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Resumo—Este artigo apresenta um estudo didético sobre o problema do Casamento Mdximo em grafos, com énfase na estrutura de grafos
bipartidos e suas generalizagdes. O objetivo € reproduzir resultados fundamentais que fogem da abordagem cldssica de Konig e Hall.
Para isso, exploramos o Teorema de Tutte, que condiciona o emparelhamento perfeito a andlise de componentes impares, e o Teorema
de Dilworth, que estabelece uma dualidade com conjuntos parcialmente ordenados (posets). A metodologia emprega a anélise de provas,
utilizando técnicas de redugdo e decomposicio, acompanhada de exemplos lidicos e visualizagdes estratégicas. Como resultados centrais,
demonstramos que a condicio de Tutte € o obstdculo estrutural universal para o emparelhamento perfeito, e que a equivaléncia de Dilworth
¢é a base para a eficiéncia algoritmica, como exemplificado pelos trabalhos de Kameda e Munro. Em conclusdo, este estudo preenche
lacunas conceituais e oferece uma contribuicio pedagdgica significativa, tornando o rigor da Teoria dos Grafos mais acessivel a estudantes
de graduacdo e promovendo uma visdo unificada sobre a existéncia de emparelhamentos e coberturas de cadeias.

Palavras-chave—Casamento Maximo, Teorema de Tutte, Teorema de Dilworth, Kameda-Munro, Didatica em Grafos.

Abstract—This paper presents a didactic study on the Maximum Matching problem in graphs, with an emphasis on bipartite graph
structures and their generalizations. The objective is to reproduce fundamental results that move beyond the classical approach of Konig
and Hall. To this end, we explore Tutte’s Theorem, which conditions perfect matching on the analysis of odd components, and Dilworth’s
Theorem, which establishes a duality with partially ordered sets (posets). The methodology employs the analysis of proofs, utilizing
techniques of reduction and decomposition, accompanied by illustrative examples and strategic visualizations. As central results, we
demonstrate that Tutte’s condition is the universal structural obstacle to perfect matching, and that Dilworth’s equivalence establishes a
rigorous reduction between poset decomposition and bipartite matching, enabling efficient polynomial-time solutions as exemplified by the
works of Kameda and Munro. In conclusion, this study fills conceptual gaps and offers a significant pedagogical contribution, making the
rigor of Graph Theory more accessible to undergraduate students and promoting a unified view on the existence of matchings and chain
covers.
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termos simples, este problema busca encontrar a maior

quantidade possivel de pares dentro de um grupo, sem que

I. INTRODUCAO ninguém "sobre" ou participe de mais de um par. Embora a
defini¢do pareca simples, sua resolucdo possui implicagdes

Teoria dos Grafos atua como a linguagem universal  profundas e diretas em cendrios reais como: a alocagdo

da Ciéncia da Computagio, oferecendo a estrutura  eficiente de tarefas em processadores, a distribuicio de

necessaria para.modelar. desde .rede.s sociats complexas até  medicos em plantdes hospitalares e a otimizacdo de sistemas
a arquitetura microscopica de circuitos integrados [2] . No  ge recomendacio.

centro dessa teoria, o Problema do Casamento Mdximo Tradicionalmente, o ensino introdutério de emparelha-

(Maximum Matching) ocupa uma posi¢ao de destaque. Em 105105 em grafos concentra-se quase exclusivamente em

grafos bipartidos — cendrios onde os vértices podem

ser divididos em dois grupos distintos (como tarefas e
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trabalhadores). Nesses casos, os cldssicos teoremas de
Hall [5] e Konig [9] oferecem solugdes fundamentais e
bem conhecidas. No entanto, o mundo real nem sempre
¢ bipartido. Quando as restricdes de conexdo sdo mais
complexas e formam grafos gerais, as ferramentas bésicas
deixam de funcionar. E neste ponto que este artigo se
insere: propomos uma abordagem pedagdgica para transpor
a barreira dos grafos bipartidos, explorando o Teorema de
Tutte [14], que generaliza a existéncia de emparelhamentos
através de uma andlise de paridade topolégica (componentes
impares).

Além de tratar de grafos gerais, buscamos conectar a
teoria dos grafos a teoria da ordem. Para isso, revisitamos
o Teorema de Dilworth [3] , que estabelece uma dualidade
surpreendente entre o tamanho de emparelhamentos e a
estrutura de conjuntos parcialmente ordenados (posets). Para
amarrar a teoria a pritica computacional, discutimos como
essas propriedades estruturais fundamentam algoritmos
eficientes, como os estudados por Kameda e Munro [8] ,
que utilizam tais decomposicdes para resolver o problema
em tempo polinomial.

Portanto, o objetivo deste trabalho é duplo e focado na
diddtica. Buscamos fornecer demonstracdes passo a passo
e rigorosas destes teoremas avancados, bem como oferecer
contribuicdes pedagdgicas concretas. A intengdo é utilizar
exemplos ludicos e visualizagdes estratégicas para facilitar a
intui¢do do estudante, revelando conceitos abstratos como a
barreira de componentes impares ou a cobertura de cadeias,
transformando a demonstracdo matemadtica em uma narrativa
l6gica e compreensivel.

As segdes subsequentes guiardo o leitor por essa jornada,
comegando pelas Preliminares (Secdo II), seguidas pelos
Trabalhos Relacionados (Secdo II) e a Descricio do
Problema (Secdo IV), avangando para as Demonstracdes
passo a passo (Se¢do V), a andlise de Resultados e Reflexdes
(Se¢do VI), culminando nas Considera¢des Finais (Secdo
VII). No entanto, para que o rigor e a didética pretendidos
sejam plenamente alcancados, € imperativo que o leitor
domine o vocabuldrio e as estruturas bdsicas que sustentam
toda esta competéncia.

Desta forma, para que a complexidade dos teoremas
principais possa ser abordada, dedicamos a préxima se¢@o,
Preliminares, a estabelecer o vocabuldrio formal e a intui¢do
essencial sobre emparelhamentos e as estruturas de paridade
que serdo cruciais nas demonstracdes subsequentes.

II. PRELIMINARES

Um grafo G = (V,E) é uma estrutura composta por um
conjunto de vértices V (pontos) e um conjunto de arestas E
(linhas que conectam esses pontos) [2]. Um grafo é dito
bipartido quando o seu conjunto de vértices V pode ser
particionado em dois grupos disjuntos, A e B, de tal forma
que todas as arestas conectam um vértice de A a um vértice
de B. Nao existem arestas conectando dois vértices dentro do
mesmo grupo (ex: ndo hd arestas de A para A).

Nota Diddtica: Para compreender intuitivamente a
distincdo estrutural de um grafo bipartido, imagine que
o conjunto de vértices do grafo € particionado em dois
subconjuntos disjuntos e independentes, que rotulamos como
A e B. A Figura 1 ilustra visualmente essa particdo. Podemos
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Conjunto A

Conjunto B

Figura 1: Exemplo visual de Grafo Bipartido G = (AUB,E).
Note a auséncia de arestas "verticais" dentro de cada conjunto.

S

1 ]
@@
Figura 2: A linha pontilhada em azul € um exemplo de um
Caminho Simples, onde nenhum vértice é repetido.

Figura 3: Exemplo de um Caminho ndo Simples, com inicio em

v1 e término em v4. O caminho repete os vértices v, e v3 ao passar
pelo ciclo vy —v3 —vg —vs — V3.

descrever esses subconjuntos através de um exemplo lidico:
considere os vértices do subconjunto A como “Tarefas” e
os vértices do subconjunto B como “Trabalhadores”. A
regra fundamental de um grafo bipartido € a sua restri¢ao de
conectividade: as interacdes (representadas pelas arestas) s
podem ocorrer entre um vértice pertencente ao subconjunto
A e um vértice pertencente ao subconjunto B. E crucial
notar que ndo existe conectividade interna; ou seja, nio
ha arestas entre dois vértices que pertencam ao mesmo
subconjunto (A ou B). Essa restricio impde uma estrutura
menos densa e mais restrita, facilitando a andlise e a busca
por emparelhamentos. Em contraste, um grafo geral permite
interacdes irrestritas, o que pode levar a formacao de ciclos
impares (como tridngulos), que sdo a principal fonte de
complicacdo e o foco do Teorema de Tutte [14].

O grau de um vértice em um grafo € o nimero de arestas
que estdo conectadas a ele. A vizinhangca de um vértice
v em um grafo G € o conjunto composto por todos os
vértices adjacentes a v, onde ,vértices adjacentes, sdo aqueles
conectados por uma aresta a v.

Um caminho em um grafo € uma sequéncia de vértices
interligados por arestas, onde o tltimo vértice de uma aresta
¢ o primeiro da préoxima. Um caminho simples é aquele
que ndo repete vértices. O comprimento de um caminho ¢ a
quantidade de arestas que o compdem [2]. A Figura 2 ilustra
um exemplo claro de um caminho simples, em contraste com
o caminho nao simples, onde a repeticdo de vértices ocorre,
conforme detalhado na Figura 3.

Um subgrafo de um grafo G, essencialmente, é um
grafo cujo conjunto de vértices e conjunto de arestas sdo
subconjuntos de G. Uma componente conexa em um grafo
€ um subgrafo onde todos os vértices estdo conectados entre
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.

Figura 4: Comparacio entre o Caminho Maximo (azul tracejado)
e um Caminho Maximal que néio é mdximo (vermelho)

si por caminhos, formando um “pedaco” isolado do grafo
original [2].

A andlise dessas subestruturas nos leva a necessidade de
distinguir entre o maior elemento local e o maior elemento
global, conceitos fundamentais na otimizag¢do: um elemento
M € S € classificado como mdximo se for maior ou igual a
todos os outros elementos em S. Esta é uma propriedade
de natureza global. Se um elemento maximo existe, ele é
intrinsecamente Unico dentro do conjunto. Por outro lado,
um elemento m € § € classificado como maximal se nao
houver nenhum outro elemento em § que seja estritamente
maior do que m na relacio de ordem definida. Esta é
uma propriedade de natureza local, o que implica que um
conjunto pode conter multiplos elementos maximais que nao
s30 compardaveis entre Si.

A distingdo reside na comparabilidade: um elemento
maximo domina todos os outros, enquanto um elemento
maximal apenas garante nido ser dominado por nenhum
outro. Consequentemente, todo elemento maximo €&, por
defini¢do, maximal; contudo, a reciproca ndo é verdadeira.

A Figura 4 demonstra visualmente a diferenca conceitual:
o caminho P,, = vo» — v5 (em vermelho) é classificado como
maximal porque, sendo vs um vértice de grau 1, ele ndo pode
ser estendido. Contudo, ele ndo é méaximo, pois o grafo
contém o caminho Py = vi — vy —v3 — v (em azul), que
possui 3 arestas e representa o maior caminho possivel do
grafo.

Dado um grafo G = (V,E), um emparelhamento M é
um subconjunto de arestas, M C E, tal que quaisquer duas
arestas em M ndo possuem vértices em comum. Um
emparelhamento M € maximo se o nimero de arestas em
M, |M|, é o maior possivel dentre todos os emparelhamentos
existentes no grafo G. J4 um emparelhamento M ¢é perfeito
se satura (cobre) todos os vértices em V. Isso implica que
todo vértice v € V € ponta de exatamente uma aresta em M.
E importante notar que um emparelhamento perfeito s6 pode
existir se o nimero de vértices |V| for par.

Intui¢do: Um emparelhamento representa “escolhas
exclusivas”. Se os vértices fossem pessoas e as arestas
fossem parcerias de danca, um emparelhamento garantiria
que ninguém estd tentando dancar com duas pessoas ao
mesmo tempo. O emparelhamento perfeito, onde ninguém
fica sem par, ilustra o resultado ideal do Casamento Maximo.
A saturacio de todos os vértices € o objetivo que a Figura 5
demonstra.

Seja G um grafo (ou um subgrafo), um componente
impar € uma componente conexa do grafo que possui uma
quantidade impar de vértices (1,3, 5, etc.). A quantidade total
dessas componentes impares no grafo é denotada por o(G).

Este € o coragdo do Teorema de Tutte [14]. Empare-
lhamentos sempre formam pares (nimero par: 2,4,6...).
Em um componente com nimero impar de vértices, é ma-

ISSN: 2675-3588

[} [} [} [}
[} [} [} [}
[} [} [} [}
Figura 5: Exemplo de um Emparelhamento Perfeito. As arestas

destacadas formam um emparelhamento que satura todos os 8
vértices do grafo.

Figura 6: Exemplo visual de uma Cadeia. Elementos em

sequéncia ordenada.

Figura 7: Exemplo visual de uma Anticadeia. Elementos
totalmente independentes.

tematicamente impossivel emparelhar todos internamente:
sempre sobrard pelo menos um vértice. Essa "sobra" cria
a necessidade de buscar par fora do componente.

Uma relacdo de ordem parcial em um grafo é uma
estrutura que define uma hierarquia ou precedéncia entre
alguns dos seus vértices. Um conjunto parcialmente
ordenado (poset) em um grafo é uma representacdo visual
de um conjunto de elementos onde uma relacdo de ordem
parcial é definida.

Considere um poset P, onde existe uma relacdo de ordem
“<” definida entre alguns elementos. Nessa estrutura, uma
Cadeia é um subconjunto de elementos onde todos sdo
compardveis entre si, seguindo uma sequéncia linear (como
uma fila indiana ou uma linha do tempo, onde a < b <c¢). Em
contraste, uma Anticadeia € um subconjunto de elementos
onde ninguém € compardvel com ninguém, representando
elementos totalmente independentes ou simultineos.

Uma analogia para compreender essas estruturas € a drvore
genealdgica. Uma Cadeia representa uma linhagem direta
(Bisavd — Avo — Pai — Filho), onde a hierarquia € clara
e sequencial. Observando a Figura 6, os vértices eq,ez,e3 €
e4 exemplificam essa relagdo de ordem total: a presenca das
arestas direcionadas indicando que e; leva a e;, que por sua
vez leva a e3, confirma que todos os elementos neste caminho
s30 compardaveis entre si.

Em contraste, uma Anticadeia corresponde a um grupo de
irmaos ou primos que ndo possuem relacdo de descendéncia
direta entre si. Conforme ilustrado na Figura 7, os
vértices denotados por cy,c2,c3 € ¢4 materializam essa
propriedade: a auséncia total de arestas conectando c; a ¢,
ou qualquer outro par, evidencia que eles sdo incomparaveis.
Eles coexistem no mesmo “nivel” hierdrquico sem que
nenhum elemento preceda ou suceda o outro, mantendo essa
independéncia mitua até o enésimo elemento cy.

Munidos dessas definicdes fundamentais, dispomos
do vocabuldrio necessdrio para compreender a evolucdo
histérica da teoria. Essas estruturas bdsicas ndo sdo meras
abstracdes; elas serviram como blocos de constru¢do para
os teoremas de dualidade que definem a area. Para além
dos classicos, a se¢do a seguir contextualiza como os
pioneiros da teoria dos grafos manipularam esses conceitos
para transitar de solucdes em estruturas simples para a
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complexidade dos grafos gerais, e como obras mais recentes
vém complementando e refinando essas técnicas estruturais,
tornando-as aplicaveis aos desafios computacionais atuais.

Dessa forma, a revisdo bibliogréfica subsequente organiza-
se para refletir sobre trabalhos relacionados ao tema central
do nosso estudo.

II1. TRABALHOS RELACIONADOS

A literatura fundamental sobre emparelhamentos, que serve
de base para as defini¢des utilizadas neste artigo, remonta ao
periodo classico da Teoria dos Grafos. As obras de Konig
[9] e Hall [5] estabeleceram as condi¢des de existéncia em
grafos bipartidos, enquanto Berge [1] introduziu a dindmica
dos caminhos aumentantes. Para o contexto de grafos gerais
e ordens parciais, as generalizagdes propostas por Tutte [14]
e Dilworth [3] sdo as referéncias primdrias. Embora estes
trabalhos sejam seminais, a pesquisa na drea continua ativa,
focando-se especialmente na eficiéncia algoritmica e em
novas abordagens pedagdgicas.

No ambito da otimizagdo algoritmica e suas aplicagdes
em Inteligéncia Artificial, o trabalho de Tassa [13] oferece
uma perspectiva relevante sobre a identificagdo de arestas.
O autor investiga o problema de encontrar todas as arestas
"maximamente emparelhdveis" (aquelas que pertencem
a pelo menos um emparelhamento maximo) em grafos
bipartidos.  Tassa [13] propde um algoritmo baseado
na decomposicdo do grafo em componentes fortemente
conexos, otimizando a abordagem anterior ao reduzir o
tamanho do grafo direcionado auxiliar para max{|Vi|,|V2|}
nos. Além disso, o estudo estabelece uma conexio
importante com a 4rea de Problemas de Satisfacdo de
Restricdes (CSPs), reconhecendo que técnicas similares
foram exploradas pioneiramente por Régin [12] para
algoritmos de filtragem. Essa linha de pesquisa demonstra
como os conceitos tedricos de emparelhamento, discutidos
em nosso trabalho, sdo instrumentalizados para resolver
problemas complexos de privacidade de dados e filtragem de
restricoes.

Contemporaneamente, o algoritmo de Micali e Vazirani
continua sendo referéncia central para problemas de empa-
relhamento em grafos gerais. Peterson e Loui [11] oferecem
uma exposicdo clara e rigorosa deste algoritmo, que opera
em tempo O(W -|E|) e permanece como o algoritmo
sequencial mais eficiente conhecido para emparelhamento
de cardinalidade maxima. A importancia deste trabalho vai
além da implementacdo: ele estabelece as bases tedricas
que permitem a paralelizagdo e distribuicdo de algoritmos
de emparelhamento. Compreender profundamente este
algoritmo ¢é fundamental para estudantes que buscam avangar
para dominios mais complexos de otimiza¢do combinatoria,
pois suas técnicas de tratamento de ciclos impares inspiraram
desenvolvimentos posteriores em algoritmos distribuidos.

Expandindo a abordagem de Micali e Vazirani para
ambientes distribuidos, o trabalho de Huang e Su [7]
apresenta um algoritmo polinomial poly(1/¢€,logn)-round
para obter uma aproximacdo (1 — &) do emparelhamento
méximo ponderado em grafos gerais no modelo CONGEST
distribuido. Este avango resolve um problema em aberto de
longa data na drea de algoritmos distribuidos, generalizando
resultados prévios que funcionavam apenas em classes
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especiais de grafos (bipartidos e grafos livres de menores).
A contribuicdo de Huang e Su demonstra que a estrutura de
obstrucao de Tutte permanece relevante e pode ser explorada
de forma eficiente mesmo em cenarios distribuidos, onde a
comunicag¢do entre processadores € limitada.

Paralelamente a evolugdo técnica, a transposicao diddtica
desses conceitos complexos tem sido objeto de estudo
recente. Lassance et al. [10] argumentam que a barreira
de entrada para o entendimento de grafos gerais ndo é
puramente matematica, mas estrutural. O trabalho deles
propde uma reorganizacdo curricular onde a apresentacio de
teoremas avancados deve ser precedida por uma constru¢io
visual rigorosa. Inspirados por essa metodologia, nosso
artigo adota a premissa de que a visualizagdo de "obstaculos"
— como as componentes impares em Tutte — deve ser o
ponto de partida do processo de ensino.

Diferentemente dos trabalhos existentes, que priorizam a
otimizac¢do de desempenho algoritmico em cendrios especi-
ficos ou a complexidade em sistemas distribuidos, este artigo
contribui ao oferecer uma unificaciio didatica entre a Teoria
dos Grafos e a Teoria da Ordem. Nossa contribuicao reside
na sistematizagdo da técnica de redu¢cdo — especificamente
na conversdo entre Posets e Emparelhamentos — e na
formaliza¢do de uma narrativa visual para o Teorema de
Tutte. Ao focar na desmistificagéo dos obstaculos estruturais
por meio de provas assistidas por diagramas, este trabalho
preenche a lacuna entre o rigor matematico puro e a intui¢ao
necessdria para o dominio da disciplina por estudantes de
graduagao.

Com o alicerce histdrico referenciado e as conexdes com
a algoritmia moderna e a pedagogia estabelecidas, torna-se
imperativo formalizar o desafio matematico. A se¢do a seguir
delimita o escopo do nosso estudo, transpondo a intui¢do
discutida nestes trabalhos relacionados para uma defini¢do
rigorosa de otimizacdo combinatéria.

IV. DESCRICAO DO PROBLEMA

O desafio central abordado neste trabalho é o Problema
do Emparelhamento Maximo, fundamental na otimizacio
combinatéria. Formalmente, dado um grafo G = (V,E),
buscamos identificar um subconjunto de arestas M C E
tal que nenhuma aresta em M compartilhe um vértice
comum. Esta propriedade é conhecida como arestas par-
a-par disjuntas. O objetivo € maximizar a cardinalidade
M|, ou seja, encontrar a configuragio que envolva o
maior nimero possivel de vértices e minimize vértices
ndo emparelhados. A complexidade computacional para
solucionar este problema varia conforme a topologia do
grafo. Para grafos bipartidos, algoritmos exatos como o
de Hopcroft-Karp [6] operam com alta eficiéncia em tempo
O(E\/V ). Entretanto, em grafos gerais, a auséncia de
uma biparti¢do clara permite a existéncia de estruturas mais
rigidas. Isso exige abordagens mais sofisticadas, como
o algoritmo de Edmonds (Blossom) [4], para tratar ciclos
impares.

Para concretizar a distingdo estrutural entre essas classes
de grafos e motivar a necessidade do Teorema de Tutte [14],
propomos a andlise de um cendrio lddico denominado "O
Baile da UFT". Inicialmente, observamos o caso restrito
ilustrado na Figura 8, que representa o Cendrio A. Neste
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Grupo B

Grupo A

® 6 6

Figura 8: Cendrio A: Grafo Bipartido. Os vértices v; representam
alunos. O Grupo A s6 danca com o Grupo B. As arestas marcadas
(emparelhamento) sdo o resultado maximo.

(=)

)

Figura 9: Cendrio B: Grafo Geral. Os ciclos impares (tridngulos)
impedem um emparelhamento perfeito. As arestas marcadas
mostram o emparelhamento méaximo possivel, deixando v3 e vg
sem par.

grafo bipartido, as regras de interag@o sdo estritas: alunos do
Grupo A (nés azuis) s6 podem formar pares com alunos do
Grupo B (nds vermelhos). A auséncia de arestas internas em
cada grupo simplifica a busca pelo emparelhamento maximo,
pois ndo ha conflitos de paridade interna a serem resolvidos.

Por outro lado, a complexidade aumenta consideravel-
mente no Cendrio B, apresentado na Figura 9. Aqui, temos
um grafo geral onde a regra de formacao de pares baseia-se
na afinidade, independentemente do grupo de origem. Essa
flexibilidade permite a formagdo de ciclos impares, como
o tridngulo formado pelos vértices vi,v; e v3. Como pode
ser visualizado na figura, se trés individuos desejam formar
pares exclusivamente entre si, ¢ matematicamente impossivel
que todos sejam atendidos simultaneamente. Portanto,
inevitavelmente, um vértice restard sem par. Esta ocorréncia
do ciclo impar € a representagdo geométrica do obstaculo que
impede o emparelhamento perfeito em grafos nao-bipartidos.

E neste contexto de impossibilidade estrutural que o
Teorema de Tutte [14] se insere, oferecendo uma condi¢do
necessdria e suficiente baseada na topologia global. Antes de
avancarmos para as demonstracdes formais, sistematizamos
nas Tabelas 1 e 2 os principais problemas abordados,
separando a andlise de existéncia da andlise de otimizacio
de ordem.

A légica de resolucdo apresentada nas tabelas desdobra-
se em uma narrativa continua que fundamenta as provas
subsequentes. Inicialmente, na Anélise de Paridade (Tutte),
a prova estabelece que componentes com niimero impar de
vértices possuem uma limita¢do aritmética inerente, pois
nunca podem ser totalmente emparelhados internamente.
Assim, cada componente fmpar exige uma conexao com um
vértice externo (do conjunto S), de modo que, se 0 nimero
de componentes impares o(G — S) for maior que o nimero de
vértices disponiveis em S, o emparelhamento perfeito torna-
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TABELA 1: RESUMO ESTRUTURAL: TEOREMA DE TUTTE

Problema | Existéncia de Emparelhamento Perfeito

(Tutte)

Input Grafo Geral G = (V,E) e a andlise de

subconjuntos de vértices removidos S.

Output Condigio Necessdria e Suficiente: o(G —

S) <|S].

Resumo Demonstragdo baseada na identificacdo
de componentes impares como obstaculos

estruturais intransponiveis.

TABELA 2: RESUMO ESTRUTURAL: TEOREMA DE DILWORTH

Problema | Decomposicio Minima de Cadeias (Dil-
worth)

Input Poset P e sua transformacdo em Grafo
Bipartido.

Output Teorema Min-Max: tamanho max. anti-
cadeia = minimo de cadeias.

Resumo Técnica de Redugdo: converte a de-
pendéncia de ordem em um problema de
emparelhamento bipartido.

se impossivel. Sequencialmente, no que tange a Técnica
de Reducao (Dilworth), a prova utiliza a constru¢do de um
grafo auxiliar para traduzir um conceito abstrato de ordem
parcial em um geométrico de arestas. Ao duplicar os vértices
do Poset para criar um grafo bipartido, demonstramos que
cada aresta do emparelhamento conecta o fim de uma cadeia
ao inicio de outra, resultando na identidade fundamental
onde minimizar o nimero de cadeias é matematicamente
equivalente a maximizar o emparelhamento (|C| = n— |M|).

Estabelecida a intuicdo visual de que ciclos impares impe-
dem o emparelhamento perfeito e como a redugdo simplifica
problemas de ordem, torna-se imperativo formalizar esses
conceitos na proxima sec¢ao.

V. DEMONSTRACAO E CONTRIBUICOES

Nesta secdo, apresentamos as demonstragdes dos dois
resultados fundamentais: o Teorema de Tutte [14] e o
Teorema de Dilworth [3]. A escolha destes resultados
visa expandir o repertério para além das técnicas bdsicas
de caminhos aumentantes, introduzindo o conceito de
"obstaculos estruturais"”. Iniciamos essa andlise expandindo
o escopo dos grafos bipartidos para os grafos gerais.
Enquanto o Teorema de Hall [5] verifica vizinhangas locais,
o Teorema de Tutte fornece uma condi¢a@o global.

Condi¢dao de Tutte: Um grafo G = (V,E) possui um
emparelhamento perfeito se, e somente se, para todo
subconjunto de vértices S C V, vale a desigualdade o(G —
S) < |S|. Aqui, o(G —S) representa o nimero de
componentes conexos com um nimero impar de vértices no
grafo resultante da remocdo de S.

Partimos da hipétese de que o grafo G possui um em-
parelhamento perfeito M. Seja S um subconjunto qualquer
de vértices removidos e considere as componentes conexas
C1,C,...,Cy resultantes dessa remocgdo. Ao analisarmos
uma componente impar especifica C;, observamos que a
soma das arestas internas nio cobre a totalidade dos vértices,
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Comp. fmpar 1

Removido

Comp. fmpar 3

Comp. fmpar 2

Figura 10: Visualizacio da falha na condigdo de Tutte:
0o(G—S) > |S|. Ao retirar o vértice central, restam 3 componentes
fmpares isolados.

devido a sua cardinalidade fmpar. Obrigatoriamente, pelo
menos uma aresta de M deve conectar um vértice de C; a um
elemento externo.

Como C; é uma componente isolada em G — S, ndo
existem arestas ligando-a a outras componentes; logo, essa
conexdo externa deve necessariamente incidir em um vértice
de S. Sob a dtica da contabilidade de arestas, visto
que os elementos do emparelhamento sdo disjuntos, cada
componente impar consome um vértice exclusivo de S. A
conclusdo 16gica, ilustrada na Figura 10, € que se existem
k componentes impares, serdo necessirios no minimo k
vértices distintos em S, demonstrando que |S| > o(G —S).

Demonstracdo da Suficiéncia (<): A prova de que a
validade da condi¢@o garante o emparelhamento é construida
por reducdo ao absurdo. Inicialmente, supomos que
a condicdo de Tutte [14] é verdadeira para o grafo G
(ou seja, o(G —S) < |S| para todo subconjunto S), mas,
contraditoriamente, G nao possui um emparelhamento
perfeito.

Para explorar as falhas dessa suposicdo, maximizamos
a estrutura do grafo adicionando arestas ficticias até
formarmos um grafo G*, que representa o limite maximo
de conexdes possivel sem que se crie um emparelhamento
perfeito. Vale ressaltar que, se encontrarmos uma violagdo da
condicdo de Tutte em G*, ela prova a falha no grafo original.
Neste grafo saturado G*, definimos S como o conjunto de
vértices universais. A andlise do resultado revela que a
quantidade de componentes impares geradas pela remocio
de S supera o nimero de vértices disponiveis em S. Isso
implica diretamente que o(G* — S) > |S|, um resultado que
viola a nossa hipétese inicial.

Além da andlise de existéncia proposta por Tutte, a
teoria dos grafos se conecta diretamente a Teoria da Ordem.
Essa relag@o é fundamental para a otimizagdo combinatéria,
pois permite tratar problemas de ordenacdo sob uma ética
algoritmica eficiente. Frequentemente, problemas praticos
de agendamento, hierarquia e dependéncia de tarefas —
modelados matematicamente como Conjuntos Parcialmente
Ordenados (Posets) — ndo aparentam, a primeira vista,
possuir relacao direta com a geometria de vértices e arestas.
No entanto, o Teorema de Dilworth [3] € o exemplo
central dessa relacdo, estabelecendo um vinculo formal
entre estruturas de ordem e grafos. Essa equivaléncia com
o emparelhamento bipartido foi explorada por Kameda e
Munro [8] para o desenvolvimento de algoritmos. Ao
provarem que a decomposi¢do de conjuntos ordenados
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&)=

Reduc¢do

=)
® ©® &

Poset P
Original

Grafo Bipartido
Construido

Entenda a conexao:
1. Em P, x; vem antes de x,.
2. No Bipartido, u; (quem inicia) conecta com v, (quem recebe).

Figura 11: Visualizacdo da Reducéo: duplicamos os vértices para
separar as fun¢des de "antecessor" (U) e "sucessor" (V).

pode ser reduzida ao problema de emparelhamento, eles
viabilizaram o uso de solu¢des polinomiais eficientes para
resolver problemas de ordenacao.

Dilworth: O nimero minimo de cadeias necessarias para
cobrir todos os elementos de um conjunto parcialmente
ordenado P ¢ igual ao tamanho maximo de uma anticadeia
em P.

Para demonstrar este teorema e sua aplicagdo computa-
cional, utilizamos a técnica de Reducdo, transformando o
problema de "Posets" em "Casamento Bipartido". A Figura
11 detalha visualmente essa transformagdo. O processo
consiste em tomar os elementos do conjunto ordenado P =
{x1,...,x,} e duplicd-los para criar um grafo bipartido G =
(UCoHfdrme detalhado na Figura 11, o lado U (nés azuis)
representa os elementos atuando como "inicio de uma
relacdo”, enquanto o lado V (nds vermelhos) representa os
mesmos elementos como "fim". A regra de construcdo é
direta: desenhamos uma aresta direcionada (u;,v;) se, e
somente se, o elemento x; precede o elemento x; na ordem
original.

A validade desta construcdo reside em demonstrar
uma equivaléncia estrutural estrita, da qual existe uma
bijecdo entre um emparelhamento vilido em G e uma
decomposicdo em cadeias em P. Observe que a definicdo
de emparelhamento exige que arestas sejam disjuntas, ou
seja, cada vértice tenha grau no maximo 1. No contexto
do poset, isso traduz-se na regra de linearidade das cadeias:
um elemento x; ndo pode ter miltiplos sucessores imediatos
(o que violaria o grau em U) nem multiplos antecessores
imediatos (o que violaria o grau em V). Portanto, um
conjunto de arestas é um emparelhamento se, e somente se,
ele une elementos formando sequéncias lineares validas e
disjuntas.

Algebraicamente, a prova se estabelece pela contagem
de componentes. Iniciamos com n cadeias triviais (cada
elemento isolado). Cada aresta (u;,v;) adicionada ao empa-
relhamento junta o final de uma cadeia ao inicio de outra,
reduzindo o nimero total de cadeias em exatamente uma
unidade. Assim, estabelecemos a identidade fundamental:
o nimero de cadeias |%’| resultantes de um emparelhamento
M é dado por |€| = n— |M|. Para minimizar o nimero de
cadeias |'€|, o objetivo de Dilworth, somos matematicamente
forcados a maximizar |[M|. Desta forma, demonstramos que
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encontrar a Decomposicao Minima de Cadeias € equivalente
a busca pelo Emparelhamento Maximo no grafo bipartido.
Como cada aresta do emparelhamento une dois vértices em
uma mesma cadeia, o nimero minimo de cadeias serd igual
ao numero total de vértices subtraido da cardinalidade deste
emparelhamento maximo.

Com a validagdo desta equivaléncia e o encerramento das
demonstragdes formais, finalizamos a andlise técnica das
estruturas propostas. Torna-se pertinente, entdo, avaliar ndo
apenas a corretude matematica dos teoremas apresentados,
mas também o impacto pedagdgico que a construgdo dessas
provas exerce sobre o dominio da disciplina.

VI. RESULTADOS E REFLEXOES

A elaboragdo deste artigo cumpriu o papel de consolidar o
entendimento sobre teoremas fundamentais da Teoria dos
Grafos, funcionando como uma ferramenta de fixacdo de
conceitos matemdaticos complexos para estudantes de Ciéncia
da Computacdo. Ao explorarmos as provas de Tutte [14] e
Dilworth [3], os resultados apontam para a eficicia de uma
abordagem que privilegia a intui¢do geométrica aliada ao
rigor formal, facilitando a assimilacdo de estruturas abstratas.
A andlise desenvolvida confirma que o dominio de grafos
gerais € significativamente ampliado quando se adota um
pensamento estrutural e holistico.

Diferente da verificag@o local de vizinhangas — comum
no estudo introdutério do Teorema de Hall [S] — a com-
preensdo de Tutte beneficia-se imensamente da visualizacio
global do grafo e de suas componentes conexas. O uso
de metédforas visuais, onde o conjunto S é representado
como um "hub" ou ponto de articulagdo, mostrou-se uma
estratégia pedagdgica poderosa para tangibilizar a abstracio
da remocao de vértices (G — S). Essa representacdo concreta
permite que o estudante visualize imediatamente como a
estrutura se fragmenta, tornando a condi¢do de paridade uma
consequéncia légica observavel, e ndo apenas uma regra
algébrica.

Da mesma forma, a exploracdo do Teorema de Dilworth
[3] revelou-se uma oportunidade excelente para clarificar
a dualidade Min-Max. A abordagem adotada permitiu
demonstrar positivamente como a adi¢do de arestas (empa-
relhamento) atua como um mecanismo de otimizacido que
funde cadeias disparatadas, oferecendo uma intuicéo robusta
sobre como problemas de ordem podem ser resolvidos
eficientemente através de grafos. Essa transposi¢do diddtica
resulta no desenvolvimento de competéncias criticas, como a
modelagem por reducdo, onde o discente aprende a converter
um problema de ordem parcial em um desafio geométrico de
emparelhamento bipartido. Essa capacidade de simplificacdo
topoldgica é um ganho conceitual que prepara o aluno para
enfrentar problemas de alta complexidade em disciplinas
como Teoria da Computacdo e Andlise de Algoritmos, onde
a técnica de redugdo € o alicerce para o entendimento de
classes de complexidade.

Além disso, ao priorizar a centralidade tedrica de Tutte
[14] e Dilworth [3], este trabalho promove uma forte
interdisciplinaridade ao conectar a Algebra com a Algoritmia
de Grafos. Demonstrou-se que problemas praticos de
agendamento, hierarquia e dependéncia de tarefas — comuns
em dreas como Sistemas Operacionais e Engenharia de
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Software — sdo, em sua esséncia, problemas de desenho
estrutural. O exercicio de construir provas matemdticas
utilizando diagramas como parte do argumento légico
desenvolve no estudante um rigor demonstrativo visual,
permitindo identificar gargalos em redes de forma intuitiva.
Assim, o texto consolida-se como um material de apoio
diditico que transforma o rigor dos livros-texto em uma
ponte acessivel para o sucesso em disciplinas avangadas de
Otimizacdo Combinatéria, validando a premissa de que a
compreensdo profunda da estrutura do problema € o primeiro
passo para a eficiéncia algoritmica..

VII. CONSIDERACOES FINAIS

O objetivo central deste trabalho foi revisitar os fundamentos
teéricos do emparelhamento em grafos, transcendendo
a abordagem tradicional focada apenas na execugdo de
algoritmos. Buscou-se preencher a lacuna didatica existente
entre o entendimento intuitivo de grafos bipartidos e a
complexidade abstrata dos grafos gerais e estruturas de
ordem. Ao analisar as demonstragdes cldssicas, o artigo
propds uma narrativa visual que facilita a assimilacdo de
conceitos dificeis por estudantes de graduacio.

A sintese dos resultados aponta para duas conclusdes
tedricas maiores. Primeiramente, na andlise de existéncia,
entendemos que o Teorema de Tutte é uma férmula
abrangente, que explica tanto os casos simples (bipartidos)
quanto os complicados (gerais), olhando para a estrutura
completa do grafo. Demonstramos que a "barreira de
paridade" (componentes impares isolados) € o mecanismo
universal de obstrucdo, englobando os casos restritos de Hall
[5] e Konig [9]. Em segundo lugar, a exploragdo do Teorema
de Dilworth [3] ratificou a equivaléncia estrita entre prob-
lemas de ordenagdo (posets) e o emparelhamento bipartido.
Essa conexdo provou que a complexidade de problemas de
agendamento pode ser reduzida polinomialmente, validando
as estratégias algoritmicas de Kameda e Munro [§].

No que tange as contribui¢des pedagégicas, este estudo
oferece uma metodologia de ensino baseada na visualizacio
de "obstdculos estruturais”. A principal contribui¢do reside
na formalizacdo da técnica de Redugdo, ao invés de apenas
apresentar o Teorema de Dilworth como uma férmula,
detalhamos o processo de transformacdo topolégica que
converte um problema desconhecido em um conhecido.
Além disso, o uso de analogias concretas fornece aos
estudantes um vocabuldrio visual para identificar falhas
de emparelhamento, superando a dificuldade comum de
visualizar a remocdo de conjuntos arbitrarios.

Como limitacdo, este estudo concentrou-se nas condi¢des
de existéncia e nas provas estruturais, sem aprofundar-se
na implementacdo computacional dos algoritmos de busca,
como o Blossom de Edmonds. Como perspectiva para
trabalhos futuros, sugere-se a expansdo desta base didatica
para o dominio da implementagcdo computacional interativa.
A criacdo de ferramentas de software que permitam a
visualizagdo dindmica dos algoritmos — especificamente a
simula¢do passo a passo da contracdo de ciclos impares
no algoritmo Blossom de Edmonds — representaria um
avanco significativo. Ao utilizar as mesmas metaforas de
“fusdo de componentes” e “gargalos” estabelecidas neste
artigo, seria possivel demonstrar aos estudantes ndo apenas
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por que o emparelhamento falha sob a ética tedrica, mas
como o computador manipula e reduz essas estruturas
em tempo de execugdo. Encerramos, portanto, com a
convic¢do de que a unido entre a base matemadtica sélida e
a visualizagdo intuitiva se mostrou uma estratégia de ensino
extremamente eficaz. Acreditamos que essa abordagem
facilita significativamente o aprendizado, permitindo que os
estudantes compreendam o conteido com muito mais clareza
e seguranga.
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