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Resumo—Este trabalho propde uma abordagem metodoldgica e didética para a reproducdo e elucidacio dos conceitos de NP-Completude e
da intratabilidade inerente a problemas computacionais, especialmente os combinatérios, utilizando o Set Packing Problem (SP) como estudo
de caso. A metodologia consiste na exposi¢do detalhada do problema, seguida pela reprodugdo da demonstragdo formal do pertencimento
do SP a classe NP-Completa, incluindo a construcdo e andlise de seu verificador polinomial e a apresentacéio passo a passo da técnica de
reducdo polinomial de CLIQUE para SP. O principal resultado e a contribui¢@o deste artigo é o desenvolvimento de um material pedagdgico
que visa aprimorar a compreensao integral dos conceitos da Teoria da Computag¢ao, auxiliando o ptblico leigo a assimilar de forma eficaz o
significado da complexidade computacional.
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Abstract—This work proposes a methodological and didactic approach for the reproduction and elucidation of the concepts of NP-
Completeness and the inherent intractability of combinatorial problems, using the Set Packing Problem (SP) as a case study. The
methodology consists of a detailed exposition of the problem, followed by the reproduction of the formal demonstration of SP’s membership in
the NP-Complete class, including the construction and analysis of its polynomial verifier and the step-by-step presentation of the polynomial
reduction technique from CLIQUE to SP. The main result and contribution of this article is the development of pedagogical material that
aims to enhance the integral understanding of Theory of Computation concepts, assisting the public in effectively assimilating the meaning
of computational complexity.
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espaco) requeridos por seus melhores algoritmos de solugdo,
culminando na defini¢do das classes P (Polynomial Time) e
I. INTRODUCAO NP (Nondeterministic Polynomial Time) e na formula¢do do
problema P versus A P, definido como um dos Millennium

eoria da Computacdo (TC) € a base tedrica para a  Prize Problems pelo Clay Mathematics Institute [3].
Ciéncia da Computacdo e Engenharia da Computacdo,
fornecendo as ferramentas conceituais necessirias para
compreender o que pode ser computado e, crucialmente,
com qual eficiéncia. Foi no inicio da década de 1970 que
a disciplina ganhou uma nova dimensdo com o surgimento
da Teoria da Complexidade Computacional, impulsionada
pelo trabalho de Stephen Cook (1971) [1] e, notavelmente,
por Richard Karp (1972) [2]. Este campo de estudo buscou
categorizar problemas com base nos recursos (tempo e

Neste contexto, a complexidade representa o que de fato
significa a intratabilidade de problemas, ou seja, a prova de
que certas questdes computacionais ndo podem ser resolvidas
de forma eficiente (em tempo polinomial) por qualquer
algoritmo deterministico conhecido, a menos que P=A/P.
A compreensdo da NP-Completude €, portanto, essencial
para que o futuro profissional saiba quando buscar solucdes
exatas ou métodos alternativos como algoritmos aproximados
e heuristicos.

Considere por exemplo um conjunto universo U e uma
Dados de contato: Emanuel Badar6 Fonseca, badaro.fonseca@uft.edu.br colecd@o de subconjuntos S. O objetivo € verificar se existe
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uma subcole¢do dentro de S contendo pelo menos k
subconjuntos que sejam mutuamente disjuntos, isto €, que nao
compartilhem nenhum elemento comum entre si (a interse¢do
entre qualquer subconjunto escolhido é vazia). Este € o
Problema do Set Packing (Empacoteamnto de Conjuntos),
um dos 21 problemas NP-Completos de Karp [2] e o qual serd
utilizado como estudo de caso neste artigo.

A complexidade inerente a Teoria da Computacdo,
especificamente no que tange as redugdes polinomiais e
a classe NP-Completa, representa um desafio pedagdgico
constante, apesar da relevancia tedrica de problemas como o
Set Packing. Com o objetivo de mitigar essas dificuldades,
este trabalho propde uma construgdo pedagdgica da prova de
NP-Completude do Set Packing. A estrutura do artigo segue
uma légica sequencial: a Secdo 2 fornece o embasamento
tedrico e as definicdoes fundamentais. A Secdo 3 examina a
literatura pertinente e trabalhos correlatos. As Secdes 4 e 5
constituem o cerne do trabalho, apresentando a descri¢@o e a
demonstragdo formal do problema, assim como a estratégia
de reducdo. As contribuicdes e reflexdes sobre o aprendizado
sdo debatidas na Secdo 6, seguidas pelas conclusdes na Se¢io
7.

II. PRELIMINARES

Esta secdo apresenta os conceitos e ferramentas de andlise

pertinentes que serdo utilizados ao longo de todo este trabalho.

Um conjunto € definido como uma cole¢@o ndo ordenada
de elementos distintos. A partir deste conceito, estabelece-se
a relacdo de subconjunto: diz-se que um conjunto B é um
subconjunto de um conjunto A (denotado por B C A) se todos
os elementos presentes em B sdo também elementos de A.
Por exemplo, dado o conjunto A = {1,2,3}, podemos definir
um subconjunto B = {1,2}. Como ambos os elementos de B
estdo em A, temos que B C A.

Um grafo G é definido formalmente como um par ordenado
G = (V,E), composto por um conjunto finito e nido vazio
de vértices V e um conjunto de arestas E. Neste contexto,
os vértices constituem os elementos de V e representam
as entidades ou objetos que estdo sendo modelados. J4 as
arestas sdo definidas como pares nio ordenados (u,v) de
vértices distintos de V, representando as conexdes ou relagdes
estabelecidas entre esses vértices.

Considere o grafo presente na Figura 1 como exemplo, onde
o conjunto de vértices é V = {v|,v2,v3,v4,vs5} € 0 conjunto
de arestas é E = {(vi,v2), (v2,v3), (v1,v3), (va,vs), (v3,vs)}.
Neste caso, o vértice v estd conectado ao vértice v, pela
aresta (vi,v2).

Uma clique em um grafo é um subconjunto de vértices C C
V tal que todo par de vértices distintos em C esta conectado
por uma aresta em E. A Figura 1 mostra um exemplo visual
de uma clique de tamanho 3 em um grafo.

Na Teoria da computag@o, um problema de decisdo é uma
questdo que tem uma resposta simples de “sim” ou “ndo”. E
como fazer uma pergunta que pode ser respondida com um
"verdadeiro" ou "falso".

Utilizando o grafo da Figura 1 e k = 3, a pergunta “Existe
uma clique de tamanho 3 neste grafo?” € um problema de
decisdo cuja resposta é “Sim”.

A complexidade computacional é o estudo de quio
eficientemente um algoritmo (uma receita para resolver um
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Figura 1: Exemplo de uma clique de tamanho 3. Clique
C= {Vl 7V27V3}'

problema) pode resolver um problema em termos de tempo e
recursos (como memoria). Medimos o “tempo” pelo nimero
de passos que o algoritmo leva para rodar, especialmente a
medida que o tamanho da entrada aumenta.

Para ordenar uma lista de n niimeros, um algoritmo simples
pode levar n” passos (como o Bubble Sort), enquanto um mais
eficiente leva nlogn passos (como o Merge Sort).

Um problema € classificado como pertencente ao Tempo
Polinomial 2 quando existe um algoritmo capaz de encontrar
sua resposta (do tipo sim ou ndo, para problemas de decisio)
em um nimero de passos que cresce, no maximo, como um
polindmio do tamanho da entrada. Por essa razio, problemas
em P sdo geralmente categorizados na literatura como “faceis’
ou “eficientemente soldveis”.

A Classe A P (Non-deterministic Polynomial time) agrupa
problemas de decis@o para os quais, dada uma ‘“‘solugdo
candidata” (denominada certificado), é possivel verificar sua
corre¢do em tempo polinomial. Esta definicio ndo implica
necessariamente que a solu¢do possa ser encontrada de forma
eficiente, mas sim que podemos confirmar rapidamente a
validade de uma proposta apresentada. Vale ressaltar, por
fim, que todo problema pertencente a classe P estd também
contido em N P.

Por exemplo, no jogo Sudoku, encontrar a solugdo para
um tabuleiro vazio pode ser demorado, mas dada uma grade
preenchida (o certificado), verificar se ela segue as regras (ndo
repetir nimeros nas linhas, colunas e quadrantes) € muito
rapido (polinomial).

A Redugdo Polinomial (A <, B) é uma ferramenta formal
utilizada para demonstrar que um problema € “pelo menos tao
dificil” quanto outro. O processo consiste na capacidade de
transformar eficientemente (em tempo polinomial) qualquer
instancia de um problema A em uma instancia de um problema
B, preservando a equivaléncia das respostas: a instdncia de A
é positiva se, e somente se, a instncia correspondente de B
também o for.

Como exemplo, suponha que o Problema A seja “encontrar
a saida de um labirinto fisico de sebes”. Se soubermos

il
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Figura 2: Entrada: o grafo G e k =4. A resposta é "Sim", pois
{v1,v2,v3,v4} é uma clique.

transformar (reduzir) este labirinto em um desenho de Grafo
(Problema B), onde cada cruzamento é um vértice e cada
corredor é uma aresta, podemos usar um algoritmo de
computador conhecido para resolver B. Assim, resolver o
grafo resolve o labirinto.

O problema da Clique € um problema de decisdo NP-

Completo.

CLIQUE

Entrada: Um grafo G = (V,E) e um inteiro k > 1.
Questdo: Existe um subconjunto de vértices V' C V tal que
[V'| > k e, para todo par de vértices distintos em V', existe
uma aresta em E que os conecta?

Considere como exemplo a Figura 2.
O problema do Conjunto Independente também
problema de  decisio = NP-Completo.

z

€ um

INDEPENDENT SET

Entrada: Um grafo G = (V,E) e um inteiro k > 1.
Questdo: Existe um subconjunto de vértices V' C V tal que
[V'| > k e ndo hé arestas em E conectando quaisquer dois
vértices em V'?

Considere como exemplo de Independent Set a Figura 3.

O problema do Empacotamento de Conjuntos
é¢ central para este trabalho e  pertence
a classe dos problemas NP-Completos.

SET PACKING

Entrada: Uma colegdo C = {S,S2,...,Sy } de subconjuntos
de um conjunto universal U, e um inteiro k > 1.

Questdo: Existe uma subcole¢do C' C C tal que [C'| > ke
todos os conjuntos em C’ sdo mutuamente disjuntos (ou seja,
para quaisquer dois conjuntos S;,S; € C' com i # j, tem-se
S§;NS;= 0)?
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Figura 3: Entrada: Grafo G e k = 2. A resposta € "Sim", pois o
subconjunto {v;,ve} tem tamanho 2 e ndo existe a aresta (v, vg)
em E(G).

Exemplo: Entrada: U = {1,2,3,4}, C =
{{1,2},{2,3},{3,4}} e k =2. A resposta é "Sim",
pois a subcole¢do C' = {{1,2},{3,4}} tem tamanho 2 e os
conjuntos sdo disjuntos.

ITI. TRABALHOS RELACIONADOS

A literatura sobre o problema do Set Packing (SP) € extensa,
abrangendo desde as provas fundamentais de complexidade
até aplicacdes modernas em teoria dos jogos e otimizagao.
Nesta secdo, destacamos trabalhos que fundamentam a teoria,
exploram limites de tratabilidade e dialogam com a proposta
pedagogica deste artigo.

A referéncia primdria para a classificagdo do Set Packing
¢ o trabalho classico de Karp [2], onde demonstrou em suas
pesquisas a redutibilidade entre 21 problemas combinatdrios,
estabelecendo o Set Packing como NP-Completo através de
uma cadeia de redugdes originada na Satisfiabilidade (SAT).
Este trabalho define a posi¢do do problema na hierarquia de
complexidade. Complementarmente, Garey e Johnson [4]
sistematizaram a metodologia de provas de NP-Completude.
O presente artigo adota a estrutura formal de construgéo e
verificacdo polinomial proposta por eles, adaptando seu rigor
técnico a uma abordagem pedagégica.

Avancando para estratégias de resolucdo exata e mode-
lagem, no trabalho de Delorme, Gandibleux e Rodriguez
(2004) [5], podemos notar que eles trabalham com uma
nova abordagem de modelagem para a resolucdo exata. Na
pesquisa, os autores abordam o problema de Set Packing
propondo uma transformacdo para o problema de clique
maxima e obtém uma reducgdo significativa na complexidade
do espago de busca. Os resultados sdo interessantes por
demonstrarem como a reformula¢do do modelo matematico e
o uso de limitantes superiores podem acelerar a resolucio de
instancias dificeis.

Expandindo o escopo para generalizagdes com aplicagdes
praticas, no trabalho de Muritiba et al. (2010) [6], podemos
notar que eles trabalham com o problema de empacotamento
de bins com conflitos (BPPC). Na pesquisa, os autores
abordam o problema propondo novos limites inferiores
baseados na computagdo de cliques maximais, novos
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limites superiores através de uma abordagem meta-heuristica
envolvendo busca tabu e um operador de cruzamento, € um
algoritmo exato baseado em uma formulagio de cobertura de
conjuntos, resolvido por meio de gerag¢do de colunas e branch-
and-price. Os resultados sao interessantes por demonstrar a
eficacia dos algoritmos propostos em um vasto conjunto de
instancias de referéncia da literatura, resolvendo 780 de 800
instancias para a otimalidade e melhorando consistentemente
algoritmos anteriores.

Investigando a tratabilidade sob condi¢des especificas, no
trabalho de Jia, Zhang e Chen (2004) [7], podemos notar
que eles trabalham com a complexidade parametrizada do
problema de empacotamento de conjuntos. Na pesquisa,
os autores abordam o problema de m-Set Packing (onde
o tamanho de cada conjunto € limitado por uma constante
m) propondo um algoritmo eficiente de complexidade
parametrizada e obtém a prova de que o problema ¢ tratavel
por parametro fixo (FPT) em relacdo ao tamanho da solucio
k. Os resultados s@o interessantes por demonstrarem que,
ao restringir o tamanho dos conjuntos, € possivel superar a
intratabilidade geral e encontrar solu¢des exatas de forma
eficiente para valores pequenos de k.

Sob a 6tica de solugdes aproximadas para o caso geral, no
trabalho de Fiirer e Yu (2014) [8], podemos notar que eles
trabalham com a andlise tedrica de algoritmos de aproximacao.
Na pesquisa, os autores abordam o problema de k-Set
Packing investigando o poder das melhorias locais (local
improvements) e obtém limites de aproximacao refinados para
o problema. Os resultados sdo interessantes por aprofundarem
o entendimento sobre as limitacdes e capacidades da busca
local, fornecendo garantias mais justas para a qualidade das
solucdes encontradas por essa classe de algoritmos.

Retornando as inovacdes em modelagem matematica,
no trabalho de Alidaee et al. (2008) [9], podemos notar
que eles trabalham com uma nova abordagem baseada em
Programacdo Quadrética Bindria Irrestrita (UBQP/QUBO).
Na pesquisa, os autores abordam o problema de Set Packing
transformando as restri¢des de disjuncdo em penalidades na
fun¢do objetivo quadrética e obtém solucdes de alta qualidade
que rivalizam com métodos especializados em termos de
tempo e eficiéncia. Os resultados sdo interessantes por
demonstrarem que uma estrutura unificada e sem restri¢des
pode simplificar a resolucdo de problemas combinatdrios
complexos, permitindo o uso de heuristicas genéricas
robustas.

Por fim, o trabalho de Lassance e Bianchini [10] investigou
o impacto de estratégias diddticas no ensino de Teoria da
Computagdo. O estudo conclui que abordagens descritivas
e a participacdo ativa dos discentes (via semindrios) sdo
eficazes para diluir a complexidade das redugdes polinomiais.
Seguindo esta diretriz pedagdgica, nosso trabalho adota uma
estratégia de decomposicdo visual e prova passo a passo,
visando contribuir com o entendimento de conceitos abstratos
de intratabilidade computacional pelo publico em geral.

IV. DESCRICAO DO PROBLEMA

O problema do Set Packing (Empacotamento de Conjuntos),
doravante denominado SP, ¢ um problema fundamental
na otimizagdo combinatdria e na teoria da complexidade
computacional. Formalmente, dado um universo finito U
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e uma familia de subconjuntos S = {Si,S2,...,S,}, onde
S; C U, um packing é uma subcolegdo S’ C S tal que todos os
conjuntos em S’ sdo mutuamente disjuntos, ou seja, S;NS; =0
para quaisquer S;,S; € S’ distintos [4].

O problema pode ser abordado sob duas perspectivas. Na
versdo de otimizacdo, o objetivo é encontrar a subcole¢o S’
de cardinalidade méxima. Na versdo de decisdo — a qual
utilizamos para a prova de NP-completude — a entrada inclui
um inteiro k, e a pergunta é se existe um packing de tamanho
pelo menos k (|S’| > k) [2]. Uma generalizagdo comum € o
Weighted Set Packing, onde cada conjunto S; possui um peso
w;, € 0 objetivo é maximizar a soma dos pesos dos conjuntos
disjuntos selecionados.

A relevancia do SP decorre de sua capacidade de modelar
situagdes de alocacdo de recursos onde o compartilhamento
é impossivel (restricdo de exclusividade). A aplicagdo
mais notavel ocorre em Leiloes Combinatorios [11]. Neste
cendrio, um leiloeiro tem um conjunto de itens distintos
(U) e os licitantes oferecem lances por "pacotes" de itens
(S;). Como cada item s6 pode ser vendido uma vez, o
leiloeiro deve selecionar um conjunto de lances vencedores
que ndo disputem o mesmo item, maximizando o lucro total.
Outras aplicagdes criticas incluem o Airline Crew Scheduling
(escalonamento de tripula¢des), onde cada voo deve ser
coberto por uma unica equipe e as equipes (conjuntos de
voos) ndo podem estar em dois lugares ao mesmo tempo [12].

Para fins pedagdgicos, o SP pode ser visualizado como
o dilema de um organizador de festas que possui uma lista
de grupos de amigos que desejam comparecer ao evento,
Figura 4. O universo U representa as cadeiras disponiveis na
mesa principal. Cada grupo (S;) exige sentar-se em cadeiras
especificas e recusa-se a compartilhar seus assentos com
estranhos. Se um grupo deseja a cadeira 3 e outro também
deseja a cadeira 3, eles sdo incompativeis. O desafio do
organizador € aceitar o maior niimero possivel de grupos sem
gerar conflitos de assentos.

Embora o SP seja NP-dificil no caso geral, existem
subclasses importantes que admitem algoritmos eficientes:

* Cardinalidade Limitada (|S;| < 2): Se todos os
conjuntos na familia S tiverem no maximo 2 elementos,
o problema torna-se equivalente ao Maximum Matching
(Emparelhamento Maximo) em grafos. Neste caso, os
elementos de U sdo vértices e os conjuntos S; sdo arestas.
O problema pode ser resolvido em tempo polinomial
O(E+/V) pelo algoritmo de Edmonds [13].

* Grafos de Intervalo: Se os elementos de U puderem ser
ordenados linearmente tal que cada S; forme um intervalo
contiguo, o problema equivale ao Interval Scheduling,
que pode ser resolvido com uma estratégia gulosa em
O(nlogn) [14].

Para o caso geral, algoritmos exatos baseados em
programacdo dindmica ou inclusdo-exclusdo atingem com-
plexidades da ordem de O*(2"), o que é impraticdvel para
instancias grandes [15]. Essa intratabilidade computacional,
contrastando com a eficiéncia das subclasses restritas
apresentadas, sugere que o Set Packing pertence a classe
dos problemas mais dificeis da computacdo. A secdo a
seguir formaliza essa intui¢do, provando a NP-Completude
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Figura 4: Representacdo visual de uma instincia de Set Packing. O
universo U = {1,..,10}. Os grupos 1, 3 e 4 formam um packing
valido (azul). O grupo 2 cria conflito com os grupos 1 e 4.

do problema através de uma redug@o polinomial a partir do
problema da Clique.

V. DEMONSTRACAO E CONTRIBUICOES

A seguir, estabelecemos o lema principal deste artigo.

Lema 1. Set Packing é NP-Completo.

Proof. Seguindo o esquema cldssico, dividimos a prova em
duas etapas identificadas: (1) provar que SP € NP (NP-
pertinéncia) e (2) provar que SP é NP-dificil por meio de
uma reducdo polinomial apropriada.

Tome (1)

Para mostrar que SP € AP, basta exibir um verificador
polinomial que, dada uma solugdo candidata §’, determine
se ela constitui um subconjunto de / conjuntos mutuamente
disjuntos.

A instincia do problema consiste em um universo U
com n = |U| elementos e uma cole¢do de m conjuntos
S =1{S1,...,Sn}. O certificado é uma subcole¢do S’ C S
supostamente de tamanho /.

O verificador executa duas tarefas: (i) verificar se |S'| =1 e
(ii) verificar a disjunc@o par a par entre os conjuntos de S'.

Temos que o primeiro passo é executado em O(]S'|), que é
limitado por O(m), pois |S'| < m.
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Para o segundo passo, o algoritmo percorre cada par
distinto de conjuntos em S’. O nimero de pares é dado pela
combinagdo de |S’| elementos tomados 2 a 2:

N N L R [ R Y N
2 ) 218 -2) 2 B 2

Como o termo dominante é quadrético e sabemos que |S'| < m,
conclui-se que o niimero de verificagdes é limitado por O(m?).

Para cada par (S;,S;), verifica-se se S;NS; =0. Se
representarmos cada conjunto como uma lista de elementos,
o teste de intersec@o pode ser feito verificando elemento a
elemento, exigindo tempo proporcional ao tamanho total do
universo. Assim, cada teste leva tempo O(n).

Portanto, o tempo total gasto na verificacdo das disjungdes
é:

O(m?)-0(n) = O(m*n).

Neste termo, o fator quadrético m? provém da comparagio
de todos os pares possiveis de conjuntos, enquanto o fator
linear n surge do custo computacional de verificar a interse¢ao
de dois conjuntos especificos.

Somando todos os passos, obtemos um verificador com
custo maximo

0(m) + O(m*n) = O(m*n),

que € polinomial no tamanho da entrada. Assim, concluimos
que SP € A P.

Tome (2)

Para provar a NP-dificuldade, reduziremos o problema da
Clique ao Set Packing. O problema da Clique é escolhido
como origem pois a relagdo “dois vértices sdo conectados”
pode ser mapeada inversamente para “dois conjuntos sao
disjuntos” se construirmos o universo baseados nas arestas
que ndo existem. Assim temos a seguinte reducdo: CLIQUE
<, SP.

Seguiremos com a estratégia de constru¢do em que a
redugéo f(G,k) = (U,S,l) transforma uma instancia de
Clique em uma de Set Packing preservando a propriedade
isomorfica

Vértices adjacentes em G <=> Conjuntos disjuntos em S.

A construgdo define o inteiro / com o mesmo tamanho da
clique, ou seja, / = k. O universo U é composto pelas nao-
arestas de G, de modo que cada par de vértices que ndo estd
conectado em G vira um elemento em U':

U ={(vi,vj) | vi,v; €V,i# j,(vi,vj) ¢ E}

O propdsito desta construcao € que, se dois vértices nao t€ém
aresta, eles “compartilham” um conflito (o elemento em U),
impedindo que sejam escolhidos juntos. Para a colegdo S,
para cada vértice v; € V, criamos um conjunto S; que contém
todas as ndo-arestas incidentes a v;:

Si={(vi,v;) €U | j#i}

A Figura 5 ilustra um exemplo visual desta redugdo,
destacando como as ndo-arestas formam o universo de
conflito.
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Instancia CLIQUE
(Gk = 3)

Universo U

(Cona )

Instancia Set Packing
(Us.I=3)

Figura 5: A existéncia da clique C = {vi,v2,v4} (em azul) no
grafo implica a existéncia de uma subcolecdo de conjuntos disjuntos
S" = {81,5,,54} na instancia de Set Packing.

No exemplo ilustrado na Figura 5, é possivel observar
a redugdo f de CLIQUE para Set Packing observa-se que
os vértices v3 e vs ndo sdo adjacentes a todos os membros
da clique, o que gera um conjunto de ndo-arestas (como
(vi,v3), (v3,v4), (v2,vs5), (v4,vs5) € (vi,vs5)) que passam a
constituir o universo U. Pela regra de construcdo, onde cada
S; contém as ndo-arestas incidentes a v;, os conjuntos S3 e
S5 acabam compartilhando elementos com outros conjuntos,
o que representa conflitos. Em contrapartida, como vy,v; e
v4 estdo plenamente conectados entre si, ndo existem nao-
arestas entre eles no universo, garantindo que seus conjuntos
correspondentes S1,5> € S4 sejam mutuamente disjuntos,
satisfazendo a condicdo de validade do Set Packing.

Contudo, ndo basta apenas montar a construcao da reducio.
Também precisamos mostrar que (i) esta redug@o € polinomial
e (ii) preserva a simetria entre os problemas.

(i). Devemos provar que a transformag@o preserva a resposta
do problema original, ou seja, (G, k) tem Clique <—- (U, S, 1)
tem Set Packing.

(=) Se G tem clique de tamanho k, entdo (U,S) tem packing
de tamanho | = k.

Proof. Seja C a clique em G. Selecionamos os conjuntos
correspondentes §' = {S; | v; € C}. Temos [§'| = |C| =k =1.
Para quaisquer dois conjuntos distintos S;,S; € S, os vértices
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correspondentes v;, v; estdo na clique. Logo, a aresta (v;,v;)
existe em E. Como U contém apenas ndo-arestas, 0 par
(vi,vj) ¢ U. A tnica intersec@o possivel entre S; e S; seria o
elemento (v;,v;). Como (v;,v;) ¢ U, ele ndo pode estar nem
em S; nem em S;. Logo, $;NS; =0. Assim, S’ é um Set
Packing vélido. O

(<) Se (U,S) tem packing de tamanho | =k, entdo G tem
clique de tamanho k.

Proof. Seja S’ o packing. Selecionamos os vértices C =
{vi|S; € §}. Temos |C| = |§'| =1 = k. Suponha, por
contradi¢do, que C ndo seja uma clique. Entdo existem
dois vértices v;,v; € C tal que a aresta (v;,v;) ¢ E. Se a
aresta ndo existe, entdo o par (v;,v j) € uma ndo-aresta, logo
(vi,vj) € U. Pela construgdo, S; contém todas as nao-arestas
de v; (incluindo (v;,v;)) e S; contém todas as de v; (incluindo
(vi,vj)). Portanto, (v;,v;) € S;NS}, o que implica S; N S; # 0.
Isso contradiz a hipétese de que S’ é um packing (conjuntos
disjuntos). Logo, a aresta deve existir para todos os pares, e C
€ uma clique. O

(ii). A construcdo do universo U exige iterar sobre todos os
pares de vértices, uma operagdo limitada por (5) = O(n?). A
construcdo da colegdo S exige criar n conjuntos, onde para
cada um verificamos n — 1 pares, totalizando também O(n?).
Portanto, conclui-se que a funcdo de redugdo f é executada
em tempo polinomial: O(n?).

Assim por (1) e (2), provamos o Lema 1 ao demonstrarmos
que o Set Packing ¢ NP-Completo, validando sua pertinéncia
a AP e em seguinda apresentando uma redugdo polinomial a
partir do CLIQUE. Esta prova ilustra o uso de “conflitos”
(neste caso, ndo-arestas) como elementos basicos de
construcao para forgar restricdes de exclusdo mutua. O

VI. RESULTADOS E REFLEXOES

A elaborag@o deste trabalho resultou na produg¢do de um
material diddtico autossuficiente para o estudo da NP-
Completude do problema Set Packing (SP). Diferentemente de
abordagens tradicionais que frequentemente omitem passos
intermedidrios das reducdes polinomiais, os resultados aqui
apresentados focam na explicitacdo da légica construtiva.
A principal contribui¢do pedagdgica deste estudo é a
sistematizacdo visual e analdgica da reducdo CLIQUE <, SP.
Na literatura classica, a definicdo do universo U como o
conjunto de “ndo-arestas” € frequentemente apresentada de
forma puramente algébrica, o que dificulta a visualizacdo
geométrica por parte do estudante. Para mitigar essa barreira,
desenvolvemos a analogia do “Organizador de Festas”, uma
narrativa lddica que provou-se eficaz para traduzir a restricdo
abstrata de “interse¢do vazia” para uma restri¢do concreta
de “conflito de assentos”, facilitando a intuicao inicial sobre
o problema. Adicionalmente, a diagramacao da redugdo
apresentada nas Figuras 5 e 4 permite ao aluno rastrear
visualmente como um vértice no grafo se transforma em um
conjunto, e como a auséncia de uma aresta se materializa em
um elemento compartilhado no universo U.

Durante a estruturacdo da prova de NP-Dificuldade,
identificamos que a maior dificuldade cognitiva reside na
“inversdo logica” exigida pela reducgdo a partir do problema
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da Clique. Enquanto reducdes a partir do Independent Set
(IS) mapeiam arestas diretamente para elementos do universo
(conflito direto), a redugdo a partir da Clique exige o uso do
grafo complementar (ou ndo-arestas). Essa distin¢do ¢ sutil
e é uma fonte comum de erro. Para superar esse obstaculo,
adotamos a estratégia de definir explicitamente o universo
U como um conjunto de “conflitos potenciais”, reforcando
que, para que um packing (pacote de vértices) seja valido, os
elementos ndo podem ter conflitos (ndo-arestas) entre si — o
que forga a existéncia das arestas no grafo original.

Em termos de aplicabilidade académica, este artigo foi
estruturado para servir como material complementar na
disciplina de Teoria da Computacdo. A Secdo 4 (Descri¢do
do Problema) pode ser utilizada como texto introdutdrio para
aulas sobre problemas de empacotamento, enquanto a Se¢ao
5 (Demonstragdo) serve como guia para listas de exercicios
avancados que exigem a formalizacdo de redugdes.

Por fim, embora o foco deste trabalho seja a intrata-
bilidade (NP-Completude), é importante refletir sobre o
comportamento priatico. Em cendrios reais, como os
leildes combinatérios mencionados, ndo se busca a prova de
inexisténcia de solu¢do, mas sim a melhor solug@o possivel em
tempo habil. Experimentos simples com algoritmos gulosos
(selecionar o menor conjunto disponivel iterativamente)
demonstram que, embora ndo garantam a soluc¢do 6tima (o k
maximo), oferecem aproximacdes rapidas. Esta constatacio
reforca a importincia pedagégica de distinguir entre a
dificuldade do pior caso (foco da teoria N P) e a solubilidade
prdtica via heuristicas.

VII. CONSIDERACOES FINAIS

Este trabalho cumpriu seu objetivo principal de provar a
NP-Completude do problema Set Packing (SP), oferecendo
uma abordagem pedagdgica que preenche a lacuna entre a
defini¢do formal e a intuicdo geométrica. Através da reducio
polinomial a partir do problema da Clique (CLIQUE <, SP),
demonstramos que a dificuldade computacional de encontrar
grupos mutuamente exclusivos em uma colecio € equivalente
a encontrar subgrafos completos. O principal resultado obtido
nao foi apenas a reafirmagdo da complexidade do problema,
mas a sistematizacdo de um método de ensino que utiliza
analogias lidicas (o “Organizador de Festas”) e diagramas
visuais passo a passo para facilitar a assimilagdo de conceitos
abstratos por estudantes de graduacdo.

E importante ressaltar, contudo, que o escopo deste artigo
limitou-se a andlise da complexidade de pior caso e a versao
de decisdo do problema. Entre as limitagdes, destaca-se a
auséncia de implementacédo de solucionadores exatos (como
branch-and-bound) ou heuristicos para resolver instancias
do problema, visto que a implementagdo restringiu-se ao
algoritmo verificador polinomial para validagdo da classe
AP, e ndo para avaliagdo de desempenho em benchmarks.
Além disso, optou-se pelo foco em uma redugio tnica via
Clique para garantir a profundidade e a clareza didética, em
detrimento da abrangéncia de outras redugdes possiveis, como
a partir do Exact Cover ou 3-SAT.

A base tedrica estabelecida neste artigo abre diversas
frentes para investigagdo académica e desenvolvimento
didatico em trabalhos futuros. Uma extensao natural seria o
estudo comparativo de algoritmos gulosos e meta-heuristicas
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(como Algoritmos Genéticos ou Simulated Annealing) para
a versdo de otimizac¢do do Set Packing, analisando o gap de
aproximacdo dessas solugdes. Outra perspectiva relevante
¢ a andlise em classes de grafos especiais, visto que o Set
Packing torna-se solivel em tempo polinomial quando o
universo e os conjuntos podem ser modelados como grafos
de intervalo ou grafos de corda. Adicionalmente, sugere-
se investigar a complexidade parametrizada (FPT) para
verificar a tratabilidade do problema para valores pequenos
de k. Por fim, propde-se a extensdo pedagdgica através do
desenvolvimento de uma ferramenta de software interativa
que permita aos alunos desenharem grafos e visualizarem,
em tempo real, a transformagdo dos vértices e arestas nos
conjuntos do Set Packing. Conclui-se que o Set Packing,
apesar de sua complexidade inerente, é um excelente veiculo
para o ensino da Teoria da Computacdo, servindo como porta
de entrada para discussdes mais amplas sobre otimizagao
combinatdria e limites da computabilidade.
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