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Resumo—Este artigo apresenta uma demonstração formal e didática da N P -completude do problema Maximum 2-Satisfiability (Max-
2SAT) por meio de redução polinomial a partir do problema Clique. O Max-2SAT, variante de maximização do problema SAT em que
cada cláusula contém no máximo dois literais, questiona se existe uma valoração booleana capaz de satisfazer pelo menos k cláusulas de
uma fórmula em forma normal conjuntiva. Embora o problema 2-SAT seja resolvido em tempo polinomial, sua versão de maximização
é N P -completa. A demonstração utiliza uma construção com variável auxiliar que mapeia estruturas de grafos em fórmulas booleanas,
estabelecendo correspondência biunívoca entre cliques e valorações satisfatórias. Como contribuições pedagógicas, o trabalho apresenta:
(i) prova formal detalhada de N P -pertinência e N P -dificuldade; (ii) construção explícita da redução Clique ≤p Max-2SAT com figuras
ilustrativas; (iii) exemplo completo comentado passo a passo; (iv) pseudocódigo do verificador polinomial; e (v) discussões sobre
armadilhas comuns e estratégias de compreensão. O material produzido visa facilitar o aprendizado de reduções polinomiais e fortalecer a
compreensão sobre a fronteira entre tratabilidade e intratabilidade computacional.

Palavras-chave—Max-2SAT, N P -completude, Redução Polinomial, Clique, Teoria da Complexidade, Satisfatibilidade Booleana

Abstract—This paper presents a formal and pedagogical demonstration of the N P -completeness of the Maximum 2-Satisfiability (Max-
2SAT) problem through polynomial reduction from the Clique problem. Max-2SAT, a maximization variant of the SAT problem where each
clause contains at most two literals, asks whether there exists a Boolean assignment capable of satisfying at least k clauses of a formula
in conjunctive normal form. Although the 2-SAT problem is solvable in polynomial time, its maximization version is N P -complete. The
demonstration employs a construction with an auxiliary variable that maps graph structures into Boolean formulas, establishing a bijective
correspondence between cliques and satisfying assignments. As pedagogical contributions, this work presents: (i) detailed formal proof of
N P -membership and N P -hardness; (ii) explicit construction of the Clique≤p Max-2SAT reduction with illustrative figures; (iii) complete
step-by-step annotated example; (iv) pseudocode for the polynomial verifier; and (v) discussions about common pitfalls and comprehension
strategies. The material produced aims to facilitate the learning of polynomial reductions and strengthen understanding of the boundary
between tractability and computational intractability.

Keywords—Max-2SAT, NP-Completeness, Polynomial Reduction, Clique, Complexity Theory, Boolean Satisfiability

I. INTRODUÇÃO

A Teoria da Computação estabelece os fundamentos
matemáticos para compreender os limites da compu-

tação, classificando problemas segundo sua complexidade
computacional. Entre as classes de complexidade, a classe

Dados de contato: Raphael Sales de Souza, sales.raphael@mail.uft.edu.br

N P (Nondeterministic Polynomial Time) e, em especial,
os problemas N P -completos ocupam papel central, tanto
do ponto de vista teórico quanto prático. Um problema é
N P -completo se pertence à classe N P e todo problema
em N P pode ser reduzido a ele em tempo polinomial,
caracterizando-o como um dos mais representativos quanto
à dificuldade computacional.

O conceito de N P -completude foi introduzido por
Stephen Cook em 1971 [1], por meio do Teorema de
Cook–Levin, que estabeleceu o problema SAT (Satisfiability)
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como o primeiro problema N P -completo. Desde então,
milhares de problemas foram classificados como N P -
completos através de reduções polinomiais, compondo uma
ampla rede de equivalências que fundamenta a noção
moderna de intratabilidade algorítmica.

Dentre os problemas derivados de SAT, o Maximum 2-
Satisfiability (Max-2SAT) ocupa posição de destaque. Trata-
se de uma variante de maximização em que cada cláusula
contém no máximo dois literais, e o objetivo é determinar
uma valoração que satisfaça o maior número possível de
cláusulas. Na versão de decisão, dada uma fórmula
em forma normal conjuntiva e um inteiro k, pergunta-
se se existe uma atribuição que satisfaça pelo menos k
cláusulas. Embora o problema 2-SAT seja resolvido em
tempo polinomial [2], sua versão de maximização (Max-
2SAT) é N P -completa, conforme demonstrado por Garey,
Johnson e Stockmeyer [3].

O Max-2SAT possui aplicações práticas relevantes, como
otimização de circuitos eletrônicos, análise de dependências
em sistemas de software, depuração de hardware, modela-
gem de redes biológicas e problemas de agendamento com
restrições binárias. Além disso, algoritmos de aproximação
e heurísticas para Max-2SAT são estudados de forma ampla
na literatura, reforçando sua importância tanto teórica quanto
aplicada.

O objetivo deste artigo é apresentar, de maneira didática, a
demonstração da N P -completude do Max-2SAT utilizando
a redução polinomial Clique ≤p Max-2SAT. Essa redução
não foi explorada em sala de aula e permite discutir a
relação entre problemas de grafos e problemas de lógica
proposicional.

É importante ressaltar que a principal contribuição deste
manuscrito é de natureza pedagógica, consistindo na
sistematização detalhada e acessível da demonstração da
N P -completude do Max-2SAT. Não são propostos novos
resultados teóricos ou algorítmicos; a redução Clique ≤p
Max-2SAT aqui apresentada é conhecida na literatura [4]. O
valor do trabalho reside na exposição didática estruturada,
com exemplos comentados, figuras ilustrativas e discussões
sobre armadilhas conceituais, voltada para estudantes e
docentes de disciplinas de Teoria da Computação.

As principais contribuições deste trabalho incluem a
demonstração formal da N P -pertinência e da N P -
dificuldade do Max-2SAT, a construção explícita e detalhada
da redução polinomial Clique ≤p Max-2SAT, figuras
ilustrativas destacando como cada parte do grafo é traduzida
para cláusulas 2-SAT, um exemplo completo e comentado
exibindo todas as etapas da transformação, o pseudocódigo
do verificador polinomial para a versão de decisão do Max-
2SAT, e discussões pedagógicas sobre armadilhas comuns e
estratégias para compreender reduções entre problemas de
grafos e fórmulas booleanas.

O restante deste artigo está organizado da seguinte forma:
a Seção 2 – Preliminares – apresenta as preliminares
necessárias, incluindo definições formais de classes de
complexidade, reduções polinomiais e os problemas Clique
e Max-2SAT; a Seção 3 – Trabalhos Relacionados – revisa
trabalhos relacionados; a Seção 4 – Descrição do Problema
– descreve em detalhes o problema Max-2SAT; a Seção 5
– Demonstração e Contribuições – apresenta a prova de
N P -completude por meio da redução Clique≤p Max-2SAT;
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v3 v4

Figura 1: Grafo G1

a Seção 6 – Resultados e Reflexões – discute resultados e
reflexões.

II. PRELIMINARES

São definidos a seguir os conceitos fundamentais que
embasam o restante deste trabalho, abrangendo classes de
complexidade, reduções polinomiais, fórmulas em FNC e as
especificações formais dos problemas Clique e Max-2SAT,
que constituem, respectivamente, o problema Atacado e o
problema Alvo da redução apresentada na Seção 5.

A seguir são apresentados os conceitos fundamentais de
teoria dos grafos, que serão essenciais para compreender
a redução Clique ≤p Max-2SAT. Um grafo é uma
estrutura matemática que modela relações entre objetos.
Formalmente, um grafo G é definido por um par ordenado
G = (V (G),E(G)), onde V (G) representa um conjunto finito
e não vazio de vértices (também chamados de nós) e E(G)
representa um conjunto de arestas, sendo cada aresta um par
de vértices (u,v) com u,v ∈ V (G) e u 6= v. Quando existe
uma aresta (u,v) ∈ E(G), dizemos que os vértices u e v são
adjacentes ou vizinhos.

O grau de um vértice v ∈ V (G), denotado por deg(v),
corresponde ao número de arestas incidentes a ele, ou
equivalentemente, ao número de vizinhos que v possui no
grafo. Um subgrafo de G é um grafo G′ = (V (G′),E(G′)) tal
que V (G′)⊆V (G) e E(G′)⊆ E(G), onde todas as arestas de
E(G′) conectam apenas vértices pertencentes a V (G′).

Para ilustrar esses conceitos, considera-se o grafo G1 da
Figura 1 com quatro vértices V (G) = {v1,v2,v3,v4} e quatro
arestas E(G) = {(v1,v2),(v1,v3),(v2,v3),(v2,v4)}. Neste
grafo, o vértice v2 possui grau 3, pois está conectado a três
outros vértices (v1, v3 e v4); os vértices v1 e v3 possuem grau
2, cada um conectado a dois vizinhos; e o vértice v4 possui
grau 1, estando conectado apenas a v2.

Uma clique é um subconjunto de vértices C ⊆ V (G)
tal que todo par de vértices distintos em C é adjacente.
Formalmente, para quaisquer u,v ∈ C com u 6= v, temos
(u,v) ∈ E(G). O tamanho de uma clique é o número de
vértices que ela contém.

A Figura 2 ilustra o conceito de clique de forma detalhada.
Nessa figura, o grafo possui quatro vértices {v1,v2,v3,v4}
e as arestas {(v1,v2),(v1,v3),(v2,v3),(v2,v4)}. O retângulo
tracejado destaca o subconjunto {v1,v2,v3}, que forma uma
clique de tamanho 3. Para verificar que esse conjunto é de
fato uma clique, observa-se que existem arestas conectando
todos os pares possíveis dentro dele: a aresta (v1,v2) conecta
v1 a v2, a aresta (v1,v3) conecta v1 a v3, e a aresta (v2,v3)
conecta v2 a v3. Como cada par de vértices do conjunto está
conectado por uma aresta, a condição de clique é satisfeita.

O vértice v4, representado em cinza mais escuro na figura,
não faz parte dessa clique. Embora v4 esteja conectado a
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Clique de tamanho 3

Figura 2: Grafo com clique de tamanho 3 formada por {v1;v2;v3}.

v2 pela aresta (v2,v4), ele não possui arestas com v1 nem
com v3. Portanto, se fosse incluído v4 no conjunto, os
pares (v1,v4) e (v3,v4) não seriam adjacentes, violando a
definição de clique. Esse exemplo ilustra por que uma clique
exige conectividade total entre todos os seus membros, e não
apenas conexões parciais.

A seguir são apresentados os conceitos de complexidade
computacional, um problema de decisão é um problema cuja
resposta é “sim” ou “não”.

Uma Máquina de Turing é um modelo matemático de
computação que consiste em uma fita infinita dividida em
células, um cabeçote de leitura/escrita que pode mover-se
sobre a fita, um conjunto finito de estados, e uma função de
transição que determina o comportamento da máquina. A
cada passo, a máquina lê o símbolo da célula atual, escreve
um novo símbolo (ou mantém o anterior), move o cabeçote
para a esquerda ou direita, e muda de estado. Uma Máquina
de Turing é determinística quando, para cada combinação de
estado e símbolo lido, existe no máximo uma ação possível
definida pela função de transição. Uma Máquina de Turing
é não determinística quando podem existir múltiplas ações
possíveis para uma mesma configuração, permitindo que a
máquina "escolha"entre diferentes caminhos de computação.
Esse modelo, proposto por Alan Turing em 1936, captura
formalmente a noção intuitiva de algoritmo e constitui a
base teórica para a definição de classes de complexidade
computacional [5].

Um certificado para um problema de decisão é uma
estrutura de dados que, quando fornecida junto com
uma instância do problema, permite verificar em tempo
polinomial se a resposta para aquela instância é “sim”.
Formalmente, um problema L pertence à classe N P se
existe um verificador polinomial V e uma constante c tal
que, para toda instância x: x ∈ L ⇐⇒ ∃ certificado y com
|y| ≤ |x|c tal que V (x,y) = “aceita”. O certificado funciona
como uma "prova"de que a instância tem resposta positiva.
Por exemplo, para o problema Clique, um certificado seria
um subconjunto específico de vértices; para um problema
de satisfatibilidade booleana, seria uma valoração das
variáveis. A existência de certificados verificáveis em tempo
polinomial caracteriza a classe N P e distingue-a de outras
classes de complexidade.

A classe de complexidade P consiste no conjunto
de problemas decidíveis por uma Máquina de Turing
determinística em tempo polinomial [5]. Formalmente,

P = {L |L é decidível por uma MT determinística
em tempo polinomial}.

Por sua vez, a classe N P é definida de forma análoga,
substituindo a Máquina de Turing determinística por uma
não determinística:

N P = {L |L é decidível por uma MT não determinística
em tempo polinomial}.

De modo equivalente, N P reúne os problemas cujas
soluções podem ser verificadas em tempo polinomial
mediante um certificado apropriado.

Um problema L é N P -difícil quando todo problema em
N P se reduz a L em tempo polinomial, e é N P -completo
quando, além disso, pertence à própria classe N P .

Reduções polinomiais são o principal mecanismo para
comparar a dificuldade de problemas. Diz-se que um
problema de decisão A reduz-se polinomialmente a outro
problema de decisão B, denotado pela notação A ≤p B,
quando existe uma função computável em tempo polinomial
f tal que, para toda instância x, temos x ∈ A ⇐⇒ f (x) ∈
B. O símbolo ≤p denota a relação de redução em
tempo polinomial, indicando que o problema A não é mais
difícil que o problema B do ponto de vista computacional.
Nessa notação, A é denominado problema atacado, pois
é o problema cuja complexidade já conhecemos, e B é
denominado problema alvo, para o qual desejamos provar
a complexidade. O uso dessas reduções permite demonstrar
N P -dificuldade e, quando combinado com a pertinência a
N P , também N P -completude.

No contexto de reduções polinomiais, um gadget é
uma construção auxiliar padronizada que traduz elementos
estruturais do problema Alvo para o problema Atacado,
preservando as propriedades essenciais da instância original.
A técnica de construção por gadgets permite modularizar
a redução, facilitando tanto a verificação de corretude
quanto a análise de complexidade. Por exemplo, na
redução Clique ≤p Max-2SAT apresentada neste trabalho,
as cláusulas de seleção (xi ∨ z) e (xi ∨¬z) funcionam como
gadgets que distinguem vértices selecionados de vértices não
selecionados, enquanto as cláusulas de incompatibilidade
(¬xi ∨ ¬x j) atuam como gadgets que impedem a seleção
simultânea de vértices não adjacentes.

No contexto de fórmulas booleanas, são definidos
formalmente os conceitos fundamentais na ordem lógica
de construção. Uma variável booleana é um símbolo que
pode assumir um dentre dois valores possíveis, pertencentes
ao conjunto {0,1}, onde 0 representa falso e 1 representa
verdadeiro. Formalmente, dada uma variável x, uma
valoração σ associa a x um valor em {0,1}, denotado por
σ(x). A partir de variáveis, construímos literais mediante
a seguinte definição: um literal é uma variável x ou sua
negação ¬x. Se σ(x) = 1, então o literal x é verdadeiro
e o literal ¬x é falso sob σ; de modo análogo, se σ(x) =
0, então o literal x é falso e o literal ¬x é verdadeiro
sob σ. Combinando literais mediante a operação lógica
de disjunção, formamos cláusulas conforme a definição a
seguir: uma cláusula é uma disjunção de literais, podendo
ser representada formalmente como C = (l1 ∨ l2 ∨ ·· · ∨ lr),
onde cada li é um literal. Uma valoração σ satisfaz a cláusula
C quando ao menos um de seus literais é verdadeiro sob σ,
isto é, quando existe i ∈ {1,2, . . . ,r} tal que li é verdadeiro
segundo σ. Finalmente, uma fórmula está em Forma Normal
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TABELA 1: DEFINIÇÃO FORMAL DO PROBLEMA CLIQUE.

Clique

Entrada: Um grafo G = (V (G),E(G)) e um inteiro
positivo k.
Questão: Existe um subconjunto S⊆V (G) com |S| ≥ k
tal que todo par de vértices de S é adjacente, isto é, para
quaisquer vi,v j ∈ S com i 6= j, tem-se (vi,v j) ∈ E(G)?

Ana

Bruno

Carla

Davi Eva

Clique: todos são amigos mútuos

Figura 3: Rede social com clique {Ana, Bruno, Carla}.

Conjuntiva (FNC) quando é expressa como uma conjunção
de cláusulas, isto é, F = C1 ∧C2 ∧ ·· · ∧Cm, onde cada Ci é
uma cláusula. Uma valoração σ satisfaz a fórmula F quando
satisfaz simultaneamente todas as cláusulas Ci que compõem
F .

A seguir são apresentados os dois problemas centrais
desta redução: Clique, que atua como problema atacado
(N P -completo), e Max-2SAT, o problema alvo cuja N P -
dificuldade será estabelecida.

O problema Clique foi demonstrado como N P -completo
por Karp em 1972 [6]. Para tornar mais clara a estrutura do
problema e facilitar a compreensão da redução apresentada
posteriormente, é apresentado um exemplo cotidiano que
ilustra o conceito de clique, conforme representado na
Figura 3. Em uma rede social, cada pessoa é representada
por um vértice do grafo, e uma aresta conecta duas pessoas
que são amigas entre si. O problema Clique corresponde a
encontrar um grupo de pelo menos k pessoas onde todos são
mutuamente amigos, isto é, cada par de pessoas dentro desse
grupo possui uma relação de amizade direta. Por exemplo,
imagine que você deseja organizar um jantar e precisa
convidar pelo menos três pessoas, mas com a restrição de
que todos os convidados já se conheçam mutuamente para
garantir um ambiente confortável e integrado. Determinar se
tal grupo existe na sua rede de amizades é exatamente uma
instância do problema Clique.

A Figura 3 ilustra esse cenário: Ana, Bruno e Carla
formam uma clique de tamanho 3, pois cada par dentro
desse grupo possui amizade direta (representada pelas arestas
que conectam todos os três entre si). Davi e Eva, embora
conectados a alguns membros do grupo, não fazem parte
dessa clique pois não são amigos de todos os outros membros
simultaneamente — por exemplo, Davi não possui aresta
com Carla, e Eva não possui aresta com Ana nem com Bruno.

É importante observar a diferença fundamental entre o

TABELA 2: DEFINIÇÃO FORMAL DO PROBLEMA MAX-2SAT.

Max-2SAT

Entrada: Uma fórmula booleana F em forma normal
conjuntiva (FNC), na qual cada cláusula contém no
máximo dois literais, e um inteiro positivo k.
Questão: Existe uma valoração booleana das variáveis
de F que satisfaça pelo menos k cláusulas?

problema 2-SAT e sua versão de maximização. O problema
2-SAT, que pergunta se existe uma valoração que satisfaz
todas as cláusulas de uma fórmula onde cada cláusula tem
no máximo dois literais, pode ser resolvido em tempo
linear O(n + m), onde n é o número de variáveis e m é
o número de cláusulas, através de algoritmos baseados em
grafos de implicação e componentes fortemente conexas [2].
Em contraste, a versão de maximização Max-2SAT foi
demonstrada como N P -completa por Garey, Johnson e
Stockmeyer [3], que provou sua intratabilidade através
de uma redução polinomial a partir do problema Vertex
Cover. Essa diferença ilustra como alterações pequenas na
especificação de um problema podem resultar em mudanças
drásticas em sua complexidade computacional.

Demonstrar que Max-2SAT é N P -completo requer exibir
dois componentes: primeiro, um certificado verificável em
tempo polinomial que comprove a pertinência à classe
N P ; segundo, uma redução polinomial a partir de um
problema já conhecido como N P -completo. Neste trabalho,
o problema Clique é utilizado como ponto de partida para a
redução, estabelecendo uma correspondência entre estruturas
altamente conectadas em grafos e fórmulas booleanas com
alto grau de satisfatibilidade. Essa redução será desenvolvida
em detalhes na Seção 5.

III. TRABALHOS RELACIONADOS

As referências clássicas sobre teoria da complexidade
computacional e N P -completude, como Cook [1], Karp [6],
Garey e Johnson [4], Papadimitriou [7] e Sipser [5],
constituem obras fundamentais para a compreensão geral de
reduções polinomiais, classes de complexidade e taxonomia
de problemas intratáveis, fornecendo o alicerce conceitual
sobre o qual se desenvolvem estudos mais específicos.

No contexto específico de Max-2SAT e problemas
de satisfatibilidade booleana, Goemans e Williamson [8]
apresentam um algoritmo de aproximação baseado em
programação semidefinida que alcança fator de aproxi-
mação de 0.878 para o problema Max-2SAT. O trabalho
estabelece um marco importante ao conectar técnicas de
otimização contínua com problemas combinatórios discre-
tos, demonstrando que relaxações semidefinidas podem
fornecer soluções de alta qualidade mesmo quando a
solução ótima é computacionalmente intratável. Os autores
utilizam arredondamento aleatório de variáveis baseado
em vetores unitários, técnica que se tornou fundamental
para o desenvolvimento de algoritmos de aproximação em
problemas de satisfatibilidade.

Trevisan et al. [9] investigam a construção sistemática
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de gadgets para reduções entre variantes de problemas de
satisfação de restrições booleanas. O trabalho caracteriza
quais propriedades estruturais devem ser preservadas ao
transformar instâncias de um problema em outro, estabe-
lecendo condições necessárias e suficientes para que uma
redução mantenha a equivalência entre soluções ótimas. Os
autores demonstram como gadgets bem projetados permitem
controlar precisamente o número de cláusulas satisfeitas
na fórmula resultante, técnica essencial para reduções que
envolvem problemas de maximização como o Max-2SAT.
Essa abordagem sistemática influenciou significativamente
o desenvolvimento de novas reduções e a compreensão de
limites de aproximabilidade.

Khanna et al. [10] estabelecem uma taxonomia completa
de aproximabilidade para problemas de satisfação de
restrições booleanas, incluindo Max-2SAT. O trabalho
caracteriza formalmente quais variantes desses problemas
admitem esquemas de aproximação em tempo polinomial
(PTAS) e quais são AP X -completos, isto é, não admitem
aproximação arbitrariamente boa sob a hipótese P 6= N P .
Os autores demonstram que Max-2SAT pertence à classe
AP X -completa, indicando que, embora existam algoritmos
de aproximação com garantias constantes, não é possível
obter esquemas que aproximem a solução ótima com
erro arbitrariamente pequeno em tempo polinomial. Essa
caracterização delimita precisamente as fronteiras entre
o que é computacionalmente viável e o que permanece
intratável mesmo sob relaxações de otimalidade.

No contexto pedagógico e didático, Lassance, Bianchini
e Santos [11] apresentam um estudo fundamentado na
experiência da disciplina de Teoria da Computação da
Universidade Federal do Tocantins, evidenciando a im-
portância de metodologias ativas baseadas em seminários
acadêmicos para a aprendizagem de conceitos abstratos
como decidibilidade, complexidade e N P -completude. Os
autores argumentam que a exposição pública, a análise
crítica de demonstrações formais e a elaboração de
apresentações estruturadas contribuem significativamente
para o desenvolvimento de autonomia intelectual e domínio
técnico por parte dos estudantes. A discussão mostra como
abordagens dialogadas favorecem a consolidação de técnicas
de redução polinomial e de formalização rigorosa, aspectos
essenciais tanto para a compreensão de problemas intratáveis
quanto para a construção de demonstrações corretas. Esse
trabalho relaciona-se diretamente com a proposta pedagógica
do presente artigo, que busca apresentar a demonstração de
N P -completude do Max-2SAT de forma didática e acessível
a estudantes de graduação.

IV. DESCRIÇÃO DO PROBLEMA

O problema Maximum 2-Satisfiability (Max-2SAT) é uma
variante de maximização do problema clássico SAT, na
qual cada cláusula contém no máximo dois literais. O
objetivo é determinar uma valoração booleana que satisfaça
o maior número possível de cláusulas. Na versão de
decisão, investigada neste trabalho, pergunta-se se existe
uma valoração capaz de satisfazer pelo menos k cláusulas
de uma fórmula em forma normal conjuntiva (FNC).

Para tornar o problema Max-2SAT mais acessível,
considere o seguinte cenário: um organizador de eventos

precisa alocar n palestras em dois horários disponíveis,
manhã e tarde. Cada palestra deve ocorrer em exatamente um
dos dois períodos. Diversos pares de palestrantes expressam
preferências conjuntas sobre os horários, representadas por
restrições do tipo "pelo menos um de nós deve estar na
manhã"ou "pelo menos um de nós deve estar na tarde".

Formalmente, cada palestra pode ser modelada i por uma
variável booleana xi, onde xi = 1 significa que a palestra i
está alocada no período da manhã, e xi = 0 indica alocação
no período da tarde. Uma preferência expressa por dois
palestrantes i e j pode ser representada por uma cláusula
booleana como (xi∨ x j), que é satisfeita quando pelo menos
uma das duas palestras ocorre na manhã, ou (¬xi ∨ x j),
indicando que se a palestra i for na manhã, então j também
deve ser na manhã.

Em muitas situações práticas, as preferências dos pales-
trantes entram em conflito, tornando impossível satisfazer
todas simultaneamente. Por exemplo, se três palestrantes A,
B e C expressam as preferências "A ou B na manhã", "B
ou C na tarde"e "A ou C em horários opostos", pode ser
impossível atender todas ao mesmo tempo. Nesse contexto,
o objetivo torna-se maximizar o número total de preferências
atendidas, escolhendo uma alocação que satisfaça o maior
número possível de restrições.

Esse cenário captura a essência do Max-2SAT: lidar com
um sistema de restrições booleanas parcialmente conflitantes
e buscar uma solução que maximize a consistência global,
mesmo quando a satisfação total é inviável.

Formalmente, uma instância do Max-2SAT consiste em
uma fórmula booleana F em forma normal conjuntiva
(FNC), composta por cláusulas C1,C2, . . . ,Cm, cada uma
contendo um ou dois literais, e por um inteiro positivo k. O
problema consiste em determinar se existe uma valoração σ

que satisfaça pelo menos k cláusulas de F , conforme definido
na Tabela 2.

Embora o problema 2-SAT seja solucionável em tempo
linear, sua versão de maximização (Max-2SAT) apresenta
complexidade substancialmente maior. Essa diferença ilustra
como pequenas alterações na formulação podem transformar
um problema tratável em intratável. O Max-2SAT possui
aplicações em gerenciamento de dependências de software,
depuração de hardware, análise de redes biológicas e
problemas de agendamento com restrições binárias.

Para ilustrar o comportamento do problema, considere a
fórmula:

F = (x1∨ x2) ∧ (¬x1∨ x3) ∧ (¬x2∨¬x3).

Nenhuma valoração satisfaz simultaneamente as três
cláusulas. Isso ocorre porque as duas últimas impõem
condições opostas sobre a variável x3: a cláusula (¬x1 ∨
x3) força x3 = 1 sempre que x1 = 1, enquanto a cláusula
(¬x2 ∨ ¬x3) força x3 = 0 sempre que x2 = 1. Como a
primeira cláusula (x1 ∨ x2) exige que pelo menos uma das
duas variáveis seja verdadeira, inevitavelmente surge uma
contradição. Se x1 = 1, então x3 deve ser 1, mas isso tende
a violar a terceira cláusula. Se x2 = 1, então x3 deve ser 0,
mas isso tende a violar a segunda cláusula. Assim, qualquer
tentativa de satisfazer todas as três cláusulas força a violação
de pelo menos uma delas.

Apesar disso, é possível satisfazer duas cláusulas. Por
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TABELA 3: AVALIAÇÃO EXAUSTIVA DAS VALORAÇÕES PARA A

FÓRMULA F .

x1 x2 C1 C2 C3 C4 Total
0 0 0 1 1 1 3
0 1 1 1 0 1 3
1 0 1 1 1 0 3
1 1 1 0 1 1 3

Alocação de Palestras

Manhã

P1

P3

Tarde

P2

P4

(P1∨P3)X

(¬P2∨P3)X

(¬P1∨P4)×

Figura 4: 2 de 3 preferências atendidas.

exemplo, a valoração x1 = 1, x2 = 1 e x3 = 0 satisfaz a
primeira e a terceira cláusulas, mas viola a segunda.

Esse comportamento evidencia o caráter de otimização
do Max-2SAT: quando a estrutura das restrições contém
conflitos inevitáveis, o objetivo deixa de ser satisfazer todas
as cláusulas e passa a ser maximizar o número de cláusulas
satisfeitas.

Para ilustrar de forma pedagógica situações em que não
é possível satisfazer todas as cláusulas simultaneamente,
considera-se a seguinte fórmula:

F = (x1∨ x2)∧ (¬x1∨¬x2)∧ (x1∨¬x2)∧ (¬x1∨ x2).

Esta fórmula envolve duas variáveis booleanas, x1 e
x2, de modo que existem exatamente quatro valorações
possíveis. A Tabela 3 apresenta a avaliação sistemática
de cada valoração, demonstrando que nenhuma satisfaz
simultaneamente as quatro cláusulas.

Como evidenciado na tabela, cada valoração satisfaz
exatamente três das quatro cláusulas, caracterizando um caso
típico em que a formulação assume natureza de problema de
maximização. Este exemplo evidencia a essência do Max-
2SAT: quando a estrutura das restrições contém conflitos
inevitáveis, o objetivo deixa de ser satisfazer todas as
cláusulas e passa a ser maximizar o número de cláusulas
satisfeitas.

Retornando à interpretação lúdica apresentada anterior-
mente, podemos visualizar o problema através do cenário de
alocação de palestras. A Figura 4 ilustra de forma resumida a
estrutura conceitual desse cenário, destacando os elementos
centrais da formalização que será empregada na redução
apresentada posteriormente.

Essa analogia capta a essência do Max-2SAT: resolver um

sistema de restrições parcialmente conflitantes e maximizar
sua consistência.

Do ponto de vista didático, o Max-2SAT é especialmente
valioso por evidenciar de forma clara a diferença entre
problemas de satisfação total e problemas de maximização.
A análise desse tipo de fórmula permite ao estudante
perceber como a impossibilidade de satisfazer todas as
cláusulas conduz naturalmente a questões de otimização.
O problema também mostra que a estrutura das cláusulas
exerce influência direta sobre a complexidade computacio-
nal, deixando evidente que restrições simples como limitar
cada cláusula a dois literais não garantem a existência
de algoritmos polinomiais. Além disso, o Max-2SAT
estabelece conexões importantes entre problemas booleanos
e problemas em grafos, permitindo interpretar propriedades
combinatórias por meio de fórmulas proposicionais. A
construção de reduções por gadgets, como a utilizada
na transformação Clique ≤p Max-2SAT apresentada na
Seção 5, reforça técnicas fundamentais para demonstrações
de N P -completude. Uma compreensão precisa desse
comportamento é essencial para acompanhar com rigor a
prova apresentada.

V. DEMONSTRAÇÃO E CONTRIBUIÇÕES

Nesta seção é estabelecida a N P -completude do problema
Max-2SAT. A redução utilizada parte do problema Clique
e emprega uma construção baseada em gadgets de seleção
e incompatibilidade [4], detalhada passo a passo com a
variável auxiliar z, as cláusulas de seleção e as cláusulas de
exclusão para não-arestas.

Para provar que Max-2SAT é N P -completo, é necessário
demonstrar duas propriedades:

(i) Max-2SAT ∈N P ;

(ii) existe um problema π sabidamente N P -completo tal
que π≤p Max-2SAT.

Tome (I): Max-2SAT ∈N P . Para mostrar que Max-2SAT
pertence à classe N P , é suficiente exibir um certificado de
tamanho polinomial e um algoritmo verificador que, dado
esse certificado, decide em tempo polinomial se ele constitui
uma solução válida para a instância. No caso do Max-2SAT,
o certificado é uma valoração booleana σ : {x1,x2, . . . ,xn}→
{0,1} que atribui valores verdadeiro ou falso a todas as
variáveis da fórmula F . Dado esse certificado, o Algoritmo 1
percorre cada cláusula da fórmula, avalia se ela é satisfeita
pela valoração fornecida e conta o número total de cláusulas
satisfeitas, verificando se esse total atinge pelo menos o
limiar k especificado na instância.

Para verificar que Max-2SAT pertence à classe N P ,
analisamos a complexidade do algoritmo verificador. O
algoritmo percorre cada uma das m cláusulas uma única
vez. Como cada cláusula contém no máximo dois literais,
a avaliação de C j sob σ é feita em tempo O(1). Portanto,
o tempo total de execução é O(m), que é polinomial no
tamanho da entrada. Logo, Max-2SAT ∈N P .

Tome (II): Max-2SAT é N P -difícil via Clique ≤p
Max-2SAT. Para demonstrar que Max-2SAT é N P -difícil,
seleciona-se o problema Clique, definido formalmente na
Tabela 1 e conhecido por ser N P -completo desde o trabalho
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Algorithm 1 Verificador Polinomial para Max-2SAT

Entrada: Fórmula F =C1∧C2∧·· ·∧Cm em 2-FNC, inteiro
k, certificado σ

Saída: ACEITA se σ satisfaz pelo menos k cláusulas;
REJEITA caso contrário

1: contador← 0
2: for cada cláusula C j ∈ F do
3: Avalie C j sob a valoração σ

4: if C j é satisfeita por σ then
5: contador← contador+1
6: end if
7: end for
8: if contador≥ k then
9: return ACEITA

10: else
11: return REJEITA
12: end if

seminal de Karp [6], e constrói-se uma redução polinomial
Clique ≤p Max-2SAT. Seguindo a terminologia adotada
neste trabalho, Clique atua como problema atacado (o
problema de partida, cuja N P -completude já é conhecida)
e Max-2SAT é o problema alvo, para o qual desejamos
transferir a dificuldade computacional.

A escolha do problema Clique como ponto de partida para
a redução é estratégica por diversas razões. Primeiro, a
estrutura de Clique envolve a seleção de um subconjunto de
vértices com propriedades específicas (adjacência mútua), o
que mapeia naturalmente para variáveis booleanas indicando
inclusão ou exclusão de elementos. Segundo, a condição
de que todos os pares devem ser adjacentes traduz-se
diretamente em cláusulas de incompatibilidade para pares
não adjacentes. Terceiro, o parâmetro k (tamanho da clique)
pode ser codificado no número de cláusulas satisfeitas,
permitindo equivalência precisa entre os problemas. Por fim,
a redução Clique ≤p Max-2SAT ilustra de forma didática
a conexão entre problemas de grafos e problemas de lógica
proposicional, tema central deste trabalho.

A estratégia geral consiste em criar uma variável booleana
xi para cada vértice, uma variável auxiliar z, e construir
cláusulas que incentivam a seleção de vértices enquanto
punem escolhas de pares não adjacentes. O parâmetro K′

é ajustado para que a satisfação de exatamente K′ cláusulas
corresponda a uma clique de tamanho k.

A construção formal da fórmula procede da seguinte
maneira. Dada uma instância (G,k) do problema Clique,
onde G = (V (G),E(G)) é um grafo com conjunto de vértices
V (G) e conjunto de arestas E(G), e k é um inteiro positivo
representando o tamanho mínimo da clique procurada, a
função de redução f produz uma instância (F ′,K′) do
problema Max-2SAT, transformando o grafo G em uma
fórmula booleana F ′ em forma normal conjuntiva (onde cada
cláusula contém no máximo dois literais) e o parâmetro k em
um novo parâmetro K′ que representa o número mínimo de
cláusulas a serem satisfeitas. A seguir, descreve-se passo a
passo como F ′ e K′ são construídos a partir dos elementos de
G e do valor k.

A construção de f pode ser realizada em tempo
polinomial. A criação das variáveis booleanas requer

O(|V (G)|) operações para os n vértices, além de O(1) para
a variável auxiliar z. As cláusulas de seleção totalizam 2 ·
|V (G)| cláusulas, cada uma construída em tempo constante,
resultando em O(|V (G)|). As cláusulas de incompatibilidade
correspondem a uma cláusula para cada par de vértices não-
adjacentes, o que no pior caso representa |E| = O(|V (G)|2)
cláusulas. Por fim, o cálculo de K′ envolve apenas O(1)
operações aritméticas. Portanto, a complexidade total da
redução é O(|V (G)|2), que é polinomial no tamanho da
entrada.

A construção da fórmula F ′ envolve a criação de variáveis
booleanas e três tipos de cláusulas que trabalham em
conjunto para codificar a estrutura do grafo. Inicialmente,
são definidas as variáveis que representarão os vértices
do grafo. Para cada vértice vi ∈ V , cria-se uma variável
booleana xi que indica se o vértice vi faz parte da clique
candidata. Além dessas variáveis, é introduzida uma variável
auxiliar adicional z, cujo papel será explicado no contexto
das cláusulas de seleção.

O primeiro tipo de cláusula são as cláusulas de seleção,
que incentivam a escolha de vértices e permitem controlar o
tamanho da clique. Para cada vértice vi do grafo original,
são inseridas duas cláusulas na fórmula: (xi ∨ z) e (xi ∨¬z).
Essas cláusulas funcionam juntas para distinguir vértices
selecionados de vértices não selecionados. Quando xi = 1,
indicando que o vértice vi foi escolhido para compor a clique,
ambas as cláusulas são satisfeitas, independentemente do
valor atribuído à variável auxiliar z. Já quando xi = 0, apenas
uma das duas cláusulas pode ser satisfeita, dependendo
do valor de z: se z = 1, a cláusula (xi ∨ z) é satisfeita
e (xi ∨ ¬z) é violada; se z = 0, ocorre o inverso. Essa
diferença de uma cláusula satisfeita entre vértices escolhidos
e não escolhidos permite controlar o tamanho da clique
por meio do parâmetro K′, garantindo que apenas seleções
com exatamente k vértices produzam o número exigido de
cláusulas satisfeitas.

O segundo tipo de cláusula são as cláusulas de incom-
patibilidade, que garantem que apenas vértices mutuamente
adjacentes sejam selecionados simultaneamente. Para cada
par de vértices (vi,v j) que não são adjacentes no grafo
original, isto é, para cada par onde (vi,v j) /∈ E, adiciona-
se à fórmula a cláusula (¬xi ∨¬x j). Essa cláusula impõe
uma restrição essencial: vértices não adjacentes não podem
ser selecionados ao mesmo tempo para compor a clique. Se
ambos xi e x j recebem o valor 1, a cláusula (¬xi ∨¬x j) se
torna falsa, penalizando essa escolha inválida. Por outro
lado, se ao menos um dos vértices não for selecionado (isto
é, se uma das variáveis for 0), a cláusula é satisfeita. Dessa
forma, qualquer valoração que satisfaça um número elevado
de cláusulas deve corresponder a um conjunto de vértices que
forma uma clique no grafo original.

Finalmente, define-se o parâmetro K′ que estabelece
o número mínimo de cláusulas a serem satisfeitas. O
parâmetro K′, que estabelece o número mínimo de cláusulas
a serem satisfeitas na instância de Max-2SAT, é definido de
modo a manter equivalência exata com o problema Clique.
O parâmetro é definido como K′ = |V | + k + |E|, onde
|V (G)| é o número total de vértices do grafo (e, portanto,
o número de cláusulas do tipo (xi ∨ z)), k é o tamanho da
clique procurada no problema original (refletindo o ganho
adicional obtido nas cláusulas (xi∨¬z) quando k vértices são
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TABELA 4: RESUMO DA REDUÇÃO CLIQUE ≤p MAX-2SAT.

Componente Cláusulas Função (Gadget) Contrib. p/
K′

Var. de vértice xi, vi ∈V Indica se vi pertence
à clique

—

Var. auxiliar z Controla contagem
de cláusulas

—

Seleção posi-
tiva

(xi ∨ z) Satisfeita se z=1;
base fixa

|V |

Seleção nega-
tiva

(xi ∨¬z) Satisfeita se xi=1;
mede seleção

k

Incompatib. (¬xi ∨ ¬x j),
(vi,v j) /∈ E

Impede seleção de
não adjacentes

|E|

Total: |V |+k+|E|

Grafo G

v1

v2

v3

v4

Clique: {v1;v2;v3}

Redução

Fórmula Max-2SAT

Seleção (+z):
(x1 ∨ z)∧ (x2 ∨ z)
∧(x3 ∨ z)∧ (x4 ∨ z)

Seleção (¬z):
(x1 ∨¬z)∧ (x2 ∨¬z)
∧(x3 ∨¬z)∧ (x4 ∨¬z)

Incompatibilidade:
(¬x1 ∨¬x4)∧ (¬x2 ∨¬x4)
∧(¬x3 ∨¬x4)

K′ = 4+3+3 = 10

Figura 5: Transformação completa: grafo com clique {v1,v2,v3}
e fórmula Max-2SAT resultante.

escolhidos), e |E| é o número de não-arestas, isto é, de pares
de vértices não adjacentes (que correspondem às cláusulas
(¬xi ∨¬x j)). Essa definição garante que a solução do Max-
2SAT reproduza a condição do problema da clique.

Para facilitar a compreensão da construção, a Tabela 4
consolida os componentes da redução, explicitando o
papel de cada tipo de cláusula, o significado dos gadgets
empregados e a contribuição de cada bloco para o parâmetro
K′.

A Figura 5 ilustra o processo de redução em três etapas,
mostrando como cada elemento do grafo original é traduzido
para componentes da fórmula Max-2SAT. Na primeira etapa,
apresentamos o grafo de entrada com seus vértices e arestas.
Na segunda etapa, mostramos os gadgets de seleção, que
consistem nas cláusulas (xi ∨ z) e (xi ∨ ¬z) para cada
vértice, representando o mecanismo que diferencia vértices
escolhidos de não escolhidos. Na terceira etapa, exibimos os
gadgets de incompatibilidade, que são as cláusulas (¬xi ∨
¬x j) geradas para cada par de vértices não adjacentes,
impedindo a seleção simultânea de vértices que não formam
aresta.

Para entender como esse valor opera, considere uma
valoração que corresponde a uma clique válida de tamanho
k. Todas as |V (G)| cláusulas do tipo (xi ∨ z) são satisfeitas,
contribuindo |V (G)| para a contagem. As k cláusulas
(xi ∨ ¬z) associadas aos vértices escolhidos também são
satisfeitas, acrescentando k ao total. Além disso, todas as |E|
cláusulas de incompatibilidade são satisfeitas, pois nenhum
par de vértices não adjacentes foi selecionado ao mesmo
tempo. Somando essas contribuições, obtém-se K′ = |V |+
k+ |E|. Já qualquer valoração que não represente uma clique
de tamanho pelo menos k ou que viole alguma cláusula de
incompatibilidade satisfará um número menor de cláusulas,
o que garante a equivalência entre os dois problemas.

A Figura 5 apresenta uma visualização completa da
transformação, mostrando lado a lado o grafo de entrada
e a fórmula Max-2SAT resultante, com destaque para a
correspondência entre cada elemento do grafo e as cláusulas
geradas. Na parte esquerda da figura, observa-se o grafo G
com a clique {v1,v2,v3} destacada, onde as linhas contínuas
representam arestas e as linhas tracejadas representam não-
arestas. Na parte direita, é exibida a fórmula completa
organizada em três blocos: as cláusulas de seleção positivas
(xi ∨ z), as cláusulas de seleção negativas (xi ∨ ¬z), e as
cláusulas de incompatibilidade (¬xi ∨¬x j). A organização
visual evidencia como cada vértice do grafo origina suas
cláusulas de seleção e como cada par de vértices não
adjacentes (linhas tracejadas) gera sua respectiva cláusula de
incompatibilidade.

Para ilustrar como o parâmetro K′ é obtido, considere o
grafo mostrado na Figura 5, com V (G) = {v1;v2;v3;v4} e
E(G) = {(v1,v2);(v2,v3);(v1,v3)}. Suponha que desejamos
verificar se existe uma clique de tamanho k = 3 nesse grafo.

Primeiro, são identificados os componentes necessários
para o cálculo:

O número de vértices é |V (G)| = 4, o que gera quatro
cláusulas do tipo (xi ∨ z), uma para cada vértice do grafo.
Essas cláusulas sempre serão satisfeitas quando z = 1,
independentemente de quais vértices forem escolhidos.

O tamanho da clique desejada é k = 3, que corresponde
ao número de cláusulas adicionais do tipo (xi ∨ ¬z)
que esperamos satisfazer quando o número de vértices
selecionados é três.

Para determinar o número de não-arestas |E|, conta-se
quantos pares de vértices não são adjacentes. Em um grafo
com quatro vértices, existem

(4
2

)
= 6 pares possíveis. Como

o grafo possui |E(G)| = 3 arestas, o número de não-arestas
é |E| = 6− 3 = 3. Os pares não adjacentes são: (v1,v4),
(v2,v4) e (v3,v4). Para cada um desses pares, inclui-se uma
cláusula de incompatibilidade.

Aplicando a fórmula K′ = |V (G)|+ k+ |E|, obtém-se:

K′ = 4+3+3 = 10

Assim, a instância de Max-2SAT correspondente per-
gunta: "É possível satisfazer pelo menos 10 cláusulas
da fórmula construída?"Uma resposta positiva equivale a
afirmar que o grafo original possui uma clique de tamanho
pelo menos 3.

Para verificar a construção, observe que o grafo contém
uma clique de tamanho 3 formada pelos vértices {v1,v2,v3}.
Atribuindo x1 = x2 = x3 = 1, x4 = 0 e z = 1, temos:

As 4 cláusulas (x1∨z), (x2∨z), (x3∨z) e (x4∨z) são todas
satisfeitas porque z = 1, contribuindo com 4 cláusulas.

Das 4 cláusulas do tipo (xi ∨ ¬z), apenas as três
correspondentes aos vértices selecionados são satisfeitas:
(x1 ∨¬z), (x2 ∨¬z) e (x3 ∨¬z), pois x1 = x2 = x3 = 1. Isso
contribui com 3 cláusulas adicionais.

As 3 cláusulas de incompatibilidade (¬x1 ∨¬x4), (¬x2 ∨
¬x4) e (¬x3 ∨ ¬x4) são todas satisfeitas porque x4 = 0,
contribuindo com 3 cláusulas.

O total é 4 + 3 + 3 = 10 = K′, o que confirma que a
valoração satisfaz exatamente o número exigido de cláusulas.
Esse exemplo mostra que o parâmetro K′ reflete de forma
precisa a estrutura da clique por meio da contagem de
cláusulas satisfeitas.
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Estabelecida a construção, é necessário agora provar sua
corretude demonstrando a equivalência entre as instâncias.
Para estabelecer que a redução está correta, é preciso
demonstrar que (G,k) ∈ Clique se e somente se (F ′,K′) ∈
Max-2SAT. Cada direção é provada separadamente.

Ida (⇒): Se G possui uma clique de tamanho k, então
(F’, K’) é satisfatível. Suponha que exista um conjunto
S ⊆V (G) de vértices formando uma clique de tamanho pelo
menos k, isto é, |S| ≥ k e para todo par de vértices distintos
vi,v j ∈ S, existe uma aresta (vi,v j) ∈ E(G). Constrói-se uma
valoração que satisfaz pelo menos K′ cláusulas da fórmula
F ′.

Defina a valoração da seguinte forma: para cada variável
xi, atribua xi = 1 se o vértice vi pertence ao conjunto S e xi =
0 caso contrário. Adicionalmente, atribua z = 1 à variável
auxiliar. Analisa-se quantas cláusulas são satisfeitas por essa
valoração.

Primeiro, são analisadas as cláusulas de seleção. Para
cada vértice vi ∈ V (G), há duas cláusulas: (xi ∨ z) e (xi ∨
¬z). Como foi definido z = 1, todas as cláusulas do tipo
(xi ∨ z) são satisfeitas, independentemente do valor de xi, o
que contribui com |V (G)| cláusulas satisfeitas. Já para as
cláusulas (xi ∨¬z), temos ¬z = 0 nessa valoração, de modo
que elas são satisfeitas apenas quando xi = 1. Como foi
atribuído xi = 1 aos k vértices do conjunto S, k cláusulas
desse tipo são satisfeitas.

Agora são consideradas as cláusulas de incompatibilidade.
Para cada par não-adjacente (vi,v j) /∈ E(G), temos a cláusula
(¬xi ∨ ¬x j). Essa cláusula é falsa apenas quando ambos
xi = 1 e x j = 1, o que aconteceria se ambos os vértices vi
e v j pertencessem ao conjunto S. No entanto, por hipótese,
S é uma clique, portanto todos os pares de vértices em S
são adjacentes. Isso significa que não existe nenhum par
(vi,v j) /∈ E(G) com ambos vi,v j ∈ S. Consequentemente,
para todo par não-adjacente (vi,v j) /∈ E(G), pelo menos um
dos vértices não pertence a S, garantindo que pelo menos
uma das variáveis xi ou x j vale 0, o que torna a cláusula
(¬xi ∨¬x j) verdadeira. Portanto, todas as |E| cláusulas de
incompatibilidade são satisfeitas.

Somando as contribuições, obtém-se |V (G)|+k+ |E|=K′

cláusulas satisfeitas, provando que (F ′,K′) ∈Max-2SAT.
Volta (⇐): Se (F ′,K′) é satisfatível, então G possui

uma clique de tamanho k. Suponha agora que exista uma
valoração que satisfaz pelo menos K′ cláusulas da fórmula
F ′. É demonstrado que pode-se extrair dessa valoração um
conjunto de vértices que forma uma clique de tamanho pelo
menos k no grafo G.

Sem perda de generalidade, pode-se assumir que a variável
auxiliar z recebe o valor 1 nesta valoração. Caso z = 0 na
valoração original, considera-se uma valoração alternativa
onde invertemos o valor de z para 1 e mantemos os valores de
todas as variáveis xi inalterados. Como cada vértice contribui
com duas cláusulas (xi ∨ z) e (xi ∨ ¬z), inverter z apenas
troca qual dessas cláusulas é satisfeita para vértices com
xi = 0, sem alterar o total de cláusulas satisfeitas. Portanto, é
possível trabalhar com uma valoração onde z = 1.

Com z = 1, todas as |V (G)| cláusulas da forma (xi ∨ z)
são automaticamente satisfeitas. Isso deixa espaço para
K′−|V (G)|= k+ |E| cláusulas adicionais serem satisfeitas.
Essas cláusulas adicionais vêm de duas fontes: as cláusulas
(xi ∨ ¬z) para vértices com xi = 1 e as cláusulas de

v1

v2

v3

v4

Figura 6: Grafo de entrada para a redução: clique {v1,v2,v3} e
vértice isolado v4.

incompatibilidade (¬xi∨¬x j).
Defina S = {vi | xi = 1} como o conjunto de vértices cujas

variáveis foram atribuídas como verdadeiras. Para satisfazer
pelo menos k + |E| cláusulas adicionais, é necessário ter
pelo menos |S| cláusulas do tipo (xi ∨¬z) satisfeitas (uma
para cada vértice em S) e todas as |E| cláusulas de
incompatibilidade satisfeitas.

Se alguma cláusula de incompatibilidade (¬xi ∨¬x j) não
for satisfeita, isso significa que ambos xi = 1 e x j = 1,
mas (vi,v j) /∈ E(G). Cada cláusula de incompatibilidade
violada reduz o número total de cláusulas satisfeitas em
uma unidade. Para manter o total em pelo menos K′, seria
necessário que mais cláusulas (xi ∨¬z) fossem satisfeitas, o
que requereria mais vértices em S. No entanto, adicionar
mais vértices aumenta o risco de violar mais cláusulas de
incompatibilidade. De fato, pode-se verificar algebricamente
que violar qualquer cláusula de incompatibilidade torna
impossível atingir exatamente K′ cláusulas satisfeitas com a
construção apresentada.

Portanto, todas as |E| cláusulas de incompatibilidade
devem ser satisfeitas, o que garante que não existe nenhum
par (vi,v j) /∈ E(G) com ambos vi,v j ∈ S. Logo, S forma uma
clique de tamanho pelo menos k no grafo G.

Para consolidar a compreensão da redução, é apresentado
um exemplo completo que percorre todas as etapas da
transformação, desde o grafo de entrada até a verifica-
ção da valoração resultante. Considere um grafo com
quatro vértices V (G) = {v1,v2,v3,v4} e arestas E(G) =
{(v1,v2),(v2,v3),(v1,v3)}. A Figura 6 ilustra esse grafo,
onde os vértices v1, v2 e v3 formam uma clique de tamanho
3, representada pelas linhas contínuas que conectam cada par
desses três vértices. O vértice v4 não possui arestas com
nenhum dos outros vértices, o que é indicado pelas linhas
tracejadas que representam os pares não adjacentes (v1,v4);
(v2,v4); (v3,v4). Essa distinção visual entre arestas presentes
e ausentes é fundamental para compreender como a redução
constrói as cláusulas de incompatibilidade.

A partir da clique de tamanho 3 identificada no grafo, a
construção gera as cláusulas:

(xi∨ z), (xi∨¬z) para i = 1,2,3,4,

e, para as não-arestas:

(¬x1∨¬x4), (¬x2∨¬x4), (¬x3∨¬x4).

A valoração x1 = x2 = x3 = 1, x4 = 0 e z = 1 satisfaz
exatamente K′ cláusulas, como requerido. A Figura 7 ilustra
detalhadamente essa verificação, mostrando quais cláusulas
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Verificação: x1 = x2 = x3 = 1, x4 = 0, z = 1

Seleção (xi ∨ z): 4 cláusulas

Seleção (xi ∨¬z): 3 cláusulas

Incompatibilidade: 3 cláusulas

Total: 4+3+3 = 10 = K′ X

Figura 7: Verificação detalhada da valoração que satisfaz K′ = 10
cláusulas.

são satisfeitas e quais não são, organizadas por tipo. Na
coluna da esquerda, observa-se que todas as cláusulas de
seleção positiva (xi ∨ z) são satisfeitas porque z = 1. Na
coluna central, as cláusulas de seleção negativa (xi∨¬z) são
satisfeitas apenas para os vértices selecionados (x1, x2, x3),
totalizando 3 cláusulas, enquanto a cláusula (x4 ∨¬z) não é
satisfeita pois x4 = 0 e ¬z = 0. Na coluna da direita, todas as
cláusulas de incompatibilidade são satisfeitas porque x4 = 0
torna verdadeira qualquer cláusula da forma (¬xi∨¬x4).

Esse exemplo demonstra concretamente como a estrutura
da clique no grafo original é preservada na fórmula Max-
2SAT: os três vértices da clique correspondem aos três
vértices com xi = 1, que são exatamente os responsáveis
por satisfazer as cláusulas extras de seleção negativa.
Simultaneamente, o fato de esses três vértices serem
mutuamente adjacentes garante que nenhuma cláusula de
incompatibilidade é gerada entre eles, permitindo que todas
as cláusulas de incompatibilidade (que envolvem apenas v4)
sejam satisfeitas.

A redução com a variável auxiliar z evidencia diversos as-
pectos pedagógicos relevantes. Ela mostra como cláusulas de
dois literais podem impor restrições estruturais fortes sobre
as possíveis valorações e como a seleção de vértices válidos
depende da satisfação simultânea de múltiplas cláusulas
independentes. Além disso, as cláusulas negativas traduzem
de maneira direta as relações de incompatibilidade no grafo,
reforçando a conexão entre propriedades combinatórias e
expressões booleanas. A definição precisa do parâmetro
K′ demonstra como controlar o tamanho da clique desejada
por meio da contagem de cláusulas satisfeitas. Por fim,
essa construção evidencia por que reduções entre problemas
de grafos e fórmulas booleanas constituem ferramenta
fundamental no estudo de N P -completude.

VI. RESULTADOS E REFLEXÕES

Apresentada a demonstração de N P -completude do Max-
2SAT, esta seção discute os principais resultados obtidos,
bem como reflexões conceituais e pedagógicas sobre o
processo de construção da redução e sobre os elementos que
tornaram essa abordagem útil para o aprendizado em Teoria
da Computação.

A demonstração apresentada confirmou que o problema
Max-2SAT pertence à classe N P , uma vez que o número de
cláusulas satisfeitas por uma valoração pode ser verificado
em tempo linear no tamanho da instância. Basta percorrer
cada cláusula uma única vez, avaliar se ela é verdadeira sob
a valoração fornecida como certificado, e contar quantas são

satisfeitas. Como cada cláusula contém no máximo dois
literais, essa avaliação é realizada em tempo constante por
cláusula, resultando em complexidade total O(m), onde m é
o número de cláusulas.

Além disso, foi demonstrado que Max-2SAT é N P -
difícil, pois o problema Clique, que é N P -completo
conforme estabelecido por Karp [6], foi reduzido a ele por
meio de uma função de transformação computável em tempo
polinomial. A redução constrói uma fórmula booleana cujo
tamanho é polinomial no tamanho do grafo de entrada: o
número de variáveis é |V |+ 1 e o número de cláusulas é
2|V |+ |E|, onde |E| ≤

(|V |
2

)
. A construção de cada cláusula

requer tempo constante, portanto a transformação completa
opera em tempo O(|V |2).

A formulação com a variável auxiliar z mostrou-se útil,
pois permite controlar o número total de cláusulas satisfeitas
sem recorrer a construções mais extensas. Essa técnica evita
a criação de cláusulas com mais de dois literais e preserva
a estrutura típica do Max-2SAT. A variável z funciona como
um mecanismo de balanceamento que garante que vértices
escolhidos contribuam com exatamente uma cláusula a mais
do que vértices não escolhidos, traduzindo o tamanho da
clique diretamente na quantidade de cláusulas satisfeitas.

O valor limite K′ foi definido para refletir com precisão
a estrutura combinatória do grafo original. A decom-
posição K′ = |V | + k + |E| incorpora três componentes
distintos: a base fixa de cláusulas sempre satisfeitas, o
ganho proporcional ao tamanho da clique e a penalização
associada à violação das cláusulas de incompatibilidade.
Essa construção assegura que uma valoração que satisfaça
exatamente K′ cláusulas corresponda a uma clique de
tamanho k, estabelecendo equivalência completa entre os
dois problemas.

Esses resultados mostram que pequenas alterações estru-
turais em problemas que parecem simples, como a transição
de 2-SAT para Max-2SAT, podem alterar de forma profunda
sua complexidade. Enquanto 2-SAT admite solução em
tempo linear por meio do grafo de implicações, sua
versão de maximização torna-se tão difícil quanto qualquer
problema em NP, evidenciando a fronteira entre tratabilidade
e intratabilidade.

O desenvolvimento da redução Clique ≤p Max-2SAT
revelou diversos aspectos importantes para o ensino e com-
preensão de problemas N P -completos. A transformação de
relações de adjacência em cláusulas de dois literais torna
explícito como propriedades estruturais de grafos podem ser
modeladas por fórmulas booleanas. Cada aresta ou não-
aresta no grafo corresponde de forma direta a uma restrição
lógica, estabelecendo um dicionário claro entre os dois
domínios. Essa correspondência evidencia que problemas
aparentemente distintos compartilham estrutura matemática
profunda, sendo manifestações diferentes de uma mesma
dificuldade computacional subjacente.

A expressão (¬xi ∨¬x j) traduz a proibição de escolher
dois vértices não adjacentes, mostrando como restrições
combinatórias são mapeadas para restrições lógicas. Essa
cláusula funciona como uma "barreira lógica"que impede
configurações inválidas, e sua violação resulta na redução
do número total de cláusulas satisfeitas. Compreender esse
mecanismo de penalização é fundamental para desenvolver
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intuição sobre como problemas de otimização combinatória
podem ser codificados em fórmulas booleanas.

A introdução da variável auxiliar z simplifica a contagem
de cláusulas, garantindo equilíbrio entre as expressões do
tipo (xi ∨ z) e (xi ∨ ¬z) e permitindo a definição precisa
do parâmetro K′. Sem essa variável, seria necessário
construir gadgets mais complexos ou usar cláusulas maiores,
evidenciando a fronteira. A técnica de usar variáveis
auxiliares para controlar comportamentos globais da fórmula
é aplicável em construções de reduções, e sua apresentação
neste contexto fornece modelo útil para outros problemas.

O ajuste de K′ evidencia uma técnica comum em reduções,
na qual o número de cláusulas satisfeitas reflete diretamente
o tamanho da estrutura procurada no problema original.
Essa correspondência numérica precisa entre parâmetros do
problema fonte e problema alvo é característica essencial
de reduções bem construídas. Estudantes muitas vezes
têm dificuldade em determinar parâmetros corretos para
problemas de otimização; o exemplo apresentado demonstra
metodologia sistemática baseada na análise de contribuições
independentes de cada componente da construção.

Provar ambas as direções da equivalência, isto é,
que uma clique gera uma valoração válida e que uma
valoração válida gera uma clique, reforça o raciocínio
formal necessário para reduções corretas. Muitos estudantes
cometem o erro de provar apenas uma direção ou de assumir
equivalência sem justificativa rigorosa. A demonstração
cuidadosa apresentada serve como modelo de argumentação
matemática, enfatizando a importância de considerar todas
as possibilidades e eliminar casos degenerados.

Analisar como cada valoração influencia o conjunto das
cláusulas satisfeitas ajuda a desenvolver intuição sobre como
problemas booleanos capturam propriedades de grafos. Ao
considerar sistematicamente os efeitos de atribuir valores
verdadeiro ou falso a cada variável, estudantes desenvolvem
compreensão profunda de como restrições locais (satisfação
de cláusulas individuais) emergem como propriedades
globais (existência de cliques). Essa conexão entre nível
local e global é fundamental não apenas em complexidade
computacional, mas em toda ciência da computação.

Ao final, a redução analisada oferece uma visão sólida
sobre a intratabilidade do Max-2SAT e sobre a versatilidade
das reduções polinomiais. A construção estudada demonstra,
de forma acessível e estruturada, como problemas de
natureza combinatória e lógica podem ser relacionados
de maneira precisa, contribuindo significativamente para o
aprendizado prático de N P -completude.

+3O material desenvolvido pode ser empregado em diver-
sos contextos de ensino. Em disciplinas de graduação em
Teoria da Computação ou Análise de Algoritmos, a redução
pode ser apresentada como estudo de caso após a introdução
dos conceitos de N P -completude, permitindo que estudan-
tes acompanhem passo a passo uma demonstração completa
antes de desenvolverem suas próprias provas. Em cursos de
pós-graduação, o material pode servir como ponto de partida
para discussões sobre técnicas avançadas de redução, limites
de aproximabilidade e conexões com outros problemas de
satisfatibilidade. Como atividade prática, sugere-se propor
aos estudantes a verificação manual da redução para grafos
pequenos, a implementação computacional do algoritmo de
transformação, ou a adaptação da técnica para variantes

como Max-3SAT ou Weighted Max-2SAT. A estrutura
modular da apresentação — com figuras, tabelas-resumo e
exemplos comentados — facilita a segmentação do conteúdo
em múltiplas aulas ou a utilização em metodologias ativas
baseadas em seminários, conforme discutido por Lassance,
Bianchini e Santos [11].

O material apresentado serve tanto como recurso didático
para compreensão de técnicas específicas quanto como
exemplar metodológico para desenvolvimento de novas
reduções, cumprindo assim o objetivo pedagógico central
deste trabalho.

VII. CONSIDERAÇÕES FINAIS

Este artigo apresentou uma demonstração formal e didática
da N P -completude do problema Max-2SAT por meio de
redução polinomial a partir do problema Clique. A prova foi
estruturada demonstrando-se primeiro a pertinência à classe
N P mediante certificado verificável em tempo polinomial,
e em seguida a N P -dificuldade através de transformação
polinomial que preserva equivalência entre instâncias.

A construção proposta utiliza variável auxiliar z para
controlar o número de cláusulas satisfeitas, ajustando o
parâmetro K’ para refletir de forma precisa o tamanho da
clique desejada. As cláusulas de seleção incentivam a esco-
lha de vértices, enquanto as cláusulas de incompatibilidade
impedem seleção simultânea de vértices não adjacentes,
evidenciando como relações combinatórias em grafos são
codificadas por fórmulas booleanas.

Entre as dificuldades encontradas, destacam-se a escolha
adequada do parâmetro K’ e a formalização rigorosa da prova
de corretude em ambas as direções. A compreensão do papel
da variável z exigiu análise cuidadosa de como cada tipo de
cláusula contribui para a contagem total.

Como limitações, o trabalho concentrou-se na versão de
decisão do Max-2SAT e na redução a partir de Clique.
Outras reduções, como baseadas em 3-SAT ou Vertex Cover,
podem oferecer perspectivas complementares. Para trabalhos
futuros, sugere-se explorar variantes parametrizadas, analisar
complexidade em classes especiais de grafos, desenvolver
algoritmos aproximativos e investigar aplicações com SAT
solvers modernos.

O material produzido serve como recurso didático para
disciplinas de Teoria da Computação, contribuindo para a
formação de estudantes em Ciência da Computação. Espera-
se que inspire novas produções que articulem rigor técnico e
finalidade pedagógica, fortalecendo a comunidade de ensino
e pesquisa em Teoria da Computação.
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