4 ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 07, NO. 01, FEBRUARY 2026

Exploring the JPEG Algorithm: Impacts of Modifications in
the Quantization and Transform Stages

Luis F. Krause de Castro! and Tanilson D. dos Santos!

U Federal University of Tocantins, Computer Science Department, Tocantins, Brazil

Reception date of the manuscript: 17/11/2025
Acceptance date of the manuscript: 14/02/2026
Publication date: 14/02/2026

Abstract— The JPEG algorithm is one of the most widely used methods for image compression, achieving substantial file size reduction
by removing perceptually less significant information. Among its stages, quantization and frequency-domain transformation play a crucial

role in determining the balance between visual quality and compression efficiency. This study explores structural modifications in both

stages of the JPEG process: first, by testing alternative quantization matrices with varying levels of aggressiveness, and second, by
replacing the standard DCT (Discrete Cosine Transform) with other mathematical transforms, such as Fourier, Laplace, and Wavelet.
The results highlight how adjustments in quantization and transform selection can significantly influence the trade-off between efficiency

and reconstructed image quality.
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I. INTRODUCTION

mage compression plays a fundamental role in modern
computing, enabling the efficient storage and trans-
mission of visual information while minimizing perceptual
degradaFtion. With the exponential increase in multimedia
data volume, driven by high-resolution imaging systems and
global content sharing, compression techniques are indis-
pensable for reducing bandwidth and storage requirements
in both online and offline environments [1, 2].

Among the various compression techniques, the JPEG
(Joint Photographic Experts Group) standard remains one
of the most widely adopted lossy compression methods
worldwide.  Officially standardized as ISO/IEC 10918-
1 in 1994 [3], JPEG relies on transforming the image
from the spatial to the frequency domain using the DCT
(Discrete Cosine Transform) and subsequently quantizing
the coefficients based on perceptual properties of the human
visual system [4, 5]. The quantization step, which discards
high-frequency information less perceptible to human vision,
is primarily responsible for the achieved compression ratio
while maintaining acceptable visual quality [6, 7].

However, despite its proven efficiency and simplicity,
JPEG applies a fixed quantization table and a single
transform type (DCT) to all images, regardless of their
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specific spatial-frequency content. This limitation raises
critical questions: how would the algorithm behave under
structural modifications in its core stages? What are the
perceptual and statistical impacts of adjusting quantization
aggressiveness or replacing the DCT with alternative
transforms such as the Fourier, Laplacian, or Wavelet? Prior
research has explored some of these directions — evaluating
alternative quantization strategies [8] and transform-based
variations such as the DWT (Discrete Wavelet Transform)
used in JPEG2000 [9]. Yet, there remains a lack of
systematic comparative studies quantifying the impact of
such modifications on image quality and compression ratio
under controlled experimental conditions.

This work aims to fill this gap by investigating how modifi-
cations in the quantization and transform stages influence the
balance between compression efficiency and reconstructed
image quality in the JPEG pipeline. Specifically, three
quantization matrices — standard, moderate, and aggressive
— were evaluated alongside four different transforms: DCT,
DFT (Discrete Fourier Transform), Laplacian, and DWT.

Despite the emergence of advanced compression standards
and neural codecs, JPEG remains the most widely adopted
image format worldwide due to its simplicity, hardware
support, and backward compatibility [2]. Investigating
how subtle modifications in its core stages—transform and
quantization—impact compression efficiency and perceptual
quality remains highly relevant, particularly for embedded
or bandwidth-limited applications where modern codecs are
computationally prohibitive.
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II. RELATED WORK

Several studies have explored alternative transforms and
quantization strategies within the JPEG framework. Watson
[10] proposed perceptual weighting of DCT coefficients
based on the sensitivity characteristics of the human visual
system, leading to visually optimized quantization matrices.
More recently, Liu et al. [11] investigated adaptive
quantization guided by machine-learning-based saliency
models, demonstrating the potential of perceptual adaptivity
in traditional compression schemes.

Other works have examined alternative transforms to the
DCT. Parmar [12] showed that wavelet-based approaches can
achieve higher compression ratios and superior performance
at low bitrates, albeit with increased computational cost.
The JPEG2000 standard later formalized the use of the
Discrete Wavelet Transform, enabling both lossy and lossless
compression within the same framework [9]. Despite
these advances, the DCT remains predominant in practice
due to its simplicity, compatibility, and efficient hardware
implementation.

Alternative quantization methods have also been exten-
sively studied. Delp and Mitchell [8] demonstrated that
customized quantization matrices can preserve perceptual
quality even under higher compression levels. = More
recent works by Alakuijala et al. [I13] and Ma et al.
[14] employed perceptual and learning-based models to
optimize quantization adaptively, showing that quantization
is inherently tied to the characteristics of the human visual
system [7, 6]. These studies emphasize that low-frequency
components contribute most to perceived quality, supporting
the selective coefficient suppression strategy used in JPEG.
Recent neural and hybrid models revisit this principle,
learning to reproduce similar perceptual trade-offs through
data-driven optimization [14].

In summary, although modern codecs and neural compres-
sion models continue to evolve rapidly, the classical JPEG
algorithm remains an essential baseline for both academic
research and practical applications, owing to its transparency,
interpretability, and computational efficiency.

ITI. METHODOLOGICAL PROCEDURES

The experiments were designed to isolate the influence
of each variable — transform type and quantization
aggressiveness — while keeping the remaining stages
consistent with the standard JPEG implementation.

The general workflow of the research methodology —
from algorithm implementation to experimental evaluation
— is summarized in Fig.1, which outlines the main
development and analysis stages.

a. Implementation and Tools

All experiments were implemented in Python, leveraging
open-source scientific and analytical libraries to ensure trans-
parency and reproducibility. The development environment
was designed to emulate the full JPEG compression pipeline
while enabling flexible modifications in the quantization and
transform stages. The following tools and resources were
employed:
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Fig. 1: Flowchart summarizing the main stages of the research
process, including preparation, experimental development, and
evaluation.

* OpenCYV (cv2): for loading, displaying, and perform-
ing basic image manipulation, including color space
conversion and block segmentation;

* NumPy (numpy): for matrix operations and numerical
computation, including splitting and merging of 8 x 8
image blocks;

e SciPy (scipy.fftpack): for computing the two-
dimensional DCT and its inverse (IDCT);

e NumPy FFT (numpy.fft): for computing the two-
dimensional DFT and its inverse (IDFT);

» PyWavelets (pywt): for implementing wavelet-based
compression using the Haar basis [15];

* scikit-image (skimage.metrics): for computing objec-
tive image quality metrics such as PSNR (Peak Signal-
to-Noise Ratio) and SSIM (Structural Similarity Index)
[16,7];

* Collections (Counter, namedtuple) and Heapq: for
implementing Huffman coding, including frequency
counting, tree construction, and code generation;

* Matplotlib (matplotlib.pyplot) and Seaborn: for
visualizing images and generating statistical plots for
result interpretation;

* OS: for file and directory handling and retrieving file
sizes for compression ratio computation;

* Pandas: for organizing and tabulating experimental
results, including metric aggregation and compression
statistics.

The full source code and dataset used in the experiments
are publicly available in a dedicated GitHub reposi-
tory (https://github.com/LuisFelipeKrause/JPEG-Algorithm-
TCC) to promote reproducibility and further research.

b. Dataset and Experimental Setup

The experiments were conducted using a balanced dataset
composed of 420 color and grayscale images of 512 x 512
pixels, equally drawn from two widely recognized databases:
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o USC-SIPI Image Database [17]: includes natural,
aerial, and synthetic scenes with varied textural
complexity and contrast levels;

* ImageNet Sample Subset [18]: provides a diverse
range of natural and structured images, ensuring gener-
alization across different spatial frequency distributions.

The compression process was then executed under two
independent experimental conditions:

1. Quantization Variation: three quantization matrices
were tested: the standard JPEG table, a moderate
version (proposed by the author) with slightly increased
coefficient suppression, and an aggressive version
designed to enhance compression at the expense of
detail loss.

2. Transform Variation: four frequency-domain trans-
forms were compared: the standard DCT, the Discrete
Fourier Transform (DFT), the discrete Laplacian
operator, and the Discrete Wavelet Transform.

c. Evaluation Metrics

To ensure a consistent and objective comparison across
experiments, three primary quantitative metrics were used:

* PSNR (Peak Signal-to-Noise Ratio): measures the
fidelity between the original and reconstructed images
in decibels (dB). Higher PSNR values indicate smaller
mean-squared error and better visual preservation.
Typical thresholds classify images above 35 dB as high
quality [16].

* SSIM (Structural Similarity Index): quantifies
structural and luminance similarity between the original
and compressed images, yielding values from O to
1, where values closer to 1 denote greater perceptual
similarity [7].

» Compression Ratio (CR): measures storage efficiency,
computed as the ratio between the uncompressed and
compressed file sizes.

IV. RESULTS AND DISCUSSION

To analyze the practical behavior of the JPEG algorithm,
a series of experiments were designed to test how specific
stages of the compression pipeline influence the balance
between image quality and compression efficiency. Two
complementary sets of experiments were carried out: one
focused on modifying the quantization parameters, and
another on replacing the mathematical transform used in the
frequency-domain representation. Together, these analyses
allow a deeper understanding of how each stage contributes
to the final compression outcome and how structural
adjustments can optimize performance for different image

types.

a. Impact of Quantization Matrices

Three quantization tables were used:
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» Standard: the quantization table used in the conven-
tional JPEG algorithm;

(a) Standard JPEG quantization mask

16 11 10 16 24 40 51 6l
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
7292 95 98 112 100 103 99

* Moderate: a quantization table proposed by the author
with slightly higher discarding compared to the standard
table;

(b) Moderate quantization mask

40 43 45 50 60 70 90 100
43 45 50 60 70 90 100 110
45 50 60 70 90 100 110 128
50 60 70 90 100 110 128 128
60 70 90 100 110 128 128 128
70 90 100 110 128 128 128 128
90 100 110 128 128 128 128 128
100 110 128 128 128 128 128 128

» Aggressive: a quantization table proposed by the author
with significantly higher discarding.

(c) Aggressive quantization mask

80 8 90 100 120 140 180 200
8 90 100 120 140 180 200 220
90 100 120 140 180 200 220 255
100 120 140 180 200 220 255 255

120 140 180 200 220 255 255 255
140 180 200 220 255 255 255 255
180 200 220 255 255 255 255 255

200 220 255 255 255 255 255 255

The standard table follows the JPEG specification [2],
while the moderate and aggressive versions were designed by
the author to incrementally increase coefficient suppression
in the high-frequency region.

Fig.2 illustrates the compression ratio distributions for the
three quantization settings. As expected, more aggressive
quantization yielded higher compression ratios, with the
aggressive table achieving an average ratio above 14 :
I, compared to approximately 11 : 1 for the standard
configuration. The moderate matrix achieved intermediate
results, maintaining lower variance, which indicates more
predictable compression behavior across diverse image
types.

The relationship between compression and quality follows
the expected inverse correlation. Fig.3 and Fig.4 show that
the standard quantization matrix achieved the best perceptual
balance, with median PSNR values around 34 dB and SSIM
near 0.93—uvalues typically considered visually lossless for
photographic content [16]. The moderate quantization
introduced only a small degradation (PSNR ~ 30 dB;
SSIM ~ 0.88) while improving compression efficiency by
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Fig. 2: Distribution of compression ratios for different
quantization matrices.

Boxplot - PSNR

45

40

35

PSNR

30

25

20

moderate
Table

standard aggressive

Fig. 3: PSNR distribution across quantization matrices.
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Fig. 4: SSIM distribution across quantization matrices.

roughly 20%. In contrast, the aggressive matrix resulted in
substantial degradation, especially around edges and high-
frequency textures, dropping PSNR to ~ 27 dB and SSIM
below 0.8.

The scatter plots in Fig.5 and Fig.6 provide a clearer view
of the trade-off between visual quality and compression ratio.
The results reveal a strong negative correlation between
PSNR/SSIM and compression ratio (r = —0.85), consistent
with established compression literature [7]. The standard
quantization occupies the upper-left region, corresponding
to higher quality at lower compression, while the aggressive
setup shifts toward higher compression but at a significant
perceptual cost.

From a perceptual perspective, visual inspection con-
firmed that the moderate quantization preserved overall
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Fig. 5: Correlation between PSNR and compression ratio for
quantization matrices.
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Fig. 6: Correlation between SSIM and compression ratio for
quantization matrices.

image structure and fine details in most scenarios. Edges
remained stable, and color transitions exhibited limited
blocking artifacts.

To illustrate the perceptual impact of quantization
strength, Fig.7, Fig.8b, Fig.8a and Fig.8c shows a com-
parison between the original image and the reconstructions
obtained using moderate, standard, and aggressive quanti-
zation tables. While the standard configuration preserves
most structural details, the moderate quantization (Fig.8b)
achieves a superior balance, effectively preserving overall
image structure and fine details in most scenarios. In
contrast, the aggressive table leads to noticeable loss of
fine detail and pronounced blocking artifacts, particularly in
regions with high spatial frequency.

The visual comparison clearly illustrates that increasing
quantization aggressiveness reduces the preservation of fine
spatial detail. The standard quantization table maintains
edges and texture transitions with minimal distortion,
whereas the aggressive table produces noticeable blocking
artifacts and smoothing of high-frequency regions. This
behavior aligns with the fact that quantization discards
smaller DCT coefficients first, which correspond to fine
detail and texture, causing visually perceptible degradation
when the quantization intervals become too coarse.
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Fig. 8: Comparison of zoomed-in image regions using different
quantization levels.

b. Impact of Transform Substitution

Four two-dimensional mathematical transforms were imple-
mented and compared, each representing distinct mathemat-
ical and perceptual characteristics:

e 2D Discrete Cosine Transform (2D-DCT, Type-II):
employed with orthogonal normalization, identical to
the transform used in the original JPEG standard,
serving as the baseline for comparison;

¢ 2D Discrete Fourier Transform (2D-DFT): computed
using the Fast Fourier Transform (FFT) algorithm
provided by NumPy, enabling efficient frequency-
domain analysis with complex-valued coefficients;

* Discrete Laplacian Operator (2D Laplace): applied
as a local differential operator on each 8 x 8 block to
capture rapid intensity variations, emphasizing edges
and spatial discontinuities;

¢ 2D Discrete Wavelet Transform (2D-DWT): imple-
mented using the Haar wavelet basis via the PyWavelets
library, providing a multiresolution representation
through hierarchical decomposition of approximation
and detail coefficients [15].

These transforms were selected to represent distinct math-

ematical domains and properties: frequency-based (DCT
and DFT), spatial-differential (Laplacian), and multiscale
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Fig. 9: PSNR distribution for different transform domains.
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Fig. 10: SSIM distribution for different transform domains.

(Wavelet). Their inclusion enables a comparative analysis
of how different frequency and spatial representations affect
compression efficiency and reconstructed image quality.

To ensure a controlled evaluation, the quantization matrix
was kept fixed (standard JPEG table) across all tests,
allowing the analysis to focus exclusively on the impact of
the transform domain on objective and perceptual quality
metrics.

Fig.9 and Fig.10 summarize the statistical distributions
of PSNR and SSIM across all images for each transform.
The DCT and DWT outperformed the others, with the
DWT exhibiting slightly higher perceptual scores and
lower variance, suggesting a more stable reconstruction
quality across texture types. The DFT suffered from
energy dispersion across the frequency spectrum, while the
Laplacian operator—being spatially local but not energy-
compacting—produced the weakest compression and visible
artifacts in smooth regions.

Fig.11 and Fig.12 reinforce these trends by showing
the correlation between compression ratio and perceptual
quality. The DWT maintained consistent PSNR and SSIM
even as compression increased, reflecting its superior multi-
resolution energy compaction. The DCT maintained a close
second position, confirming its efficiency and computational
advantage. Both the Laplacian and DFT, despite their
theoretical relevance, demonstrated poor rate-distortion
trade-offs, reaffirming that their energy distributions are less
compatible with scalar quantization schemes [9].

In summary, the experiments confirm that while the DCT
remains the most computationally efficient and robust choice
for JPEG compression, wavelet-based transforms such as
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Fig. 11: Relationship between PSNR and compression ratio across
transforms.
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Fig. 13: Original Image

DWT can achieve better perceptual results at equivalent
bitrates.  This aligns with the motivation behind the
development of the JPEG2000 standard [9], which replaced
block-based DCT with DWT to eliminate blocking artifacts
and improve scalability.

Fig.14a, Fig.14b, Fig.14c and Fig.14d compares the recon-
structed images obtained after applying different transform
domains in the JPEG compression pipeline, while keeping
the same quantization table. The DCT reconstruction closely
resembles the original image, confirming its strong energy
compaction properties. The DFT reconstruction preserves
global structure but introduces ringing artifacts due to spec-
tral spreading. The Laplacian operator emphasizes edges
excessively, creating over-sharpened regions with visual
noise. The DWT (Haar) reconstruction, in contrast, provides
smoother gradients and reduced blocking artifacts, benefiting
from multiresolution spatial-frequency localization.

28

KRAUSE AND SANTOS

(b) 2D-DFT

(d) 2D-DWT (Haar) Transform
Fig. 14: Comparison of zoomed-in image regions obtained using
different frequency and spatial domain transforms: DCT, DFT,
Laplacian, and DWT (Haar).

(c) Laplacian Transform

The transform comparison highlights how each mathe-
matical basis influences the distribution and reconstruction
of image information. The DCT provides compact
energy representation and yields reconstructions that closely
resemble the original image, justifying its adoption in the
JPEG standard. The DFT, by spreading energy globally,
introduces ringing artifacts near edges. The Laplacian
operator overemphasizes local intensity variations, resulting
in oversharpened and noisy regions. In contrast, the DWT
preserves structural continuity and smooth gradients due to
its multiresolution nature, reducing blocking artifacts and
improving perceptual quality at similar compression rates.

¢. Discussion and Interpretation

The experimental findings reveal consistent patterns across
both the quantization and transform analyses, emphasizing
that small structural modifications in the JPEG pipeline can
lead to measurable variations in compression efficiency and
perceptual fidelity. The trade-off between these two dimen-
sions—data reduction and visual preservation—remains at
the core of lossy image compression, yet the results obtained
here provide a more granular understanding of how each
stage contributes to this balance.

From the quantization experiments, the data confirm
that perceptual quality degradation follows a nonlinear
curve with respect to quantization aggressiveness. The
moderate quantization table demonstrated a near-optimal
point on this curve, achieving approximately 20-25%
better compression than the standard matrix with negligible
perceptual loss. This suggests that the standard JPEG
quantization matrix, originally hand-tuned in the early 1990s
[2], may still be improved through statistically guided
parameter adjustment. Similar findings have been reported
in perceptual compression studies that adapt quantization
weights based on human visual sensitivity models [7], as well
as in modern machine learning—based codecs [14].

Regarding the transform stage, the results indicate that
the DWT provides the most effective energy compaction
among the tested alternatives, producing higher PSNR and
SSIM scores. This superiority is linked to the DWT’s
ability to represent spatially localized frequency components
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and maintain sharp edge continuity [15, 9]. Notably,
the DCT produces a considerably smoother visual output
in textured areas, which may be preferable in specific
aesthetic contexts, even though it is slightly less efficient in
energy compaction than the DWT. Despite this smoothness
and the DCT’s computational practicality for hardware,
the DWT remains qualitatively superior in preserving
complex structural details. By contrast, the Laplacian and
DFT-based schemes showed weaker performance due to
overemphasis of high-frequency components and lack of
spatial localization, respectively [19].

A key observation emerging from both experimental fronts
is the strong correlation between perceptual metrics (SSIM)
and human visual tolerance to high-frequency suppression.
Consequently, moderate quantization and wavelet-based
transforms succeed because they selectively preserve low-
frequency content while distributing quantization error
across perceptually less relevant frequencies.

Methodologically, these results demonstrate that percep-
tual improvements can be achieved without altering the
bitstream structure, ensuring backward compatibility and
facilitating the integration of adaptive quantization or hybrid
DCT-DWT into existing JPEG encoders. Consequently,
these findings reinforce the continuing relevance of the
classic transform—quantization framework, even in the era
of deep learning-based compression. By systematically
quantifying these modifications, this study provides empir-
ical evidence for the development of perceptually optimized
JPEG variants tailored for edge devices and low-latency
applications

V. CONCLUDING REMARKS

This work presented a systematic experimental evaluation
of the influence of frequency-domain transforms and
quantization strategies on the performance of the JPEG
compression pipeline. By maintaining the original JPEG
encoding structure and independently varying the transform
and quantization components, it was possible to isolate
their respective contributions to perceptual quality and
compression efficiency.

The results demonstrated that the Discrete Cosine Trans-
form remains a robust and computationally efficient choice
for image compression, offering an optimal balance between
energy compaction and simplicity of implementation.
However, the Discrete Wavelet Transform—particularly
when used with the Haar basis—showed superior perceptual
performance (higher PSNR and SSIM) at comparable
compression rates. This confirms the theoretical advantage
of wavelet representations in localizing both spatial and
frequency information [15, 9].

In terms of quantization, the results suggest that moder-
ately aggressive quantization tables can provide substantial
reductions in bit rate (up to 25%) while maintaining
high perceptual fidelity. This finding indicates that the
standard JPEG quantization matrix, originally designed
through empirical tuning [2], can be improved via data-
driven optimization or perceptual weighting models [7]. The
analysis also reinforces that excessive quantization, although
improving compression ratio, quickly deteriorates structural
similarity and perceived image quality.
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Overall, the experiments highlight the enduring relevance
of transform-based compression models and underscore that
meaningful improvements to the JPEG standard are still
achievable without altering its bitstream structure or entropy
coding stage. Such backward-compatible modifications are
of great practical importance, particularly for embedded
systems, low-bandwidth communications, and real-time
applications, where deep learning—based codecs may be
computationally prohibitive.

Future work includes exploring perceptually guided
quantization based on saliency or attention maps, as well as
hybrid transform approaches that combine DCT and DWT
domains for improved rate—distortion trade-offs. Machine-
learning-based optimization of quantization tables also
represents a promising direction for enhancing compression
adaptivity.
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