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Resumo—Este trabalho propõe uma abordagem metodológica e didática para a reprodução e elucidação dos conceitos de NP-Completude e
da intratabilidade inerente a problemas computacionais, especialmente os combinatórios, utilizando o Set Packing Problem (SP) como estudo
de caso. A metodologia consiste na exposição detalhada do problema, seguida pela reprodução da demonstração formal do pertencimento
do SP à classe NP-Completa, incluindo a construção e análise de seu verificador polinomial e a apresentação passo a passo da técnica de
redução polinomial de CLIQUE para SP. O principal resultado e a contribuição deste artigo é o desenvolvimento de um material pedagógico
que visa aprimorar a compreensão integral dos conceitos da Teoria da Computação, auxiliando o público leigo a assimilar de forma eficaz o
significado da complexidade computacional.

Palavras-chave—Teoria da Computação, Complexidade Computacional, NP-Completude, Empacotamento de Conjuntos, Redução
Polinomial

Abstract—This work proposes a methodological and didactic approach for the reproduction and elucidation of the concepts of NP-
Completeness and the inherent intractability of combinatorial problems, using the Set Packing Problem (SP) as a case study. The
methodology consists of a detailed exposition of the problem, followed by the reproduction of the formal demonstration of SP’s membership in
the NP-Complete class, including the construction and analysis of its polynomial verifier and the step-by-step presentation of the polynomial
reduction technique from CLIQUE to SP. The main result and contribution of this article is the development of pedagogical material that
aims to enhance the integral understanding of Theory of Computation concepts, assisting the public in effectively assimilating the meaning
of computational complexity.
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I. INTRODUÇÃO

T eoria da Computação (TC) é a base teórica para a
Ciência da Computação e Engenharia da Computação,

fornecendo as ferramentas conceituais necessárias para
compreender o que pode ser computado e, crucialmente,
com qual eficiência. Foi no início da década de 1970 que
a disciplina ganhou uma nova dimensão com o surgimento
da Teoria da Complexidade Computacional, impulsionada
pelo trabalho de Stephen Cook (1971) [1] e, notavelmente,
por Richard Karp (1972) [2]. Este campo de estudo buscou
categorizar problemas com base nos recursos (tempo e
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espaço) requeridos por seus melhores algoritmos de solução,
culminando na definição das classes P (Polynomial Time) e
N P (Nondeterministic Polynomial Time) e na formulação do
problema P versus N P , definido como um dos Millennium
Prize Problems pelo Clay Mathematics Institute [3].

Neste contexto, a complexidade representa o que de fato
significa a intratabilidade de problemas, ou seja, a prova de
que certas questões computacionais não podem ser resolvidas
de forma eficiente (em tempo polinomial) por qualquer
algoritmo determinístico conhecido, a menos que P =N P .
A compreensão da NP-Completude é, portanto, essencial
para que o futuro profissional saiba quando buscar soluções
exatas ou métodos alternativos como algoritmos aproximados
e heurísticos.

Considere por exemplo um conjunto universo U e uma
coleção de subconjuntos S. O objetivo é verificar se existe
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uma subcoleção dentro de S contendo pelo menos k
subconjuntos que sejam mutuamente disjuntos, isto é, que não
compartilhem nenhum elemento comum entre si (a interseção
entre qualquer subconjunto escolhido é vazia). Este é o
Problema do Set Packing (Empacoteamnto de Conjuntos),
um dos 21 problemas NP-Completos de Karp [2] e o qual será
utilizado como estudo de caso neste artigo.

A complexidade inerente à Teoria da Computação,
especificamente no que tange às reduções polinomiais e
à classe NP-Completa, representa um desafio pedagógico
constante, apesar da relevância teórica de problemas como o
Set Packing. Com o objetivo de mitigar essas dificuldades,
este trabalho propõe uma construção pedagógica da prova de
NP-Completude do Set Packing. A estrutura do artigo segue
uma lógica sequencial: a Seção 2 fornece o embasamento
teórico e as definições fundamentais. A Seção 3 examina a
literatura pertinente e trabalhos correlatos. As Seções 4 e 5
constituem o cerne do trabalho, apresentando a descrição e a
demonstração formal do problema, assim como a estratégia
de redução. As contribuições e reflexões sobre o aprendizado
são debatidas na Seção 6, seguidas pelas conclusões na Seção
7.

II. PRELIMINARES

Esta seção apresenta os conceitos e ferramentas de análise
pertinentes que serão utilizados ao longo de todo este trabalho.

Um conjunto é definido como uma coleção não ordenada
de elementos distintos. A partir deste conceito, estabelece-se
a relação de subconjunto: diz-se que um conjunto B é um
subconjunto de um conjunto A (denotado por B⊆ A) se todos
os elementos presentes em B são também elementos de A.
Por exemplo, dado o conjunto A = {1,2,3}, podemos definir
um subconjunto B = {1,2}. Como ambos os elementos de B
estão em A, temos que B⊆ A.

Um grafo G é definido formalmente como um par ordenado
G = (V,E), composto por um conjunto finito e não vazio
de vértices V e um conjunto de arestas E. Neste contexto,
os vértices constituem os elementos de V e representam
as entidades ou objetos que estão sendo modelados. Já as
arestas são definidas como pares não ordenados (u,v) de
vértices distintos de V , representando as conexões ou relações
estabelecidas entre esses vértices.

Considere o grafo presente na Figura 1 como exemplo, onde
o conjunto de vértices é V = {v1,v2,v3,v4,v5} e o conjunto
de arestas é E = {(v1,v2),(v2,v3),(v1,v3),(v4,v5),(v3,v5)}.
Neste caso, o vértice v1 está conectado ao vértice v2 pela
aresta (v1,v2).

Uma clique em um grafo é um subconjunto de vértices C⊆
V tal que todo par de vértices distintos em C está conectado
por uma aresta em E. A Figura 1 mostra um exemplo visual
de uma clique de tamanho 3 em um grafo.

Na Teoria da computação, um problema de decisão é uma
questão que tem uma resposta simples de “sim” ou “não”. É
como fazer uma pergunta que pode ser respondida com um
"verdadeiro" ou "falso".

Utilizando o grafo da Figura 1 e k = 3, a pergunta “Existe
uma clique de tamanho 3 neste grafo?” é um problema de
decisão cuja resposta é “Sim”.

A complexidade computacional é o estudo de quão
eficientemente um algoritmo (uma receita para resolver um

Figura 1: Exemplo de uma clique de tamanho 3. Clique
C = {v1,v2,v3}.

problema) pode resolver um problema em termos de tempo e
recursos (como memória). Medimos o “tempo” pelo número
de passos que o algoritmo leva para rodar, especialmente à
medida que o tamanho da entrada aumenta.

Para ordenar uma lista de n números, um algoritmo simples
pode levar n2 passos (como o Bubble Sort), enquanto um mais
eficiente leva n logn passos (como o Merge Sort).

Um problema é classificado como pertencente ao Tempo
Polinomial P quando existe um algoritmo capaz de encontrar
sua resposta (do tipo sim ou não, para problemas de decisão)
em um número de passos que cresce, no máximo, como um
polinômio do tamanho da entrada. Por essa razão, problemas
em P são geralmente categorizados na literatura como “fáceis”
ou “eficientemente solúveis”.

A Classe N P (Non-deterministic Polynomial time) agrupa
problemas de decisão para os quais, dada uma “solução
candidata” (denominada certificado), é possível verificar sua
correção em tempo polinomial. Esta definição não implica
necessariamente que a solução possa ser encontrada de forma
eficiente, mas sim que podemos confirmar rapidamente a
validade de uma proposta apresentada. Vale ressaltar, por
fim, que todo problema pertencente à classe P está também
contido em N P .

Por exemplo, no jogo Sudoku, encontrar a solução para
um tabuleiro vazio pode ser demorado, mas dada uma grade
preenchida (o certificado), verificar se ela segue as regras (não
repetir números nas linhas, colunas e quadrantes) é muito
rápido (polinomial).

A Redução Polinomial (A≤p B) é uma ferramenta formal
utilizada para demonstrar que um problema é “pelo menos tão
difícil” quanto outro. O processo consiste na capacidade de
transformar eficientemente (em tempo polinomial) qualquer
instância de um problema A em uma instância de um problema
B, preservando a equivalência das respostas: a instância de A
é positiva se, e somente se, a instância correspondente de B
também o for.

Como exemplo, suponha que o Problema A seja “encontrar
a saída de um labirinto físico de sebes”. Se soubermos
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Figura 2: Entrada: o grafo G e k = 4. A resposta é "Sim", pois
{v1,v2,v3,v4} é uma clique.

transformar (reduzir) este labirinto em um desenho de Grafo
(Problema B), onde cada cruzamento é um vértice e cada
corredor é uma aresta, podemos usar um algoritmo de
computador conhecido para resolver B. Assim, resolver o
grafo resolve o labirinto.

O problema da Clique é um problema de decisão NP-
Completo.

CLIQUE

Entrada: Um grafo G = (V,E) e um inteiro k ≥ 1.
Questão: Existe um subconjunto de vértices V ′ ⊆V tal que
|V ′| ≥ k e, para todo par de vértices distintos em V ′, existe
uma aresta em E que os conecta?

Considere como exemplo a Figura 2.
O problema do Conjunto Independente também

é um problema de decisão NP-Completo.

INDEPENDENT SET

Entrada: Um grafo G = (V,E) e um inteiro k ≥ 1.
Questão: Existe um subconjunto de vértices V ′ ⊆V tal que
|V ′| ≥ k e não há arestas em E conectando quaisquer dois
vértices em V ′?

Considere como exemplo de Independent Set a Figura 3.
O problema do Empacotamento de Conjuntos

é central para este trabalho e pertence
à classe dos problemas NP-Completos.

SET PACKING

Entrada: Uma coleção C = {S1,S2, . . . ,Sm} de subconjuntos
de um conjunto universal U , e um inteiro k ≥ 1.
Questão: Existe uma subcoleção C′ ⊆ C tal que |C′| ≥ k e
todos os conjuntos em C′ são mutuamente disjuntos (ou seja,
para quaisquer dois conjuntos Si,S j ∈C′ com i 6= j, tem-se
Si∩S j = /0)?

Figura 3: Entrada: Grafo G e k = 2. A resposta é "Sim", pois o
subconjunto {v1,v6} tem tamanho 2 e não existe a aresta (v1,v6)

em E(G).

Exemplo: Entrada: U = {1,2,3,4}, C =
{{1,2},{2,3},{3,4}} e k = 2. A resposta é "Sim",
pois a subcoleção C′ = {{1,2},{3,4}} tem tamanho 2 e os
conjuntos são disjuntos.

III. TRABALHOS RELACIONADOS

A literatura sobre o problema do Set Packing (SP) é extensa,
abrangendo desde as provas fundamentais de complexidade
até aplicações modernas em teoria dos jogos e otimização.
Nesta seção, destacamos trabalhos que fundamentam a teoria,
exploram limites de tratabilidade e dialogam com a proposta
pedagógica deste artigo.

A referência primária para a classificação do Set Packing
é o trabalho clássico de Karp [2], onde demonstrou em suas
pesquisas a redutibilidade entre 21 problemas combinatórios,
estabelecendo o Set Packing como NP-Completo através de
uma cadeia de reduções originada na Satisfiabilidade (SAT).
Este trabalho define a posição do problema na hierarquia de
complexidade. Complementarmente, Garey e Johnson [4]
sistematizaram a metodologia de provas de NP-Completude.
O presente artigo adota a estrutura formal de construção e
verificação polinomial proposta por eles, adaptando seu rigor
técnico a uma abordagem pedagógica.

Avançando para estratégias de resolução exata e mode-
lagem, no trabalho de Delorme, Gandibleux e Rodriguez
(2004) [5], podemos notar que eles trabalham com uma
nova abordagem de modelagem para a resolução exata. Na
pesquisa, os autores abordam o problema de Set Packing
propondo uma transformação para o problema de clique
máxima e obtêm uma redução significativa na complexidade
do espaço de busca. Os resultados são interessantes por
demonstrarem como a reformulação do modelo matemático e
o uso de limitantes superiores podem acelerar a resolução de
instâncias difíceis.

Expandindo o escopo para generalizações com aplicações
práticas, no trabalho de Muritiba et al. (2010) [6], podemos
notar que eles trabalham com o problema de empacotamento
de bins com conflitos (BPPC). Na pesquisa, os autores
abordam o problema propondo novos limites inferiores
baseados na computação de cliques maximais, novos

ISSN: 2675-3588 15



SET PACKING: PEDAGOGICAL CONTRIBUTIONS FONSECA et al.

limites superiores através de uma abordagem meta-heurística
envolvendo busca tabu e um operador de cruzamento, e um
algoritmo exato baseado em uma formulação de cobertura de
conjuntos, resolvido por meio de geração de colunas e branch-
and-price. Os resultados são interessantes por demonstrar a
eficácia dos algoritmos propostos em um vasto conjunto de
instâncias de referência da literatura, resolvendo 780 de 800
instâncias para a otimalidade e melhorando consistentemente
algoritmos anteriores.

Investigando a tratabilidade sob condições específicas, no
trabalho de Jia, Zhang e Chen (2004) [7], podemos notar
que eles trabalham com a complexidade parametrizada do
problema de empacotamento de conjuntos. Na pesquisa,
os autores abordam o problema de m-Set Packing (onde
o tamanho de cada conjunto é limitado por uma constante
m) propondo um algoritmo eficiente de complexidade
parametrizada e obtêm a prova de que o problema é tratável
por parâmetro fixo (FPT) em relação ao tamanho da solução
k. Os resultados são interessantes por demonstrarem que,
ao restringir o tamanho dos conjuntos, é possível superar a
intratabilidade geral e encontrar soluções exatas de forma
eficiente para valores pequenos de k.

Sob a ótica de soluções aproximadas para o caso geral, no
trabalho de Fürer e Yu (2014) [8], podemos notar que eles
trabalham com a análise teórica de algoritmos de aproximação.
Na pesquisa, os autores abordam o problema de k-Set
Packing investigando o poder das melhorias locais (local
improvements) e obtêm limites de aproximação refinados para
o problema. Os resultados são interessantes por aprofundarem
o entendimento sobre as limitações e capacidades da busca
local, fornecendo garantias mais justas para a qualidade das
soluções encontradas por essa classe de algoritmos.

Retornando às inovações em modelagem matemática,
no trabalho de Alidaee et al. (2008) [9], podemos notar
que eles trabalham com uma nova abordagem baseada em
Programação Quadrática Binária Irrestrita (UBQP/QUBO).
Na pesquisa, os autores abordam o problema de Set Packing
transformando as restrições de disjunção em penalidades na
função objetivo quadrática e obtêm soluções de alta qualidade
que rivalizam com métodos especializados em termos de
tempo e eficiência. Os resultados são interessantes por
demonstrarem que uma estrutura unificada e sem restrições
pode simplificar a resolução de problemas combinatórios
complexos, permitindo o uso de heurísticas genéricas
robustas.

Por fim, o trabalho de Lassance e Bianchini [10] investigou
o impacto de estratégias didáticas no ensino de Teoria da
Computação. O estudo conclui que abordagens descritivas
e a participação ativa dos discentes (via seminários) são
eficazes para diluir a complexidade das reduções polinomiais.
Seguindo esta diretriz pedagógica, nosso trabalho adota uma
estratégia de decomposição visual e prova passo a passo,
visando contribuir com o entendimento de conceitos abstratos
de intratabilidade computacional pelo público em geral.

IV. DESCRIÇÃO DO PROBLEMA

O problema do Set Packing (Empacotamento de Conjuntos),
doravante denominado SP, é um problema fundamental
na otimização combinatória e na teoria da complexidade
computacional. Formalmente, dado um universo finito U

e uma família de subconjuntos S = {S1,S2, . . . ,Sm}, onde
Si ⊆U , um packing é uma subcoleção S′ ⊆ S tal que todos os
conjuntos em S′ são mutuamente disjuntos, ou seja, Si∩S j = /0

para quaisquer Si,S j ∈ S′ distintos [4].
O problema pode ser abordado sob duas perspectivas. Na

versão de otimização, o objetivo é encontrar a subcoleção S′

de cardinalidade máxima. Na versão de decisão — a qual
utilizamos para a prova de NP-completude — a entrada inclui
um inteiro k, e a pergunta é se existe um packing de tamanho
pelo menos k (|S′| ≥ k) [2]. Uma generalização comum é o
Weighted Set Packing, onde cada conjunto Si possui um peso
wi, e o objetivo é maximizar a soma dos pesos dos conjuntos
disjuntos selecionados.

A relevância do SP decorre de sua capacidade de modelar
situações de alocação de recursos onde o compartilhamento
é impossível (restrição de exclusividade). A aplicação
mais notável ocorre em Leilões Combinatórios [11]. Neste
cenário, um leiloeiro tem um conjunto de itens distintos
(U) e os licitantes oferecem lances por "pacotes" de itens
(Si). Como cada item só pode ser vendido uma vez, o
leiloeiro deve selecionar um conjunto de lances vencedores
que não disputem o mesmo item, maximizando o lucro total.
Outras aplicações críticas incluem o Airline Crew Scheduling
(escalonamento de tripulações), onde cada voo deve ser
coberto por uma única equipe e as equipes (conjuntos de
voos) não podem estar em dois lugares ao mesmo tempo [12].

Para fins pedagógicos, o SP pode ser visualizado como
o dilema de um organizador de festas que possui uma lista
de grupos de amigos que desejam comparecer ao evento,
Figura 4. O universo U representa as cadeiras disponíveis na
mesa principal. Cada grupo (Si) exige sentar-se em cadeiras
específicas e recusa-se a compartilhar seus assentos com
estranhos. Se um grupo deseja a cadeira 3 e outro também
deseja a cadeira 3, eles são incompatíveis. O desafio do
organizador é aceitar o maior número possível de grupos sem
gerar conflitos de assentos.

Embora o SP seja NP-difícil no caso geral, existem
subclasses importantes que admitem algoritmos eficientes:

• Cardinalidade Limitada (|Si| ≤ 2): Se todos os
conjuntos na família S tiverem no máximo 2 elementos,
o problema torna-se equivalente ao Maximum Matching
(Emparelhamento Máximo) em grafos. Neste caso, os
elementos de U são vértices e os conjuntos Si são arestas.
O problema pode ser resolvido em tempo polinomial
O(E
√

V ) pelo algoritmo de Edmonds [13].

• Grafos de Intervalo: Se os elementos de U puderem ser
ordenados linearmente tal que cada Si forme um intervalo
contíguo, o problema equivale ao Interval Scheduling,
que pode ser resolvido com uma estratégia gulosa em
O(n logn) [14].

Para o caso geral, algoritmos exatos baseados em
programação dinâmica ou inclusão-exclusão atingem com-
plexidades da ordem de O∗(2n), o que é impraticável para
instâncias grandes [15]. Essa intratabilidade computacional,
contrastando com a eficiência das subclasses restritas
apresentadas, sugere que o Set Packing pertence à classe
dos problemas mais difíceis da computação. A seção a
seguir formaliza essa intuição, provando a NP-Completude
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Figura 4: Representação visual de uma instância de Set Packing. O
universo U = {1, ..,10}. Os grupos 1, 3 e 4 formam um packing

válido (azul). O grupo 2 cria conflito com os grupos 1 e 4.

do problema através de uma redução polinomial a partir do
problema da Clique.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

A seguir, estabelecemos o lema principal deste artigo.

Lema 1. Set Packing é NP-Completo.

Proof. Seguindo o esquema clássico, dividimos a prova em
duas etapas identificadas: (1) provar que SP ∈ N P (NP-
pertinência) e (2) provar que SP é NP-difícil por meio de
uma redução polinomial apropriada.

Tome (1)

Para mostrar que SP ∈ N P , basta exibir um verificador
polinomial que, dada uma solução candidata S′, determine
se ela constitui um subconjunto de l conjuntos mutuamente
disjuntos.

A instância do problema consiste em um universo U
com n = |U | elementos e uma coleção de m conjuntos
S = {S1, . . . ,Sm}. O certificado é uma subcoleção S′ ⊆ S
supostamente de tamanho l.

O verificador executa duas tarefas: (i) verificar se |S′|= l e
(ii) verificar a disjunção par a par entre os conjuntos de S′.

Temos que o primeiro passo é executado em O(|S′|), que é
limitado por O(m), pois |S′| ≤ m.

Para o segundo passo, o algoritmo percorre cada par
distinto de conjuntos em S′. O número de pares é dado pela
combinação de |S′| elementos tomados 2 a 2:(

|S′|
2

)
=

|S′|!
2!(|S′|−2)!

=
|S′|(|S′|−1)

2
=
|S′|2−|S′|

2
.

Como o termo dominante é quadrático e sabemos que |S′| ≤m,
conclui-se que o número de verificações é limitado por O(m2).

Para cada par (Si,S j), verifica-se se Si ∩ S j = /0. Se
representarmos cada conjunto como uma lista de elementos,
o teste de interseção pode ser feito verificando elemento a
elemento, exigindo tempo proporcional ao tamanho total do
universo. Assim, cada teste leva tempo O(n).

Portanto, o tempo total gasto na verificação das disjunções
é:

O(m2) ·O(n) = O(m2n).

Neste termo, o fator quadrático m2 provém da comparação
de todos os pares possíveis de conjuntos, enquanto o fator
linear n surge do custo computacional de verificar a interseção
de dois conjuntos específicos.

Somando todos os passos, obtemos um verificador com
custo máximo

O(m)+O(m2n) = O(m2n),

que é polinomial no tamanho da entrada. Assim, concluímos
que SP ∈N P .

Tome (2)

Para provar a NP-dificuldade, reduziremos o problema da
Clique ao Set Packing. O problema da Clique é escolhido
como origem pois a relação “dois vértices são conectados”
pode ser mapeada inversamente para “dois conjuntos são
disjuntos” se construirmos o universo baseados nas arestas
que não existem. Assim temos a seguinte redução: CLIQUE
≤p SP.

Seguiremos com a estratégia de construção em que a
redução f (G,k) = (U,S, l) transforma uma instância de
Clique em uma de Set Packing preservando a propriedade
isomórfica

Vértices adjacentes em G ⇐⇒ Conjuntos disjuntos em S.

A construção define o inteiro l com o mesmo tamanho da
clique, ou seja, l = k. O universo U é composto pelas não-
arestas de G, de modo que cada par de vértices que não está
conectado em G vira um elemento em U :

U = {(vi,v j) | vi,v j ∈V, i 6= j,(vi,v j) /∈ E}

O propósito desta construção é que, se dois vértices não têm
aresta, eles “compartilham” um conflito (o elemento em U),
impedindo que sejam escolhidos juntos. Para a coleção S,
para cada vértice vi ∈V , criamos um conjunto Si que contém
todas as não-arestas incidentes a vi:

Si = {(vi,v j) ∈U | j 6= i}

A Figura 5 ilustra um exemplo visual desta redução,
destacando como as não-arestas formam o universo de
conflito.
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Figura 5: A existência da clique C = {v1,v2,v4} (em azul) no
grafo implica a existência de uma subcoleção de conjuntos disjuntos
S′ = {S1,S2,S4} na instância de Set Packing.

No exemplo ilustrado na Figura 5, é possível observar
a redução f de CLIQUE para Set Packing observa-se que
os vértices v3 e v5 não são adjacentes a todos os membros
da clique, o que gera um conjunto de não-arestas (como
(v1,v3), (v3,v4), (v2,v5), (v4,v5) e (v1,v5)) que passam a
constituir o universo U . Pela regra de construção, onde cada
Si contém as não-arestas incidentes a vi, os conjuntos S3 e
S5 acabam compartilhando elementos com outros conjuntos,
o que representa conflitos. Em contrapartida, como v1,v2 e
v4 estão plenamente conectados entre si, não existem não-
arestas entre eles no universo, garantindo que seus conjuntos
correspondentes S1,S2 e S4 sejam mutuamente disjuntos,
satisfazendo a condição de validade do Set Packing.

Contudo, não basta apenas montar a construção da redução.
Também precisamos mostrar que (i) esta redução é polinomial
e (ii) preserva a simetria entre os problemas.

(i). Devemos provar que a transformação preserva a resposta
do problema original, ou seja, (G,k) tem Clique ⇐⇒ (U,S, l)
tem Set Packing.
(⇒) Se G tem clique de tamanho k, então (U,S) tem packing
de tamanho l = k.

Proof. Seja C a clique em G. Selecionamos os conjuntos
correspondentes S′ = {Si | vi ∈C}. Temos |S′|= |C|= k = l.
Para quaisquer dois conjuntos distintos Si,S j ∈ S′, os vértices

correspondentes vi,v j estão na clique. Logo, a aresta (vi,v j)
existe em E. Como U contém apenas não-arestas, o par
(vi,v j) /∈U . A única interseção possível entre Si e S j seria o
elemento (vi,v j). Como (vi,v j) /∈U , ele não pode estar nem
em Si nem em S j. Logo, Si ∩ S j = /0. Assim, S′ é um Set
Packing válido.

(⇐) Se (U,S) tem packing de tamanho l = k, então G tem
clique de tamanho k.

Proof. Seja S′ o packing. Selecionamos os vértices C =
{vi | Si ∈ S′}. Temos |C| = |S′| = l = k. Suponha, por
contradição, que C não seja uma clique. Então existem
dois vértices vi,v j ∈ C tal que a aresta (vi,v j) /∈ E. Se a
aresta não existe, então o par (vi,v j) é uma não-aresta, logo
(vi,v j) ∈U . Pela construção, Si contém todas as não-arestas
de vi (incluindo (vi,v j)) e S j contém todas as de v j (incluindo
(vi,v j)). Portanto, (vi,v j) ∈ Si∩S j, o que implica Si∩S j 6= /0.
Isso contradiz a hipótese de que S′ é um packing (conjuntos
disjuntos). Logo, a aresta deve existir para todos os pares, e C
é uma clique.

(ii). A construção do universo U exige iterar sobre todos os
pares de vértices, uma operação limitada por

(n
2

)
= O(n2). A

construção da coleção S exige criar n conjuntos, onde para
cada um verificamos n−1 pares, totalizando também O(n2).
Portanto, conclui-se que a função de redução f é executada
em tempo polinomial: O(n2).

Assim por (1) e (2), provamos o Lema 1 ao demonstrarmos
que o Set Packing é NP-Completo, validando sua pertinência
a N P e em seguinda apresentando uma redução polinomial a
partir do CLIQUE. Esta prova ilustra o uso de “conflitos”
(neste caso, não-arestas) como elementos básicos de
construção para forçar restrições de exclusão mútua.

VI. RESULTADOS E REFLEXÕES

A elaboração deste trabalho resultou na produção de um
material didático autossuficiente para o estudo da NP-
Completude do problema Set Packing (SP). Diferentemente de
abordagens tradicionais que frequentemente omitem passos
intermediários das reduções polinomiais, os resultados aqui
apresentados focam na explicitação da lógica construtiva.
A principal contribuição pedagógica deste estudo é a
sistematização visual e analógica da redução CLIQUE ≤p SP.
Na literatura clássica, a definição do universo U como o
conjunto de “não-arestas” é frequentemente apresentada de
forma puramente algébrica, o que dificulta a visualização
geométrica por parte do estudante. Para mitigar essa barreira,
desenvolvemos a analogia do “Organizador de Festas”, uma
narrativa lúdica que provou-se eficaz para traduzir a restrição
abstrata de “interseção vazia” para uma restrição concreta
de “conflito de assentos”, facilitando a intuição inicial sobre
o problema. Adicionalmente, a diagramação da redução
apresentada nas Figuras 5 e 4 permite ao aluno rastrear
visualmente como um vértice no grafo se transforma em um
conjunto, e como a ausência de uma aresta se materializa em
um elemento compartilhado no universo U .

Durante a estruturação da prova de NP-Dificuldade,
identificamos que a maior dificuldade cognitiva reside na
“inversão lógica” exigida pela redução a partir do problema
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da Clique. Enquanto reduções a partir do Independent Set
(IS) mapeiam arestas diretamente para elementos do universo
(conflito direto), a redução a partir da Clique exige o uso do
grafo complementar (ou não-arestas). Essa distinção é sutil
e é uma fonte comum de erro. Para superar esse obstáculo,
adotamos a estratégia de definir explicitamente o universo
U como um conjunto de “conflitos potenciais”, reforçando
que, para que um packing (pacote de vértices) seja válido, os
elementos não podem ter conflitos (não-arestas) entre si — o
que força a existência das arestas no grafo original.

Em termos de aplicabilidade acadêmica, este artigo foi
estruturado para servir como material complementar na
disciplina de Teoria da Computação. A Seção 4 (Descrição
do Problema) pode ser utilizada como texto introdutório para
aulas sobre problemas de empacotamento, enquanto a Seção
5 (Demonstração) serve como guia para listas de exercícios
avançados que exigem a formalização de reduções.

Por fim, embora o foco deste trabalho seja a intrata-
bilidade (NP-Completude), é importante refletir sobre o
comportamento prático. Em cenários reais, como os
leilões combinatórios mencionados, não se busca a prova de
inexistência de solução, mas sim a melhor solução possível em
tempo hábil. Experimentos simples com algoritmos gulosos
(selecionar o menor conjunto disponível iterativamente)
demonstram que, embora não garantam a solução ótima (o k
máximo), oferecem aproximações rápidas. Esta constatação
reforça a importância pedagógica de distinguir entre a
dificuldade do pior caso (foco da teoria N P ) e a solubilidade
prática via heurísticas.

VII. CONSIDERAÇÕES FINAIS

Este trabalho cumpriu seu objetivo principal de provar a
NP-Completude do problema Set Packing (SP), oferecendo
uma abordagem pedagógica que preenche a lacuna entre a
definição formal e a intuição geométrica. Através da redução
polinomial a partir do problema da Clique (CLIQUE ≤p SP),
demonstramos que a dificuldade computacional de encontrar
grupos mutuamente exclusivos em uma coleção é equivalente
a encontrar subgrafos completos. O principal resultado obtido
não foi apenas a reafirmação da complexidade do problema,
mas a sistematização de um método de ensino que utiliza
analogias lúdicas (o “Organizador de Festas”) e diagramas
visuais passo a passo para facilitar a assimilação de conceitos
abstratos por estudantes de graduação.

É importante ressaltar, contudo, que o escopo deste artigo
limitou-se à análise da complexidade de pior caso e à versão
de decisão do problema. Entre as limitações, destaca-se a
ausência de implementação de solucionadores exatos (como
branch-and-bound) ou heurísticos para resolver instâncias
do problema, visto que a implementação restringiu-se ao
algoritmo verificador polinomial para validação da classe
N P , e não para avaliação de desempenho em benchmarks.
Além disso, optou-se pelo foco em uma redução única via
Clique para garantir a profundidade e a clareza didática, em
detrimento da abrangência de outras reduções possíveis, como
a partir do Exact Cover ou 3-SAT.

A base teórica estabelecida neste artigo abre diversas
frentes para investigação acadêmica e desenvolvimento
didático em trabalhos futuros. Uma extensão natural seria o
estudo comparativo de algoritmos gulosos e meta-heurísticas

(como Algoritmos Genéticos ou Simulated Annealing) para
a versão de otimização do Set Packing, analisando o gap de
aproximação dessas soluções. Outra perspectiva relevante
é a análise em classes de grafos especiais, visto que o Set
Packing torna-se solúvel em tempo polinomial quando o
universo e os conjuntos podem ser modelados como grafos
de intervalo ou grafos de corda. Adicionalmente, sugere-
se investigar a complexidade parametrizada (FPT) para
verificar a tratabilidade do problema para valores pequenos
de k. Por fim, propõe-se a extensão pedagógica através do
desenvolvimento de uma ferramenta de software interativa
que permita aos alunos desenharem grafos e visualizarem,
em tempo real, a transformação dos vértices e arestas nos
conjuntos do Set Packing. Conclui-se que o Set Packing,
apesar de sua complexidade inerente, é um excelente veículo
para o ensino da Teoria da Computação, servindo como porta
de entrada para discussões mais amplas sobre otimização
combinatória e limites da computabilidade.
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