
C
ME

A
A
J

Academic Journal on Computing, Engineering and Applied Mathematics ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 04, NO. 02, OCTOBER 2023

Work in progress: analysis and evaluation of the impact of the
code approximation for IoT applications

David Medeiros Cruz1 and Tiago Almeida1,2

1 Universidade Federal do Tocantins (UFT), Computer Science Department Palmas/TO, Brasil
2 University of Campinas (UNICAMP), Institute of Computing, Campinas/SP, Brazil

Reception date of the manuscript: 25/07/2023
Acceptance date of the manuscript: 04/09/2023

Publication date: 16/10/2023

Abstract— Due to the need to improve resource management for computer systems in many levels and applications (mainly for embedded
systems and energy consumption), how can we enhance the energy efficiency of computational methods? One approach is through
approximate computing, which intentionally introduces controlled errors to save resources such as energy, area, or time. This research
aims to empirically measure the impact of introducing approximations in an embedded system by conducting a controlled experiment. To
focus on evaluating the impact of the approximations themselves rather than the best methods of implementing them, the approximations
will be manually incorporated into the code. The benchmark chosen for evaluation is MiBench due to its widespread usage. All the codes
can be recompiled to run on the MIPS architecture of the NodeMCU-ESP8266. A second NodeMCU-ESP8266 will be utilized, connected
in series to measure the actual power consumption of the first board. The analysis of results will involve hypothesis tests, where the
experiment hypotheses will be statistically evaluated at a specific significance level. By directly comparing variations and experiment data,
the proposal’s validity will be effectively demonstrated. Since this paper is a work in progress, we will explain the experiment planned to
be run.

Keywords—Approximate Computing, Energy Efficiency, Internet of Things, Software Approximations.

I. INTRODUCTION

C omputing has changed over the last decades. The design
of computing systems has shifted from single-core

systems to multi-core and heterogeneous systems. The main
reason for this transformation is the physical limitation of
miniaturization of transistors to improve the performance of
computational systems [1].

Another factor to consider in the current context is the
decentralization of the processing. Where exactly is the
application executed? In many cases, applications are
exclusively run on a cloud system, while in others, embedded
systems are used, or a combination of both solutions.

If we also consider the need for better resource manage-
ment, each scenario will have different energy demands,
making it more complex to find suitable designs for each
case.

How could we improve the energy efficiency of compu-
tational systems? One paradigm that aims to address this
question is approximate computing [2, 3]. In applications
where there is a sensory limitation, meaning that humans
would not be able to perceive errors in computation,

Contact data: David Medeiros Cruz, david.medeiros@uft.edu.br

where an exact output does not exist, such as in machine
learning, or where computation is based on probabilities,
there is resilience to errors. These applications can exhibit
outputs with a certain threshold of error, and there would
be no issue. In such cases, approximate computing can
introduce controlled errors to save physical resources of the
computational system, such as energy, area, or time.

The scenario with good error resilience and significant
energy and performance constraints is the embedded system
scenario (or, depending on the context, the Internet of
Things). There is a range of research addressing the use of
approximations for high-performance systems, with only a
few studies focusing on embedded systems. In this regard,

What is the impact on energy consumption of a
set of approximation techniques in software on a
controlled system?

Based on this research question, the remaining part of the
research project will be based on, experimented with, and
discussed in the following sections.

II. PROBLEM DEFINITION

To illustrate the problem, consider a simple matrix
multiplication application. Considering i) square matrices
with sizes of 1000, 2000, 3000, 4000, 5000, and 7000; ii)

ISSN: 2675-3588 17

WIP: ANALYSIS AND EVALUATION OF THE IMPACT OF THE CODE AXC FOR IOT APPLICATIONS CRUZ AND ALMEIDA

randomly generated values from a uniform distribution; iii)
an Intel Core i5-9300H 2.40GHz CPU (Kaby Lake processor
with 8 cores in one encapsulation) and; iv) ten repetitions for
each input size. Thus, Fig. 1 shows how energy consumption
scales in this scenario. Measurements were taken using the
perf tool available for the Linux operating system and using
embedded power counters on Intel processors.

Input

E
ne

rg
y

(J
)

1

10

100

1000

10000

1000 2000 3000 4000 5000 6000 7000

Core-Perf Package-Perf DRAM-Perf

Fig. 1: Variation of energy consumption according to input size for
a matrix multiplication application.

In Fig. 1, energy consumption is measured in joules,
which represents J = W

s , where W is power measured in
watts and s is time measured in seconds. "Core" represents
the energy consumption measured in the processing core,
"Package" represents the energy consumption measured
across the entire chip encapsulation, and "DRAM" represents
the energy consumption measured by the RAM. The energy
consumption of "Core" and "Package" is quite similar since
it is a serial application, meaning the processing is performed
by a single core.

Fig. 2 presents the breakdown of the processing for each
input size. It shows how much each component, "Core,"
"Package," and "DRAM," contributes to the total application
energy consumption. For all input scenarios, the behavior
is the same: "Core" and "Package" account for the majority
of energy consumption, as this is a CPU-bound application,
meaning it is more dependent on processing rather than data
traffic with memory.

Input

R
el

at
iv

e
E

ne
rg

y

0%

25%

50%

75%

100%

1000 2000 3000 4000 5000 6000 7000

Core-Perf DRAM-Perf Package-Perf

Fig. 2: Breakdown by each part and its respective energy
consumption according to the input size for a matrix multiplication

application.

Therefore, the objective of this study is to conduct a
controlled experiment to empirically measure the impact of

introducing approximations in an embedded system. In what
context will these approximations be inserted? Although
the focus is on software approximation, there are different
insertion contexts, such as compile-time or real-time for
adjustment of approximations. However, the objective of
this study is to evaluate the impact of the approximations
themselves and not the best ways to insert them, so the
approximations will be manually inserted into the code.

In line with this, the experiment will be conducted on a
NodeMCU-ESP8266 microcontroller. This is a widely used
microcontroller model with relatively low cost and is also
used for educational purposes.

The dependent variables in this experiment, that is,
the variables that are measured to assess the cause-and-
effect relationship, are power (measured in watts), energy
(measured in joules), time (measured in seconds), and the
application error (all error metrics used are described in Table
1 [4]).
TABLE 1: DESCRIPTION OF THE ERROR METRICS USED IN THIS

PROJECT.

Metrics Description Equation

MAE∗ Mean Absolute Error
1
n

n

∑
i=0
|Oac

i −Oax
i | (1)

WCE∗ Worst-Case Error max ∀i|Oac
i −Oax

i | (2)

MRED∗ Mean Relative Error Distance
1
n

n

∑
i=0

|Oac
i −Oax

i |
Oac

i
(3)

MSE∗ Mean Squared Error
1
n

n

∑
i=0

(Oac
i −Oax

i)2 (4)

∗ Oac
i is a i-th precise output, and Oax

i é a i-th approximate output.

Finally, the following research hypothesis is considered,
based on the research question stated in the previous section
[5]:

Null hypothesis (H0): There is no difference in
energy consumption and performance in an em-
bedded application when software approximations
are introduced.

Alternative hypothesis (Ha): There is a difference
in energy consumption and performance in an em-
bedded application when software approximations
are introduced for at least one pair i and j, where
i 6= j, and i represents the precise application,
and j represents the same application with an
approximation from a set of approximations.

In this experiment, the objective is to empirically evaluate
the stated hypothesis, and there is no need to perform a
statistical hypothesis testing method, as it is beyond the scope
of this project to analyze the significance of any existing
differences. The presentation of line, bar, and scatter plots
is sufficient to interpret the results.

18 ISSN: 2675-3588

C
ME

A
A
J

Academic Journal on Computing, Engineering and Applied Mathematics ACADEMIC JOURNAL ON COMPUTING, ENGINEERING AND APPLIED MATHEMATICS, VOL. 04, NO. 02, OCTOBER 2023

a. Experimental setup

Regarding the types of software approximation, the fol-
lowing types will be used [6, 7]: i) Code Perforation:
This involves identifying parts of the code that are resilient
to errors and can be "skipped" during execution, such
as functions and code segments. ii) Loop Perforation:
This involves identifying loops that are also resilient to
errors and partially executing these loops. iii) Bitwidth
transformation: This involves identifying variables in the
code that can be transformed into representations with fewer
bits, or transforming floating-point variables into integers, or
integers into unique characters.

In terms of the benchmark to be evaluated, the
MiBench [8] will be considered due to its widespread
use. This benchmark consists of applications divided
into six categories: Industrial applications; Consumer
applications; Office applications; Network applications;
Security applications; Telecommunication applications.

Although MiBench was designed to evaluate the ARM
architecture, all codes can be recompiled to run on the MIPS
architecture of the NodeMCU-ESP8266.

Another important point is how the measurement data
will be collected. In this regard, a second NodeMCU-
ESP8266 will be used, connected in series to measure the real
power consumption of the first board. Since the NodeMCU-
ESP8266 system already has an embedded WiFi antenna,
it is a viable platform for collecting data and sending it to
a traditional computer with measurement information. The
first step of this research project will be the construction and
testing of the energy consumption measurement platform.

Input

S
ta

nd
ar

d
D

ev
ia

tio
n

0

500

1000

1500

1000 2000 3000 4000 5000 6000 7000

Core-Perf Package-Perf DRAM-Perf

Fig. 3: Standard deviation of energy consumption according to
input size for a matrix multiplication application over ten replicates

of the experiment.

Returning to the motivational example of the matrix mul-
tiplication application explained earlier, Fig. 3 demonstrates
the standard deviation for ten different repetitions. As
the size of the input increases, the standard deviation also
increases, growing almost exponentially. This highlights the
need for an external system, such as the proposed one, to
measure consumption and obtain more reliable results.

Fig. 4 shows the general idea of this project. An
original code in C/C++, for a matrix multiplication, gives a
design with no error and the maximum energy consumption,
represented in the Pareto front plot. Each gray dot represents
a possible approximation inserted to save energy. When
applying a loop perforation by a specific rate, the run

flow will skip some iteration to save energy, introducing
acceptable error in the application and also improving the
efficiency, represented by the green dot in Fig. 4. Since
other NodeMCU-ESP8266 will be used, for real energy
consumption, we can publish on web the measurements.

D0 D1 D2 D3 D4 3V3 GND D5 D6 D7 D8 RX TX GND 3V3

VinGNDRSTEN3V3GNDSKS0SCS1S2S3VUGNDA0

F
LA

S
H

R
S

T

NodeMcu

C/C++

R
el

at
iv

e
E

ne
rg

y

Relative error

Feasible design space exploration

R
el

at
iv

e
en

er
gy

Relative error

AxC

D
0

D
1

D
2

D
3

D
4

3V
3

G
N

D
D

5
D

6
D

7
D

8
R

X
T

X
G

N
D

3V
3

V
in

G
N

D
R

S
T

E
N

3V
3

G
N

D
S

K
S

0
S

C
S

1
S

2
S

3
V

U
G

N
D

A
0

FLASHRST

N
odeM

cu

Measurement

Publishment

Device Under Test (DUT)

for (i=0; i n; i++)
{...}

for (i=0; i n;) i+=rate*10
{...}

Fig. 4: General diagram and data flow of the whole project
exemplifying the usage of loop perforation to improve energy

efficiency.

III. EXPECTED RESULTS AND FINAL CONSID-
ERATIONS

After collecting experimental data, descriptive statistics can
be used to describe and graphically present interesting
aspects of the dataset. These aspects include measures that
indicate, for example, where the data are placed on a scale
and how concentrated or dispersed the dataset is [5]. In this
sense, by the next months, we expect to have a measurement
system and analyze the impact of approximations in an
embedded system. As far as we know, many researchers
have explored energy-efficient with approximate computing
in IoT nodes based on FPGAs and ARM architecture, and
our proposal has not been explored yet.

REFERENCES
[1] M. Alioto, V. De, and A. Marongiu, “Energy-quality scalable integrated

circuits and systems: Continuing energy scaling in the twilight of
moore’s law,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 8, pp. 653–678, 2018.

[2] N. E. Jerger and J. S. Miguel, “Approximate computing,” IEEE Micro,
vol. 38, pp. 8–10, 2018.

[3] A. Aponte-Moreno, A. Moncada, F. Restrepo-Calle, and C. Pedraza, “A
review of approximate computing techniques towards fault mitigation in
hw/sw systems,” in 2018 IEEE 19th Latin-American Test Symposium,
LATS 2018, vol. 2018-Janua, 2018, pp. 1–6.

[4] J. Castro-Godínez, M. Shafique, and J. Henkel, “Ecax: Balancing error
correction costs in approximate accelerators,” ACM Transactions on
Embedded Computing Systems, vol. 18, 10 2019.

[5] P. R. C. Wohlin, M. H. Ohlsson, M. C. Bjorn Regnell ost, and
A. Wesslén, Experimentation in Software Engineering. Elsevier, 2013,
vol. 1.

[6] L. M. Miranda, “Llvm-act: uma ferramenta baseada em profiling para
seleção de técnica de computação aproximada,” Master’s thesis, Centro
de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do
Norte, Natal, RN, 2022.

[7] L. O. P. dos Reis, “Targeting broad software approximations with
the accept framework: Ampliando aproximações em software com
o framework accept,” Master’s thesis, Universidade Estadual de
Campinas, Instituto de Computação, Campinas, SP, 2021.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded

ISSN: 2675-3588 19

WIP: ANALYSIS AND EVALUATION OF THE IMPACT OF THE CODE AXC FOR IOT APPLICATIONS CRUZ AND ALMEIDA

benchmark suite,” in Proceedings of the Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop, ser. WWC ’01.
USA: IEEE Computer Society, 2001, p. 3–14.

20 ISSN: 2675-3588

