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Resumo—Este artigo apresenta uma demonstragio formal e didatica da A_P-completude do problema Maximum 2-Satisfiability (Max-
2SAT) por meio de reducéo polinomial a partir do problema Clique. O Max-2SAT, variante de maximizacdo do problema SAT em que
cada cldusula contém no méaximo dois literais, questiona se existe uma valorag¢do booleana capaz de satisfazer pelo menos k cldusulas de
uma férmula em forma normal conjuntiva. Embora o problema 2-SAT seja resolvido em tempo polinomial, sua versdo de maximizagao
€ N P-completa. A demonstragdo utiliza uma constru¢do com varidvel auxiliar que mapeia estruturas de grafos em férmulas booleanas,
estabelecendo correspondéncia biunivoca entre cliques e valoracdes satisfatorias. Como contribui¢des pedagdgicas, o trabalho apresenta:
(i) prova formal detalhada de AP-pertinéncia e A P-dificuldade; (ii) construgdo explicita da redu¢do Clique <, Max-2SAT com figuras
ilustrativas; (iii) exemplo completo comentado passo a passo; (iv) pseudocédigo do verificador polinomial; e (v) discussdes sobre
armadilhas comuns e estratégias de compreensdo. O material produzido visa facilitar o aprendizado de reducdes polinomiais e fortalecer a
compreensdo sobre a fronteira entre tratabilidade e intratabilidade computacional.

Palavras-chave—Max-2SAT, A P-completude, Reducdo Polinomial, Clique, Teoria da Complexidade, Satisfatibilidade Booleana

Abstract—This paper presents a formal and pedagogical demonstration of the N P-completeness of the Maximum 2-Satisfiability (Max-
28AT) problem through polynomial reduction from the Clique problem. Max-2SAT, a maximization variant of the SAT problem where each
clause contains at most two literals, asks whether there exists a Boolean assignment capable of satisfying at least k clauses of a formula
in conjunctive normal form. Although the 2-SAT problem is solvable in polynomial time, its maximization version is N P-complete. The
demonstration employs a construction with an auxiliary variable that maps graph structures into Boolean formulas, establishing a bijective
correspondence between cliques and satisfying assignments. As pedagogical contributions, this work presents: (i) detailed formal proof of
N P-membership and N P-hardness; (ii) explicit construction of the Clique <, Max-2SAT reduction with illustrative figures; (iii) complete
step-by-step annotated example; (iv) pseudocode for the polynomial verifier; and (v) discussions about common pitfalls and comprehension
strategies. The material produced aims to facilitate the learning of polynomial reductions and strengthen understanding of the boundary
between tractability and computational intractability.

Keywords—Max-2SAT, NP-Completeness, Polynomial Reduction, Clique, Complexity Theory, Boolean Satisfiability

NP (Nondeterministic Polynomial Time) e, em especial,
os problemas A/ P-completos ocupam papel central, tanto

I. INTRODUCAO

Teoria da Computagdo estabelece os fundamentos
matemdticos para compreender os limites da compu-
tacdo, classificando problemas segundo sua complexidade
computacional. Entre as classes de complexidade, a classe
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do ponto de vista tedrico quanto pratico. Um problema é
AN P-completo se pertence a classe AP e todo problema
em AP pode ser reduzido a ele em tempo polinomial,
caracterizando-o como um dos mais representativos quanto
a dificuldade computacional.

O conceito de A P-completude foi introduzido por
Stephen Cook em 1971 [1], por meio do Teorema de
Cook-Levin, que estabeleceu o problema SAT (Satisfiability)
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como o primeiro problema A/P-completo. Desde entdo,
milhares de problemas foram classificados como AN P-
completos através de redugdes polinomiais, compondo uma
ampla rede de equivaléncias que fundamenta a nocdo
moderna de intratabilidade algoritmica.

Dentre os problemas derivados de SAT, o Maximum 2-
Satisfiability (Max-2SAT) ocupa posicdo de destaque. Trata-
se de uma variante de maximizacdo em que cada cldusula
contém no méaximo dois literais, e o objetivo é determinar
uma valoragdo que satisfaca o maior nimero possivel de
clausulas. Na versdo de decisdo, dada uma férmula
em forma normal conjuntiva e um inteiro k, pergunta-
se se existe uma atribuicdio que satisfaca pelo menos k
clausulas. Embora o problema 2-SAT seja resolvido em
tempo polinomial [2], sua versdo de maximizacdo (Max-
2SAT) é AN P-completa, conforme demonstrado por Garey,
Johnson e Stockmeyer [3].

O Max-2SAT possui aplicagdes praticas relevantes, como
otimizagdo de circuitos eletronicos, andlise de dependéncias
em sistemas de software, depuracdo de hardware, modela-
gem de redes bioldgicas e problemas de agendamento com
restricdes bindrias. Além disso, algoritmos de aproximagao
e heuristicas para Max-2SAT sdo estudados de forma ampla
na literatura, reforcando sua importancia tanto tedrica quanto
aplicada.

O objetivo deste artigo € apresentar, de maneira didética, a
demonstragdo da A P-completude do Max-2SAT utilizando
a redu¢do polinomial Clique <, Max-2SAT. Essa redugio
nio foi explorada em sala de aula e permite discutir a
relacdo entre problemas de grafos e problemas de logica
proposicional.

E importante ressaltar que a principal contribui¢io deste
manuscrito é de natureza pedagdgica, consistindo na
sistematizacdo detalhada e acessivel da demonstragdo da
A P-completude do Max-2SAT. Ndo sdo propostos novos
resultados tedricos ou algoritmicos; a redugdo Clique <,
Max-2SAT aqui apresentada é conhecida na literatura [4]. O
valor do trabalho reside na exposic¢do diddtica estruturada,
com exemplos comentados, figuras ilustrativas e discussdes
sobre armadilhas conceituais, voltada para estudantes e
docentes de disciplinas de Teoria da Computacao.

As principais contribui¢des deste trabalho incluem a
demonstragio formal da A P-pertinéncia e da AN P-
dificuldade do Max-2SAT, a construcdo explicita e detalhada
da redugdo polinomial Clique <, Max-2SAT, figuras
ilustrativas destacando como cada parte do grafo é traduzida
para cldusulas 2-SAT, um exemplo completo e comentado
exibindo todas as etapas da transformag@o, o pseudocddigo
do verificador polinomial para a versdo de decisdao do Max-
2SAT, e discussdes pedagdgicas sobre armadilhas comuns e
estratégias para compreender reducdes entre problemas de
grafos e formulas booleanas.

O restante deste artigo estd organizado da seguinte forma:
a Secdo 2 — Preliminares — apresenta as preliminares
necessarias, incluindo definicdes formais de classes de
complexidade, redugdes polinomiais e os problemas Clique
e Max-2SAT; a Secdo 3 — Trabalhos Relacionados — revisa
trabalhos relacionados; a Secdo 4 — Descrigdo do Problema
— descreve em detalhes o problema Max-2SAT; a Secdo 5
— Demonstracdo e Contribuicdes — apresenta a prova de
A P-completude por meio da redugio Clique <, Max-2SAT;
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Figura 1: Grafo G1

a Secdo 6 — Resultados e Reflexdes — discute resultados e
reflexdes.

II. PRELIMINARES

Sdo definidos a seguir os conceitos fundamentais que
embasam o restante deste trabalho, abrangendo classes de
complexidade, reducdes polinomiais, formulas em FNC e as
especificacdes formais dos problemas Clique e Max-2SAT,
que constituem, respectivamente, o problema Atacado e o
problema Alvo da redugdo apresentada na Secdo 5.

A seguir sdo apresentados os conceitos fundamentais de
teoria dos grafos, que serdo essenciais para compreender
a redug¢do Clique <, Max-2SAT. Um grafo € uma
estrutura matemdtica que modela relagdes entre objetos.
Formalmente, um grafo G ¢é definido por um par ordenado
G = (V(G),E(G)), onde V(G) representa um conjunto finito
e ndo vazio de vértices (também chamados de nés) e E(G)
representa um conjunto de arestas, sendo cada aresta um par
de vértices (u,v) com u,v € V(G) e u # v. Quando existe
uma aresta (u,v) € E(G), dizemos que os vértices u e v sdo
adjacentes ou vizinhos.

O grau de um vértice v € V(G), denotado por deg(v),
corresponde ao numero de arestas incidentes a ele, ou
equivalentemente, ao nimero de vizinhos que v possui no
grafo. Um subgrafo de G é um grafo G’ = (V(G'),E(G")) tal
que V(G') CV(G) e E(G') C E(G), onde todas as arestas de
E(G') conectam apenas vértices pertencentes a V (G').

Para ilustrar esses conceitos, considera-se o grafo G1 da
Figura 1 com quatro vértices V(G) = {v,v2,v3,v4} € quatro
arestas E(G) = {(vi,v2),(v1,v3), (v2,v3),(v2,v4)}. Neste
grafo, o vértice v, possui grau 3, pois estd conectado a trés
outros vértices (v, v3 € v4); 08 vértices vy e v3 possuem grau
2, cada um conectado a dois vizinhos; e o vértice v4 possui
grau 1, estando conectado apenas a v;.

Uma clique é um subconjunto de vértices C C V(G)
tal que todo par de vértices distintos em C € adjacente.
Formalmente, para quaisquer u,v € C com u # v, temos
(u,v) € E(G). O tamanho de uma clique é o nimero de
vértices que ela contém.

A Figura 2 ilustra o conceito de clique de forma detalhada.
Nessa figura, o grafo possui quatro vértices {vi,va,v3,va}
e as arestas {(vi,v2), (v1,v3), (v2,v3),(v2,va) }. O retangulo
tracejado destaca o subconjunto {v,vz,v3}, que forma uma
clique de tamanho 3. Para verificar que esse conjunto é de
fato uma clique, observa-se que existem arestas conectando
todos os pares possiveis dentro dele: a aresta (v, v,) conecta
vl a vy, a aresta (v1,v3) conecta v; a v3, e a aresta (vp,V3)
conecta vp a v3. Como cada par de vértices do conjunto estd
conectado por uma aresta, a condicao de clique € satisfeita.

O vértice v4, representado em cinza mais escuro na figura,
ndo faz parte dessa clique. Embora v4 esteja conectado a
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Clique de tamanho 3

Figura 2: Grafo com clique de tamanho 3 formada por {v;vs;v3}.

vo pela aresta (v2,v4), ele ndo possui arestas com v; nem
com v3. Portanto, se fosse incluido v4 no conjunto, os
pares (vi,v4) e (v3,v4) ndo seriam adjacentes, violando a
defini¢do de clique. Esse exemplo ilustra por que uma clique
exige conectividade total entre todos os seus membros, e ndo
apenas conexdes parciais.

A seguir sdo apresentados os conceitos de complexidade
computacional, um problema de decisdo ¢ um problema cuja
resposta € “sim” ou “ndo”.

Uma Maiquina de Turing é um modelo matemadtico de
computagdo que consiste em uma fita infinita dividida em
células, um cabecote de leitura/escrita que pode mover-se
sobre a fita, um conjunto finito de estados, e uma fungdo de
transicdo que determina o comportamento da maquina. A
cada passo, a maquina I& o simbolo da célula atual, escreve
um novo simbolo (ou mantém o anterior), move o cabegote
para a esquerda ou direita, e muda de estado. Uma Maquina
de Turing € deterministica quando, para cada combinacdo de
estado e simbolo lido, existe no maximo uma agdo possivel
definida pela fun¢do de transicdo. Uma Méquina de Turing
€ ndo deterministica quando podem existir multiplas acdes
possiveis para uma mesma configuracdo, permitindo que a
madquina "escolha'"entre diferentes caminhos de computacao.
Esse modelo, proposto por Alan Turing em 1936, captura
formalmente a nog¢do intuitiva de algoritmo e constitui a
base tedrica para a definicdo de classes de complexidade
computacional [5].

Um certificado para um problema de decisdo é uma
estrutura de dados que, quando fornecida junto com
uma instdncia do problema, permite verificar em tempo

[TFSR L)

polinomial se a resposta para aquela instancia é ‘“‘sim
Formalmente, um problema L pertence a classe AP se
existe um verificador polinomial V e uma constante ¢ tal
que, para toda instincia x: x € L <= 3 certificado y com
[y] < |x|€ tal que V(x,y) = “aceita”. O certificado funciona
como uma "prova'"de que a instincia tem resposta positiva.
Por exemplo, para o problema Clique, um certificado seria
um subconjunto especifico de vértices; para um problema
de satisfatibilidade booleana, seria uma valoragdo das
varidveis. A existéncia de certificados verificiveis em tempo
polinomial caracteriza a classe AP e distingue-a de outras
classes de complexidade.

A classe de complexidade P consiste no conjunto
de problemas decidiveis por uma Madéquina de Turing
deterministica em tempo polinomial [5]. Formalmente,

P = {L|L é decidivel por uma MT deterministica

em tempo polinomial }.
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Por sua vez, a classe AP é definida de forma anéloga,
substituindo a Méquina de Turing deterministica por uma
ndo deterministica:

NP = { L |L é decidivel por uma MT n#o deterministica

em tempo polinomial }.

De modo equivalente, AP redne os problemas cujas
solucdes podem ser verificadas em tempo polinomial
mediante um certificado apropriado.

Um problema L é A P-dificil quando todo problema em
AP se reduz a L em tempo polinomial, € € A P-completo
quando, além disso, pertence a prépria classe A P.

Redugdes polinomiais sdo o principal mecanismo para
comparar a dificuldade de problemas. Diz-se que um
problema de decisdao A reduz-se polinomialmente a outro
problema de decisdo B, denotado pela notagdo A <, B,
quando existe uma fungdo computavel em tempo polinomial
f tal que, para toda instincia x, temos x € A < f(x) €
B. O simbolo <, denota a relagio de reducdo em
tempo polinomial, indicando que o problema A ndo é mais
dificil que o problema B do ponto de vista computacional.
Nessa notacdo, A é denominado problema atacado, pois
¢ o problema cuja complexidade ja conhecemos, e B é
denominado problema alvo, para o qual desejamos provar
a complexidade. O uso dessas redugdes permite demonstrar
N P-dificuldade e, quando combinado com a pertinéncia a
AP, também N\ P-completude.

No contexto de redugdes polinomiais, um gadget é
uma construc¢do auxiliar padronizada que traduz elementos
estruturais do problema Alvo para o problema Atacado,
preservando as propriedades essenciais da instancia original.
A técnica de constru¢do por gadgets permite modularizar
a reducdo, facilitando tanto a verificacdo de corretude
quanto a andlise de complexidade. Por exemplo, na
reducdo Clique <, Max-2SAT apresentada neste trabalho,
as cldusulas de sele¢do (x;V z) e (x; V —z) funcionam como
gadgets que distinguem vértices selecionados de vértices ndo
selecionados, enquanto as cldusulas de incompatibilidade
(—x; V —x;) atuam como gadgets que impedem a selecdo
simultinea de vértices ndo adjacentes.

No contexto de férmulas booleanas, sdo definidos
formalmente os conceitos fundamentais na ordem légica
de construcdo. Uma varidvel booleana € um simbolo que
pode assumir um dentre dois valores possiveis, pertencentes
ao conjunto {0,1}, onde O representa falso e 1 representa
verdadeiro.  Formalmente, dada uma varidvel x, uma
valora¢do G associa a x um valor em {0, 1}, denotado por
G(x). A partir de varidveis, construimos literais mediante
a seguinte definicdo: um literal é uma varidvel x ou sua
negacdo —x. Se o(x) = 1, entdo o literal x é verdadeiro
e o literal —x é falso sob ©; de modo anélogo, se G(x) =
0, entdo o literal x € falso e o literal —x é verdadeiro
sob 6. Combinando literais mediante a operacdo légica
de disjuncdo, formamos cldusulas conforme a definicdo a
seguir: uma cldusula é uma disjun¢do de literais, podendo
ser representada formalmente como C = (I} Vi V- V1),
onde cada /; € um literal. Uma valorag@o ¢ satisfaz a clausula
C quando ao menos um de seus literais é verdadeiro sob G,
isto é, quando existe i € {1,2,...,r} tal que /; é verdadeiro
segundo . Finalmente, uma férmula estd em Forma Normal
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TABELA 1: DEFINICAO FORMAL DO PROBLEMA CLIQUE.

Clique

Entrada: Um grafo G = (V(G),E(G)) e um inteiro
positivo k.

Questiio: Existe um subconjunto S C V(G) com |S| > k
tal que todo par de vértices de S € adjacente, isto é, para
quaisquer v;,v; € S com i # j, tem-se (v;,v;) € E(G)?

Clique: todos sio amigos miituos

—_————— e —— -

Figura 3: Rede social com clique {Ana, Bruno, Carla}.

Conjuntiva (FNC) quando € expressa como uma conjuncio
de clausulas, isto €, F = C; ACy A --- ACy,, onde cada C; é
uma cldusula. Uma valorag@o ¢ satisfaz a férmula F quando
satisfaz simultaneamente todas as cldusulas C; que compdem
F.

A seguir sdo apresentados os dois problemas centrais
desta reducdo: Cligque, que atua como problema atacado
(A P-completo), e Max-2SAT, o problema alvo cuja N P-
dificuldade sera estabelecida.

O problema Clique foi demonstrado como A P-completo
por Karp em 1972 [6]. Para tornar mais clara a estrutura do
problema e facilitar a compreensdo da redugdo apresentada
posteriormente, € apresentado um exemplo cotidiano que
ilustra o conceito de clique, conforme representado na
Figura 3. Em uma rede social, cada pessoa € representada
por um vértice do grafo, e uma aresta conecta duas pessoas
que sdo amigas entre si. O problema Clique corresponde a
encontrar um grupo de pelo menos k pessoas onde todos sdo
mutuamente amigos, isto €, cada par de pessoas dentro desse
grupo possui uma relacdo de amizade direta. Por exemplo,
imagine que voc€ deseja organizar um jantar e precisa
convidar pelo menos trés pessoas, mas com a restricdo de
que todos os convidados ja se conhecam mutuamente para
garantir um ambiente confortdvel e integrado. Determinar se
tal grupo existe na sua rede de amizades é exatamente uma
instancia do problema Clique.

A Figura 3 ilustra esse cendrio: Ana, Bruno e Carla
formam uma clique de tamanho 3, pois cada par dentro
desse grupo possui amizade direta (representada pelas arestas
que conectam todos os trés entre si). Davi e Eva, embora
conectados a alguns membros do grupo, ndo fazem parte
dessa clique pois nao sdo amigos de todos os outros membros
simultaneamente — por exemplo, Davi ndo possui aresta
com Carla, e Eva ndo possui aresta com Ana nem com Bruno.

2

E importante observar a diferenca fundamental entre o
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TABELA 2: DEFINICAO FORMAL DO PROBLEMA MAX-2SAT.

Max-2SAT

Entrada: Uma férmula booleana F em forma normal
conjuntiva (FNC), na qual cada cldusula contém no
maximo dois literais, € um inteiro positivo k.

Questao: Existe uma valorag@o booleana das varidveis
de F que satisfaga pelo menos k clausulas?

problema 2-SAT e sua versdo de maximizagdo. O problema
2-SAT, que pergunta se existe uma valoracdo que satisfaz
todas as cldusulas de uma férmula onde cada cldusula tem
no maximo dois literais, pode ser resolvido em tempo
linear O(n + m), onde n é o nimero de varidveis e m é
o ndmero de cldusulas, através de algoritmos baseados em
grafos de implicagdo e componentes fortemente conexas [2].
Em contraste, a versdo de maximizacdo Max-2SAT foi
demonstrada como A P-completa por Garey, Johnson e
Stockmeyer [3], que provou sua intratabilidade através
de uma reducdo polinomial a partir do problema Vertex
Cover. Essa diferenca ilustra como alteracdes pequenas na
especificacdo de um problema podem resultar em mudangas
drasticas em sua complexidade computacional.

Demonstrar que Max-2SAT é A P-completo requer exibir
dois componentes: primeiro, um certificado verificivel em
tempo polinomial que comprove a pertinéncia a classe
A[P; segundo, uma redugdo polinomial a partir de um
problema ja conhecido como A P-completo. Neste trabalho,
o problema Clique € utilizado como ponto de partida para a
reducdo, estabelecendo uma correspondéncia entre estruturas
altamente conectadas em grafos e férmulas booleanas com
alto grau de satisfatibilidade. Essa redugdo serd desenvolvida
em detalhes na Secdo 5.

ITI. TRABALHOS RELACIONADOS

As referéncias cldssicas sobre teoria da complexidade
computacional e A P-completude, como Cook [1], Karp [6],
Garey e Johnson [4], Papadimitriou [7] e Sipser [5],
constituem obras fundamentais para a compreensdo geral de
reducdes polinomiais, classes de complexidade e taxonomia
de problemas intratdveis, fornecendo o alicerce conceitual
sobre o qual se desenvolvem estudos mais especificos.

No contexto especifico de Max-2SAT e problemas
de satisfatibilidade booleana, Goemans e Williamson [8]
apresentam um algoritmo de aproximacdo baseado em
programacdo semidefinida que alcanga fator de aproxi-
macdo de 0.878 para o problema Max-2SAT. O trabalho
estabelece um marco importante ao conectar técnicas de
otimizag¢do continua com problemas combinatérios discre-
tos, demonstrando que relaxagdes semidefinidas podem
fornecer solugdes de alta qualidade mesmo quando a
solugcdo 6tima € computacionalmente intratdvel. Os autores
utilizam arredondamento aleatério de varidveis baseado
em vetores unitdrios, técnica que se tornou fundamental
para o desenvolvimento de algoritmos de aproximagdo em
problemas de satisfatibilidade.

Trevisan et al. [9] investigam a construg@o sistemdtica
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de gadgets para redugdes entre variantes de problemas de
satisfacdo de restricdes booleanas. O trabalho caracteriza
quais propriedades estruturais devem ser preservadas ao
transformar instancias de um problema em outro, estabe-
lecendo condi¢des necessdrias e suficientes para que uma
reducdo mantenha a equivaléncia entre solu¢des 6timas. Os
autores demonstram como gadgets bem projetados permitem
controlar precisamente o nimero de cldusulas satisfeitas
na férmula resultante, técnica essencial para reducdes que
envolvem problemas de maximizacdo como o Max-2SAT.
Essa abordagem sistemadtica influenciou significativamente
o desenvolvimento de novas reducdes e a compreensdo de
limites de aproximabilidade.

Khanna et al. [10] estabelecem uma taxonomia completa
de aproximabilidade para problemas de satisfacdo de
restrigdes booleanas, incluindo Max-2SAT. O trabalho
caracteriza formalmente quais variantes desses problemas
admitem esquemas de aproximagdo em tempo polinomial
(PTAS) e quais sdo APX-completos, isto &, nao admitem
aproximagio arbitrariamente boa sob a hipétese P # N P.
Os autores demonstram que Max-2SAT pertence a classe
AP X-completa, indicando que, embora existam algoritmos
de aproximagdo com garantias constantes, ndo € possivel
obter esquemas que aproximem a solu¢do Otima com
erro arbitrariamente pequeno em tempo polinomial. Essa
caracterizacdo delimita precisamente as fronteiras entre
o que ¢ computacionalmente vidvel e o que permanece
intratdvel mesmo sob relaxacdes de otimalidade.

No contexto pedagdgico e didatico, Lassance, Bianchini
e Santos [11] apresentam um estudo fundamentado na
experiéncia da disciplina de Teoria da Computacdo da
Universidade Federal do Tocantins, evidenciando a im-
portdncia de metodologias ativas baseadas em semindrios
académicos para a aprendizagem de conceitos abstratos
como decidibilidade, complexidade e A P-completude. Os
autores argumentam que a exposicdo publica, a andlise
critica de demonstragdes formais e a elaboragdo de
apresentacdes estruturadas contribuem significativamente
para o desenvolvimento de autonomia intelectual e dominio
técnico por parte dos estudantes. A discussdo mostra como
abordagens dialogadas favorecem a consolida¢do de técnicas
de reducao polinomial e de formalizacao rigorosa, aspectos
essenciais tanto para a compreensao de problemas intrataveis
quanto para a construcdo de demonstracdes corretas. Esse
trabalho relaciona-se diretamente com a proposta pedagdgica
do presente artigo, que busca apresentar a demonstragdo de
AN P-completude do Max-2SAT de forma diddtica e acessivel
a estudantes de graduacio.

IV. DESCRICAO DO PROBLEMA

O problema Maximum 2-Satisfiability (Max-2SAT) € uma
variante de maximizacdo do problema classico SAT, na
qual cada cldusula contém no médximo dois literais. O
objetivo é determinar uma valora¢io booleana que satisfaca
o maior nimero possivel de cldusulas. Na versdo de
decisdo, investigada neste trabalho, pergunta-se se existe
uma valoracdo capaz de satisfazer pelo menos k cldusulas
de uma férmula em forma normal conjuntiva (FNC).

Para tornar o problema Max-2SAT mais acessivel,
considere o seguinte cendrio: um organizador de eventos

ISSN: 2675-3588

ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 07, NO. 02, FEBRUARY 2026

precisa alocar n palestras em dois hordrios disponiveis,
manha e tarde. Cada palestra deve ocorrer em exatamente um
dos dois periodos. Diversos pares de palestrantes expressam
preferéncias conjuntas sobre os hordrios, representadas por
restrigdes do tipo "pelo menos um de nds deve estar na
manha"ou "pelo menos um de nés deve estar na tarde".

Formalmente, cada palestra pode ser modelada i por uma
varidvel booleana x;, onde x; = 1 significa que a palestra i
estd alocada no periodo da manha, e x; = 0 indica alocacio
no periodo da tarde. Uma preferéncia expressa por dois
palestrantes i e j pode ser representada por uma cldusula
booleana como (x; V x;), que € satisfeita quando pelo menos
uma das duas palestras ocorre na manhd, ou (—x; V x;),
indicando que se a palestra i for na manha, entdo j também
deve ser na manha.

Em muitas situagdes préticas, as preferéncias dos pales-
trantes entram em conflito, tornando impossivel satisfazer
todas simultaneamente. Por exemplo, se trés palestrantes A,
B e C expressam as preferéncias "A ou B na manhd", "B
ou C na tarde"e "A ou C em hordrios opostos", pode ser
impossivel atender todas a0 mesmo tempo. Nesse contexto,
0 objetivo torna-se maximizar o nimero total de preferéncias
atendidas, escolhendo uma alocag¢do que satisfaca o maior
nimero possivel de restrigdes.

Esse cendrio captura a esséncia do Max-2SAT: lidar com
um sistema de restri¢des booleanas parcialmente conflitantes
e buscar uma solu¢do que maximize a consisténcia global,
mesmo quando a satisfacio total é invidvel.

Formalmente, uma instincia do Max-2SAT consiste em
uma férmula booleana F em forma normal conjuntiva
(FNC), composta por cldusulas Cy,Cs,...,C,, cada uma
contendo um ou dois literais, e por um inteiro positivo k. O
problema consiste em determinar se existe uma valoragdo 6
que satisfaca pelo menos k clausulas de F', conforme definido
na Tabela 2.

Embora o problema 2-SAT seja soluciondvel em tempo
linear, sua versdo de maximiza¢do (Max-2SAT) apresenta
complexidade substancialmente maior. Essa diferenca ilustra
como pequenas alteracdes na formulacao podem transformar
um problema tratdvel em intratdvel. O Max-2SAT possui
aplicacdes em gerenciamento de dependéncias de software,
depuracdo de hardware, andlise de redes bioldgicas e
problemas de agendamento com restricdes bindrias.

Para ilustrar o comportamento do problema, considere a
férmula:

F=(x1Vx) A (mx1Vaz) A (—xp V-g).

Nenhuma valoragdo satisfaz simultaneamente as trés
clausulas. Isso ocorre porque as duas ultimas impdem
condi¢bes opostas sobre a varidvel x3: a cldusula (—x; V
x3) forga x3 = 1 sempre que x; = 1, enquanto a cldusula
(—xp V —r3) forca x3 = 0 sempre que x; = 1. Como a
primeira cldusula (x; V x3) exige que pelo menos uma das
duas varidveis seja verdadeira, inevitavelmente surge uma
contradi¢do. Se x; = 1, entdo x3 deve ser 1, mas isso tende
a violar a terceira clausula. Se x» = 1, entdo x3 deve ser O,
mas isso tende a violar a segunda cldusula. Assim, qualquer
tentativa de satisfazer todas as trés cldusulas forca a violacio
de pelo menos uma delas.

Apesar disso, é possivel satisfazer duas cldusulas. Por
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TABELA 3: AVALIACAO EXAUSTIVA DAS VALORACOES PARA A

FORMULA F.

x1 x | Ci C Cz3 C4 | Total
0O O 0 1 1 1 3

0 1 1 1 0 1 3

1 0 1 1 1 0 3

1 1 1 0 1 1 3

Alocacio de Palestras
Manha Tarde

[ (P1V P3)v j

[ (~P2V P3)v j

[ (~P1V P4)x }

Figura 4: 2 de 3 preferéncias atendidas.

exemplo, a valoragdo x; = 1, x, = 1 e x3 = 0 satisfaz a
primeira e a terceira cldusulas, mas viola a segunda.

Esse comportamento evidencia o cardter de otimizagdo
do Max-2SAT: quando a estrutura das restricdes contém
conflitos inevitdveis, o objetivo deixa de ser satisfazer todas
as clausulas e passa a ser maximizar o nimero de cldusulas
satisfeitas.

Para ilustrar de forma pedagégica situagdes em que ndo
€ possivel satisfazer todas as cldusulas simultaneamente,
considera-se a seguinte férmula:

F= (x1 \/xz) A (—|)C1 V _‘XQ) AN (x1 V ﬁXz) AN (—‘xl \/)CQ).

Esta formula envolve duas varidveis booleanas, x| e
xp, de modo que existem exatamente quatro valoracdes
possiveis. A Tabela 3 apresenta a avaliacdo sistemdtica
de cada valoragdo, demonstrando que nenhuma satisfaz
simultaneamente as quatro cldusulas.

Como evidenciado na tabela, cada valoragdo satisfaz
exatamente trés das quatro cldusulas, caracterizando um caso
tipico em que a formulac@o assume natureza de problema de
maximizacdo. Este exemplo evidencia a esséncia do Max-
2SAT: quando a estrutura das restrigdes contém conflitos
inevitdveis, o objetivo deixa de ser satisfazer todas as
clausulas e passa a ser maximizar o nimero de cldusulas
satisfeitas.

Retornando a interpretacdo lddica apresentada anterior-
mente, podemos visualizar o problema através do cendrio de
alocacdo de palestras. A Figura 4 ilustra de forma resumida a
estrutura conceitual desse cenario, destacando os elementos
centrais da formalizagdo que serd empregada na reducdo
apresentada posteriormente.

Essa analogia capta a esséncia do Max-2SAT: resolver um
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sistema de restri¢des parcialmente conflitantes e maximizar
sua consisténcia.

Do ponto de vista didatico, o Max-2SAT é especialmente
valioso por evidenciar de forma clara a diferenca entre
problemas de satisfacdo total e problemas de maximizagao.
A andlise desse tipo de férmula permite ao estudante
perceber como a impossibilidade de satisfazer todas as
clausulas conduz naturalmente a questdes de otimizacdo.
O problema também mostra que a estrutura das cldusulas
exerce influéncia direta sobre a complexidade computacio-
nal, deixando evidente que restri¢des simples como limitar
cada cldusula a dois literais ndo garantem a existéncia
de algoritmos polinomiais. Além disso, o Max-2SAT
estabelece conexdes importantes entre problemas booleanos
e problemas em grafos, permitindo interpretar propriedades
combinatdrias por meio de férmulas proposicionais. A
construcdo de redugdes por gadgets, como a utilizada
na transformacdo Clique <, Max-2SAT apresentada na
Secdo 5, reforga técnicas fundamentais para demonstracdes
de AN P-completude. Uma compreensdo precisa desse
comportamento € essencial para acompanhar com rigor a
prova apresentada.

V. DEMONSTRACAO E CONTRIBUICOES

Nesta se¢do € estabelecida a AlP-completude do problema
Max-2SAT. A reducido utilizada parte do problema Clique
e emprega uma constru¢do baseada em gadgets de selecio
e incompatibilidade [4], detalhada passo a passo com a
varidvel auxiliar z, as cldusulas de selecdo e as cldusulas de
exclusdo para nao-arestas.

Para provar que Max-2SAT é A P-completo, é necessdrio
demonstrar duas propriedades:

(i) Max-2SAT € N P;

(ii) existe um problema 7 sabidamente A_P-completo tal
que T <, Max-2SAT.

Tome (I): Max-2SAT € AP. Para mostrar que Max-2SAT
pertence a classe AP, é suficiente exibir um certificado de
tamanho polinomial e um algoritmo verificador que, dado
esse certificado, decide em tempo polinomial se ele constitui
uma solugdo valida para a instincia. No caso do Max-2SAT,
o certificado é uma valoragdo booleana 6 : {x,x2,...,x,} —
{0,1} que atribui valores verdadeiro ou falso a todas as
varidveis da férmula F'. Dado esse certificado, o Algoritmo 1
percorre cada cldusula da férmula, avalia se ela € satisfeita
pela valoracdo fornecida e conta o niimero total de clausulas
satisfeitas, verificando se esse total atinge pelo menos o
limiar k especificado na instancia.

Para verificar que Max-2SAT pertence a classe NP,
analisamos a complexidade do algoritmo verificador. O
algoritmo percorre cada uma das m cldusulas uma unica
vez. Como cada cldusula contém no maximo dois literais,
a avaliagdo de C; sob o ¢ feita em tempo O(1). Portanto,
o tempo total de execugdo é O(m), que € polinomial no
tamanho da entrada. Logo, Max-2SAT € A/P.

Tome (II): Max-2SAT é AP-dificil via Clique <,
Max-2SAT. Para demonstrar que Max-2SAT é A P-dificil,
seleciona-se o problema Clique, definido formalmente na
Tabela 1 e conhecido por ser ALP-completo desde o trabalho
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Algorithm 1 Verificador Polinomial para Max-2SAT

Entrada: Féormula F =C{ ACy A--- AC,,, em 2-FNC, inteiro
k, certificado o

Saida: ACEITA se o satisfaz pelo menos k cldusulas;
REJEITA caso contrario
contador < 0
for cada clausula C; € F' do

Avalie C; sob a valoragdo 6

if C; é satisfeita por ¢ then

contador < contador + 1

end if
end for
if contador > k then

return ACEITA
else

return REJEITA
end if

R AN A s

_._.,_.
» -2

seminal de Karp [6], e constrdi-se uma redugdo polinomial
Clique <, Max-2SAT. Seguindo a terminologia adotada
neste trabalho, Clique atua como problema atacado (o
problema de partida, cuja A_P-completude ja é conhecida)
e Max-2SAT ¢é o problema alvo, para o qual desejamos
transferir a dificuldade computacional.

A escolha do problema Clique como ponto de partida para
a reducdo é estratégica por diversas razdes. Primeiro, a
estrutura de Clique envolve a selecdo de um subconjunto de
vértices com propriedades especificas (adjacéncia mitua), o
que mapeia naturalmente para varidveis booleanas indicando
inclusdo ou exclusdo de elementos. Segundo, a condi¢io
de que todos os pares devem ser adjacentes traduz-se
diretamente em cldusulas de incompatibilidade para pares
ndo adjacentes. Terceiro, o pardmetro k (tamanho da clique)
pode ser codificado no nimero de cldusulas satisfeitas,
permitindo equivaléncia precisa entre os problemas. Por fim,
a redugdo Clique <, Max-2SAT ilustra de forma didética
a conexdo entre problemas de grafos e problemas de 16gica
proposicional, tema central deste trabalho.

A estratégia geral consiste em criar uma variavel booleana
x; para cada vértice, uma varidvel auxiliar z, e construir
cldusulas que incentivam a selecdo de vértices enquanto
punem escolhas de pares ndo adjacentes. O pardmetro K’
¢ ajustado para que a satisfacdo de exatamente K’ cldusulas
corresponda a uma clique de tamanho k.

A construcdo formal da férmula procede da seguinte
maneira. Dada uma instincia (G,k) do problema Cligue,
onde G = (V(G),E(G)) é um grafo com conjunto de vértices
V(G) e conjunto de arestas E(G), e k é um inteiro positivo
representando o tamanho minimo da clique procurada, a
fungdo de redu¢do f produz uma instdncia (F',K’) do
problema Max-2SAT, transformando o grafo G em uma
férmula booleana F’ em forma normal conjuntiva (onde cada
clausula contém no maximo dois literais) e o parametro k em
um novo pardmetro K’ que representa o nimero minimo de
cldusulas a serem satisfeitas. A seguir, descreve-se passo a
passo como F’ e K’ sdo construidos a partir dos elementos de
G e do valor k.

A construgdo de f pode ser realizada em tempo
polinomial. A criacdo das varidveis booleanas requer
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O(|V(G)|) operagdes para os n vértices, além de O(1) para
a varidvel auxiliar z. As cldusulas de selecdo totalizam 2 -
[V(G)| cldusulas, cada uma construida em tempo constante,
resultando em O(|V(G)|). As cldusulas de incompatibilidade
correspondem a uma cldusula para cada par de vértices nao-
adjacentes, o que no pior caso representa |E| = O(|V(G)|?)
cldusulas. Por fim, o cdlculo de K’ envolve apenas O(1)
operacdes aritméticas. Portanto, a complexidade total da
reducio é O(|V(G)[?), que é polinomial no tamanho da
entrada.

A construcdo da férmula F’ envolve a criagdo de varidveis
booleanas e trés tipos de clausulas que trabalham em
conjunto para codificar a estrutura do grafo. Inicialmente,
sdo definidas as varidveis que representardo os vértices
do grafo. Para cada vértice v; € V, cria-se uma varidvel
booleana x; que indica se o vértice v; faz parte da clique
candidata. Além dessas variaveis, € introduzida uma variavel
auxiliar adicional z, cujo papel serd explicado no contexto
das cldusulas de selecdo.

O primeiro tipo de cldusula sdo as cldusulas de sele¢do,
que incentivam a escolha de vértices e permitem controlar o
tamanho da clique. Para cada vértice v; do grafo original,
sdo inseridas duas cldusulas na férmula: (x;Vz) e (x;V —z).
Essas cldusulas funcionam juntas para distinguir vértices
selecionados de vértices ndo selecionados. Quando x; = 1,
indicando que o vértice v; foi escolhido para compor a clique,
ambas as cldusulas sdo satisfeitas, independentemente do
valor atribuido a varidvel auxiliar z. J4 quando x; = 0, apenas
uma das duas cldusulas pode ser satisfeita, dependendo
do valor de zz se z =1, a cldusula (x; Vz) é satisfeita
e (x; vV —z) é violada; se z = 0, ocorre o inverso. Essa
diferenca de uma cldusula satisfeita entre vértices escolhidos
e ndo escolhidos permite controlar o tamanho da clique
por meio do parAmetro K’, garantindo que apenas selecdes
com exatamente k vértices produzam o numero exigido de
cldusulas satisfeitas.

O segundo tipo de cldusula sdo as cldusulas de incom-
patibilidade, que garantem que apenas vértices mutuamente
adjacentes sejam selecionados simultaneamente. Para cada
par de vértices (v;,v;) que ndo sdo adjacentes no grafo
original, isto é, para cada par onde (v;,v;) ¢ E, adiciona-
se a formula a cldusula (—x; V —x;). Essa cldusula impoe
uma restri¢do essencial: vértices ndo adjacentes ndo podem
ser selecionados a0 mesmo tempo para compor a clique. Se
ambos x; e x; recebem o valor 1, a cldusula (—x; V —x;) se
torna falsa, penalizando essa escolha invdlida. Por outro
lado, se a0 menos um dos vértices nao for selecionado (isto
é, se uma das variaveis for 0), a clausula € satisfeita. Dessa
forma, qualquer valora¢do que satisfagca um nimero elevado
de cldusulas deve corresponder a um conjunto de vértices que
forma uma clique no grafo original.

Finalmente, define-se o pardmetro K’ que estabelece
o nimero minimo de cldusulas a serem satisfeitas. O
pardmetro K’, que estabelece o nimero minimo de cldusulas
a serem satisfeitas na instancia de Max-2SAT, € definido de
modo a manter equivaléncia exata com o problema Clique.
O parametro é definido como K’ = |V|+ k + |E|, onde
|[V(G)| é o nimero total de vértices do grafo (e, portanto,
o ndmero de cldusulas do tipo (x; V z)), k é o tamanho da
clique procurada no problema original (refletindo o ganho
adicional obtido nas cldusulas (x; V —z) quando k vértices sdo
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TABELA 4: RESUMO DA REDUCAO CLIQUE <, MAX-2SAT.

Componente Clausulas Funcio (Gadget) Contrib. p/
K/
Var. de vértice | x;,v; €V Indica se v; pertence | —
a clique
Var. auxiliar z Controla contagem | —
de cldusulas
Selecdo posi- | (x;Vz) Satisfeita se z=1; | |V|
tiva base fixa
Selegdo nega- | (x;V —z) Satisfeita se x;=1; | k
tiva mede selecdo
Incompatib. (—x; VvV —xj), | Impede selecio de | |E|
(vi,vj) ¢ E ndo adjacentes
Total: | |V|+k+|E|
Grafo G Formula Max-2SAT
Selecdo (+2):
(x1V2)A(x2Vz)
Redugio Ax3VZ)A(xsVz)
—

Selecdo (—z):
(21 V=2) A (%2 V—z)
Axz V =2) A (x4 V —z)

Incompatibilidade:
(=01 V—xg) A (o V g
A(—x3 V xg)

K'=4+3+3=10

Figura 5: Transformac@o completa: grafo com clique {vi,vp,v3}
e formula Max-2SAT resultante.

Clique: {vi;v2;v3}

escolhidos), e |E € o niimero de nao-arestas, isto €, de pares
de vértices ndo adjacentes (que correspondem as cldusulas
(—x; V —x;)). Essa defini¢do garante que a solugdo do Max-
2SAT reproduza a condi¢@o do problema da clique.

Para facilitar a compreensdo da construgcdo, a Tabela 4
consolida os componentes da reducdo, explicitando o
papel de cada tipo de cldusula, o significado dos gadgets
empregados e a contribui¢do de cada bloco para o pardmetro
K'

A Figura 5 ilustra o processo de reducdo em trés etapas,
mostrando como cada elemento do grafo original € traduzido
para componentes da férmula Max-2SAT. Na primeira etapa,
apresentamos o grafo de entrada com seus vértices e arestas.
Na segunda etapa, mostramos os gadgets de selecdo, que
consistem nas cldusulas (x; Vz) e (x; V —z) para cada
vértice, representando o mecanismo que diferencia vértices
escolhidos de ndo escolhidos. Na terceira etapa, exibimos os
gadgets de incompatibilidade, que sdo as cldusulas (—ux; V
—;j) geradas para cada par de vértices ndo adjacentes,
impedindo a sele¢do simultinea de vértices que ndo formam
aresta.

Para entender como esse valor opera, considere uma
valoracdo que corresponde a uma clique vélida de tamanho
k. Todas as |V(G)| clausulas do tipo (x; V z) sdo satisfeitas,
contribuindo |V(G)| para a contagem. As k cldusulas
(x; V —z) associadas aos vértices escolhidos também sdo
satisfeitas, acrescentando k ao total. Além disso, todas as \F\
clausulas de incompatibilidade sdo satisfeitas, pois nenhum
par de vértices ndo adjacentes foi selecionado ao mesmo
tempo. Somando essas contribui¢des, obtém-se K' = |V|+
k+ |E|. J4 qualquer valoragio que ndo represente uma clique
de tamanho pelo menos k ou que viole alguma cldusula de
incompatibilidade satisfard um niimero menor de cldusulas,
0 que garante a equivaléncia entre os dois problemas.
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A Figura 5 apresenta uma visualizacdo completa da
transformacgdo, mostrando lado a lado o grafo de entrada
e a férmula Max-2SAT resultante, com destaque para a
correspondéncia entre cada elemento do grafo e as clausulas
geradas. Na parte esquerda da figura, observa-se o grafo G
com a clique {v{,v2,v3} destacada, onde as linhas continuas
representam arestas e as linhas tracejadas representam nao-
arestas. Na parte direita, ¢ exibida a férmula completa
organizada em trés blocos: as cldusulas de selecdo positivas
(x; Vz), as cldusulas de selecdo negativas (x; V —z), e as
cldusulas de incompatibilidade (—x; V —x;). A organizagdo
visual evidencia como cada vértice do grafo origina suas
clausulas de selecio e como cada par de vértices ndo
adjacentes (linhas tracejadas) gera sua respectiva cldusula de
incompatibilidade.

Para ilustrar como o pardmetro K’ é obtido, considere o
grafo mostrado na Figura 5, com V(G) = {vi;va;v3;wa} e
E(G) = {(v1,v2);(v2,v3);(v1,v3)}. Suponha que desejamos
verificar se existe uma clique de tamanho k = 3 nesse grafo.

Primeiro, sdo identificados os componentes necessarios
para o célculo:

O numero de vértices é |V(G)| =4, o que gera quatro
cldusulas do tipo (x; V z), uma para cada vértice do grafo.
Essas cldusulas sempre serdo satisfeitas quando z = 1,
independentemente de quais vértices forem escolhidos.

O tamanho da clique desejada é k = 3, que corresponde
ao ndmero de cldusulas adicionais do tipo (x; V —z)
que esperamos satisfazer quando o ndmero de vértices
selecionados € trés.

Para determinar o nimero de ndo-arestas \E conta-se
quantos pares de vértices ndo sdo adjacentes. Em um grafo
com quatro vértices, existem (g) = 6 pares possiveis. Como
o grafo possui |[E(G)| = 3 arestas, o niimero de ndo-arestas
¢ |[E| =6—3 =3. Os pares ndo adjacentes sdo: (vi,va),
(v2,v4) € (v3,va). Para cada um desses pares, inclui-se uma
cldusula de incompatibilidade.

Aplicando a férmula K’ = |V (G)| + k + |E|, obtém-se:

K =4434+3=10

Assim, a instdncia de Max-2SAT correspondente per-
gunta: "E possivel satisfazer pelo menos 10 cldusulas
da férmula construida?"Uma resposta positiva equivale a
afirmar que o grafo original possui uma clique de tamanho
pelo menos 3.

Para verificar a construg¢do, observe que o grafo contém
uma clique de tamanho 3 formada pelos vértices {v,v2,v3}.
Atribuindox; =x; =x3 =1, x4 =0e z=1, temos:

As 4 cldusulas (x1 Vz), (x2Vz), (x3Vz) e (x4 Vz) sdo todas
satisfeitas porque z = 1, contribuindo com 4 cldusulas.

Das 4 cldusulas do tipo (x; V —z), apenas as trés
correspondentes aos vértices selecionados sdo satisfeitas:
(x1V=z), (02 V—z) e (x3V—z), pois x; =xp =x3 = 1. Isso
contribui com 3 cldusulas adicionais.

As 3 cldusulas de incompatibilidade (—xj V —x4), (—x2 V
—x4) e (—x3V —xq) séo todas satisfeitas porque x4 = 0,
contribuindo com 3 cldusulas.

O total é 4+3+3 =10 = K/, o que confirma que a
valoracio satisfaz exatamente o niimero exigido de clausulas.
Esse exemplo mostra que o parAmetro K’ reflete de forma
precisa a estrutura da clique por meio da contagem de
cldusulas satisfeitas.
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Estabelecida a construg@o, é necessdrio agora provar sua
corretude demonstrando a equivaléncia entre as instincias.
Para estabelecer que a reducdo estd correta, é preciso
demonstrar que (G, k) € Clique se e somente se (F',K’) €
Max-2SAT. Cada direcdo é provada separadamente.

Ida (=): Se G possui uma clique de tamanho k, entao
(F’, K’) é satisfativel. Suponha que exista um conjunto
S C V(G) de vértices formando uma clique de tamanho pelo
menos k, isto &, |S| > k e para todo par de vértices distintos
vi,vj € S, existe uma aresta (v;,v;) € E(G). Constréi-se uma
valoragio que satisfaz pelo menos K’ cldusulas da férmula
F'.

Defina a valoracdo da seguinte forma: para cada varidvel
X, atribua x; = 1 se o vértice v; pertence ao conjunto S e x; =
0 caso contrario. Adicionalmente, atribua z = 1 a varidvel
auxiliar. Analisa-se quantas cldusulas sdo satisfeitas por essa
valoragdo.

Primeiro, sdo analisadas as cldusulas de selecdo. Para
cada vértice v; € V(G), hd duas cldusulas: (x;Vz) e (x;V
—z). Como foi definido z = 1, todas as cldusulas do tipo
(x; V z) sdo satisfeitas, independentemente do valor de x;, o
que contribui com |V (G)| cldusulas satisfeitas. J4 para as
cldusulas (x; V —z), temos —z = 0 nessa valoragio, de modo
que elas sdo satisfeitas apenas quando x; = 1. Como foi
atribuido x; = 1 aos k vértices do conjunto S, k cldusulas
desse tipo sdo satisfeitas.

Agora sio consideradas as cldusulas de incompatibilidade.
Para cada par ndo-adjacente (v;,v;) ¢ E(G), temos a cldusula
(—x; V —x;). Essa cldusula é falsa apenas quando ambos
x; =1 e x; =1, o que aconteceria se ambos os vértices v;
€ v; pertencessem ao conjunto S. No entanto, por hipétese,
S € uma clique, portanto todos os pares de vértices em §
sdo adjacentes. Isso significa que ndo existe nenhum par
(vi,vj) ¢ E(G) com ambos v;,v; € S. Consequentemente,
para todo par nao-adjacente (v;,v;) ¢ E(G), pelo menos um
dos vértices ndo pertence a S, garantindo que pelo menos
uma das varidveis x; ou x; vale 0, o que torna a cldusula
(—x; V —x;) verdadeira. Portanto, todas as |E| cldusulas de
incompatibilidade sdo satisfeitas.

Somando as contribui¢des, obtém-se |V (G)|+k+|E| =K’
cldusulas satisfeitas, provando que (F’,K’') € Max-2SAT.

Volta («<): Se (F’,K’) é satisfativel, entio G possui
uma clique de tamanho k. Suponha agora que exista uma
valoragio que satisfaz pelo menos K’ cldusulas da férmula
F'. E demonstrado que pode-se extrair dessa valoragio um
conjunto de vértices que forma uma clique de tamanho pelo
menos k no grafo G.

Sem perda de generalidade, pode-se assumir que a varidvel
auxiliar z recebe o valor 1 nesta valoracdo. Caso z =0 na
valoracdo original, considera-se uma valoracdo alternativa
onde invertemos o valor de z para 1 e mantemos os valores de
todas as varidveis x; inalterados. Como cada vértice contribui
com duas cldusulas (x; Vz) e (x; V —z), inverter z apenas
troca qual dessas cldusulas € satisfeita para vértices com
x; = 0, sem alterar o total de cldusulas satisfeitas. Portanto, é
possivel trabalhar com uma valoracio onde z = 1.

Com z = 1, todas as |V(G)| cldusulas da forma (x; V 2)
sdo automaticamente satisfeitas. Isso deixa espago para
K'—|V(G)| = k+ |E| cldusulas adicionais serem satisfeitas.
Essas cldusulas adicionais vém de duas fontes: as cldusulas
(x; V —z) para vértices com x; = 1 e as cldusulas de
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Figura 6: Grafo de entrada para a reduc@o: clique {vy,vy,v3} e
vértice isolado v4.

incompatibilidade (—x; V —x;).

Defina S = {v; | x; = 1} como o conjunto de vértices cujas
varidveis foram atribuidas como verdadeiras. Para satisfazer
pelo menos k + |E| cldusulas adicionais, € necessério ter
pelo menos |S| cldusulas do tipo (x; V —z) satisfeitas (uma
para cada vértice em S) e todas as |E| cldusulas de
incompatibilidade satisfeitas.

Se alguma cldusula de incompatibilidade (—x; V —x;) nao
for satisfeita, isso significa que ambos x; =1 e x; = 1,
mas (v;,v;) ¢ E(G). Cada cldusula de incompatibilidade
violada reduz o nimero total de cldusulas satisfeitas em
uma unidade. Para manter o total em pelo menos K’, seria
necessério que mais cldusulas (x; V —z) fossem satisfeitas, o
que requereria mais vértices em S. No entanto, adicionar
mais vértices aumenta o risco de violar mais cldusulas de
incompatibilidade. De fato, pode-se verificar algebricamente
que violar qualquer cldusula de incompatibilidade torna
impossivel atingir exatamente K’ cldusulas satisfeitas com a
construcao apresentada.

Portanto, todas as |E| cldusulas de incompatibilidade
devem ser satisfeitas, o que garante que ndo existe nenhum
par (vi,vj) ¢ E(G) com ambos v;,v; € S. Logo, S forma uma
clique de tamanho pelo menos k no grafo G.

Para consolidar a compreensdo da reducio, é apresentado
um exemplo completo que percorre todas as etapas da
transformagdo, desde o grafo de entrada até a verifica-
¢do da valoracdo resultante. Considere um grafo com
quatro vértices V(G) = {vi,vz,v3,v4} e arestas E(G) =
{(vi,v2),(v2,v3),(v1,v3)}. A Figura 6 ilustra esse grafo,
onde os vértices vy, v, € v3 formam uma clique de tamanho
3, representada pelas linhas continuas que conectam cada par
desses trés vértices. O vértice v4 ndo possui arestas com
nenhum dos outros vértices, o que € indicado pelas linhas
tracejadas que representam os pares néo adjacentes (vi,v4);
(v2,va); (v3,v4). Essa distingélo visual entre arestas presentes
e ausentes ¢ fundamental para compreender como a reducdo
constrdi as cldusulas de incompatibilidade.

A partir da clique de tamanho 3 identificada no grafo, a
construcio gera as cldusulas:

(xiVz), (x;V-—z) parai=1,2,34,
e, para as nio-arestas:
(—OC] \/ﬁX4)7 (—|)C2\/ﬁ)C4), (—|)C3\/ﬁ)C4).

A valoragdo x; =x; =x3 =1, x4 =0 e z = 1 satisfaz
exatamente K’ cldusulas, como requerido. A Figura 7 ilustra
detalhadamente essa verificagdo, mostrando quais cldusulas
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Verificacdo: x; =xp; =x3=1,x4=0,z=1

Selecdo (x; V' z): 4 clausulas

Selecdo (x; vV —z): 3 clausulas

Incompatibilidade: 3 clausulas

(Total: 443+3=10=K /]

Figura 7: Verificagdo detalhada da valoragdo que satisfaz K’ = 10
clausulas.

sdo satisfeitas e quais ndo sdo, organizadas por tipo. Na
coluna da esquerda, observa-se que todas as cldusulas de
selegéio positiva (x; V z) sdo satisfeitas porque z = 1. Na
coluna central, as cldusulas de sele¢do negativa (x; V —z) sdo
satisfeitas apenas para os vértices selecionados (x1, x2, x3),
totalizando 3 cldusulas, enquanto a cldusula (x4 V —z) ndo é
satisfeita pois x4 = 0 e -z = 0. Na coluna da direita, todas as
clausulas de incompatibilidade sdo satisfeitas porque x4 = 0
torna verdadeira qualquer cldusula da forma (—x; V —xy4).

Esse exemplo demonstra concretamente como a estrutura
da clique no grafo original é preservada na férmula Max-
2SAT: os trés vértices da clique correspondem aos trés
vértices com x; = 1, que sd@o exatamente os responsdveis
por satisfazer as cldusulas extras de selecdo negativa.
Simultaneamente, o fato de esses trés vértices serem
mutuamente adjacentes garante que nenhuma cldusula de
incompatibilidade é gerada entre eles, permitindo que todas
as cldusulas de incompatibilidade (que envolvem apenas v4)
sejam satisfeitas.

A reducdo com a varidvel auxiliar z evidencia diversos as-
pectos pedagégicos relevantes. Ela mostra como cldusulas de
dois literais podem impor restricdes estruturais fortes sobre
as possiveis valoracdes e como a selecdo de vértices validos
depende da satisfacdo simultdnea de multiplas cldusulas
independentes. Além disso, as cldusulas negativas traduzem
de maneira direta as rela¢des de incompatibilidade no grafo,
reforcando a conexdo entre propriedades combinatérias e
expressoes booleanas. A defini¢do precisa do parimetro
K’ demonstra como controlar o tamanho da clique desejada
por meio da contagem de cldusulas satisfeitas. Por fim,
essa constru¢do evidencia por que reducdes entre problemas
de grafos e férmulas booleanas constituem ferramenta
fundamental no estudo de AP-completude.

VI. RESULTADOS E REFLEXOES

Apresentada a demonstragio de A P-completude do Max-
2SAT, esta secdo discute os principais resultados obtidos,
bem como reflexdes conceituais e pedagdgicas sobre o
processo de construcdo da reducio e sobre os elementos que
tornaram essa abordagem titil para o aprendizado em Teoria
da Computacio.

A demonstracido apresentada confirmou que o problema
Max-2SAT pertence a classe AP, uma vez que o niimero de
clausulas satisfeitas por uma valoragdo pode ser verificado
em tempo linear no tamanho da instancia. Basta percorrer
cada clausula uma tdnica vez, avaliar se ela é verdadeira sob
a valoragao fornecida como certificado, e contar quantas sdo

DE SOUZA et al.

satisfeitas. Como cada cldusula contém no maximo dois
literais, essa avaliacdo € realizada em tempo constante por
cldusula, resultando em complexidade total O(m), onde m é
o nidmero de clausulas.

Além disso, foi demonstrado que Max-2SAT é A P-
dificil, pois o problema Clique, que é A P-completo
conforme estabelecido por Karp [6], foi reduzido a ele por
meio de uma funcdo de transformacdo computdvel em tempo
polinomial. A reducdo constréi uma férmula booleana cujo
tamanho € polinomial no tamanho do grafo de entrada: o
nimero de varidveis é |V|+ 1 e o ndmero de cldusulas é
2|V|+ |E|, onde |E| < (I%)). A construgao de cada cldusula
requer tempo constante, portanto a transformagido completa
opera em tempo O(|V|?).

A formulagdo com a varidvel auxiliar z mostrou-se util,
pois permite controlar o niimero total de cldusulas satisfeitas
sem recorrer a constru¢des mais extensas. Essa técnica evita
a criacdio de cldusulas com mais de dois literais e preserva
a estrutura tipica do Max-2SAT. A varidvel z funciona como
um mecanismo de balanceamento que garante que vértices
escolhidos contribuam com exatamente uma cldusula a mais
do que vértices ndo escolhidos, traduzindo o tamanho da
clique diretamente na quantidade de cldusulas satisfeitas.

O valor limite K’ foi definido para refletir com precisdo
a estrutura combinatéria do grafo original. A decom-
posi¢do K’ = |V| + k + |E| incorpora trés componentes
distintos: a base fixa de cldusulas sempre satisfeitas, o
ganho proporcional ao tamanho da clique e a penalizacio
associada a violacdo das cldusulas de incompatibilidade.
Essa construgdo assegura que uma valoragdo que satisfaca
exatamente K’ cldusulas corresponda a uma clique de
tamanho k, estabelecendo equivaléncia completa entre os
dois problemas.

Esses resultados mostram que pequenas alteracdes estru-
turais em problemas que parecem simples, como a transicao
de 2-SAT para Max-2SAT, podem alterar de forma profunda
sua complexidade. Enquanto 2-SAT admite solu¢do em
tempo linear por meio do grafo de implicacdes, sua
versdo de maximizagdo torna-se tdo dificil quanto qualquer
problema em NP, evidenciando a fronteira entre tratabilidade
e intratabilidade.

O desenvolvimento da redugdo Clique <, Max-2SAT
revelou diversos aspectos importantes para o ensino e com-
preensio de problemas A P-completos. A transformacdo de
relagdes de adjacéncia em cldausulas de dois literais torna
explicito como propriedades estruturais de grafos podem ser
modeladas por férmulas booleanas. Cada aresta ou ndo-
aresta no grafo corresponde de forma direta a uma restri¢ao
l6gica, estabelecendo um diciondrio claro entre os dois
dominios. Essa correspondéncia evidencia que problemas
aparentemente distintos compartilham estrutura matemadtica
profunda, sendo manifestacdes diferentes de uma mesma
dificuldade computacional subjacente.

A expressdo (—; V —x;) traduz a proibicdo de escolher
dois vértices ndo adjacentes, mostrando como restrigdes
combinatdrias sdo mapeadas para restricdes 16gicas. Essa
clausula funciona como uma "barreira légica"que impede
configuracdes invdlidas, e sua violagdo resulta na reducio
do ndmero total de cldusulas satisfeitas. Compreender esse
mecanismo de penaliza¢do € fundamental para desenvolver

ISSN: 2675-3588



AJC
TAM

intui¢do sobre como problemas de otimizacdo combinatéria
podem ser codificados em férmulas booleanas.

A introdugdo da varidvel auxiliar z simplifica a contagem
de cldusulas, garantindo equilibrio entre as expressdes do
tipo (x;Vz) e (x; V—z) e permitindo a defini¢do precisa
do parAmetro K’. Sem essa varidvel, seria necessario
construir gadgets mais complexos ou usar cldusulas maiores,
evidenciando a fronteira. A técnica de usar varidveis
auxiliares para controlar comportamentos globais da férmula
€ aplicavel em construgdes de redugdes, e sua apresentacio
neste contexto fornece modelo Util para outros problemas.

O ajuste de K’ evidencia uma técnica comum em redugdes,
na qual o nimero de cldusulas satisfeitas reflete diretamente
o tamanho da estrutura procurada no problema original.
Essa correspondéncia numérica precisa entre parametros do
problema fonte e problema alvo € caracteristica essencial
de redugdes bem construidas. Estudantes muitas vezes
tém dificuldade em determinar parimetros corretos para
problemas de otimiza¢do; o exemplo apresentado demonstra
metodologia sistemdtica baseada na andlise de contribuicdes
independentes de cada componente da construgao.

Provar ambas as diregdes da equivaléncia, isto é,
que uma clique gera uma valoragdo vilida e que uma
valoracdo vdlida gera uma clique, refor¢a o raciocinio
formal necessario para redugdes corretas. Muitos estudantes
cometem o erro de provar apenas uma dire¢do ou de assumir
equivaléncia sem justificativa rigorosa. A demonstracdo
cuidadosa apresentada serve como modelo de argumentacio
matematica, enfatizando a importancia de considerar todas
as possibilidades e eliminar casos degenerados.

Analisar como cada valorag¢do influencia o conjunto das
clausulas satisfeitas ajuda a desenvolver intui¢do sobre como
problemas booleanos capturam propriedades de grafos. Ao
considerar sistematicamente os efeitos de atribuir valores
verdadeiro ou falso a cada varidvel, estudantes desenvolvem
compreensdo profunda de como restricdes locais (satisfacdo
de cldusulas individuais) emergem como propriedades
globais (existéncia de cliques). Essa conex@o entre nivel
local e global é fundamental ndo apenas em complexidade
computacional, mas em toda ciéncia da computacdo.

Ao final, a reducdo analisada oferece uma visdo sélida
sobre a intratabilidade do Max-2SAT e sobre a versatilidade
das redugdes polinomiais. A construcio estudada demonstra,
de forma acessivel e estruturada, como problemas de
natureza combinatéria e ldgica podem ser relacionados
de maneira precisa, contribuindo significativamente para o
aprendizado prético de A_P-completude.

+30 material desenvolvido pode ser empregado em diver-
sos contextos de ensino. Em disciplinas de graduagcdo em
Teoria da Computagdo ou Andlise de Algoritmos, a reducdo
pode ser apresentada como estudo de caso apds a introducao
dos conceitos de A/P-completude, permitindo que estudan-
tes acompanhem passo a passo uma demonstragdo completa
antes de desenvolverem suas proprias provas. Em cursos de
pos-graduagdo, o material pode servir como ponto de partida
para discussdes sobre técnicas avancadas de reducdo, limites
de aproximabilidade e conexdes com outros problemas de
satisfatibilidade. Como atividade prdtica, sugere-se propor
aos estudantes a verificagdo manual da reducdo para grafos
pequenos, a implementacdo computacional do algoritmo de
transformag@o, ou a adaptacdo da técnica para variantes
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como Max-3SAT ou Weighted Max-2SAT. A estrutura
modular da apresentagdo — com figuras, tabelas-resumo e
exemplos comentados — facilita a segmentagdo do contetido
em miultiplas aulas ou a utilizacdo em metodologias ativas
baseadas em semindrios, conforme discutido por Lassance,
Bianchini e Santos [11].

O material apresentado serve tanto como recurso didatico
para compreensdo de técnicas especificas quanto como
exemplar metodolégico para desenvolvimento de novas
redugdes, cumprindo assim o objetivo pedagdgico central
deste trabalho.

VII. CONSIDERACOES FINAIS

Este artigo apresentou uma demonstracdo formal e didética
da A[P-completude do problema Max-2SAT por meio de
redugdo polinomial a partir do problema Clique. A prova foi
estruturada demonstrando-se primeiro a pertinéncia a classe
AP mediante certificado verificivel em tempo polinomial,
e em seguida a AP-dificuldade através de transformacdo
polinomial que preserva equivaléncia entre instancias.

A constru¢do proposta utiliza varidvel auxiliar z para
controlar o nimero de cldusulas satisfeitas, ajustando o
parametro K’ para refletir de forma precisa o tamanho da
clique desejada. As cldusulas de selecdo incentivam a esco-
lIha de vértices, enquanto as cldusulas de incompatibilidade
impedem selecdo simultinea de vértices ndao adjacentes,
evidenciando como relagdes combinatérias em grafos sdo
codificadas por férmulas booleanas.

Entre as dificuldades encontradas, destacam-se a escolha
adequada do parametro K’ e a formalizag@o rigorosa da prova
de corretude em ambas as dire¢des. A compreensdo do papel
da varidvel z exigiu andlise cuidadosa de como cada tipo de
clausula contribui para a contagem total.

Como limita¢des, o trabalho concentrou-se na versdo de
decisdo do Max-2SAT e na redugdo a partir de Clique.
Outras redugdes, como baseadas em 3-SAT ou Vertex Cover,
podem oferecer perspectivas complementares. Para trabalhos
futuros, sugere-se explorar variantes parametrizadas, analisar
complexidade em classes especiais de grafos, desenvolver
algoritmos aproximativos e investigar aplicacdes com SAT
solvers modernos.

O material produzido serve como recurso diddtico para
disciplinas de Teoria da Computacdo, contribuindo para a
formacao de estudantes em Ciéncia da Computacdo. Espera-
se que inspire novas producdes que articulem rigor técnico e
finalidade pedagdgica, fortalecendo a comunidade de ensino
e pesquisa em Teoria da Computacgao.

REFERENCIAS

[11 S. A. Cook, “The complexity of theorem-proving procedures,”
Proceedings of the Third Annual ACM Symposium on Theory of
Computing, pp. 151-158, 1971.

[2] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for
testing the truth of certain quantified boolean formulas,” Information
Processing Letters, vol. 8, no. 3, pp. 121-123, 1979.

[3] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified
np-complete graph problems,” Theoretical Computer Science, vol. 1,
no. 3, pp. 237-267, 1976.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.



(51

(6]

(7]

(8]

(91

[10]

(1]

MAX-2SAT: NP-COMPLETENESS PROOF

M. Sipser, Introduction to the Theory of Computation, 2nd ed.
Boston: Thomson Course Technology, 2006.

R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, Eds. New York, NY; London: Plenum Press, 1972, pp.
85-103.

C. H. Papadimitriou, Computational Complexity. ~ Addison-Wesley,
1994.

M. X. Goemans and D. P. Williamson, “Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming,” Journal of the ACM, vol. 42, no. 6, pp.
1115-1145, 1995.

L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson,
“Gadgets, approximation, and linear programming,” in Proceedings
of the 37th Annual Symposium on Foundations of Computer
Science (FOCS), 1996, pp. 617-626. [Online]. Available: https:
/lieeexplore.ieee.org/document/548521

S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson, “The
approximability of constraint satisfaction problems,” SIAM Journal
on Computing, vol. 30, no. 6, pp. 1863-1920, 2001. [Online].
Available: https://doi.org/10.1137/S0097539799349948

Y. M. Lassance Di Vilhena Y Cantafiede, G. d. B. Bianchini, and
T. D. d. Santos, “Reflexdes e praticas pedagdgicas no escopo da
disciplina de teoria da computagdo,” Academic Journal on Computing,
Engineering and Applied Mathematics, vol. 6, no. 2, pp. 10-17,
October 2025.

DE SOUZA et al.

ISSN: 2675-3588


https://ieeexplore.ieee.org/document/548521
https://ieeexplore.ieee.org/document/548521
https://doi.org/10.1137/S0097539799349948

