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Abstract— In this research, the application of the Simulated Annealing algorithm to solve the state assignment problem in finite state
machines is investigated. The state assignment is a classic NP-Complete problem in digital systems design and impacts directly on both
area and power costs as well as on the design time. The solutions found in the literature uses population-based methods that consume
additional computer resources. The Simulated Annealing algorithm has been chosen because it does not use populations while seeking a
solution. Therefore, the objective of this research is to evaluate the impact on the quality of the solution when using the Simulated Annealing
approach. The proposed solution is evaluated using the LGSynth89 benchmark and compared with other approaches in the state-of-the-art.
The experimental simulations point out an average loss in solution quality of 11%, while an average processing performance of 86%. The
results indicate that it is possible to have few quality losses with a significant increase in processing performance.
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I. INTRODUCTION

H ardware optimization demands a lot of research, not
only from the professionals responsible for develop-

ing the hardware but also from physicists and chemists who
can find ways or elements that improve the functioning of the
hardware.

Regardless of the application, every hardware project is
complex, demanding a great intellectual effort and, conse-
quently, monetary. The process of design and development
of a hardware component has several steps. In this work, the
focus is on the optimization of Finite State Machines (FSM).

FSMs are abstractions of the behavior of a given circuit,
whether it is a part of the whole of an Application-Specific
Integrated Circuit (ASIC) or a conventional processor. When
thinking in terms of algorithm, it is referred to the sequence
of commands, or steps, that in a certain order performs a task.

This algorithm can be abstracted in the form of a machine
where each step is represented by a state. Conventional com-
puters allow us to perform only one step at a time and the
transition between states is made through external or internal
stimulus (inputs).

From this representation, it is possible to provide a physi-
cal model, where this FSM model can be synchronous about
to with concerning the internal or external behavior, as well
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as it can be asynchronous, varying according to the applica-
tion.

The optimization of an FSM can lead to a reduction in the
physical size of the final circuit, resulting in savings in the
critical path, area, and power. For the optimization of the
FSM, the goal is composed of finding the best allocation of
states and minimizing the size of the Boolean expressions
that represent the machine behavior.

This is not a recent research topic [1, 2], however, due
to its importance and being an NP-Complete[3] problem, is
still an open topic because of breaking down of Dennard’s
law [4], which states that as the dimensions of a device go
down, so does the power consumption. And many complex
metaheuristic algorithms have been tested for this problem,
such as Evolutionary Algorithms [5, 6], Tabu Seach [7], and
Simulated Annealing [8, 9, 10].

As far as it is known, Ahmad et al [10] have proposed a
complex hybrid method combining Genetic Algorithms with
Simulated Annealing, to find optimal state-machine alloca-
tions. Thus, arises the question how distant is the result
with a much simpler and faster metaheuristic, which uses
less computational resources (without a population of so-
lutions)? Therefore, the objective of this investigation is to
provide an answer to this question. Furthermore, the main
contribution of this paper is the evaluation of the state as-
signment in a finite state machine solution produced by a
simulated annealing algorithm.

The remaining text is organized as the basic definitions
about the considered problem are presented in Section IIa.
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Furthermore, the Simulated Annealing is reviewed in Section
IIb. The experimental setup, as well as the SA algorithm, is
presented in Section III. In addition, the results are discussed
in Section IV. Finally, the conclusions and future research
directions are shown in Section V.

II. DEFINITIONS

a. Finite State Machine

Sequential circuits can be defined as circuits with a section
made of combinational logic and another section of memory
which are normally flip-flops. Where each stage that the se-
quential circuit advances are called a state. In each state, the
circuit stores the inputs passed to define its output, and the
state transition only occurs with the clock variation [11, 12].

An FSM has a finite number of inputs, constituting the set
of N = {N1,N2, ...,Nn}. Thus, the circuit has a finite number
of outputs, determined by the set of M = {M1,M2, ...,Mm}.
The value contained in each memory element is called state
variables, forming the set of K = {K1,K2, ...,Kk}. The val-
ues contained in the K memory elements define the current
state of the machine. The internal transition functions gen-
erate the next state set S = {S1,S2, ...,Ss}, which depend on
the inputs N and the current states K of the machine and are
defined through combinational circuits . The values of S,
which appear in the state machine transition function at time
t, determine the values of the state variables at time t+1, and
therefore define the next state of the machine.

The behavior of an FSM can be described through a state
transition diagram or a state transition table. A state transi-
tion diagram or state transition table lists the current state,
next state, input, and output. A state transition table has 2N

columns, one for each occurrence of the input set and 2K

rows, one for each occurrence of the state set.
The transition diagram is an oriented graph, where each

node represents a state, and from each node emanate p ori-
ented edges corresponding to the state transitions. Each ori-
ented edge is labeled with the input that determines the tran-
sition and the output generated. FSM determine the next state
K(t +1), based only on the current state K(t) and the current
input N(t). FSM can be represented by,

K(t +1) = f [K(t),N(t)] (1)

where f is a state transition function. The output value M(t)
is obtained by,

M(t +1) = g[K(t)] (2)

M(t +1) = g[K(t),N(t)] (3)

where g is an output function.
An FSM with properties described in the Eqs. (1) and (2)

is called a Moore Machine and a machine described through
the Eqs. (1) and (3) is called the Mealy Machine.

The operation of computers is based on the operation of
transistors, which depending on the amount of stored charge,

the signal can be interpreted as high (1) or low (0), and off
(no stored energy).

As the computer works on the interpretation of two elec-
trical impulses can be observed that it is a binary system,
therefore, being governed by Boolean algebra.

Boolean algebra is an algebraic structure that defines the
arithmetic of logical operators that, being composed of the
symbols S = {0,1}, constitute a binary system. The concepts
of Boolean algebra are also used in electronics since physi-
cal circuits are rather designed in abstractions, called logic
circuits.

Given a Boolean space, a variable is a symbol representing
a coordinate in that space. A variable or its negation is called
literal. The term product is defined as the Boolean product of
one or more literals. A minimal term, or minterm, is a term
product that outputs a value ‘1’. A circuit with all variables
in certain cases can be simplified, eliminating redundancies
and having its size reduced. A Boolean function that implies
a combination of minterms is called the implicant of a func-
tion, and an implicant that cannot be reduced, that is, does
not imply another function, is called a prime implicant. The
sum of all implicants and prime implicants of a function is
the set of minterms for which the function’s result is ‘1’.

When representing an FSM, usually are used words or let-
ters to refer to states, since the number of flip-flops needed
to represent an FSM is calculated similarly to the number of
rows in the truth table. When assigning a value to a state,
each literal symbolizes the value that will be delivered to a
respective flip-flop at a given time. The joining of the values
of each flip-flop is equivalent to the value assigned to a given
state of the FSM.

The values present in the memory element, when com-
bined, represent the current state. The flip-flops are then con-
nected in combinational circuits that change the value con-
tained in the flip-flop at each clock pulse, making the flip-
flops start to represent the value assigned to the next state of
the machine, going from the current state to the next state.

The combinational circuit responsible for this change of
states is the result of simplifying the expressions obtained
from the inputs of a given flip-flop and the stimulus that will
be given. The circuit receives the flip-flop output value and
the machine state stimulus value. The set of output values
represent the next state that the state machine will assume.

The state assignment is fundamental when there is the in-
tention to optimize, as it is directly linked to the size of the
expression that will make the change between the current
state and the next state. Changing the distribution of values
drastically affects the size of the expression, which conse-
quently increases the size of the circuit.

For instance, a 7-state FSM, where the assignment of val-
ues to the states is done sequentially, from 0 to 6 with num-
bers on a binary basis. Table 1 shows the arrangement of
assigning values to states. The state transition diagram is de-
picted in Fig. 1.

The graphical representation of the state transition dia-
gram can also be expressed by the state transition table with
the transitions as a function of the inputs, as shown in Fig. 1,
with the state assignment of the Table 1. In Table 2, where
the flip-flops are represented by the variables Q2 Q1 Q0, and
d represents the input value that the state will receive. The
expressions that generate the value of the next state are given
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TABLE 1: FIRST ASSIGNMENT.

State Assignment

0 000
1 001
2 010
3 011
4 100
5 101
6 110

Fig. 1: Example of a state transition diagram for an FSM.
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by Y2, Y1, and Y0.
As the FSM has seven states, it can be represented by three

flip-flops, and with the addition of the input, therefore four is
the minimal number of values needed to represent the com-
bination of inputs necessary to define the transitions. As a
result, the truth table has sixteen rows.

To obtain the expressions, the Karnaugh map simplifica-
tion method was used, which facilitates the grouping of terms
to perform the operations that allow reducing the expression,
as illustrated in Fig. 2.

The Karnaugh map is used to simplify and find the respec-
tive logical expression for each Yi. The simplified expression
serves as the basis for the construction of the corresponding
logical circuit. With this simplification, its obtained:

Y2 = Q̄2Q1Q̄0 +Q1Q0d + Q̄1Q0d̄ +Q2Q̄1Q̄0d

Y1 = Q̄2Q̄0d +Q2Q̄1Q̄0 + Q̄1d

Y0 = Q̄0d̄ + Q̄2Q̄1d +Q2Q0d

Performing a new assignment of values to states randomly,
instead of doing it sequentially or ordered, can result in sev-
eral possible combinations, one of which was chosen and
represented in Table 3.

TABLE 2: TABLE REFERRING TO THE FIRST ASSIGNMENT OF

STATES.

Q2 Q1 Q0 d Y2 Y1 Y0

0 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 1 0 1 0 1
0 0 1 1 0 1 0
0 1 0 0 1 0 1
0 1 0 1 1 1 0
0 1 1 0 0 0 0
0 1 1 1 1 0 0
1 0 0 0 0 1 1
1 0 0 1 1 1 0
1 0 1 0 1 0 0
1 0 1 1 0 1 1
1 1 0 0 0 0 1
1 1 0 1 0 0 0
1 1 1 0 X X X
1 1 1 1 X X X

TABLE 3: SECOND ASSIGNMENT OF STATES FOR THE

EXAMPLE.

State Assignment

0 010
1 101
2 000
3 110
4 001
5 011
6 100

The resulting FSM in the new assignment has the same
graph structure and transitions, but with different values as-
signed to each state. The expression that will be obtained
with the simplification makes the resulting circuit different
from the previous state assignment. The state transition table
referring to the FSM after the new assignments is shown in
Table 4.
TABLE 4: TABLE REFERRING TO THE SECOND ASSIGNMENT OF

STATES.

Q2 Q1 Q0 d Y2 Y1 Y0

0 1 0 0 1 0 1
0 1 0 1 0 0 0
1 0 1 0 0 1 1
1 0 1 1 0 0 0
0 0 0 0 0 1 1
0 0 0 1 1 0 0
1 1 0 0 0 1 0
1 1 0 1 0 0 1
0 0 1 0 1 1 0
0 0 1 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 1 1 0
1 0 0 0 1 0 1
1 0 0 1 0 1 0
1 1 1 0 X X X
1 1 1 1 X X X

With the new assignment, it is possible to see from the
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Fig. 2: Karnaugh map to obtain boolean expressions for Y2, Y1 e Y0.
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resulting Karnaugh maps, shown in Fig. 3, that there will
be no minterms of two variables. With the simplification we
obtain:

Y2 = Q̄2Q1Q̄0d̄ +Q2Q̄1Q̄0d̄ +Q1Q0d + Q̄2Q̄1d + Q̄2Q̄1Q0

Y1 = Q̄2Q̄1Q̄0d̄ +Q2Q1Q̄0d̄ +Q2Q̄1Q̄0d + Q̄1Q0d̄ +Q1Q0d

Y0 = Q̄2Q̄0d̄ + Q̄1Q̄0d̄ +Q2Q1d +Q1Q0d̄ +Q2Q0d̄

The result of the simplifications shows that there was a
change in the size of expressions. This size difference in an
FSM with many states can be drastic, causing a considerable
increase in power consumption, physical circuit size, and ex-
ecution time.

Fig. 3: Karnaugh map to obtain Boolean expressions for Y2, Y1 e
Y0 with the second assignment.
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b. Simulated Annealing

SA is a technique that simulates the heating and cooling pro-
cess of materials, allowing the escape of optimal locations,
and a better exploration of the search space [13, 14]. When
a certain material is heated, there is the excitation of the
molecules, and how it cools down to the stability point of
the molecules will determine characteristics such as hard-
ness, strength, flexibility, etc.

The way a metal reacts to stress is directly related to how
its micro-structure is organized. The capacity of a material
deforms under stress is called Plastic Deformation[15]. The
deformation of a material occurs through rearrangement of
the molecules that constitute the crystal grain, a large crys-
tal grain has more molecules to shift during the applying of
forces. Since the limit of deformation is related to the size of
the grain, a material composed of small crystal grains, when
subjected to stress, won’t deform as much as a material with
large crystal grains.

The annealing process through slow cooling makes the
micro-structure of the finished product composed mostly of
large crystals, making the material softer, therefore more sus-
ceptible to plastic deformation.

In annealing, the metal is heated to a uniform temperature
throughout its length, and allowed to cool slowly, gradually,
and uniformly. Thus, giving the material a better structuring
and organization of the material’s molecules, resulting in a
more flexible material. The annealing allows the material to
be soft, which is better for molding and electrical conductiv-
ity.

In the tempering of metal, the material is heated to a tem-
perature close to melting point and cooled abruptly, causing
the micro-structure to stabilize with small crystals, with little
leeway for deformations, making the material hard.

The computation uses the idea of temperature, which
slowly drops to the point of stability. SA as the search and
improvement algorithm of Hill Climbing uses this temper-
ature parameter to control when jumps out of the optimal
locations occur [16, 17, 13].

The algorithm works as follows: an initial solution is de-
fined, from which the algorithm will start, and a value that
will behave like the temperature in thermodynamics, and will
decrease in small steps, as in slow cooling. Within each iter-
ation of temperature parameter reduction, another routine of
defined size occurs, where another random solution is gener-
ated within the search space that will be compared with the
initial solution.

This internal routine occurs n times within a temperature
adjustment step. In this way, seeking stability of the solu-
tion within the temperature range in which the algorithm ex-
ecution is located. As the temperature parameter decreases,
this routine starts to be executed with fewer chances of a
new solution being chosen, due to the acceptance criteria
[16, 17, 13].

The acceptance of a new solution is based on a thermo-
dynamic model in which starting from a system state i of
energy Ei, a new state j of energy E j is generated based on a
permutation.

If the energy difference between current state (i) and new
state ( j) is greater than zero, the new state is chosen. If the
difference is less than zero, the probability that the state j

replaces i and becomes the current state is given by[14]:

P(∆E,T ) = e

(
−
−(E j−Ei)

T

)
, (4)

where T represents the current temperature.
At the beginning of the algorithm execution, where the

temperature is high, there is a greater probability that fewer
local solutions will be accepted, promoting the leap to other
parts of the search space. But as the temperature drops, this
possibility is also present, suitable as chances of jumping to
distant points in the search space [16, 17, 13].

III. METHODOLOGY FOR THE EXPERIMENTS

The classic model of the SA algorithm was explained in the
previous section, but how certain parts of the work were orga-
nized required that the structure of the algorithm be changed
to better suit the problem.

How the search space is created for the state assignments
for the FSM is random and it is not controlled by any param-
eter, so there is no way to control whether a solution is in
the local neighborhood or a distant point of the space search,
or even control the distance of the jump depending on the
temperature.

For this reason, the SA applied to the problem only accepts
new solutions if the quality is better than the current one, and
the probability is favorable. The algorithm works like a Hill
Climb where new solutions are accepted based on probability
quality. The pseudo algorithm is shown in Algorithm 1.

a. Cost calculation

The cost of a given state assignment is usually calculated by
the number of literals in the Boolean expression that repre-
sents the FSM. But for comparison reasons, the factor that
decides the quality is the area and the type of flip-flops used
to build the sequential circuit described by the FSM. The
equation is the same as [10]:

Area = P× (2i+3log2 N +o+n jk) (5)

where P are the number of product terms, N is the number of
states, i is the number of inputs, o is the number of outputs,
and n jk is the number of flip-flops JK used in the physical
form of the circuit. The JK flip-flops have a more complex
structure than the other types of flip-flops, which translates
to a larger usage of physical space. The cost calculation pe-
nalizes the use of JK flip-flops since it means an increase in
the physical space of the resulting circuit. In this paper are
used only type D flip-flops, thus we do not utilize the term
n jk in the cost calculation.

b. Minimization

One important step in the whole process, is the conversion
of the FSMs given by the LGSynth89 benchmark suite [18].
The files are in .KISS2 format are converted to .PLA (Pro-
grammable Logic Array) format, then fed to the well-known
ESPRESSO [19] Logic Minimizer, a program from the SIS
Logic Synthesis System. ESPRESSO is required for calcu-
lating the objective function. That is, to obtain the Boolean
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Algorithm 1: Pseudo-code of the Simulated Anneal-
ing

Result: Write the results in a plot and a CSV file
1 Select an initial solution;
2 Select a starting temperature;
3 Select a cooling factor;
4 Select a few loops in each temperature iteration;
5 while temperature not stabilized do
6 for repetition cycles do
7 Read the .kiss2 file;
8 Convert to a .pla file;
9 Get cost of the current solution with

ESPRESSO;
10 Generates new solution;
11 Get cost of the new solution with ESPRESSO;
12 Calculates the energy variation using (4);
13 if new solution is better than current solution

then
14 current solution← new solution;
15 end
16 else
17 if probability allows then
18 current solution← new solution;
19 end
20 end
21 if current solution is better than global

solution then
22 global solution← current solution;
23 end
24 end
25 Apply cooling factor;
26 end

expressions that represent the FMS, as explained in Section
II.

The ESPRESSO program is a C language implementation
of the ESPRESSO algorithm [20, 21], that receives the PLA
converted from the .KISS2 file outputs a .PLA format con-
taining the minimized FSM, as well as the number of inputs,
number of outputs, and the number of products terms, which
represents the state transitions of the FSM, is used in the
equation that calculates the cost (Eq. (5)). Conversion is
just a form of binary and labeled representation of the FSM.
For this reason, the details will be omitted, but details on rep-
resentation can be obtained in the references.

IV. RESULTS AND COMPARISON

The SA starts with a temperature of 100, in the first half, the
cooling factor is 1.2, in the second half the factor changes
to 0.8, the same used in[10], slowing down the temperature
curve. The initial temperature parameter was chosen based
on the tests made, where all the FSM achieve stability by the
end of the iterations. The algorithms (both our SA and the
methods used in the comparison) were evaluated using the
benchmark LGSynth’89 [18]. The benchmark LGSynth’89
is a set of examples with 41 FSM presented in the Interna-
tional Workshop on Logical Synthesis in 1989. The informa-
tion about the number of states, size of the input, and output

of the FSM are shown in Table 5.
To run the tests was used a notebook equipped with Intel

i7 6th generation, 16 GB of RAM. The code was written in
Python and used the ESPRESSO script, which is written in C
language, as a sub-process to minimize the state assignment
generated.

The experiment results are shown in Fig. 4. The results
are shown normalized. Most cases continue to improve the
solution towards the end of 100 iterations. Furthermore, the
lines 6 to 21 in Algorithm 1 were repeated 100 times. With a
few exceptions, such as donfile and sand, most of the cases
had continued to improve all over the iterations. These cases
(donfile and shiftreg) are small FSM, so there was not
much improvement in the solution over the iterations.

Fig. 4: Improved solution for all cases tested in the experiment
compared to all iterations.

Table 6 shows the general results of the experiment car-
ried out and a comparison with the work of [10, 22, 23]. For
clarity of the results, all data from the other methods were ex-
tracted from the research of [10, 22, 23]. Only the second and
tenth columns of Table 6 are the results of this experiment.
Columns with the same method and values in parentheses
mean that parameters were passed to the method to differen-
tiate the search for the solution. The MUSTANG [2] (MUS
for short) was run with -p and -n options, that correspond to
fanout-oriented and fan in-oriented algorithms. The NOVA
[24] was run with the -e ig option that causes the NOVA to
be driven by input constraints and -e ioh option that causes
it to be driven by both input and out constraints. The JEDI
[25] was run with -e o option that uses the output dominant
algorithm and -e c option that uses the coupled dominant
algorithm.

The cases in which our results were better than or equal
to all the compared methods are highlighted in bold. And it
is highlighted in italic, all cases where the results are better
than or equal to the methods compared except for the GESA
(Guided Evolutionary Simulated Annealing) method. The
GESA method is a hybrid algorithm (SA and Genetic Algo-
rithm) available in [10]. The GESA is our focus to compare
our experiment.

From these data, it is possible to notice that our re-
sults were not far from the compared methods. Compared
to GESA, the worst case is modulo12 where our solution
was 59 % worse than GESA. However, the best case was
donfile where our solution was 10 % better than GESA. On
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average, our results were 11 % lower than GESA. It is dif-
ficult to measure whether these are acceptable percentages,
considering the simplicity of our implementation compared
to the GESA hybrid method, it seems reasonable to consider
it.

The important point of our results is the processing time.
In all cases, better processing times were obtained than the
GESA method. For the worst case, the tav case, there was
an improvement of 63 % of the time. And for the best case,
case s1a, there was an improvement of 95 %. On average,
there was an improvement of 86 % for all cases.

The time improvement was an expected factor, since our
algorithm is much simpler than GESA, and it does not work
on a certain population as a Genetic Algorithm. One point
that could threaten the validity of our experiment is the re-
search age of [10], which is a paper published in 2000. How-
ever, it is important to note that GESA was implemented with
the C language, whereas in this work the Python language.
Python, for being interpreted, is a slower language than the
C language. Another point is the hardware that was used.
In GESA a SPARCstation 20 station was used. SPARCsta-
tion 20 supports up to 4 CPUs, and in the paper, there is no
information about which CPU is used. In our experiment,
as already mentioned, the Intel i7 6th generation was used.
Despite being very different generations, a low-performance
personal computer with a high-performance server is being
compared.

V. CONCLUSIONS

In this research, the problem of finding near-optimal state
assignment in a finite state machine has been considered.
Moreover, the work shows an evaluation of the solutions pro-
vided by a simulated annealing algorithm. Specifically, it
has been provided an answer to the following question “how
distant are the results with a much simpler and faster meta-
heuristic with less computational efforts (without a popu-
lation of solutions)?” and our contribution is a solution to
the assignment states in a finite state machine with the near-
optimal solution with less computational effort, using Simu-
lated Annealing.

The results have shown that it is possible to have accept-
able losses in the quality of the solution with a considerably
small amount of processing time, i. e. with less compu-
tational effort. For example, for the cases bbsse and cse,
where there was a time gain of 82.93% and 84.52%, re-
spectively, at a cost of loss of solution quality of 2.67% and
2.57%, respectively. Moreover, the case beyb, where there
has been a time gain of 71.91% with the best of solution with
5.35% of loss quality solution. However, given the gap be-
tween the computers used, there must be a fairer comparison
of performance. Because it is a much simpler algorithm, it
could also be important to carry out an experiment calculat-
ing the real computational cost or effort, measured in power
or joules per instruction.
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TABLE 5: TABLE OF CHARACTERISTICS FOR BENCHMARKS USED

Example No. of states No. of inputs No. of outputs
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bbsse 16 7 7
bbtas 6 2 2

beecount 7 3 4
cse 16 7 7

donfile 24 2 1
keyb 19 7 2
lion 4 2 1

modulo12 12 1 1
s1 20 8 6
s1a 20 8 6

sand 32 11 9
shiftreg 8 1 1

sse 16 7 7
styr 30 9 10
tav 4 4 4

train11 11 2 1

TABLE 6: COMPARISON OF COSTS OBTAINED BY SA.

Case SA GESA MUS-P MUS-N NOVA(-e ig) NOVA(-e ioh) JEDI(-e o) JEDI(-e c) Runtime
GESA (s)

Runtime
SA (s)

bbara 509 432* 550 572 550 572 616 594 286.92 63.72
bbsse 990 900* 1122 1089 990 1089 1122 1089 1091.73 73.82
bbtas 124 120* 195 150 180 165 165 195 164.16 48.39

beecount 276 198* 228 228 228 228 209 228 215.12 52.47
cse 1518 1480* 1485 1584 1485 1815 1947 1980 1685.96 109.71

donfile 750 840 980 1020 960 940 900 620* 1078.40 111.44
keyb 1408* 1457 3317 1798 1705 3162 1798 1860 1750.82 240.97
lion 66 55* 77 77 66 88 88 77 122.12 46.17

modulo12 172 108* 195 195 180 180 165 180 350.64 51.18
s1 2832 2849 3108 3552 3219 2775* 3182 2923 1833.00 151.94
s1a 2605 2470 3182 2886 2960 2701 1813* 2479 2638.84 115.16

sand 4600 3901* 5060 5014 4692 4554 4876 4830 2256.48 277.05
shiftreg 48* 48 48 72 96 48 132 96 198.45 47.65

sse 974 875* 1122 1089 990 1089 1188 1122 1060.20 73.66
styr 4400 3854* 5117 4945 4429 4558 4816 4644 1845.40 385.75
tav 180 162* 198 198 198 198 198 198 139.22 50.68

train11 200 147* 238 238 204 187 221 187 495.59 51.82

1Values in bold mean improvement in the solution. Values in italic mean a deterioration of the solution.
The value marked with a ’*’ is the best solution for given benchmark

[23] ——, “Combinatorial optimization with use of guided evolutionary
simulated annealing,” IEEE Transactions on Neural Networks, vol. 6,
no. 2, pp. 290–295, 1995.

[24] T. Villa and A. Sangiovanni-Vincentelli, “Nova: state assignment of fi-
nite state machines for optimal two-level logic implementation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 9, no. 9, pp. 905–924, 1990.

[25] F. Buijs and T. Lengauer, “Synthesis of multi-level logic with one sym-
bolic input,” in Proceedings of the Conference on European Design
Automation, ser. EURO-DAC ’91. Washington, DC, USA: IEEE
Computer Society Press, 1991, p. 60–64.

ISSN: 2675-3588 16


