira.

A Figura 4 demonstra visualmente a diferença conceitual:
o caminho Pm = v2− v5 (em vermelho) é classificado como
maximal porque, sendo v5 um vértice de grau 1, ele não pode
ser estendido. Contudo, ele não é máximo, pois o grafo
contém o caminho PM = v1 − v2 − v3 − v4 (em azul), que
possui 3 arestas e representa o maior caminho possível do
grafo.

Dado um grafo G = (V,E), um emparelhamento M é
um subconjunto de arestas, M ⊆ E, tal que quaisquer duas
arestas em M não possuem vértices em comum. Um
emparelhamento M é máximo se o número de arestas em
M, |M|, é o maior possível dentre todos os emparelhamentos
existentes no grafo G. Já um emparelhamento M é perfeito
se satura (cobre) todos os vértices em V . Isso implica que
todo vértice v ∈ V é ponta de exatamente uma aresta em M.
É importante notar que um emparelhamento perfeito só pode
existir se o número de vértices |V | for par.

Intuição: Um emparelhamento representa “escolhas
exclusivas”. Se os vértices fossem pessoas e as arestas
fossem parcerias de dança, um emparelhamento garantiria
que ninguém está tentando dançar com duas pessoas ao
mesmo tempo. O emparelhamento perfeito, onde ninguém
fica sem par, ilustra o resultado ideal do Casamento Máximo.
A saturação de todos os vértices é o objetivo que a Figura 5
demonstra.

Seja G um grafo (ou um subgrafo), um componente
ímpar é uma componente conexa do grafo que possui uma
quantidade ímpar de vértices (1,3,5, etc.). A quantidade total
dessas componentes ímpares no grafo é denotada por o(G).

Este é o coração do Teorema de Tutte [14]. Empare-
lhamentos sempre formam pares (número par: 2,4,6 . . . ).
Em um componente com número ímpar de vértices, é ma-

v1 v2 v3 v4

v5 v6 v7 v8

Figura 5: Exemplo de um Emparelhamento Perfeito. As arestas
destacadas formam um emparelhamento que satura todos os 8

vértices do grafo.

e1 e2 e3 e4

Figura 6: Exemplo visual de uma Cadeia. Elementos em
sequência ordenada.

c1 c2 c3 c4 . . . ck

Figura 7: Exemplo visual de uma Anticadeia. Elementos
totalmente independentes.

tematicamente impossível emparelhar todos internamente:
sempre sobrará pelo menos um vértice. Essa "sobra" cria
a necessidade de buscar par fora do componente.

Uma relação de ordem parcial em um grafo é uma
estrutura que define uma hierarquia ou precedência entre
alguns dos seus vértices. Um conjunto parcialmente
ordenado (poset) em um grafo é uma representação visual
de um conjunto de elementos onde uma relação de ordem
parcial é definida.

Considere um poset P, onde existe uma relação de ordem
“≤” definida entre alguns elementos. Nessa estrutura, uma
Cadeia é um subconjunto de elementos onde todos são
comparáveis entre si, seguindo uma sequência linear (como
uma fila indiana ou uma linha do tempo, onde a≤ b≤ c). Em
contraste, uma Anticadeia é um subconjunto de elementos
onde ninguém é comparável com ninguém, representando
elementos totalmente independentes ou simultâneos.

Uma analogia para compreender essas estruturas é a árvore
genealógica. Uma Cadeia representa uma linhagem direta
(Bisavô → Avô → Pai → Filho), onde a hierarquia é clara
e sequencial. Observando a Figura 6, os vértices e1,e2,e3 e
e4 exemplificam essa relação de ordem total: a presença das
arestas direcionadas indicando que e1 leva a e2, que por sua
vez leva a e3, confirma que todos os elementos neste caminho
são comparáveis entre si.

Em contraste, uma Anticadeia corresponde a um grupo de
irmãos ou primos que não possuem relação de descendência
direta entre si. Conforme ilustrado na Figura 7, os
vértices denotados por c1,c2,c3 e c4 materializam essa
propriedade: a ausência total de arestas conectando c1 a c2,
ou qualquer outro par, evidencia que eles são incomparáveis.
Eles coexistem no mesmo “nível” hierárquico sem que
nenhum elemento preceda ou suceda o outro, mantendo essa
independência mútua até o enésimo elemento ck.

Munidos dessas definições fundamentais, dispomos
do vocabulário necessário para compreender a evolução
histórica da teoria. Essas estruturas básicas não são meras
abstrações; elas serviram como blocos de construção para
os teoremas de dualidade que definem a área. Para além
dos clássicos, a seção a seguir contextualiza como os
pioneiros da teoria dos grafos manipularam esses conceitos
para transitar de soluções em estruturas simples para a
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complexidade dos grafos gerais, e como obras mais recentes
vêm complementando e refinando essas técnicas estruturais,
tornando-as aplicáveis aos desafios computacionais atuais.

Dessa forma, a revisão bibliográfica subsequente organiza-
se para refletir sobre trabalhos relacionados ao tema central
do nosso estudo.

III. TRABALHOS RELACIONADOS

A literatura fundamental sobre emparelhamentos, que serve
de base para as definições utilizadas neste artigo, remonta ao
período clássico da Teoria dos Grafos. As obras de König
[9] e Hall [5] estabeleceram as condições de existência em
grafos bipartidos, enquanto Berge [1] introduziu a dinâmica
dos caminhos aumentantes. Para o contexto de grafos gerais
e ordens parciais, as generalizações propostas por Tutte [14]
e Dilworth [3] são as referências primárias. Embora estes
trabalhos sejam seminais, a pesquisa na área continua ativa,
focando-se especialmente na eficiência algorítmica e em
novas abordagens pedagógicas.

No âmbito da otimização algorítmica e suas aplicações
em Inteligência Artificial, o trabalho de Tassa [13] oferece
uma perspectiva relevante sobre a identificação de arestas.
O autor investiga o problema de encontrar todas as arestas
"maximamente emparelháveis" (aquelas que pertencem
a pelo menos um emparelhamento máximo) em grafos
bipartidos. Tassa [13] propõe um algoritmo baseado
na decomposição do grafo em componentes fortemente
conexos, otimizando a abordagem anterior ao reduzir o
tamanho do grafo direcionado auxiliar para max{|V1|, |V2|}
nós. Além disso, o estudo estabelece uma conexão
importante com a área de Problemas de Satisfação de
Restrições (CSPs), reconhecendo que técnicas similares
foram exploradas pioneiramente por Régin [12] para
algoritmos de filtragem. Essa linha de pesquisa demonstra
como os conceitos teóricos de emparelhamento, discutidos
em nosso trabalho, são instrumentalizados para resolver
problemas complexos de privacidade de dados e filtragem de
restrições.

Contemporaneamente, o algoritmo de Micali e Vazirani
continua sendo referência central para problemas de empa-
relhamento em grafos gerais. Peterson e Loui [11] oferecem
uma exposição clara e rigorosa deste algoritmo, que opera
em tempo O(

√
|V | · |E|) e permanece como o algoritmo

sequencial mais eficiente conhecido para emparelhamento
de cardinalidade máxima. A importância deste trabalho vai
além da implementação: ele estabelece as bases teóricas
que permitem a paralelização e distribuição de algoritmos
de emparelhamento. Compreender profundamente este
algoritmo é fundamental para estudantes que buscam avançar
para domínios mais complexos de otimização combinatória,
pois suas técnicas de tratamento de ciclos ímpares inspiraram
desenvolvimentos posteriores em algoritmos distribuídos.

Expandindo a abordagem de Micali e Vazirani para
ambientes distribuídos, o trabalho de Huang e Su [7]
apresenta um algoritmo polinomial poly(1/ε, logn)-round
para obter uma aproximação (1− ε) do emparelhamento
máximo ponderado em grafos gerais no modelo CONGEST
distribuído. Este avanço resolve um problema em aberto de
longa data na área de algoritmos distribuídos, generalizando
resultados prévios que funcionavam apenas em classes

especiais de grafos (bipartidos e grafos livres de menores).
A contribuição de Huang e Su demonstra que a estrutura de
obstrução de Tutte permanece relevante e pode ser explorada
de forma eficiente mesmo em cenários distribuídos, onde a
comunicação entre processadores é limitada.

Paralelamente à evolução técnica, a transposição didática
desses conceitos complexos tem sido objeto de estudo
recente. Lassance et al. [10] argumentam que a barreira
de entrada para o entendimento de grafos gerais não é
puramente matemática, mas estrutural. O trabalho deles
propõe uma reorganização curricular onde a apresentação de
teoremas avançados deve ser precedida por uma construção
visual rigorosa. Inspirados por essa metodologia, nosso
artigo adota a premissa de que a visualização de "obstáculos"
— como as componentes ímpares em Tutte — deve ser o
ponto de partida do processo de ensino.

Diferentemente dos trabalhos existentes, que priorizam a
otimização de desempenho algorítmico em cenários especí-
ficos ou a complexidade em sistemas distribuídos, este artigo
contribui ao oferecer uma unificação didática entre a Teoria
dos Grafos e a Teoria da Ordem. Nossa contribuição reside
na sistematização da técnica de redução — especificamente
na conversão entre Posets e Emparelhamentos — e na
formalização de uma narrativa visual para o Teorema de
Tutte. Ao focar na desmistificação dos obstáculos estruturais
por meio de provas assistidas por diagramas, este trabalho
preenche a lacuna entre o rigor matemático puro e a intuição
necessária para o domínio da disciplina por estudantes de
graduação.

Com o alicerce histórico referenciado e as conexões com
a algoritmia moderna e a pedagogia estabelecidas, torna-se
imperativo formalizar o desafio matemático. A seção a seguir
delimita o escopo do nosso estudo, transpondo a intuição
discutida nestes trabalhos relacionados para uma definição
rigorosa de otimização combinatória.

IV. DESCRIÇÃO DO PROBLEMA

O desafio central abordado neste trabalho é o Problema
do Emparelhamento Máximo, fundamental na otimização
combinatória. Formalmente, dado um grafo G = (V,E),
buscamos identificar um subconjunto de arestas M ⊆ E
tal que nenhuma aresta em M compartilhe um vértice
comum. Esta propriedade é conhecida como arestas par-
a-par disjuntas. O objetivo é maximizar a cardinalidade
|M|, ou seja, encontrar a configuração que envolva o
maior número possível de vértices e minimize vértices
não emparelhados. A complexidade computacional para
solucionar este problema varia conforme a topologia do
grafo. Para grafos bipartidos, algoritmos exatos como o
de Hopcroft-Karp [6] operam com alta eficiência em tempo
O(E
√

V ). Entretanto, em grafos gerais, a ausência de
uma bipartição clara permite a existência de estruturas mais
rígidas. Isso exige abordagens mais sofisticadas, como
o algoritmo de Edmonds (Blossom) [4], para tratar ciclos
ímpares.

Para concretizar a distinção estrutural entre essas classes
de grafos e motivar a necessidade do Teorema de Tutte [14],
propomos a análise de um cenário lúdico denominado "O
Baile da UFT". Inicialmente, observamos o caso restrito
ilustrado na Figura 8, que representa o Cenário A. Neste
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v1

v2

v3

Grupo A v4

v5

v6

v7

Grupo B

Figura 8: Cenário A: Grafo Bipartido. Os vértices vi representam
alunos. O Grupo A só dança com o Grupo B. As arestas marcadas

(emparelhamento) são o resultado máximo.

v1 v2

v3

v4 v5

v6

Figura 9: Cenário B: Grafo Geral. Os ciclos ímpares (triângulos)
impedem um emparelhamento perfeito. As arestas marcadas

mostram o emparelhamento máximo possível, deixando v3 e v6
sem par.

grafo bipartido, as regras de interação são estritas: alunos do
Grupo A (nós azuis) só podem formar pares com alunos do
Grupo B (nós vermelhos). A ausência de arestas internas em
cada grupo simplifica a busca pelo emparelhamento máximo,
pois não há conflitos de paridade interna a serem resolvidos.

Por outro lado, a complexidade aumenta consideravel-
mente no Cenário B, apresentado na Figura 9. Aqui, temos
um grafo geral onde a regra de formação de pares baseia-se
na afinidade, independentemente do grupo de origem. Essa
flexibilidade permite a formação de ciclos ímpares, como
o triângulo formado pelos vértices v1,v2 e v3. Como pode
ser visualizado na figura, se três indivíduos desejam formar
pares exclusivamente entre si, é matematicamente impossível
que todos sejam atendidos simultaneamente. Portanto,
inevitavelmente, um vértice restará sem par. Esta ocorrência
do ciclo ímpar é a representação geométrica do obstáculo que
impede o emparelhamento perfeito em grafos não-bipartidos.

É neste contexto de impossibilidade estrutural que o
Teorema de Tutte [14] se insere, oferecendo uma condição
necessária e suficiente baseada na topologia global. Antes de
avançarmos para as demonstrações formais, sistematizamos
nas Tabelas 1 e 2 os principais problemas abordados,
separando a análise de existência da análise de otimização
de ordem.

A lógica de resolução apresentada nas tabelas desdobra-
se em uma narrativa contínua que fundamenta as provas
subsequentes. Inicialmente, na Análise de Paridade (Tutte),
a prova estabelece que componentes com número ímpar de
vértices possuem uma limitação aritmética inerente, pois
nunca podem ser totalmente emparelhados internamente.
Assim, cada componente ímpar exige uma conexão com um
vértice externo (do conjunto S), de modo que, se o número
de componentes ímpares o(G−S) for maior que o número de
vértices disponíveis em S, o emparelhamento perfeito torna-

TABELA 1: RESUMO ESTRUTURAL: TEOREMA DE TUTTE

Problema Existência de Emparelhamento Perfeito
(Tutte)

Input Grafo Geral G = (V,E) e a análise de
subconjuntos de vértices removidos S.

Output Condição Necessária e Suficiente: o(G−
S)≤ |S|.

Resumo Demonstração baseada na identificação
de componentes ímpares como obstáculos
estruturais intransponíveis.

TABELA 2: RESUMO ESTRUTURAL: TEOREMA DE DILWORTH

Problema Decomposição Mínima de Cadeias (Dil-
worth)

Input Poset P e sua transformação em Grafo
Bipartido.

Output Teorema Min-Max: tamanho máx. anti-
cadeia = mínimo de cadeias.

Resumo Técnica de Redução: converte a de-
pendência de ordem em um problema de
emparelhamento bipartido.

se impossível. Sequencialmente, no que tange à Técnica
de Redução (Dilworth), a prova utiliza a construção de um
grafo auxiliar para traduzir um conceito abstrato de ordem
parcial em um geométrico de arestas. Ao duplicar os vértices
do Poset para criar um grafo bipartido, demonstramos que
cada aresta do emparelhamento conecta o fim de uma cadeia
ao início de outra, resultando na identidade fundamental
onde minimizar o número de cadeias é matematicamente
equivalente a maximizar o emparelhamento (|C|= n−|M|).

Estabelecida a intuição visual de que ciclos ímpares impe-
dem o emparelhamento perfeito e como a redução simplifica
problemas de ordem, torna-se imperativo formalizar esses
conceitos na próxima seção.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Nesta seção, apresentamos as demonstrações dos dois
resultados fundamentais: o Teorema de Tutte [14] e o
Teorema de Dilworth [3]. A escolha destes resultados
visa expandir o repertório para além das técnicas básicas
de caminhos aumentantes, introduzindo o conceito de
"obstáculos estruturais". Iniciamos essa análise expandindo
o escopo dos grafos bipartidos para os grafos gerais.
Enquanto o Teorema de Hall [5] verifica vizinhanças locais,
o Teorema de Tutte fornece uma condição global.

Condição de Tutte: Um grafo G = (V,E) possui um
emparelhamento perfeito se, e somente se, para todo
subconjunto de vértices S ⊆ V , vale a desigualdade o(G−
S) ≤ |S|. Aqui, o(G − S) representa o número de
componentes conexos com um número ímpar de vértices no
grafo resultante da remoção de S.

Partimos da hipótese de que o grafo G possui um em-
parelhamento perfeito M. Seja S um subconjunto qualquer
de vértices removidos e considere as componentes conexas
C1,C2, . . . ,Ck resultantes dessa remoção. Ao analisarmos
uma componente ímpar específica Ci, observamos que a
soma das arestas internas não cobre a totalidade dos vértices,
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Comp. Ímpar 1

Comp. Ímpar 2 Comp. Ímpar 3

Figura 10: Visualização da falha na condição de Tutte:
o(G−S)> |S|. Ao retirar o vértice central, restam 3 componentes

ímpares isolados.

devido à sua cardinalidade ímpar. Obrigatoriamente, pelo
menos uma aresta de M deve conectar um vértice de Ci a um
elemento externo.

Como Ci é uma componente isolada em G − S, não
existem arestas ligando-a a outras componentes; logo, essa
conexão externa deve necessariamente incidir em um vértice
de S. Sob a ótica da contabilidade de arestas, visto
que os elementos do emparelhamento são disjuntos, cada
componente ímpar consome um vértice exclusivo de S. A
conclusão lógica, ilustrada na Figura 10, é que se existem
k componentes ímpares, serão necessários no mínimo k
vértices distintos em S, demonstrando que |S| ≥ o(G−S).

Demonstração da Suficiência (⇐): A prova de que a
validade da condição garante o emparelhamento é construída
por redução ao absurdo. Inicialmente, supomos que
a condição de Tutte [14] é verdadeira para o grafo G
(ou seja, o(G− S) ≤ |S| para todo subconjunto S), mas,
contraditoriamente, G não possui um emparelhamento
perfeito.

Para explorar as falhas dessa suposição, maximizamos
a estrutura do grafo adicionando arestas fictícias até
formarmos um grafo G∗, que representa o limite máximo
de conexões possível sem que se crie um emparelhamento
perfeito. Vale ressaltar que, se encontrarmos uma violação da
condição de Tutte em G∗, ela prova a falha no grafo original.
Neste grafo saturado G∗, definimos S como o conjunto de
vértices universais. A análise do resultado revela que a
quantidade de componentes ímpares geradas pela remoção
de S supera o número de vértices disponíveis em S. Isso
implica diretamente que o(G∗− S) > |S|, um resultado que
viola a nossa hipótese inicial.

Além da análise de existência proposta por Tutte, a
teoria dos grafos se conecta diretamente à Teoria da Ordem.
Essa relação é fundamental para a otimização combinatória,
pois permite tratar problemas de ordenação sob uma ótica
algorítmica eficiente. Frequentemente, problemas práticos
de agendamento, hierarquia e dependência de tarefas —
modelados matematicamente como Conjuntos Parcialmente
Ordenados (Posets) — não aparentam, à primeira vista,
possuir relação direta com a geometria de vértices e arestas.
No entanto, o Teorema de Dilworth [3] é o exemplo
central dessa relação, estabelecendo um vínculo formal
entre estruturas de ordem e grafos. Essa equivalência com
o emparelhamento bipartido foi explorada por Kameda e
Munro [8] para o desenvolvimento de algoritmos. Ao
provarem que a decomposição de conjuntos ordenados
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Redução

u3
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u2

u1

v3

V

v2

v1

Grafo Bipartido
Construído

Entenda a conexão:
1. Em P, x1 vem antes de x2.
2. No Bipartido, u1 (quem inicia) conecta com v2 (quem recebe).

Figura 11: Visualização da Redução: duplicamos os vértices para
separar as funções de "antecessor" (U) e "sucessor" (V ).

pode ser reduzida ao problema de emparelhamento, eles
viabilizaram o uso de soluções polinomiais eficientes para
resolver problemas de ordenação.

Dilworth: O número mínimo de cadeias necessárias para
cobrir todos os elementos de um conjunto parcialmente
ordenado P é igual ao tamanho máximo de uma anticadeia
em P.

Para demonstrar este teorema e sua aplicação computa-
cional, utilizamos a técnica de Redução, transformando o
problema de "Posets" em "Casamento Bipartido". A Figura
11 detalha visualmente essa transformação. O processo
consiste em tomar os elementos do conjunto ordenado P =
{x1, ...,xn} e duplicá-los para criar um grafo bipartido G =
(U ∪V,E).Conforme detalhado na Figura 11, o lado U (nós azuis)
representa os elementos atuando como "início de uma
relação", enquanto o lado V (nós vermelhos) representa os
mesmos elementos como "fim". A regra de construção é
direta: desenhamos uma aresta direcionada (ui,v j) se, e
somente se, o elemento xi precede o elemento x j na ordem
original.

A validade desta construção reside em demonstrar
uma equivalência estrutural estrita, da qual existe uma
bijeção entre um emparelhamento válido em G e uma
decomposição em cadeias em P. Observe que a definição
de emparelhamento exige que arestas sejam disjuntas, ou
seja, cada vértice tenha grau no máximo 1. No contexto
do poset, isso traduz-se na regra de linearidade das cadeias:
um elemento xi não pode ter múltiplos sucessores imediatos
(o que violaria o grau em U) nem múltiplos antecessores
imediatos (o que violaria o grau em V ). Portanto, um
conjunto de arestas é um emparelhamento se, e somente se,
ele une elementos formando sequências lineares válidas e
disjuntas.

Algebraicamente, a prova se estabelece pela contagem
de componentes. Iniciamos com n cadeias triviais (cada
elemento isolado). Cada aresta (ui,v j) adicionada ao empa-
relhamento junta o final de uma cadeia ao início de outra,
reduzindo o número total de cadeias em exatamente uma
unidade. Assim, estabelecemos a identidade fundamental:
o número de cadeias |C | resultantes de um emparelhamento
M é dado por |C | = n− |M|. Para minimizar o número de
cadeias |C |, o objetivo de Dilworth, somos matematicamente
forçados a maximizar |M|. Desta forma, demonstramos que
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encontrar a Decomposição Mínima de Cadeias é equivalente
à busca pelo Emparelhamento Máximo no grafo bipartido.
Como cada aresta do emparelhamento une dois vértices em
uma mesma cadeia, o número mínimo de cadeias será igual
ao número total de vértices subtraído da cardinalidade deste
emparelhamento máximo.

Com a validação desta equivalência e o encerramento das
demonstrações formais, finalizamos a análise técnica das
estruturas propostas. Torna-se pertinente, então, avaliar não
apenas a corretude matemática dos teoremas apresentados,
mas também o impacto pedagógico que a construção dessas
provas exerce sobre o domínio da disciplina.

VI. RESULTADOS E REFLEXÕES

A elaboração deste artigo cumpriu o papel de consolidar o
entendimento sobre teoremas fundamentais da Teoria dos
Grafos, funcionando como uma ferramenta de fixação de
conceitos matemáticos complexos para estudantes de Ciência
da Computação. Ao explorarmos as provas de Tutte [14] e
Dilworth [3], os resultados apontam para a eficácia de uma
abordagem que privilegia a intuição geométrica aliada ao
rigor formal, facilitando a assimilação de estruturas abstratas.
A análise desenvolvida confirma que o domínio de grafos
gerais é significativamente ampliado quando se adota um
pensamento estrutural e holístico.

Diferente da verificação local de vizinhanças — comum
no estudo introdutório do Teorema de Hall [5] — a com-
preensão de Tutte beneficia-se imensamente da visualização
global do grafo e de suas componentes conexas. O uso
de metáforas visuais, onde o conjunto S é representado
como um "hub" ou ponto de articulação, mostrou-se uma
estratégia pedagógica poderosa para tangibilizar a abstração
da remoção de vértices (G−S). Essa representação concreta
permite que o estudante visualize imediatamente como a
estrutura se fragmenta, tornando a condição de paridade uma
consequência lógica observável, e não apenas uma regra
algébrica.

Da mesma forma, a exploração do Teorema de Dilworth
[3] revelou-se uma oportunidade excelente para clarificar
a dualidade Min-Max. A abordagem adotada permitiu
demonstrar positivamente como a adição de arestas (empa-
relhamento) atua como um mecanismo de otimização que
funde cadeias disparatadas, oferecendo uma intuição robusta
sobre como problemas de ordem podem ser resolvidos
eficientemente através de grafos. Essa transposição didática
resulta no desenvolvimento de competências críticas, como a
modelagem por redução, onde o discente aprende a converter
um problema de ordem parcial em um desafio geométrico de
emparelhamento bipartido. Essa capacidade de simplificação
topológica é um ganho conceitual que prepara o aluno para
enfrentar problemas de alta complexidade em disciplinas
como Teoria da Computação e Análise de Algoritmos, onde
a técnica de redução é o alicerce para o entendimento de
classes de complexidade.

Além disso, ao priorizar a centralidade teórica de Tutte
[14] e Dilworth [3], este trabalho promove uma forte
interdisciplinaridade ao conectar a Álgebra com a Algoritmia
de Grafos. Demonstrou-se que problemas práticos de
agendamento, hierarquia e dependência de tarefas — comuns
em áreas como Sistemas Operacionais e Engenharia de

Software — são, em sua essência, problemas de desenho
estrutural. O exercício de construir provas matemáticas
utilizando diagramas como parte do argumento lógico
desenvolve no estudante um rigor demonstrativo visual,
permitindo identificar gargalos em redes de forma intuitiva.
Assim, o texto consolida-se como um material de apoio
didático que transforma o rigor dos livros-texto em uma
ponte acessível para o sucesso em disciplinas avançadas de
Otimização Combinatória, validando a premissa de que a
compreensão profunda da estrutura do problema é o primeiro
passo para a eficiência algorítmica..

VII. CONSIDERAÇÕES FINAIS

O objetivo central deste trabalho foi revisitar os fundamentos
teóricos do emparelhamento em grafos, transcendendo
a abordagem tradicional focada apenas na execução de
algoritmos. Buscou-se preencher a lacuna didática existente
entre o entendimento intuitivo de grafos bipartidos e a
complexidade abstrata dos grafos gerais e estruturas de
ordem. Ao analisar as demonstrações clássicas, o artigo
propôs uma narrativa visual que facilita a assimilação de
conceitos difíceis por estudantes de graduação.

A síntese dos resultados aponta para duas conclusões
teóricas maiores. Primeiramente, na análise de existência,
entendemos que o Teorema de Tutte é uma fórmula
abrangente, que explica tanto os casos simples (bipartidos)
quanto os complicados (gerais), olhando para a estrutura
completa do grafo. Demonstramos que a "barreira de
paridade" (componentes ímpares isolados) é o mecanismo
universal de obstrução, englobando os casos restritos de Hall
[5] e König [9]. Em segundo lugar, a exploração do Teorema
de Dilworth [3] ratificou a equivalência estrita entre prob-
lemas de ordenação (posets) e o emparelhamento bipartido.
Essa conexão provou que a complexidade de problemas de
agendamento pode ser reduzida polinomialmente, validando
as estratégias algorítmicas de Kameda e Munro [8].

No que tange às contribuições pedagógicas, este estudo
oferece uma metodologia de ensino baseada na visualização
de "obstáculos estruturais". A principal contribuição reside
na formalização da técnica de Redução, ao invés de apenas
apresentar o Teorema de Dilworth como uma fórmula,
detalhamos o processo de transformação topológica que
converte um problema desconhecido em um conhecido.
Além disso, o uso de analogias concretas fornece aos
estudantes um vocabulário visual para identificar falhas
de emparelhamento, superando a dificuldade comum de
visualizar a remoção de conjuntos arbitrários.

Como limitação, este estudo concentrou-se nas condições
de existência e nas provas estruturais, sem aprofundar-se
na implementação computacional dos algoritmos de busca,
como o Blossom de Edmonds. Como perspectiva para
trabalhos futuros, sugere-se a expansão desta base didática
para o domínio da implementação computacional interativa.
A criação de ferramentas de software que permitam a
visualização dinâmica dos algoritmos — especificamente a
simulação passo a passo da contração de ciclos ímpares
no algoritmo Blossom de Edmonds — representaria um
avanço significativo. Ao utilizar as mesmas metáforas de
“fusão de componentes” e “gargalos” estabelecidas neste
artigo, seria possível demonstrar aos estudantes não apenas
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por que o emparelhamento falha sob a ótica teórica, mas
como o computador manipula e reduz essas estruturas
em tempo de execução. Encerramos, portanto, com a
convicção de que a união entre a base matemática sólida e
a visualização intuitiva se mostrou uma estratégia de ensino
extremamente eficaz. Acreditamos que essa abordagem
facilita significativamente o aprendizado, permitindo que os
estudantes compreendam o conteúdo com muito mais clareza
e segurança.
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